
A NOTE ON SOLUTION SENSITIVITY FOR KARUSH–KUHN–TUCKER
SYSTEMS∗

A. F. Izmailov† and M. V. Solodov‡

September 3, 2004

ABSTRACT

We consider Karush-Kuhn-Tucker (KKT) systems, which depend on a parameter. Our con-
tribution concerns with the existence of solution of the directionally perturbed KKT system,
approximating the given primal-dual base solution. To our knowledge, we give the first ex-
plicit result of this kind in the situation where the multiplier associated with the base primal
solution may not be unique. The condition we employ can be interpreted as the 2-regularity
property of a smooth reformulation of the KKT system. We also give a strictly sharper,
compared to other statements in the literature, estimate for the contingent derivative of the
KKT solution multifunction.
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1 Introduction

Let Φ : Rs × Rn → Rn and G : Rs × Rn → Rm be sufficiently smooth mappings. We
consider the parametric Karush–Kuhn–Tucker (KKT) system: Find (x, µ) ∈ Rn ×Rm such
that

Φ(σ, x)−
(

∂G
∂x (σ, x)

)T
µ = 0,

µ ≥ 0, G(σ, x) ≥ 0, 〈µ, G(σ, x)〉 = 0,
(1.1)

where σ ∈ Rs is a parameter, and 〈·, ·〉 is the Euclidean inner product.
System (1.1) is a case of the mixed complementarity problem with a special (primal-dual)

structure. If for some smooth function f : Rs ×Rn → R it holds that

Φ(σ, x) =
∂f

∂x
(σ, x), σ ∈ Rs, x ∈ Rn, (1.2)

then, as is well-known, (1.1) is the KKT optimality system for the parametric optimization
problem

minimize f(σ, x)
subject to x ∈ D(σ),

(1.3)

where
D(σ) = {x ∈ Rn | G(σ, x) ≥ 0}. (1.4)

We note that all the developments given below extend in a straightforward manner to the
case when equality constraints are present.

Let KKT be the set comprised by all triples (σ, x, µ) ∈ Rs ×Rn ×Rm satisfying (1.1).
We define the KKT solution multifunction by

KKT : Rs → 2Rn×Rm
, KKT (σ) = {(x, µ) ∈ Rn ×Rm | (σ, x, µ) ∈ KKT }.

For a given (base) parameter value σ̄ ∈ Rs, let (x̄, µ̄) ∈ KKT (σ̄). The sensitivity theory
is concerned with the local structure of the set KKT or, to put in other words, with the
behavior of the multifunction KKT for the values of σ ∈ Rs close to the base value σ̄.

There are two principal issues in stability/sensitivity analysis, which are to some ex-
tent independent of each other (and are typically considered separately in the sensitivity
literature). One problem is that of approximation of the base solution by the solutions of
the perturbed problems. It concerns with the properties of the map KKT , assuming that
solutions exist, at least for some forms of perturbations. (This assumption is usually not
made explicitly, but without it, the sensitivity statements become vacuous.) Such studies
usually deal with the question whether the set KKT (σ) approximates in some sense the set
KKT (σ̄) as σ → σ̄ (“stability”), and give some quantitative characterization of the approxi-
mation properties (“sensitivity”). Sensitivity information concerning the KKT multifunction
can be presented in various (equivalent) forms. One relevant object is the contingent cone
CKKT (σ̄, x̄, µ̄) to the set KKT at the point (σ̄, x̄, µ̄), or the (smaller, in general) tangent
cone TKKT (σ̄, x̄, µ̄). In the terminology of [16], the multifunction from Rs to 2Rn×Rm

whose
graph coincides with CKKT (σ̄, x̄, µ̄), is called the contingent (outer graphical) derivative of
KKT at σ̄ for (x̄, µ̄). Moreover, KKT is said to be protodifferentiable at σ̄ for (x̄, µ̄) if
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CKKT (σ̄, x̄, µ̄) = TKKT (σ̄, x̄, µ̄). The essence of this branch of sensitivity analysis can there-
fore be stated in terms of the contingent and tangent directions. In Section 3, using the the
notion of 2-regularity [6, 4], we present an estimate of the contingent derivative of the KKT
multifunction, which is sharper than other statements in the literature.

The second major issue of stability/sensitivity analysis is that of existence of solutions
of the perturbed problems, i.e., whether KKT (σ) 6= ∅ for a given (or all) σ ∈ Rs close
enough to σ̄. This issue had been studied by many authors under quite mild assumptions
(in particular, not implying the uniqueness of the multiplier associated with the base primal
solution); see, for example, [20, 12, 23, 21, 13, 22, 17, 18, 8], and the recently published books
[11, 3]. (Note that the existence results usually appear in conjunction with some kind of
assertions on approximation properties, as discussed above.) In this paper, we are concerned
with the following more specific question: we are looking for mild conditions guaranteeing,
for given primal-dual base solution (x̄, µ̄), the existence of an arc of solutions of the form
(x(t), µ(t)) = (x̄+tξ, µ̄+tν)+o(t) corresponding to the parameter values σ(t) = σ̄+td+ρ(t),
t ≥ 0, where d ∈ Rs and (ξ, ν) ∈ Rn × Rm. To our knowledge, this kind of analysis was
previously known only in the context of Robinson’s strong regularity, see [1, 16]. Strong
regularity implies that (x̄, µ̄) is an isolated point of KKT (σ̄), and in particular, µ̄ is the
unique multiplier associated with x̄. In Section 2, we prove existence results for directional
perturbations under conditions which do not require the uniqueness of the multiplier. Those
conditions can be interpreted in terms of the 2-regularity property [6, 4] of a certain smooth
reformulation of the KKT system. The latter relation is discussed in Section 3.

A few words about our notation. Given a finite set I, |I| stands for its cardinality. For
y ∈ Rm and an index set I ⊂ {1, . . . , m}, yI stands for the vector with components yi, i ∈ I.
For a matrix (linear operator) Λ, imΛ is its range (image space), and kerΛ is its kernel (null
space). For a directionally differentiable mapping F : Rn → Rm, by F ′(x; d) we denote
the usual directional derivative of F at x ∈ Rn in the direction d ∈ Rn. Given a set D in
Rn, the contingent cone to D at a point x ∈ D is given by CD(x) = {ξ ∈ Rn | ∃ {tk} ⊂
R such that {tk} → 0+, dist(x + tkξ, D) = o(tk)}. The tangent cone to D at x is defined as
TD(x) = {ξ ∈ Rn | dist(x + tξ, D) = o(t), t ≥ 0}, where dist(x, D) = infz∈D ‖x− z‖.

For the base value σ̄ and the given x̄, we define the index sets associated with the active
and inactive constraints in the usual way:

I = I(σ̄, x̄) = {i = 1, . . . , m | Gi(σ̄, x̄) = 0},
N = N(σ̄, x̄) = {1, . . . , m} \ I.

(1.5)

For a given µ̄ such that (σ̄, x̄, µ̄) ∈ KKT , the active constraints are further partitioned into
the weakly and strongly active, as follows:

I0 = I0(σ̄, x̄, µ̄) = {i ∈ I | µ̄i = 0},
I+ = I+(σ̄, x̄, µ̄) = I \ I0 = {i ∈ I | µ̄i > 0}. (1.6)

We next state some constraint qualifications and second-order conditions that will be used
in the paper. All those conditions are associated with the nonperturbed KKT system (i.e.,
for the base value σ̄ of the parameter).

• The linear independence constraint qualification (LICQ): rank ∂GI
∂x (σ̄, x̄) = |I|.
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• The Mangasarian–Fromovitz constraint qualification (MFCQ):
∃h ∈ Rn such that ∂GI

∂x (σ̄, x̄)h > 0.

• The strict Mangasarian–Fromovitz constraint qualification (SMFCQ):
rank

∂GI+

∂x (σ̄, x̄) = |I+| and ∃h ∈ Rn such that ∂GI0
∂x (σ̄, x̄)h > 0,

∂GI+

∂x (σ̄, x̄)h = 0.

• The weak linear independence constraint qualification (WLICQ):
rank

∂GI+

∂x (σ̄, x̄) = |I+|.
As is well known, SMFCQ is equivalent to the uniqueness of the multiplier.

For the sake of convenience, we define the mapping associated with the equations in (1.1)
(leaving out the equation associated with the complementarity condition):

Ψ : Rs ×Rn ×Rm → Rn, Ψ(σ, x, µ) = Φ(σ, x)−
(

∂G

∂x
(σ, x)

)T

µ.

The second-order conditions have the form
〈

∂Ψ
∂x

(σ̄, x̄, µ̄)ξ, ξ

〉
6= 0 ∀ ξ ∈ K \ {0},

with different choices of the cone K ⊂ Rn:

• The strong second-order sufficiency condition (SSOSC) uses K = {ξ ∈ Rn | ∂GI+

∂x (σ̄, x̄)ξ =
0}.

• The second-order condition (SOC) uses K = {ξ ∈ Rn | ∂GI
∂x (σ̄, x̄)ξ = 0}.

Note that the second-order conditions mean that 〈∂Ψ
∂x (σ̄, x̄, µ̄)ξ, ξ〉 has the same sign for all

ξ in the corresponding K.

2 Existence of Solutions under Directional Perturbations

Let the cone L = L(σ̄, x̄, µ̄) be the solution set (with respect to (d, ξ, ν) ∈ Rs ×Rn ×Rm)
of the following “linearization” of the KKT system (1.1):

∂Ψ
∂σ (σ̄, x̄, µ̄)d + ∂Ψ

∂x (σ̄, x̄, µ̄)ξ −
(

∂G
∂x (σ̄, x̄)

)T
ν = 0,

νi ≥ 0, 〈G′
i(σ̄, x̄), (d, ξ)〉 ≥ 0, νi〈G′

i(σ̄, x̄), (d, ξ)〉 = 0, i ∈ I0,
νN = 0, G′

I+
(σ̄, x̄)(d, ξ) = 0.

(2.1)

The following inclusion is well known:

CKKT (σ̄, x̄, µ̄) ⊂ L. (2.2)

For the special case of directional perturbations, this fact is stated in [1, Theorem 5.10] The
same result, but in terms of the contingent derivative of KKT at σ̄ for (x̄, µ̄), was given in
[16, Proposition 2.5.1]. The early related references are [15, 19, 14], and some recent related
statements can be found in [10, 8, 9, 11], and also [24, Lemma 4.1 and Theorem 5.1].
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In this section, for a given triple (d, ξ, ν) ∈ L and a given mapping ρ : R+ → Rs such
that ρ(t) = o(t), we consider the arc of the form σ̄ + td+ρ(t) in the space of parameters, and
solutions of the form (x̄+ tξ, µ̄+ tν)+ o(t) of the corresponding perturbed KKT system. We
are concerned with the existence and uniqueness of such solutions for the values t ≥ 0 small
enough.

As mentioned above, the question of the existence and uniqueness of solutions of perturbed
KKT systems, approximating the given primal-dual base solution, was previously studied in
the context of Robinson’s strong regularity; see [1, 16]. Recall that in the optimization
setting, strong regularity is equivalent to LICQ combined with SSOSC [1, Proposition 5.38].
In particular, it implies uniqueness of the multiplier associated with the given x̄ for the
base value σ̄ of the parameter. The assumptions of the existence Theorem 2.1 below do not
presume uniqueness of the multiplier. This issue will be further illustrated by examples in
Section 4. We also note that the assumptions of Corollary 2.1 below are actually a certain
2-regularity property. We state the assumptions here in the algebraic form, leaving their
conceptual interpretation until the next section.

For any partition (I1, I2) of I0 (i.e., a pair of index sets such that I1∪I2 = I0, I1∩I2 = ∅),
define the branch KKT (I1, I2) = KKT (I1, I2)(σ̄, x̄, µ̄) of the set KKT , as the solution set of
the following system:

Φ(σ, x)−
(

∂G
∂x (σ, x)

)T
µ = 0,

µI1 ≥ 0, GI1(σ, x) = 0,
µI2 = 0, GI2(σ, x) ≥ 0,
µN = 0, GI+(σ, x) = 0.

As is easy to see, near (σ̄, x̄, µ̄), the set KKT can be represented as the union of such branches
for (the finite number of) all the possible partitions. Similarly, the cone L is the union of the
branches L(I1, I2) = L(I1, I2)(σ̄, x̄, µ̄), given by

∂Ψ
∂σ (σ̄, x̄, µ̄)d + ∂Ψ

∂x (σ̄, x̄, µ̄)ξ −
(

∂G
∂x (σ̄, x̄)

)T
ν = 0,

νI1 ≥ 0, G′
I1

(σ̄, x̄)(d, ξ) = 0,
νI2 = 0, G′

I2
(σ̄, x̄)(d, ξ) ≥ 0,

νN = 0, G′
I+

(σ̄, x̄)(d, ξ) = 0.

Define the following index sets associated with the given triple (d, ξ, ν):

I0
0 = I0

0 (d, ξ, ν) = {i ∈ I0 | νi = 0, 〈G′
i(σ̄, x̄), (d, ξ)〉 = 0},

I+
0 = I+

0 (d, ξ, ν) = {i ∈ I0 | νi > 0, 〈G′
i(σ̄, x̄), (d, ξ)〉 = 0},

IN
0 = IN

0 (d, ξ, ν) = {i ∈ I0 | νi = 0, 〈G′
i(σ̄, x̄), (d, ξ)〉 > 0}.

(2.3)

Let (I1
0 , I2

0 ) be any partition of I0
0 . Then (I1, I2), with I1 = I1

0 ∪ I+
0 and I2 = I2

0 ∪ IN
0 , is a

partition of I0. Furthermore, (d, ξ, ν) ∈ L(I1, I2). The needed result makes use of Gollan’s
regularity condition [2] at (σ̄, x̄, µ̄) for the constraints defining the branch KKT (I1, I2). After
some computations, this condition can be expressed in the form

det




∂Ψ
∂x (σ̄, x̄, µ̄) −

(
∂GI1∪I+

∂x (σ̄, x̄)
)T

∂GI1∪I+

∂x (σ̄, x̄) 0


 6= 0, (2.4)
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∃ (ξ̄, ν̄) ∈ Rn ×Rm such that (d, ξ̄, ν̄I1∪I+) ∈ kerΛ(I1, I2), ν̄I1 > 0, G′
I2(σ̄, x̄)(d, ξ̄) > 0,

(2.5)
where

Λ(I1, I2) =




∂Ψ
∂σ (σ̄, x̄, µ̄) ∂Ψ

∂x (σ̄, x̄, µ̄) −
(

∂GI1∪I+

∂x (σ̄, x̄)
)T

∂GI1∪I+

∂σ (σ̄, x̄)
∂GI1∪I+

∂x (σ̄, x̄) 0


 . (2.6)

The following theorem is now implied by [1, Theorem 3.4].

Theorem 2.1 For (σ̄, x̄, µ̄) ∈ KKT and a given (d, ξ, ν) ∈ L, assume that Gollan’s con-
dition holds at (σ̄, x̄, µ̄) for the constraints defining the branch KKT (I1

0∪I+
0 , I2

0∪IN
0 ) for some

partition (I1
0 , I2

0 ) of I0
0 .

Then for every mapping ρ : R+ → Rs such that ρ(t) = o(t), there exists a mapping
r : R+ → Rn×Rm such that for t ≥ 0 it holds that (x̄+tξ, µ̄+tν)+r(t) ∈ KKT (σ̄+td+ρ(t)),
r(t) = o(t).

Under the additional assumption that I0
0 = ∅, the existence result in Theorem 2.1 can be

complemented by the following uniqueness result.

Corollary 2.1 For (σ̄, x̄, µ̄) ∈ KKT and a given (d, ξ, ν) ∈ L, assume that I0
0 = ∅ (see

(2.3)) and

det




∂Ψ
∂x (σ̄, x̄, µ̄) −

(
∂G

I+
0
∪I+

∂x (σ̄, x̄)

)T

∂G
I+
0
∪I+

∂x (σ̄, x̄) 0


 6= 0. (2.7)

Then for every mapping ρ : R+ → Rs such that ρ(t) = o(t), and for every t > 0 small
enough, there exists the unique element r(t) ∈ Rn ×Rm such that (x̄ + tξ, µ̄ + tν) + r(t) ∈
KKT (σ̄ + td + ρ(t)), r(t) = o(t).

Proof. The assumptions of Theorem 2.1 are certainly satisfied here. Indeed, the equality
I0
0 = ∅ implies that the only suitable partition of I0 is (I1, I2) = (I+

0 , IN
0 ), and for this

partition (2.4) reduces to (2.7). Moreover, from (2.1), (2.3) and (2.6), it follows that (2.5)
holds, e.g., with ξ̄ = ξ, ν̄ = ν.

It remains to show that for all t > 0 small enough, the element r(t) = (x(t), µ(t)) ∈
Rn ×Rm defined according to Theorem 2.1 is unique. From (1.5), (1.6) and (2.3) it follows
that this element satisfies

(µ̄ + tν + µ(t))I+
0 ∪I+

> 0,

GIN
0 ∪N (σ̄ + td + ρ(t), x̄ + tξ + x(t)) > 0,

and hence, by necessity,

Ψ(σ̄ + td + ρ(t), x̄ + tξ + x(t), µ̄ + tν + µ(t)) = 0,
GI+

0 ∪I+
(σ̄ + td + ρ(t), x̄ + tξ + x(t)) = 0,

µIN
0 ∪N (t) = 0.
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Condition (2.7) evidently means that the Jacobian of the latter system of equations with
respect to (x, µ) is nonsingular. This implies the needed uniqueness.

The equality I0
0 = ∅ can be interpreted as the strict complementarity condition at the

solution (d, ξ, ν) of the “linearized” KKT system (2.1) defining L. Under this condition, the
following two “limit cases” can be pointed out:

• If I+
0 = I0 (i.e., IN

0 = ∅), then (2.7) implies LICQ, and is implied by LICQ combined
with SOC.

• If IN
0 = I0 (i.e., I+

0 = ∅), then (2.7) implies WLICQ, and is implied by WLICQ
combined with SSOSC.

We omit the proofs, as they are quite direct.

3 Connections with 2-regularity and the contingent derivative

In this section, we exhibit the connections between some of the key conditions which appeared
above and the property of 2-regularity of a nonlinear mapping [6, 4]. We also obtain a sharper
estimate for the contingent derivative of the KKT multifunction, see Proposition 3.1.

When introducing 2-regularity, we simplify the setting to what is needed in the context
of this paper. In particular, we state everything in finite dimensions. Let the following
hypotheses be satisfied:

(H1) Z and W are (finite-dimensional) Euclidean spaces, L(Z, W ) is the space of linear
operators from Z to W , V is a neighborhood of a point z̄ in Z.

(H2) F : V → W is Fréchet-differentiable on V , and the mapping F ′ : V → L(Z, W ) is
continuous at z̄.

(H3) W1 = im F ′(z̄), W2 is some complementary subspace of W1 in W , P is the projector in
W onto W2 parallel to W1.

(H4) The mapping PF ′ : V → L(Z, W ) is Lipschitz-continuous on V and directionally
differentiable at z̄ with respect to every direction in Z.

Definition 3.1 The mapping F is referred to as 2-regular at the point z̄ with respect to a
direction ζ ∈ Z, if

im(F ′(z̄) + (PF ′)′(z̄; ζ)) = W.

Furthermore, F is said to be 2-regular at the point z̄, if it is 2-regular at this point with
respect to every direction ζ ∈ T2 \ {0}, where

T2 = {ζ ∈ kerF ′(z̄) | (PF ′)′(z̄; ζ)ζ = 0}.

Among other things, we have the following.
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Theorem 3.1 [6, Theorem 2.1] Under the hypotheses (H1)–(H4), the following statements
hold:

(a) CF−1(F (z̄))(z̄) ⊂ T2, where F−1(F (z̄)) = {z ∈ Z | F (z) = F (z̄)}.
(b) If ζ ∈ T2, and the mapping F is 2-regular at z̄ with respect to ζ, then ζ ∈ TF−1(F (z̄))(z̄).

In particular, if the mapping F is 2-regular at z̄, then CF−1(F (z̄))(z̄) = TF−1(F (z̄))(z̄) = T2.

Note that since the tangent cone is always a closed set, in the last assertion of Theorem 3.1
it is sufficient to assume that F is 2-regular at z̄ with respect to every element in some dense
subset of T2.

As is well known (e.g., [7]) and easy to see, the set KKT can be equivalently represented
as

KKT = {z ∈ Rs ×Rn ×Rm | F (z) = 0},
where z = (σ, x, µ),

F : Rs ×Rn ×Rm → Rn ×Rm, F (z) =

(
Ψ(z)
S(z)

)
,

S : Rs ×Rn ×Rm → Rm, Si(z) = µiGi(σ, x)− (min{0, Gi(σ, x) + µi})2/2, i = 1, . . . , m.

By direct computation, for z̄ = (σ̄, x̄, µ̄) we have that

S′i(z̄) =





(µ̄i
∂Gi
∂σ (σ̄, x̄), µ̄i

∂Gi
∂x (σ̄, x̄), 0), i ∈ I+,

(0, 0, Gi(σ̄, x̄)ei), i ∈ N,
0, i ∈ I0,

where ei is the i-th vector of the canonic basis in Rm. Therefore (possibly after the rear-
rangement of the indices), we have that

F ′(z̄) =

(
Λ
0

)
,

where the matrix Λ of dimension (n + |I+|+ |N |)× (s + n + m) is given by

Λ =




∂Ψ
∂σ (σ̄, x̄, µ̄) ∂Ψ

∂x (σ̄, x̄, µ̄) −
(

∂G
∂x (σ̄, x̄)

)T

A B 0
0 0 C


 ,

and A, B and C are matrices of dimensions |I+| × s, |I+| ×n and |N | ×m, respectively, with
the following rows:

Ai = µ̄i
∂Gi

∂σ
(σ̄, x̄), Bi = µ̄i

∂Gi

∂x
(σ̄, x̄), i ∈ I+, Ci = Gi(σ̄, x̄)ei, i ∈ N.

Taking into account that µ̄i > 0 ∀ i ∈ I+, and Gi(σ̄, x̄) > 0 ∀ i ∈ N , it is easy to see that

kerF ′(z̄) = kerΛ = {ζ = (d, ξ, ν) ∈ Rs ×Rn ×Rm | (d, ξ, νI) ∈ ker Γ, νN = 0}, (3.1)
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where

Γ =




∂Ψ
∂σ (σ̄, x̄, µ̄) ∂Ψ

∂x (σ̄, x̄, µ̄) −
(

∂GI
∂x (σ̄, x̄)

)T

∂GI+

∂σ (σ̄, x̄)
∂GI+

∂x (σ̄, x̄) 0


 . (3.2)

In particular, from (2.1) it follows that L ⊂ kerF ′(z̄).
We further obtain that

W1 = im F ′(z̄) = im Λ× {0}.
Hence, we can take W2 as follows:

W2 = (im F ′(z̄))⊥ = (im Λ)⊥ ×R|I0|.

With this choice, P is the orthogonal projector in Rn ×Rm onto W2:

Pw = (Π(u, vI+∪N ), vI0), w = (u, v) ∈ Rn ×Rm,

where Π is the orthogonal projector onto (imΛ)⊥.
Observe that for i ∈ I+ ∪ N , we have that Si(z) = µiGi(σ, x) for all z = (σ, x, µ) close

to z̄. In particular, SI+∪N is sufficiently smooth (say, twice differentiable at z̄). Hence, for
any ζ = (d, ξ, ν) ∈ Rs ×Rn ×Rm, we have that

(PF ′)′(z̄; ζ) =


 Π

(
Ψ′′(z̄)ζ

S′′I+∪N (z̄)ζ

)

(S′I0)
′(z̄; ζ)


 . (3.3)

For i ∈ I0, we obtain

(S′i)
′(z̄; ζ) = (νi −min{0, 〈G′

i(σ̄, x̄), (d, ξ)〉+ νi})
(

∂Gi

∂σ
(σ̄, x̄),

∂Gi

∂x
(σ̄, x̄), 0

)

+(〈G′
i(σ̄, x̄), (d, ξ)〉 −min{0, 〈G′

i(σ̄, x̄), (d, ξ)〉+ νi})(0, 0, ei), (3.4)

and
(S′i)

′(z̄; ζ)ζ = 2νi〈G′
i(σ̄, x̄), (d, ξ)〉 − (min{0, 〈G′

i(σ̄, x̄), (d, ξ)〉+ νi})2.
In particular,

(S′i)
′(z̄; ζ)ζ = 0 ⇐⇒ νi ≥ 0, 〈G′

i(σ̄, x̄), (d, ξ)〉 ≥ 0, νi〈G′
i(σ̄, x̄), (d, ξ)〉 = 0.

Hence, by (2.1), (3.1), (3.2) and (3.3), we conclude that

T2 = L ∩Q,

where

Q =

{
ζ ∈ Rs ×Rn ×Rm

∣∣∣∣∣ Π
(

Ψ′′(z̄)[ζ, ζ]
S′′I+∪N (z̄)[ζ, ζ]

)
= 0

}
.

In particular, taking into account assertion (a) of Theorem 3.1, we obtain the following
estimate for the contingent derivative of the KKT multifunction, sharper than (2.2) (see also
Example 3.1).
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Proposition 3.1 Under the hypotheses (H1)–(H4), for (σ̄, x̄, µ̄) ∈ KKT , the following in-
clusion holds:

CKKT (σ̄, x̄, µ̄) ⊂ L ∩Q. (3.5)

In the special case when rank Λ = n + |I+|+ |N |, or equivalently,

rankΓ = n + |I+|, (3.6)

it holds that Π = 0, so that Q = Rs ×Rn ×Rm, and thus T2 = L. In this case, inclusions
(2.2) and (3.5) are the same.

We next show that (3.6), and thus T2 = L, hold in the special case of canonical perturba-
tions. The KKT system is said to be canonically perturbed if the parameterization includes
arbitrary right-hand side perturbations of Φ and G:

Φ(σ, x) = Φ0(σ0, x) + σ1, G(σ, x) = G0(σ0, x) + σ2,
σ = (σ0, σ1, σ2) ∈ Rs0 ×Rn ×Rm, x ∈ Rn,

(3.7)

with σ̄ = (σ̄0, 0, 0), σ̄0 ∈ Rs0 . Here, Φ0 : Rs0 × Rn → Rn, G0 : Rs0 × Rn → Rm are
sufficiently smooth mappings. It is easy to see that in this case

rank

(
∂Ψ
∂σ (σ̄, x̄, µ̄)

∂G
∂σ (σ̄, x̄)

)
= n + m, (3.8)

and hence, (3.6) holds (see (3.2)). Thus, for the case of canonical perturbations, T2 = L, and
(3.5) coincides with (2.2).

But beyond the case of canonical perturbations, T2 can be a strictly sharper estimate of
the contingent derivative than L, as illustrated by the following example, which is obtained
by introducing the (non-canonical) perturbation in [5, Example 2].

Example 3.1 Let s = 1, n = m = 2, Φ(σ, x) = (σ+x1, x2
2), G(σ, x) = (x1−x2

2/2, x1+x2
2/2),

σ̄ = 0, x̄ = µ̄ = 0.
By direct computations it can be shown that L is the solution set of the following system

of equations in variables (d, ξ1, ξ2, ν1, ν2):

d + ξ1 − ν1 − ν2 = 0,
min{ξ1, ν1} = 0,
min{ξ1, ν2} = 0.

In particular, ξ2 is arbitrary.
At the same time, elements of T2 should satisfy the additional equation

ξ2(ξ2 − ν1 + ν2) = 0,

so that ξ2 is no longer arbitrary. This shows that the estimate (3.5) is sharper than the
estimate (2.2).
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We next consider the conditions which ensure that a given ζ = (d, ξ, ν) ∈ L belongs to
TKKT (σ̄, x̄, µ̄). Recall that I1 = I1

0 ∪ I+
0 , I2 = I2

0 ∪ IN
0 , where (I1

0 , I2
0 ) is a partition of I0

0 ,
and I0

0 , I+
0 , IN

0 are defined in (2.3).
Assume that MFCQ holds at (σ̄, x̄, µ̄) for the constraints defining the branch KKT (I1, I2):

rankΛ(I1, I2) = n + |I1|+ |I+|,
∃ (d̄, ξ̄, ν̄I1∪I+) ∈ kerΛ(I1, I2) such that ν̄I1 > 0, G′

I2
(σ̄, x̄)(d̄, ξ̄) > 0,

(3.9)

where Λ(I1, I2) is defined in (2.6). Take ζ̄ = (d̄, ξ̄, ν̄), where ν̄I2∪N = 0. Note that the first
condition in (3.9) implies (3.6). Hence, by (3.3),

F ′(z̄) + (PF ′)′(z̄; ζ̄) =

(
Λ

(S′I0)
′(z̄; ζ̄)

)
. (3.10)

By the second condition in (3.9), it can be seen that ζ̄ ∈ L(I1, I2), and that the strict comple-
mentarity condition holds in (2.1) at ζ̄. In particular,

ν̄i −min{0, 〈G′
i(σ̄, x̄), (d̄, ξ̄)〉+ ν̄i} =

{
ν̄i > 0, i ∈ I1,
0, i ∈ I2,

〈G′
i(σ̄, x̄), (d̄, ξ̄)〉 −min{0, 〈G′

i(σ̄, x̄), (d̄, ξ̄)〉+ ν̄i} =

{
0, i ∈ I1,
〈G′

i(σ̄, x̄), (d̄, ξ̄)〉 > 0, i ∈ I2.

By (2.6), (3.4) and (3.10), it is now evident that (3.9) implies 2-regularity of F at z̄ with
respect to ζ̄. Moreover, it can be seen that (3.9) actually implies that F is 2-regular at z̄ with
respect to every direction in some dense subset of L(I1, I2). In particular, piecewise MFCQ
(that is, MFCQ (3.9) for every partition (I1, I2) of I0) implies that F is 2-regular at z̄ with
respect to every direction in some dense subset of L. From assertion (b) of Theorem 3.1 we
now obtain

Proposition 3.2 For (σ̄, x̄, µ̄) ∈ KKT and a given (d, ξ, ν) ∈ L, assume that MFCQ (3.9)
holds at (σ̄, x̄, µ̄) for the constraints defining the branch KKT (I1

0∪I+
0 , I2

0∪IN
0 ) for some partition

(I1
0 , I2

0 ) of I0
0 .

Then (d, ξ, ν) ∈ TKKT (σ̄, x̄, µ̄).
In particular, piecewise MFCQ for KKT at (σ̄, x̄, µ̄) implies

TKKT (σ̄, x̄, µ̄) = CKKT (σ̄, x̄, µ̄) = L. (3.11)

Of course, the result of Proposition 3.2 can be obtained by the standard argument com-
bined with piecewise analysis. We include this proposition merely as one of the illustrations
for the use of the 2-regularity concept.

If we assume (3.6), then it can be seen that 2-regularity of F at z̄ with respect to ζ̄ is
actually equivalent to (3.9). In particular, strict complementarity in (2.1) at ζ̄ is a necessary
condition for 2-regularity of F at z̄ with respect to ζ̄.

Consider again the case of canonical perturbations (3.7) and assume that MFCQ holds. In
this case, from (3.8) it easily follows that piecewise MFCQ holds for KKT at (σ̄, x̄, µ̄), which
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implies (3.11). In particular, under these assumptions, the KKT multifunction is protodiffer-
entiable at σ̄ for (x̄, µ̄), and its contingent derivative at σ̄ for (x̄, µ̄) is a multifunction from Rs

to 2Rn×Rm
whose graph coincides with L. This fact was established in [16, Proposition 2.5.1].

We next discuss the assumptions of Corollary 2.1 which is our existence and uniqueness
result. Recall that in this setting, we consider the existence of solutions for a given pertur-
bation of the form σ̄ + td + ρ(t), where the direction d ∈ Rs and the mapping ρ : R+ → Rs,
ρ(t) = o(t), are fixed. Therefore, the relevant object to study is

F̃ : R×Rn ×Rm → Rn ×Rm, F̃ (p) = F (z), p = (t, x, µ), z = (σ̄ + td + ρ(t), x, µ).

By the analysis similar to the above (possibly after the rearrangement of the indices), for
p̄ = (0, x̄, µ̄) it can be seen that

F̃ ′(p̄) =

(
Λ̃
0

)
,

where the matrix Λ̃ of dimension (n + |I+|+ |N |)× (1 + n + m) is given by

Λ̃ =




∂Ψ
∂σ (σ̄, x̄, µ̄)d ∂Ψ

∂x (σ̄, x̄, µ̄) −
(

∂G
∂x (σ̄, x̄)

)T

Ad B 0
0 0 C


 .

In particular,
im F̃ ′(z̄) = im Λ̃× {0}. (3.12)

Observe that if there exists (ξ, ν) ∈ Rn ×Rm satisfying (d, ξ, ν) ∈ L, then (2.1) implies
that the first column in Λ̃ can be obtained as a linear combination of the other columns.
Hence,

im Λ̃ = im




∂Ψ
∂x (σ̄, x̄, µ̄) −

(
∂G
∂x (σ̄, x̄)

)T

B 0
0 C


 . (3.13)

Evidently, (2.7) implies that the matrix in the right-hand side has full row rank. Therefore,
(im Λ̃)⊥ = {0}, and by (3.12), we have that

(im F̃ ′(z̄))⊥ = {0} ×R|I0|.

It is now easy to see that under the assumptions of Corollary 2.1, 2-regularity of F̃ at p̄ with
respect to q = (1, ξ, ν) is equivalent to saying that the matrix




∂Ψ
∂σ (σ̄, x̄, µ̄)d ∂Ψ

∂x (σ̄, x̄, µ̄) −
(

∂G
I+
0
∪I+

∂x (σ̄, x̄)

)T

∂G
I+
0
∪I+

∂σ (σ̄, x̄)d
∂G

I+
0
∪I+

∂x (σ̄, x̄) 0




has full row rank. Taking again into account that the first column above can be represented
as a linear combination of the other columns (by (2.1) and (2.3)), the latter condition is
equivalent to (2.7).

11



Moreover, if we assume that the matrix



∂Ψ
∂x (σ̄, x̄, µ̄) −

(
∂GI
∂x (σ̄, x̄)

)T

∂GI+

∂x (σ̄, x̄) 0




has full row rank, which is equivalent to the assumption that the matrix in the right-hand
side of (3.13) has full row rank, then 2-regularity of F̃ at p̄ with respect to q is equivalent to
the assumptions of Corollary 2.1, i.e., I0

0 = ∅ and (2.7) (recall that according to the discussion
above, the strict complementarity condition I0

0 = ∅ is necessary for 2-regularity of F̃ at p̄
with respect to q).

4 Some Examples

We start this section with the following result exhibiting some further properties of the set
L. Related pairs of dual linear programs are known to be very useful in sensitivity analysis.
But Lemma 4.1 appears to be new. Conclusions which can be deduced by using Lemma 4.1
will be given after the proof and illustrated by the examples below.

Lemma 4.1 If for a given (d, ξ) ∈ Rs ×Rn, there exists ν ∈ Rm such that (d, ξ, ν) ∈ L =
L(σ̄, x̄, µ̄), then ξ is a solution of the LP problem

minimizex 〈Φ(σ̄, x̄), x〉
subject to 〈G′

i(σ̄, x̄), (d, x)〉 ≥ 0, i ∈ I,
(4.1)

while µ̄ is a solution of the dual LP problem

maximizeµ −〈µ, ∂G
∂σ (σ̄, x̄)d〉

subject to
(

∂G
∂x (σ̄, x̄)

)T
µ = Φ(σ̄, x̄),

µI ≥ 0, µN = 0.

(4.2)

Proof. By the definition of L (see (2.1)), ξ is feasible in (4.1) since

〈G′
i(σ̄, x̄), (d, ξ)〉 ≥ 0 ∀ i ∈ I0, 〈G′

i(σ̄, x̄), (d, ξ)〉 = 0 ∀ i ∈ I+.

At the same time, µ̄ is feasible in (4.2) since the constraints of (4.2) can be stated in the form
(σ̄, x̄, µ) ∈ KKT . Furthermore, the duality relation holds:

〈Φ(σ̄, x̄), ξ〉 =

〈(
∂G

∂x
(σ̄, x̄)

)T

µ̄, ξ

〉

=
〈

µ̄,
∂G

∂x
(σ̄, x̄)ξ

〉

=
∑

i∈I+

µ̄i

〈
∂Gi

∂x
(σ̄, x̄), ξ

〉
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= −
∑

i∈I+

µ̄i

〈
∂Gi

∂σ
(σ̄, x̄), d

〉

= −
〈

µ̄,
∂G

∂σ
(σ̄, x̄)d

〉
,

where the inclusion (σ̄, x̄, µ̄) ∈ KKT and the definition of L (see (2.1)) were taken into
account.

Lemma 4.1 leads to the following conclusions. If ∂G
∂σ (σ̄, x̄)d 6= 0 for a given d ∈ Rs, and

there exist ξ ∈ Rn and ν ∈ Rm such that (d, ξ, ν) ∈ L, then the objective function of (4.2)
is non-constant, and it is “quite likely” that µ̄ is the unique solution of (4.2). In that case,
µ̄ is a vertex of the polyhedral set of multipliers by necessity. Suppose that SMFCQ is not
satisfied, i.e., the set of multipliers (of the nonperturbed KKT system) associated with x̄ is
not a singleton. Then we can conclude that I0 6= ∅, i.e., the strict complementarity condition
is violated at the solution (x̄, µ̄) of the nonperturbed KKT system. Indeed, if it were the case
that µ̄ is a vertex and I0 = ∅, then µ̄ would have been the unique solution of the equality-part
of constraints in (4.2), which contradicts nonuniqueness of the multiplier.

The examples presented in this section highlight the situation where SMFCQ is violated,
i.e., the multiplier associated with x̄ at the base value σ̄ of the parameter is not unique. In
particular, we demonstrate that the branches of solutions of the perturbed KKT system may
depend drastically on the specific choice of the multiplier (which should be already clear from
Lemma 4.1).

Example 4.1 Let s = 1, n = 2, m = 3, f(σ, x) = x1 +x2
2/2, G(σ, x) = (x1 +σ, x1 +x2, x1−

x2). Consider the parametric optimization problem (1.3) with the feasible set defined in (1.4).
When σ = σ̄ = 0, this problem has the unique solution x̄ = 0, and

∂G

∂σ
(σ̄, x̄) =




1
0
0


 ,

∂G

∂x
(σ̄, x̄) =




1 0
1 1
1 −1


 .

The KKT system for this problem takes the form (1.1) with Φ defined in (1.2): Φ(σ, x) =
∂f
∂x (σ, x) = (1, x2), and the set of multipliers associated with x̄ is {µ ∈ R3 | µ = (1 −
2θ, θ, θ), θ ∈ [0, 1/2]}.

For d < 0, problem (4.2) has the unique solution µ̄ = (1, 0, 0). With this choice of the
multiplier, I0 = {2, 3}, I+ = {1}, N = ∅,

∂Ψ
∂σ

(σ̄, x̄, µ̄) =

(
0
0

)
,

∂Ψ
∂x

(σ̄, x̄, µ̄) =

(
0 0
0 1

)
,

and L is the solution set of the following system of equations:

ν1 + ν2 + ν3 = 0,

ξ2 − ν2 + ν3 = 0,

min{ξ1 + ξ2, ν2} = 0,

min{ξ1 − ξ2, ν3} = 0,

d + ξ1 = 0.
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Consider next the branches of L.
If I1 = ∅, I2 = I0, then the corresponding branch is the ray spanned in Rs ×Rn ×Rm

by (−1, (1, 0), 0), and for every non-zero element of this ray, I0
0 = ∅ and (2.7) holds.

If I1 = I0 and I2 = ∅, the corresponding branch is the ray spanned by (0, 0, (−2, 1, 1)),
and for every non-zero element of this ray, I0

0 = ∅ and (2.7) holds as well.
As is not difficult to check, the other two branches (corresponding to I1 = {2} and

I2 = {3}, I1 = {3} and I2 = {2}, respectively) are trivial. Hence, for the given choice of
µ̄, the tangent cone TKKT (σ̄, x̄, µ̄) consists of two rays (the first two branches above); this
follows from (2.2) and Proposition 3.2.

Moreover, according to Corollary 2.1, for every t > 0 small enough, the perturbed KKT
system corresponding to the parameter values σ = −t + o(t) has the unique solution of the
form ((t, 0), 0)+ o(t). Similarly, for the parameter values σ = o(t), there is a unique solution
of the form (0, (−2t, t, t)) + o(t).

For d > 0, problem (4.2) has the unique solution µ̄ = (0, 1/2, 1/2). With this choice,
I0 = {1}, I+ = {2, 3}, N = ∅, and it is easy to see that L is the ray spanned in Rs×Rn×Rm

by (1, 0, 0), and for every non-zero element of this ray, I0
0 = ∅, and (2.7) holds. We conclude

that TKKT (σ̄, x̄, µ̄) coincides with this ray, and for every t > 0 small enough, the perturbed
KKT system corresponding to the parameter values σ = t + o(t) has the unique solution of
the form o(t).

Note that according to Lemma 4.1, any other choice of the multiplier µ̄ will result in the
cone L ⊂ {0} ×Rn ×Rm.

Example 4.2 ([1, Example 4.99]) Let s = n = m = 2, f(σ, x) = ((x1 − 1)2 + x2
2)/2,

G(σ, x) = (−x1, −x1 − σ1x2 − σ2).
When σ = σ̄ = 0, optimization problem (1.3) with the feasible set defined in (1.4) has

the unique solution x̄ = 0, and

∂G

∂σ
(σ̄, x̄) =

(
0 0
0 0

)
,

∂G

∂x
(σ̄, x̄) =

(
−1 0
−1 0

)
.

The KKT system for this problem takes the form (1.1) with Φ defined in (1.2): Φ(σ, x) =
∂f
∂x (σ, x) = (x1 − 1, x2), and the set of multipliers associated with x̄ is {µ ∈ R2 | µ =
(1− θ, θ), θ ∈ [0, 1]}.

For d = (d1, d2) with d2 < 0, problem (4.2) has the unique solution µ̄ = (1, 0). With this
choice of the multiplier, I0 = {2}, I+ = {1}, N = ∅,

∂Ψ
∂σ

(σ̄, x̄, µ̄) =

(
0 0
0 0

)
,

∂Ψ
∂x

(σ̄, x̄, µ̄) =

(
1 0
0 1

)
,

(note that ∂Ψ
∂x (σ̄, x̄, µ̄) does not actually depend on the choice of µ̄), and L is the solution

set of the following system of equations:

ξ1 + ν1 + ν2 = 0,
ξ2 = 0,

min{−d2 − ξ1, ν2} = 0,
−ξ1 = 0.
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Obviously, L consists of the following two branches in Rs ×Rn ×Rm:

{((α, −β), 0, 0) | α ∈ R, β ∈ R+}

and
{((α, 0), 0, (−γ, γ)) | α ∈ R, γ ∈ R+};

their intersection is the straight line spanned by ((1, 0), 0, 0). For every element of the two
branches with β > 0 and γ > 0, respectively, we have that I0

0 = ∅ and (2.7) holds. It follows
that TKKT (σ̄, x̄, µ̄) consists of these two branches.

For d = (d1, d2) with d2 > 0, problem (4.2) has the unique solution µ̄ = (0, 1). With this
choice, I0 = {1}, I+ = {2}, N = ∅,

∂Ψ
∂σ

(σ̄, x̄, µ̄) =

(
0 0
1 0

)
,

and L is the solution set of the following system of equations:

ξ1 + ν1 + ν2 = 0,

d1 + ξ2 = 0,

min{−ξ1, ν1} = 0,

−d2 − ξ1 = 0.

The two branches of L are

{((α, β), (−β, −α), (0, β)) | α ∈ R, β ∈ R+}

and
{((α, 0), (0, −α), (γ, −γ)) | α ∈ R, γ ∈ R+};

their intersection is the straight line spanned by ((1, 0), (0, −1), 0)). For every element of
the two branches with β > 0 and γ > 0, respectively, we again have that I0

0 = ∅ and (2.7)
holds. Hence, TKKT (σ̄, x̄, µ̄) consists of these two branches.

Finally, let d = (d1, 0). In this case, every µ̄ = (1 − θ, θ), θ ∈ [0, 1], provides a solution
to (4.2). Take θ ∈ (0, 1) (the values θ = 0 and θ = 1 were already considered above). With
this choice, I0 = N = ∅, I+ = {1, 2},

∂Ψ
∂σ

(σ̄, x̄, µ̄) =

(
0 0
θ 0

)
,

and L is the solution set of the following system of linear equations:

ξ1 + ν1 + ν2 = 0,

θd1 + ξ2 = 0,

−ξ1 = 0,

−d2 − ξ1 = 0.
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Hence, L is the subspace

{((α, 0), (0, −θνα), (γ, −γ)) | α, γ ∈ R}.
Summarizing the above analysis, we see that for every direction d = (d1, d2) with d2 6= 0,

the corresponding “primal” part of the tangent vector toKKT at (σ̄, x̄, µ̄) is uniquely defined:
ξ = 0 if d2 < 0 and ξ = (−d2, −d1) if d2 > 0. For d = (d1, 0), situation is more complicated,
as for every θ ∈ [0, 1] there exists the tangent vector with the “primal” part ξ = (0, −θd1).
This can be explained (in some sense) by the following observation: the behavior of the
solution of the original optimization problem under a perturbation of the parameter σ along
such directions depends drastically on the higher-order terms of such perturbation. For
instance, if for t ≥ 0 we take σ = (t, 0) + ρ(t) with some ρ : R+ → Rs such that ρ(t) = o(t),
then the branches of the solutions corresponding to different choices of ρ are not necessarily
tangent to each other.
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