On a Degenerate Zakharov System

F. Linares, G. Ponce and J-C. Saut

Abstract. We establish a local well-posedness result for an initial value problem associated
to a Zakharov system arising in the study of laser-plasma interactions. We called this system
degenerate due to the lack of dispersion presented in one of the spatial variables. One of the key
tools to obtain our results is the presence of appropriate global versions of the so called “local
smoothing effects” inherent to the dispersive character of the model.
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1. INTRODUCTION

Consider the initial value problem (IVP) associated to the “degenerate” Zakharov sys-
tem
(i(0y+0.)E+ A E=nkFE, (v,y,2) €eR®, >0,
(0F = Al = AL(|E]),
E(z,y,2,0) = Ey(z,y, 2), (1.1)
n(x,y,z,0) =ng(x,y, 2),
omn(z,y,2,0) =ni(x,y, 2)

where A} = 92 + 85, E is a complex valued function and n is a real valued function.

The equation arises as a model in laser propagation when the paraxial approximation
is used and the effect of the group velocity is negligible, see [4], [5], [7]. Note that the
system is “degenerate” in the sense that there is no dispersive term in the space variable
z in the first equation. Thus the existence results for the classical Zakharov system, i.e.
A replaced by A, do not apply (see [7] and references therein).
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In [1] Colin and Colin derived an alternative model to (1.1) and posed the question
of the well-posedness of the IVP (1.1). No result seems to be available so far. Our goal
here is to give a positive answer to this question. We will establish a local well-posedness
theory for the IVP (1.1) in a suitable function space.

To describe our result we first reduce the IVP (1.1) into an IVP associated to a single
equation, that is,

{i(at +O)E+A E=nE, (1,y,2)€R3, t>0,
(1.2)
E(Z‘, Y, =, 0) = EO(:E7 Y, Z)
where .
n(t) = N'(t)no + N(t)ny + / Nt —t)AL(ED)]) dt, (1.3)
with "
N(t)f = (=A0)" 2 sin((=AL)V20) f (1.4)
and
N'(t)f = cos((=A1)"*0) f (1.5)
where (—AL)V2f = (& + &)1/ f)".
Then we consider the integral equivalent formulation of IVP (1.2), that is,
E(t) = E(t)Ey + / Et —t"YN'(t)no + N(t")ny) E(t') dt’
o ) (1.6)
+ [ &t —1t) Nt —s)AL(|E(s)])ds) E(t')dt'.
[eeof >
where R
E(1)B = (¢ DB () (L.7)

To prove local well-posedness for the IVP (1.2) we will explore the smoothing effect
associate to the operator (). We observe that the linear equation in (1.2) is almost
a linear Schrodinger equation but not quite due to the propagation on the z-direction.
However, we are able to prove similar smoothing effects for the operator £(t) as those of
the Schrodinger propagator. We shall recall that the homogeneous local smoothing effect
which provides a gain of 1/2 derivatives respect to the data was established by Constantin
and Saut [2], Sjolin [6] and Vega [8]. Its inhomogeneous version which gives a gain of 1
derivative was proved by Kenig, Ponce and Vega [3]. Here we shall use a global version
which is more appropriate for the problems we are dealing with. In particular we will
show (see Proposition 2.1) that one has that

1Dy 2e(t) fll e rz., < cllflliz

yzt zYyz

(1.8)
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and the same inequality with  and y exchanged. These estimates are one of the key
points in our analysis.

The use of this type of estimate and properties of the operators N(t) and N'(¢) will
allow us to prove that an integral operator associated to (1.6) is a contraction in a certain
function space that we will define next.

The function space H¥*1(IR3) is defined as

HYH (R ={f € H¥TY(R®), DY?0°f, DY?0°f € L*(R%), |a| <2j+1, j € Z*} (1.9)

where 0% denotes any derivative in (z,y, z) of order . Thus initial data will be considered
as being

{EO € HYH(RY) (1.10)

no € H¥(R3?), ny € H¥(R?), 0,ny € H¥(R?), j € Z™.
In what follows we will use 9**! to denote any derivative in (z,y,z) of order less or

equal than 25 + 1.
Now we are ready to give the statement of our main result.

Theorem 1.1. For initial data (Ey,ng,n1) in (1.10), j > 2, there exist T > 0 and a
unique solution E of the integral equation (1.6) such that

E € C([0,T] : H¥*(R?)) (1.11)

|Dy/20%+! E||LgongT < o0 (1.12)
and

IDy20% ! Bl poer2 < o0. (1.13)

Moreover, for T' € (0,T), the map (Eq, ng,ny) — E(t) from H¥ x H2 x H2 into
the class defined by (1.11)—(1.13) is Lipschitz.
Furthermore, from (1.11)—(1.13) one also has that

n € C([0,T] : H¥T(R?)). (1.14)

The proof of this local well-posedness result is based on the contraction principle (in the
space adapted to the system), which guarantees that the map data—solution is Lipschitz,
but since the nonlinearity is smooth the Implicit Function Theorem shows that this map
is in fact smooth.

This note is organized as follows. We will obtain a series of estimates regarding the
smoothing properties of the operator £(t), key in the present analysis, in Section 2. In
Section 3 we will establish some estimates involving the nonlinear term that allow us to
simplify the exposition of the proof of the main result. Theorem 1.1 will be proved in
Section 4.
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2. LINEAR ESTIMATES

In this section we study the smoothing properties of solutions of the associated linear
problems.
We begin with the solutions of the linear problem

E(SU, Y, =z, O) = EO('TJ Y, Z)
where A = 92 + 0.
The solution of the linear IVP (2.15) is given by
E(t)Ey = E(z,y,2,1) = (e—it(ﬁf-i-'f%ﬁ-&)ﬁo(g))v' (2.16)
Proposition 2.1. The solution of the linear problem (2.15) satisfies
IDY?E(t) fllzzrz., < el fllzz,.. (2.17)
¢
1D [ &t =) Gt e, < ellCllss,. (2.18)
0
and
¢
lo. [ &t~ )Gt |ueaz, < cIGlssaz,, (219)
0

The same estimates hold exchanging x and y. Here Di«/Qf = (]6\1/2f)v.
Proof. We first prove (2.16). Denoting x = (2,9,2), { = (£1,&,&), X = (y,2) and
§ = (&, &3) we have

IDY2E(t) fllpzre = | / e €| |V/2eMEHETE) F(¢) de | 12 . (2.20)
R3

Introducing the change of variables

(51752753) = (gvg) - <_£% - 522 - 6375) = (7", g)

or or or |7t
_ 061 0&  0&3 - 1 =
dedéE=|0 1 0| drdé=(2&]) " drdé

0 0 1
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we obtain

iW(X-E+r ixy/ —r— 3 d?“df
IDY2€(0) 20z = | / 600 62 VT ) T

- (/im O drde) " = c|Flliz = cllf]
Kl T T e e

This proves (2.17).
The inequality (2.18) follows using a duality argument.
Next we show (2.19). A simple computation shows that

t

o, (t— G dtl — ix-&(itr _ —it(E2+E34+Es) &1 @ ,T)déd
[ ea-rticwyar = [ exs(er A
0 R4
_ ix-E _itT &1 G ded 2.21
/e ¢ THE+E+& (€, 7) dédr ( )
RAL
_ ix-€ —it(E3+E3+E3) & G déd
/e ’ e g O6n) ddr
R4

= 0. F1(x,t) + 0. Fa(x, ).
Then

&1
THE+E+ &

Jo.Bxx, ), = | [ e G(&, ) dedr
R4

1x€1 5 ~ -
: HR/ O rgrgeg CG bl (222)

| [ K- ,&n) G & r) dat 1z,
R

where

&1
THE+E+E

K(x—2,67) = c/ etz

R
To obtain (2.19) it is enough to show that K € L>*(R*). To prove this we write

& _ &
THE+E+E a+ &

dé, . (2.23)

(2.24)

and distinguish three cases:
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(i) @ > 0. In this case we have that K is just c(a)sign(&;)e @l therefore it is
bounded. —
(ii) a = 0. It is clear that K = p.v.+, that is, the kernel of the Hilbert transform
which is bounded.
(iii) @ < 0. Here we have that

&1 1 1

a+&  2a2-g) 2o 2 +&) (2.25)

Thus K is roughly a sum of translated of the Hilbert transform kernel. Therefore
K € L>*(RY).
Hence

sup |0, Eulg, < ¢ [ 16 @)1z d’

(2.26)
—c [ 166z, do = |Gl
On the other hand, we have that

0, Es(x,1) = D;/*&(t)g(x) (2.27)

where

T 1/2
790~ [ SIS G dn 229
An easy computation shows that
1 A(T) T e iT 2 2

. = dr = csign(t) " ETERTS) (2,29
v rgraTe) /7+£%+§%+£3 7= csinlt)e (229

—0o0

By (2.27) and (2.17) we obtain

1/2
el / SIS e fyarlpe.  (2:30)

0, F t)|? dx dt
Sip(/| 2z %, 1) dx THETE+ &

R3



ON A DEGENERATE ZAKHAROV SYSTEM

The identity (2.29) and Plancherel’s theorem imply then that

||/ sign(&)[&)Y? 4

T+§1 +£2 +§3 (6’7—) dTHLQ(E)

‘ , » ~ v(€)
—cl( / sign(€1) |61 2sign(t) e O GO ) dt) 2o

— 00

o)

— c|DV? / (1) (sign(t) G (-, £))dt | ages.

—00

(2.31)

So we can apply (2.18) in the last term of (2.31) to get the desired estimate. In fact,

defining &(t) = e~ and noticing that by (2.18) we obtain
t ¢

||D;/2/ e—t’PG(t/) dt,”L?OLi S ||Di/2€itP\/ e—t/PG(t/) dt/HL;’OLi

t

< ||D:11:/2/ e OPG) dt || ez < c||Gllpsse,

(2.32)

(2.33)

0
where in the first two inequalities we used that e is a unitary group in L?. We have
then that
(0.0
1D [ PG dt o) < ¢lCllasss,
0

Therefore (2.30), (2.31) and (2.33) give
1/2
Sup(/ 0, Balr, x ) dxdt) < e|Gllya,

Combining (2.26) and (2.34) inequality (2.19) follows.

Lemma 2.2.
1€ Eollrzree, < (1 +T) || Eollmae).

Proof. Since

f(x,y,z,t) - f($7y7270) +/ atf<l',y,2’,8) ds,
0

(2.34)

(2.35)

(2.36)
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the Sobolev embedding gives

T
sup |y, 0] < sup |7z, 2001+ [ 107(,0.59)] ds}
t€[0,T],y,2 Y2 ) (2.37)
< |[f(z, s )lm2ms,) + 720, f (, -, -, Mz mse,)-
Now taking the L2-norm we get
HfHLgL;gT < fCse O)”L%HQ(Riz) + T1/2HatfHL§TH2(R§z)- (2.38)
Taking f(z,y, z,t) = E(t)Ep and using equation (2.15) and group properties we obtain
(2.35). O
Next we establish some estimates associated to solutions of the linear problem
(02 —A)n=0
n(z,0) = no(z) (2.39)

on(x,0) = ny(x),
where A was defined in (1.1). The solution of problem (2.39) can be written as
n(z,t) = N'(t)no + N(t)ny (2.40)

where N(¢) and N’(¢) where defined in (1.4) and (1.5).
In the next lemmas we list a series of useful estimates involving the operators N’(¢) and

N(t).
Lemma 2.3. For f € L*(R?) we have

INCE)fll2 < 2L f1]2; (2.41)
IN'(E) fll2 < (1 £l2, (2.42)

and
I(=A)2N@E) fll2 < [ £]l2- (2.43)

Lemma 2.4.

IN'(t)nollr2ree,. < lnolla2ee) (2.44)

and
Nl rzres, < T [lnal g2 s).- (2.45)

These estimates remain valid when x and y are exchanged.
Proof. Use of the Sobolev embedding and the definition of N'(¢) yield

IN'(t)n0]| 252, < Ml cos((=A0)*O)nol 2o 2z, < llnollm2es)- (2.46)

xHyzT

Similarly we obtain (2.45).
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3. NONLINEAR ESTIMATES

In this section we will find estimates for the nonlinear terms in our analysis.

Consider
E(t) = &(t)Ey +/ E(t—t)(EF)() dt’+/ E(t—t)(EH)(t")dt
where
F(t) = N'(t)ng + N(t)n,
and

t
Ht) = / N(t — )AL (|BR)(E) dt
0
Lemma 3.1.
||H||L5L;<Z>T < CTZHEH%%CH‘*(R?’)
and
107 H iz, . < T 10077 Blligess |1 Bllagey + T BN pr2i01 -

(3.47)

(3.48)

(3.49)

(3.50)

(3.51)

where 0% denotes any derivative in (x,v,2) of order < 2§+ 1. The estimates also hold

true when x and y are exchanged.

Proof. To prove (3.50) we use the Sobolev embedding and the properties of the operator

N(t), i.e.
1H |20, < cllHl| 202wz,

SCH/(t—t’)HAL(IEIZ)Hm(R;z)dt’IIL;L%o

<c| / ~ OIALUEP e, 1

< CT3/2 IALIEP) 2z 2@z, < ¢TI BN L magee)-

(3.52)

To obtain the estimate (3.51) we use inequality (2.43) and Sobolev’s embedding to yield

2T

105 H |z, < T 1007 (IEP) e,

< AT 10,07 Bl sz N Eline, +T Y. 00 ES Bz,

T yzT
k+I<2j+1
k,1#2j+1

<cT Haxazj-FlEHLgOLZZT HEHL%LECZ)T + CT3/2HE||%%OH2]-+1(R3).
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U

We shall observe that the important terms to handle in the estimates below are those
nonlinear terms with highest derivatives. The other ones, where the derivatives are split
and lower order derivatives arising in the nonlinear terms, can generally be treated by
interpolation between extreme cases.

Lemma 3.2. Let 0%*! be as above. Then

t t
% / &t — ) (EH)(E) dt' | 12, _+ | D205 / E(t — ) (BH)(E') d | o 12
, Y / Tl (3.53)
< T E e gy + ¢ T2 10,054 Bl psoro 1 Ell 21, 1Bl s
Proof. Group properties and Minkowski’s inequality give
t
o+ / E(t — V) EH)W) d |11z, < c|0%+ (BH)| oy 2.
0
< T 1097 Bllas, |l g + e Tl 109 Bz,
o Y B HIp,
k+1<2j+1
k, 1#£25+1

< Ay + Ay + As.
The term A; can be estimated by using Sobolev embedding to control ||H||zx . Thus
Ay < T || Bl g i1 3) | B |70 pra ey (3.55)
To estimate As we use (3.51) in Lemma 3.1 and the Sobolev lemma to obtain

A < T21|0,05 7 Ellysere | Ellizrs, | Bl oy + T 1B poses gy (3.56)

zHyzT

To bound Az we use Holder’s inequality, the Sobolev lemma and Lemma 2.3. Indeed,
let us consider the case k+1 =25+ 1 with k£ <.

10" ES Hl| 1y 12, < 10°E ey 10" H]| 1112

zxyzT Yz

< cT/? HEHL%OHICH(RS)“alHHLisz (3.57)
<cT? ||E||L;0Hk+2(R3)||EH2L%°H!+1(R3)

< CT?HEH%%OHZJH(R?»)

whenever 25 + 1 > 3. Thus
Ay < T2 Bl posis oy (359)
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On the other hand, Minkowski’s inequality, group properties and the smoothing effect
(2.17) yield

t

D20 [ &t = EYBH)E) dt |uery., < 10997 (BH)gpas,.. (359
0
Hence the previous argument can be applied to obtain the result. Il

The next estimate is the most delicate one in our argument. Here the smoothing effects
obtained in Section 2 play an important role.

Lemma 3.3. With the notation in the previous lemma we have that
t t
D205 [ (e = O)BH)C) d |iaa,, + 10,097 [ £t~ O)EIE) 151z,
0 0
<eT*(1+ Tl/Q)HEH?i;OHQjH(RiS)
+ T Bllzzrse, (10:05 Ellierz | Ellzre, + T2NE o) (3:60)

T2 | Bll e, | Ell g s oy (|1 DY?0% P Bll g + 110,077 Bl gz, ).

xHyzT

A similar estimate follows exchanging x and y in (3.60).

Proof. We first use Leibniz’s rule and then separate the highest order derivatives and the
lower order ones.

t

| DY+ / &(t — )(EH) () dt |z 12

TYyz
0
t

< HD}C/Q/ Et —t)(O¥T'EH + EO¥T H)(t) dt'|| pse 12,

J (3.61)
t
+ > |IDy? / E(t—t)(O"EIH)(t') dt! || 112,
k+HI<2j+1 4
k,l#£25+1

=Di1+ Dy
The estimate (2.18) implies that

Dy <% E H + Eo¥ ™ Hl|yype | < 0%V E Hl e+ cl|EOP ™ Hlpype . (3.62)
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Using Lemma 3.1 we obtain

Dy < |0 E| 2 H| 21

xyzT

oy el Ellzree 1077 Hll 2
< CT5/2 HE”L%OH%JA(RS)“EH%%OHAL(R;?,) + CTHEH%%LZ.;THa‘ra2j+lEHLg°ngT

T\ Bl i, 1B s

(3.63)

To show how to estimate D5 let us take, for instance, the case k+1 =25+ 1 with k < [.

So, the Minkowski inequality and group properties yield
t
1D [ &t = €)@ ESH)E) dt iz, < |DYO EIH)|yas,.
0

Using that

1D:2(f9)llzz,. < D Fllzs, Ngllzs,. +cllflles

Yz TYz TYz TYz

1D, 2gll1z,

we have that
| DY (0 EOH)| 1y 1o
< c||Dy?O"E||1s, |0"H |14

Tyz Yz

DY20'H|| 2

1
2, Ly

ey + HI0° B s

Yz

Let | # 25. Using the Sobolev inequality and Lemma 2.3 we obtain
1 Dy/20* Bl s, 10" H]| 4

Yz TYz

HLlT < CT1/2||E||L§’9H’C+2(R3)||alHHL2TH1(]R3)
< T2\ Bl g mvve s | El g proea sy
<cT? HEHi%CH?J"H(]RS)'

On the other hand, the Sobolev inequality, (3.65) and Lemma 2.3 imply that

110" Ell 5. 1D;/ 20" H]l 2

TYz Yz

1y S cTV2|O B 1, | D320 H | 12

yeT SyeT
< cT? HEHL%OH’HQ(]R:“)HEH%E}OHHQ(H@)
<cT? IIEIIi;Osz+1(R3)-
Let [ = 2j. The Sobolev lemma and Lemma 3.1 imply that

11 D208 11, 110" H]| s

1
TYz Yz HLT

< eTYV?| D, POE | e @) 10" H || 12 11 e9)
< T2 | Bl el g,
< cT3/? ||E||L§>9H21+1(R3) ||8$62j+1EHLg°LzzT ”E“L%LZ‘Z’T + CT2||E||:)£§9H2J‘+1(R3)'

(3.64)

(3.65)

(3.66)

(3.67)

(3.68)

(3.69)
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and

OBz | D3/ 0" H | 12

TYz TYyz

< T2 OE e oy | DY O H | 2.
3/2 1/2 9275 Iy; (370)
< T2 Bl g oo | Dy 0% 0 (1Bl 2,

< i ||E||L;9H3(R3)||Dglc/282j+1EHLg°L§zT||E||L§L;<Z>T + T2 || Bl 0 o ses)-

1
LT

Thus

Dy < CT3/2HEHL%OHQJ'“(R?’)”EHLgOLizT(”Dclc/282j+lEHLg°LzzT+ 10:09 Bl pe 2., ) (3.71)
+ T2 || Bl g2 sy

Hence combining (3.61), (3.63) and (3.71) it follows that

t

| DL/29%+1 / E(t —t")(EH)(t') dt'| e 12

TYz

0
< T (14 TV Ell g o 10:07 4 Bll o2 1Bl 22152 (372)

T HyzT
+ T?’/QHEHL;CH%R%|’Dglg/282j+1EHLg°ngTHEHLELZCZT
+ CT3/2(1 + T2 4 T)||E||L§9H3(R3)-

Finally to estimate

t

.09 [ et = O)(EH)E)dt |urz.,

0

we first apply the Leibniz rule and split the highest derivative terms and lower derivative
terms as above. Then we use the smoothing effects (2.18) and (2.17) to obtain

t
.05 [ &t~ O)EH)E) dt |urz.,
0
t (3.73)
<0, / E(t — )0V E H + BO H)(E) dt | ez,
0
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t

+ S0 Ipyee)( [ e-Op e ESH)E ) 1ss,

kH1<25+1 0
k1 £2j+1
<c H82j+1EHHL§LizT +c HE@%H HHL;ngT tc Z HDylc/z(akEalH)(t/) dt/HLlTLgyz-
k+1<2j+1
k1 £2j+1
From this point on the analysis is similar to the previous one. U
Lemma 3.4. Let F be as in (3.48). Then
t t
0% [ &t = ) EF)E) dt s, + DY [ et =~ O)ER)E) W izrs, (.
J J (3.74)
< CT||E||L%OH2j+1(R3) (||n0||H2j+1(R3) + (1 + T) ||n1 ||H2j(R3))
and
t t
IIDiﬂaQH/E(t— ) EF)() dt | gers,, + ||3z92j+1/8(t— Y EF) ) dt'|| peer2,
0 0
< T2 Bl| o sy (Imo | =y + Tl [l a2e)) (3.75)
+ CTl/zHEHLiL;jT ([[noll 25 mey + T'llna | 2 ms))
+ T || Ell g rroinire) ([[noll v sy + (1 + T) [ || 2 gs))-
Proof. By Minskowski’s inequality and group properties we have
t
o2+t / E(t — O)EF) () df | gz, < O (EF)| 1y, (3.76)
0
On the other hand, the inequality (2.17) and group properties imply that
t
D205 [ et = OYEFNO e 1sss, <O EP iy, (7D

0
So to obtain (3.74) it is enough to estimate ||82j+1(EF)||L1TL%yZ. First we have that

0% Fllugeus,

[P EF) I pype,. S T N0 Ellgrz, I1Fllce . + T |El L

xYz T “xyz zyzT xyzT

+ lower order terms
By Sobolev’s Lemma, (2.41) and (2.42) it follows that

[ Flzee . < F [ semz@ey < e ([nollm2@sy + Tllnal| g2 @s))-

xyzT —
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Using (2.41), (2.42) and (1.10) we obtain

|07 F || oo 12

zTYyz

< c([Inoll zr2sr@sy + [Inall 23 (r3) )
Similarly, we can estimated the lower order terms. Thus
|0*FH(EF)| g1z

Tyz

< CT ||E||L%0H2j+1(R3)(||7’Lo||H2j(R3) + T ||7’Ll||H2j(]R3)) (3 78)
=+ cT HE”L%OH?(]R?’)(||n0HH2j+1(R3) + HanHQj(RB)). .
This inequality combined with (3.76) and (3.77) gives (3.74).
To show (3.75) we proceed as in the proof of Lemma 3.3. We first use the argument
developed in (3.61) and (3.73) to obtain

|DyeP / et~ O)EF)) &1z, + 10,0 / £(t = ) EF)Y) & |1z,
<9 EF e, + | B Fllpge + Y IID”Q(@’“E@l Miyzs,.
k+1<2j+1
k,1#2j+1
Applying Lemma 2.4 we obtain
10 EF e, < 0Bz [IF ] r2es
xHyzT z zT yzT (379)

S CT1/2||E||L%0H2J'+1(R3) (‘

From Lemma 2.3 it follows that

noll 22y + Tllna || g2 ) -

| Fllsse < N1Ellrzrze, 1077 Fllz, (3.80)
< V2| Bl gzrze, (0]l i sy + [ [l s))

Using the estimate (3.65), the Sobolev lemma and Lemma 2.4 we obtain
1D} (O BO'F)|lpy 2, < TV || D20 Bl oo i ) 10" F || 2,101 )
1/2 || 9k 1/2 9
T 0 Bl DY F 1z, 1
< T El g mrr2 sy (Inoll a2 @s) + Tllnall s ws))
+cT ”E“L%OHIH—Q(RS) (”TL()HH%H(R?)) + Hnl ||H23'(R3))‘

Therefore,

t t

1D [ et = OYBPE) i, + 1007 [ &= O)EPE) W sz,
0 0
< CT1/2(1 + T1/2)|’E|’L709H2j+1(R3) (||n0HH2J'+1(R3) + (1 + T)Hm HHQj(]RS))

+ TV Bl 2 e, (0]l e @) + | i es))
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O
In the next lemma the restriction j > 2 in the statement of Theorem 1.1 arises.
Lemma 3.5.
t
| [ e t)EF+ EHY) 12,
0 (3.82)
< c(L+ )T Ell g sy ([0l sy + Tllna | 11 rs))
+c(l+ T)T2<||E||%%°H4(]R3) + ||E||%%°H2(]R3)||E||L%OH5(R3))'
The same estimate holds with x and y exchanged.
Proof. Applying group properties and Lemma 2.2 it follows that
t
| [ et - t)EF + B dt iz,
0
T
+ / A +T) (IEE)FE) s ey + 1EE)H ()]s re)) dt’ (3.83)

0
< c(L+T)| Eollrare)
+c(L+THIEE)E W) | sy mamsy + 1EE)H () s }
= c(1+T)||Eollaagsy + ¢ (1 + T){Bi + Bs}.
One has that
By < T||0*E(t)]| oo 2

T TYz

Hllzg , + T Bz

zyzT zyzT

0*H || 2 .+ low order terms.

Using (2.43) and Sobolev’s inequality we get
1Ly, < clHll Lz < cT|E|LF H(R?).

xyzT

Applying (2.43) yields that
10* H]| 2

zyzT

< CTB/QHEH%%OHNRS)'

The lower order terms can be estimated using the Sobolev lemma and (2.43) as above.
Hence

By < CT2||E||3£°T°H4(R3) + CT2||E||L%°H2(R3)||E||%%°H5(]R3)' (3.84)
On the other hand,
By < T\ Ell g maes) | Fllrgs, + TV ||

y=T 20T ||F||L2TH4(R3) + lower order terms.
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By (2.41) and (2.42) it follows that

[ Fllzee . < e (lnollmzs) + Tllmallmz@s))

zyzT —
and
1 F || 2. o eesy < cT2(|Inoll mraes) + T||n1 | 4 gs)) -

A similar argument can be used to estimate the lower order terms. Hence

B1 S cT ||E||LQ°PH4(R3)<||n0||H4(]R3) + T||n1||H4(R3))~ (385)
Combining (3.83), (3.84) and (3.85) the result follows.
Il
4. PROOF OF THEOREM 1.1
We define
Xor ={E € C([0,T): H¥"'(R®) : | E|lr < a} (4.86)
where
IEN == || Ell g mrosei ey + | DY 2% E| o2, + 1Dy * 0% El| 12,
+ | DY20% A E|| ez + [|0.0% T E| oo 2
[ Doz, + Doz, .

+ 1Bl r2ree, + [ Ell 2212

T HyzT xzT

+ ||D;/282j+1E||L§OLizT + ||8y82j+1E||LgongT

and the integral operator on X, r,

t

U(E)(t) =E(t)Ey + / Et—t")E{)YN'(t")ng + N(t")nq)

t/

+ / et~ ) () / N(F — $)AL(|EP)(s) ds) di (4.88)

= E(t)Ey + / et — 1) (EF)(t) + / E(t — ) (EH)(t) dt'.

We will show that for appropriate a and T' the operator W(-) defines a contraction on
Xor-
From Proposition 2.15, Lemmas 3.2, 3.4 and 3.5 we deduce that

[U(E) | g mr2ierrey + ||D;/232j+1‘1’(E)||L;OL52T < c[|Eoll 2 me)

(4.89)
+eTPA+ TP NER + e TNEN (Inoll g2 es) + (1 +T) |1 || 2 @)
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On the other hand, Proposition 2.15, Lemmas 3.3, 3.4 and 3.5 yield the following
inequality

10,00 (B) || o2, + |1 DZ 20U (E) || g1z, < e[| D3/207 Eol 2y
+ 21+ T2 EN (noll a2 @sy + (1 + T)lInall 2 s)) (4-90)
+cT(L+ T2+ T+ T3 | B|°.

Similarly, we obtain estimates for

||D;/282j+1\II(E)||LZOL3yZ and HD;/282”1\I/(E)HL%0L2 +||ay82j+1‘1’(E)”L;°ngT- (4.91)

Yz

Finally, from Lemmas 2.2 and 3.5 it follows that
W (E) ez + N (E)|Lgerz . < ¢ (1+T) | Eoll sy

yzT xzT

S (4.92)
e (U+ DYTYEN(Inoll sy + Tl s + e (L+ DT EJP.

Hence, choosing a = 2¢(1 + T)||Eo| 2541 and T sufficiently small depending on
1m0 || 23+1 sy |71 || 523 (r3) and [|0.11 | m2sgs), we see that ¥ maps X, r into X, 7. To show
that ¥ is a contraction we follow a similar argument as the one described above. The
remainder of the proof uses a standard procedure so we will omit it. This completes the
proof of Theorem 1.1.

Remark 4.1. The smoothness requirement on the data in Theorem 1.1 could probably be
weakened. Note however that since no conservation law (energy), except the conservation
of the L? norm of E, seems to be available for (1.1), such a weakening would not obviously
lead to global existence of solutions.
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