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Abstract

We present a simple construction that gives explicit equations for certain sub-
covers of the Hermitian curve. We show that certain maximal curves are indeed

covered by the Hermitian curve.
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1 Introduction

By a curve we mean a smooth geometrically irreducible projective curve. Explicit curves(i.e.,
curves given by explicit equations)over finite fields with many rational points with respect
to their genera have attracted a lot of attention, after Goppa discovered that they can be
used to construct good linear error-correcting codes (see [4]).
For the number of F,-rational points on a curve C of genus g(C) over F; the following
bound
H#C(F,) <1+L+2VE-g(C)

is well-known as the Hasse-Weil bound. This is a deep result due to Hasse for elliptic
curves;i.e.,curves with ¢g(C) = 1, and for general curves is due to A.Weil.

When the cardinality of the finite field £ = ¢? is a square, a curve C over F, is called



maximal if it attains the Hasse-Weil bound; i.e., if we have the equality
#C(Fpe) =1+¢" +2q- g(C).

The most important example (see [7]) of a maximal curve over F, with ¢ = ¢* is the

Hermitian curve,denoted here by H, which the curve given by the affine equation
Yy =2 4 2.

In [3] it is determined a large number of genera of maximal curves over Fpz by con-
sidering quotients of the Hermitian curve by subgroups of the automorphism group of H,
which is a rather large group (see [8]).

Here we present a simple construction of subcovers as in [1] and we apply this con-
struction to get explicit equations for subcovers of the Hermitian curve over ;2. The key
point of our approach is now to get an equation X7+ X = Q(A(X)) and for this we apply
O. Ore’s results on additive polynomials. We explain our idea and method in Section 2
and construct certain maximal curves in Section 3. We also prove an interesting result

saying that any maximal curve C over IF,> with equation of the form
y*! = A(z) with A(X) additive and separable in F,[X],

is indeed covered by the Hermitian curve #H (see Section 4). Here the key point is that it

commutes

Finally in Section 5 we apply our method to constructions over Fpn with n > 3 .

2 Construction of subcovers

Let k£ be a field and F(X) a polynomial in k[X]. If there exist polynomials f(X) and
h(X) in k[X] such that F(X) = f(h(X)), then we say that F'(X) is left divisible by f(X).



Suppose that a curve H over k is given by an affine equation

G(y) = F(z) (1)

where G(Y') € k[Y] and F(X) € k[X] are polynomials such that G(Y) — F(X) € k[X,Y]

is absolutely irreducible.

Proposition 1. Let H be a curve given as in (1) above. Suppose that G and F are left
divisible by g and f, respectively. Then the curve C given by

9(y) = f(=z) (2)
s covered by the curve H.

Proof: By hypothesis we can find polynomials k(X)) € k[X] and hy(Y) € k[Y] such that
F(X) = f((X)) and G(Y) = g(hao(Y)).
Just consider the following covering map

H—C
(a, B) —> (hi(@), ha(B))-

O

Algebraic curves H given by Equation (1) (or their subcovers as in (2) above) are

specially interesting if deg F' and deg GG are relatively prime. Then indeed the polynomial
G(Y) — F(X) is absolutely irreducible and we have the genus bound (see [5]):

deg FF — 1)(deg G — 1)
2

g(H) < (

with equality if and only if the curve H has a unique singular point (the point at infinity).
We are going to apply Proposition 1 for the construction of maximal curves over F,

with ¢ = ¢% by taking H as the Hermitian curve; i.e., by taking
GY)=Y7' and F(X)=X?+X.
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Let k be a perfect field of characteristic p > 0 (e.g., k = ;) and let k be the algebraic

closure of k. An additive polynomial in k[X] is a polynomial of the form:
A(X) = En:aixp" € k[X].
i=0
The polynomial A(X) is separable if and only if ag # 0.
For any polynomial A(X) in k[X] we denote by Z(A) its zero-set; i.e.,
Z(A)={a€k; A(a) =0}
The following results are due to O. Ore (see [6]).

Theorem 2. Let A(X) € k[X] be a separable polynomial. Then A(X) is additive if and
only if its zero-set Z(A) is an additive subgroup of k.
Note that Z(A) is an additive subgroup of k if and only if Z(A) is a finite dimensional

IF,-vector space contained in k.

Theorem 3. (Division Algorithm). Let F(X) and A(X) be additive polynomials in k[X]
with A # 0. Then there exist additive polynomials Q(X) and R(X) in k[X] such that

F(X)=Q(A(X))+ R(X) with degR < degA.

Moreover the polynomials () and R are uniquely determined.

The proof of Theorem 3 is similar to that of the Euclidian Algorithm.
Let A and F be finite additive subgroups of k£ and denote by

AX)=1I(X —«), overa € A

F(X)=I(X —«), over a € F.

From Theorem 3 it follows
ACF & F(X)=Q(A(X)),

and consequently :



Proposition 4. Let A C F as above. Assume that F is contained in k. For a polynomial
G(Y) € k[Y] with p t deg G, the algebraic curves over k defined by

Gly) = F(z) and G(y) =Q(x),
with the additive polynomial Q(X) € k[X] as above, are such that the first is a Galois

cover of the second with a Galois group isomorphic to A.

Proof: For each element a € A, consider the automorphism of the first curve given by

oo(z) =z4+a and o,(y)=y.

3 Construction of certain maximal curves

The maximal curves that we will deal with here are the ones in Corollary 4.8 of [3]. They
appeared in [1] giving several examples of nonisomorphic maximal curves with the same
genus.

As before let A(X) = II(X — «), over a in A. We apply Proposition 4 for additive
subgroups A of the group F = {a € Fp2 ; a?+ a = 0} and with G(Y') = Y. So the
curve H is the Hermitian curve over [F» and the curve C is a maximal curve over F. with

the explicit affine equation:
v =Q(z) where X7+ X = Q(A(X)). (3)
Since Q(X) is an additive separable polynomial in 2 [X], the genus of C is

9(C) = q(deg Q — 1)/2.

Remark: The maximal curves C constructed above as in (3) have just one point P at
infinity and this point P is rational over Fp. If vp denotes the corresponding valuation,

then
vp(z) =—(¢+1) and wp(y) =—degQ.



The Weierstrass semigroup of C at the point P is generated by deg @ and (¢+ 1), and we
have that the following set of functions on the curve C is a base for the Riemann-Roch

space L(rP), for any r > 0:
{2"-9 ; 0<i<deg@Q@—1, >0 and i(g+1)+jdegQ <r}.

This makes those maximal curves C suitable for the construction of one-point codes;

i.e., evaluation of functions in L(rP) at other rational points of the curve C.

Example: Let H be the Hermitian curve over F2 with ¢ = 8. Let a be a primitive

element of Fgs with equation
o’ +at+a’+a+1=0.
Take {1,a% a'8} as a Fy-basis for
F={B€Fe; 8°+3=0}

and consider the Fy-subspaces of F with basis {1} and {1,a%}.

Corresponding to {1} we get a genus 12 maximal curve with equation
yg =zt + 2% + 2.
Corresponding to {1,a%} we get a genus 4 maximal curve with equation

y9:x2+a27-x.

Remark: Other maximal curves over Fgp2 are obtained as quotients of the curves C given
by Equation (3) above. For example, for m a divisor of (¢ + 1) we obtain the maximal

curves

y" =Q(z) with Q(X) such that X9+ X = Q(A(X)).



4 A special class of maximal curves

The special class we consider here are maximal curves over F. of the following type

yi*!' = A(z) with A(X) additive and separable in F,[X]. (4)
One important feature for applications to Coding Theory is the easy determination of the
coordinates of the rational points, as follows:

Proposition 5. Let C be a mazimal curve over Fp given by Equation (4). Then for
any v € F, we have that
{a €F,; A(a) =7} CFpe.

The rational points over Fp2 are: the unique point at infinity plus the points in the set

{(a,8) ; Ala) == 8" for some 7 € F,}.

Proof: The genus of the curve is g(C) = q - (deg A — 1)/2. The factor ¢ in the genus is
what makes it special. This factor comes from the exponent (¢ + 1) in Equation (4).

From the maximality we have
1+¢*+2¢-g(C)=1+q* degA.
But we have the y-map
c P
(z,y) — y.

Since the number of rational points is 1+ ¢* deg A, where deg A is the degree of the above
map ¢, and the point at infinity is totally ramified, we conclude that all pre-images under
¢ of elements § € [F,2 are rational.

This then means that A(X) = #9*! has all solutions in F2; and 377" = 5 belongs to

IF,, since ¢ + 1 is the exponent of the norm map from Fp to F,. O
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Another special feature of Equation (4) is the assumption that A(X) is additive and

separable with coefficients in ;. We use this special feature in the lemma below:

Lemma 6. Let C be a mazimal curve over Fp given by Equation (4). Then we have that

there exists an additive and separable polynomial Q(X) € F,[X] such that

X7+ X = Q(A(X)).

Proof: From Proposition 5 we have
AX)— A(X) divides X% —X.

It then follows from the discussion just before Proposition 4, that there exists an additive

and separable polynomial Q(X) € F,[X] such that
X — X = Q(A(X)" — A(X)).
We are sure that Q(X) has coefficients in F, since A(X) has. We then write
X7 - X = Q(A(X))! — Q(A(X)).

Raising to the ¢g-th power we get

2

X = X1 = Q(AX)” — QA(X))".

Summing the last two equalities we obtain

[X9+ X — QAT = X+ X — QA(X)).

We can now prove the main result here:

Theorem 7. Let C be a mazimal curve over Fp given by Equation (4). Then the curve

C is covered by the Hermitian curve over .
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Proof: It follows from Lemma 6 (see also Equation (3)) that the curve C; given by
Yy =Q(xr) where X7+ X = Q(A(X)),

is covered by the Hermitian curve, and hence C; is also a maximal curve over [F,2 as in
Equation (4). Lemma 6 applied to this curve C; then gives the existence of some additive
polynomial B(X), again with coefficients in F,, and X?+ X = B(Q(X)). Substituting X
by A(X) , we get

A(X)?+ A(X) = B(Q(A(X)))
= B(X?+ X) = B(X)? + B(X),

and hence that A(X) = B(X); i.e., the polynomials Q(X) and A(X) commute

Since X7+ X = A(Q(X)) holds, we conclude that the curve C given by
Yyt = A(z)
is indeed covered by the Hermitian (see Eq.(3)). O
Compare Theorem 7 with Theorem 5.11 of [1].
Remark: Consider maximal curves over Fp of the form
P(Y)=A(X), degP=gq+1,

with A(X) and P(Y') polynomials with coefficients in Fp., A(X) additive and P(3) = 0
for some element 3 € 2.

The proof of Proposition 5 gives that for each 8 € F;: we have
{a €F, ; A(a) = P(B)} C Fp.

Then in particular all roots of the additive polynomial A(X) are in F,> and the map
o(z,y) = y is Galois. Compare with Further Hypothesis 4.8 in [1].
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Remark: If 9™ = A(x) is a maximal curve with A(X) additive, then

ay +0b
cy+d

) T (ey)" + (ey) = Ala)

is also maximal, where a,b, ¢, d and e belong to F,z and ad — bc # 0.

5 Constructions over F;» with n > 3

We look for additive and separable polynomials A(X) € F,[X] such that there exists an
additive and separable Q(X) € F,[X] satisfying

n—2

X4 XCT 4 X4 X = Q(A(X)). ()

Proposition 8. Let A(X) and Q(X) be as above. Then

AX) — AX)  divides X7 —X.

Proof: We have to show that if a € I, is such that A(a) € F,, then « lies in Fn. We
have

a4+ o+l a = Q(A(a)).
Taking ¢-th power and using that Q(X) has coefficients in F,, we get
o+ 4o +af = Q(A(w)?).

Since A(a)? = A(a), we get that a?" = a. O

Polynomials (additive and separable) A(X) in F,[X] satisfying (*) are appropriate for
the construction of good curves over Fyn, since they satisfy the above proposition; i.e., we
have

if o« € F, and A(a) €F, = «a€Fu.
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Construction. Let A(X) € F,[X] be additive and separable satisfying Equality (*).

Consider the algebraic curve C given by

with S,2(Y) = So(Y,Y9,..., Y7 ") where Sy(X1, ..., X,) is the elementary symmetric
polynomial of degree 2 in n variables. Then we have

deg A —1)

g
9(C) = 5

and #C(Fpn)=1+¢"-degA.

Example: Suppose that n = 3 and
AX) =X+ aX € F,[X].

From
X” + X4 X = Q(A(X))

we see that Q(X) = X9+ bX for some b € F,. Then
QA(X)) = (X9 + aX)? + b(X7 4+ aX) = X + (a? + b) X7 + baX.

Hence b = a™! and a? + b = 1. This gives us the equation a?*! = a — 1, and since a € F,,
we get a2 = a — 1. In the case p = 2, the element a is a primitive element of Fy. In the

case p = 3, we can take a = —1. In the case p > 5 we can write a®> = a — 1 as follows

The element a can always be chosen inside F,. and it can be chosen inside the prime field
F, if and only if
p=1 or p=-5(mod12).

Remark: If Q(X) and A(X) are additive and separable polynomials in F,[X] such that
XCT 4 XCT 4 X4 X = Q(A(X))
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then one can show that they commute; i.e.,

From this fact and from Section 2 here, one sees that the Construction above gives

subcovers of the curves in Theorem 4.1 of [2].
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