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Abstract

For convex minimization we introduce an algorithm based on VU-space decomposition.
The method uses a bundle subroutine to generate a sequence of approximate proximal
points. When a primal-dual track leading to a solution and zero subgradient pair exists,
these points approximate the primal track points and give the algorithm’s V, or corrector,
steps. The subroutine also approximates dual track points that are U-gradients needed
for the method’s U-Newton predictor steps. With the inclusion of a simple line search the
resulting algorithm is proved to be globally convergent. The convergence is superlinear if
the primal-dual track points and the objective’s U-Hessian are approximated well enough.

Keywords Convex minimization, proximal points, bundle methods, VU-decomposition,
superlinear convergence.

1 Introduction and motivation

We consider the problem
min
x∈IRn

f(x) ,

where f is a finite-valued convex function. A conceptual algorithm to solve this problem is
the proximal point method; see [Mor65] and [Roc76]. Implementable forms of the method
can be obtained by means of a bundle technique, alternating serious steps with sequences of
null steps [Aus87], [Fuk84], [HUL93]. The last decade has produced a “new generation” of
proximal bundle methods, designed to seek faster convergence; see [LS94], [LS96], [QC97],
[Mif96], [LS97b], [MSQ98], [CF99], [RF00]. Essentially, these methods introduce second-order
information via f ’s Moreau-Yosida regularization F .
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More recently, new conceptual schemes have been developed from an approach that is
somewhat different from Moreau-Yosida regularization. These are based on the VU-theory
introduced in [LOS00] for convex functions; see also [MS99], [MS00b], [MS00a], [Ous00] and
[MM04]. The idea is to decompose IRn into two orthogonal subspaces V and U depending
on a point in such a way that, near the point, f ’s nonsmoothness is essentially due to its V-
shaped graph on the V-subspace. When f satisfies certain structural properties, it is possible
to find a smooth trajectory, tangent to U , yielding a second-order expansion for f . The
very conceptual VU-algorithm in [LOS00] finds points on such a trajectory, by generating
minimizing steps in the V-subspace. Alternating with these corrector steps are U-Newton
predictor steps that provide for superlinear convergence. However, since such an algorithm
relies on knowing the subspaces V and U and converges only locally, it needs significant
modification for implementation.

In [MS02] we establish a fundamental result for implementability by showing that, near a
minimizer, a proximal point sequence follows a particular smooth trajectory that is called a
fast track. This relation opens the way for defining a VU-algorithm where V-steps are replaced
by proximal steps that can be estimated with a bundle technique that also approximates the
unknown V and U subspaces as a computational by-product.

Also shown in [MS02] is the result that a convex function with a strongly transversal
primal-dual gradient (pdg ) structure has a fast track; see also [MS00b], [MS03]. A general
function of this type can have a primal-dual track leading to a (minimizing point, zero sub-
gradient) pair; see [MS04]. On the primal track such a function is C2, while the dual track
corresponds to a C1 subgradient function defined pointwise as the minimum norm vector in
the subdifferential at a primal track point. For our convex f a primal track is a fast track
which, in turn, is a proximal point track, each of whose points can be approximated arbi-
trarily well by a bundle algorithm subroutine. Since such a subroutine collects subgradients
for constructing a V-(or cutting-plane) model of f it also can approximate a dual track point
corresponding to a bundle iterate where the V-model is sufficiently accurate. To complete
the algorithm’s VU-model combination the dual vector goes into updating a U-(or quadratic)
model of a U-Lagrangian [LOS00] that equals f on the primal track.

Our resulting bundle-based VU-algorithm does not need to know pdg structure or related
tracks to operate nor is existence of such structure needed for showing global convergence.
Minimizing convergence from any starting point is accomplished by embedding a simple
possible line search in the above framework. This algorithm represents a new type of bundle
method as it has a new kind of bundle subroutine exit test that simultaneously involves the
primal and dual (and associated U-basis matrix) iterate estimates (see (14) below).

Another interesting feature of our algorithm is that it also can be considered as a way to
speed up the proximal point method, because it adds a second-order step to each proximal
iterate. This second-order step is done only relative to a U-subspace estimate, unlike second-
order Moreau-Yosida algorithms that employ estimates of Hessians of F relative to the whole
space. In addition, for global convergence our method does not require line searches on F ,
but instead on the natural merit function, f itself, as in [CF99].
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This paper is organized as follows. Section 2 gathers together all of the relevant results
concerning VU-theory. In Section 2.3 we review the main properties of proximal points and
give the crucial relation between them and primal track points. Section 3 describes a bundle
subprocedure needed by the main algorithm for computing good approximations of primal-
dual track points. Then, in Section 4, we introduce our VU-algorithm. Section 5 is devoted to
proving both global and superlinear convergence, with the latter under reasonable conditions
contained in assumptions (S)(c)-(e). Some preliminary numerical results are reported in
Section 6. The final section contains some concluding remarks.

Our notation follows that of [MS04] and [RW98]. In addition, given a sequence of vectors
{zk} converging to 0,
– ζk = o(|zk|) ⇐⇒ ∀ε > 0 ∃kε > 0 such that |ζk| ≤ ε|zk| for all k ≥ kε;
– ζk = O(|zk|) ⇐⇒ ∃C > 0 such that |ζk| ≤ C|zk| for all k ≥ 1.
For algebraic purposes we consider (sub)gradients to be column vectors. The symbol ∂ stands
for subdifferentiation with respect to x ∈ IRn, while ∇ indicates differentiation with respect
to u ∈ IRdim U . For a vector function v(·), its Jacobian Jv(·) is a matrix, each row of which
is the transposed gradient of the corresponding component of v(·). Finally, linY denotes the
linear hull of a set Y .

2 VU-theory

We start by reviewing VU-space decomposition and associated U-Lagrangians from [LOS00]
and defining primal-dual tracks relative to results from [MS02] and [MS04].

2.1 VU-space decomposition and U-Lagrangians

Throughout this paper we assume that f : IRn → IR is a convex function. Let g be any
subgradient in ∂f(x), the subdifferential of f at x ∈ IRn. Then the orthogonal subspaces

V(x) := lin(∂f(x)− g) and U(x) := V(x)⊥

written with x = x̄ define the VU-space decomposition at x̄ from [LOS00, §2]. More precisely,
IRn = U ⊕ V, where V := V(x̄) and U := U(x̄). From this definition, the relative interior of
∂f(x̄), denoted by ri∂f(x̄), is the interior of ∂f(x̄) relative to its affine hull, a manifold that
is parallel to V (cf. [LOS00, relation 2.1 and Prop. 2.2]).

By letting V̄ be a basis matrix for V and Ū be an orthonormal basis matrix for U , every
x ∈ IRn can be decomposed into components xU and xV as follows:

IRn 3 x = Ū (Ū>x) + V̄
(
[V̄ >V̄ ]−1V̄ >x

)
= Ū xU + V̄ xV
= xU ⊕ xV ∈ IRdim U × IRdimV .

The reason why V̄ is not assumed to be orthonormal too is because typical V-basis matrix
approximations made by minimization algorithms are not orthonormal.
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Given a subgradient ḡ ∈ ∂f(x̄) with V-component ḡV = ([V̄ >V̄ ]−1V̄ >)ḡ, the U-Lagrangian
of f , depending on ḡV , is defined by

IRdim U 3 u 7→ LU (u; ḡV) := min
v∈IRdimV

{f(x̄ + Ūu + V̄ v)− ḡ>V̄ v} .

The associated set of V-space minimizers is defined by

W (u; ḡV) := {V̄ v : LU (u; ḡV) = f(x̄ + Ūu + V̄ v)− ḡ>V̄ v} .

From [LOS00], W (u; ḡV) is nonempty if ḡ ∈ ri∂f(x̄), but this is not a necessary condition; see
[MS99] and [MS00b]. Each U-Lagrangian is a convex function that is differentiable at u = 0
with

∇LU (0; ḡV) = ḡU = Ū>ḡ = Ū>g for all g ∈ ∂f(x̄).

The case of interest here is when x̄ is a minimizer. In this case, 0 ∈ ∂f(x̄), so for all ḡ ∈ ∂f(x̄),
∇LU (0; ḡV) = 0, u = 0 minimizes LU (u; ḡV), and LU (0; 0) = f(x̄).

2.2 Primal-dual tracks

When LU (u; 0) has a Hessian at u = 0, this U-Lagrangian can be expanded up to second
order. For the purpose of algorithmic exploitation of a related second-order expansion of f ,
we next define and analyze a particular pair of trajectories.

Definition 1 We say that (χ(u), γ(u)) is a primal-dual track leading to (x̄, 0), a minimizer
of f and zero subgradient pair, if for all u ∈ IRdim U small enough

the primal track χ(u) = x̄ + u⊕ v(u) and

the dual track γ(u) = argmin
{
|g|2 : g ∈ ∂f(χ(u))

}
, (1)

satisfy the following:

(i) v : IRdim U 7→ IRdimV is a C2-function satisfying V̄ v(u) ∈ WU (u; ḡV) for all ḡ ∈ ri∂f(x̄),

(ii) the Jacobian Jχ(u) is a basis matrix for V(χ(u))⊥, and

(iii) the particular U-Lagrangian LU (u; 0) is a C2-function.

When we write v(u) we implicitly assume that dim U ≥ 1. If dim U = 0 we define the
primal-dual track to be the point (x̄, 0). If dim U = n then (χ(u), γ(u)) = (x̄+u,∇f(x̄+u))
for all u in a ball about 0 ∈ IRn. ut

Theorem 4.2 in [MS02] combined with Corollary 6 in [MS04] shows that if 0 ∈ ri∂f(x̄) and
f has a pdg structure about x̄ satisfying strong transversality, as defined in [MS00b], then f
has a primal-dual track leading to (x̄, 0). The primal track defined here is called a fast track
in [MS02] and the required specialization of Corollary 6 in [MS04] corresponds to ḡ = 0 and
∂f equal to the convex function subdifferential ∂f . The class of pdg -structured functions
appears to be rather large, including general max-functions, such as maximum eigenvalue
functions, and integral functions with max-function integrands.
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Remark 2 We take this opportunity to point out that Remark 2.3 in [MS02] is incorrect
and should be deleted. This has no effect on any of the results in [MS02]. The fact that
it is incorrect means that ḡ ∈ ri∂f(x̄) should not be replaced by ḡ ∈ ∂f(x̄) in part (i) of
Definition 1 (Definition 2.1 in [MS02]).

Whenever condition (i) in Definition 1 holds, from [LOS00, Corollary 3.5], v(0) = 0, Jv(0) = 0
and

v(u) = O(|u|2) , (2)

so χ(u) is a trajectory that is tangent to U at x̄. Item (ii) in Definition 1 is such a tangency
condition for the entire primal track. As for the dual track, we show in item (v) of the next
Lemma that it is a C1 “U-gradient” that is tangent to the primal trajectory.

Lemma 3 Let (χ(u), γ(u)) be a primal-dual track leading to (x̄, 0) and let H̄ := ∇2LU (0; 0).
Suppose 0 ∈ ri∂f(x̄). Then for all u sufficiently small the following hold:

(i) χ(u) is a C2-function with Jχ(u) = Ū + O(|u|),

(ii) LU (u; 0) = f(x̄ + u⊕ v(u)) = f(x̄) + 1
2u>H̄u + o(|u|2),

(iii)∇LU (u; 0) = H̄u + o(|u|),

(iv) χ(u) is the unique minimizer of f on the affine set χ(u) + V(χ(u)),

(v) γ(u) is a C1-function with γ(u) = Jχ(u)[Jχ(u)>Jχ(u)]−1∇LU (u; 0) ∈ ri∂f(χ(u)), and

(vi) γ(u) = ŪH̄u + o(|u|) = Ū∇LU (u; 0) + o(|u|).

Proof. Since v(u) is C2, so is χ(u). Because Jv(0) = 0, Jχ(0) = Ū , and, since Jv(u) is
C1, Jχ(u) is the same and item (i) follows. Items (ii) and (iii) follow from expansions of LU
and its gradient, since LU (0; 0) = f(x̄), ∇LU (0; 0) = 0, and H̄ = ∇2LU (0; 0). Since Jχ(u) is
a basis for V(χ(u))⊥, Theorem 3.4 in [MS02] with BU (u) = Jχ(u) gives item (iv) as well as
the relation

s(u) ∈ ri∂f(χ(u)) where s(u) := Jχ(u)[Jχ(u)>Jχ(u)]−1∇LU (u; 0).

Theorem 3.3 in [MS02] implies that

Jχ(u)>g = ∇LU (u; 0) for all g ∈ ∂f(χ(u)).

Thus, the V(χ(u))⊥-component of any such g does not depend on g and the minimization in
(1), the definition of γ(u), only minimizes the V(χ(u))-component of g. Now, since s(u) ∈
∂f(χ(u)) has a zero V(χ(u))-component, γ(u) = s(u). Item (v) then follows from item
(i), because Ū has full column rank. The expression for Jχ(u) in item (i) implies that
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Jχ(u)[Jχ(u)>Jχ(u)]−1 = Ū + O(|u|). The final result follows, using the expression for γ(u)
in item (v) and item (iii).

The basic algorithm idea in this paper is to minimize f by minimizing the C2 function
LU (u; 0) with a Newton or quasi-Newton method. The difficulty with this approach is that
LU and associated quantities in Lemma 3 depending on u are unknown. Our approxima-
tion/decomposition algorithm defined later addresses this issue by estimating (χ(u), γ(u)) in
a manner such that the track parameter u depends on a prox-center x and a prox-parameter
µ as discussed next.

2.3 Relating proximal points to primal track points

Our VU-space decomposition algorithm defined in Section 4 below approximates primal track
points by approximating equivalent proximal points.

Given a positive scalar parameter µ, the proximal point function depending on f , is
defined by

pµ(x) := argminp∈IRn{f(p) +
1
2
µ|p− x|2} for x ∈ IRn.

In our development we use the following properties, resulting from the above definition and
[Roc76, Prop.1(c)]:

(i) gµ(x) := µ(x− pµ(x)) ∈ ∂f(pµ(x)), and
(ii) if x̄ minimizes f then pµ(x̄) = x̄ and |pµ(x)− x̄|2 ≤ |x− x̄|2 − |x− pµ(x)|2. (3)

The following result, showing that primal tracks attract proximal points, constitutes a
fundamental link between proximal point theory and VU-theory. Since here we let µ vary,
via possible dependence on x, this result is an extension of the fixed µ results in [MS02,
Theorems 5.1 and 5.2]. It also can be seen as a convex version of Theorem 3.5 in [MS05].

Theorem 4 Let χ(u) be a primal track leading to a minimizer x̄ ∈ IRn, as described in
Definition 1. Suppose 0 ∈ ri∂f(x̄) and for all x close enough to x̄, µ = µ(x) > 0 with
µ(x)|x− x̄| → 0 as x → x̄.

Then, for all x close enough to x̄,

pµ(x) = χ(uµ(x)) = x̄ + uµ(x)⊕ v(uµ(x)) where uµ(x) := (pµ(x)− x̄)U

and uµ(x) → 0 as x → x̄.

Proof. For x close enough to x̄, we write its proximal point using VU coordinates:
pµ(x) = x̄ + uµ(x) ⊕ vpµ(x) where uµ(x) = (pµ(x) − x̄)U and vpµ(x) := (pµ(x) − x̄)V . By
Property (3)(ii), |pµ(x)− x̄| ≤ |x− x̄|, so uµ(x) → 0 as x → x̄. Furthermore, µ(x)|pµ(x)− x̄| ≤
µ(x)|x− x̄| and, since, by assumption, µ(x)|x− x̄| → 0 as x → x̄, we have that µ(x)(x̄− x)V ,
µ(x)vpµ(x), and µ(x)uµ(x) all converge to zero.
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Then (2) implies that µ(x)v(uµ(x)) → 0 as x → x̄. As a result, the function ωµ : IRn →
IRdimV defined by

ωµ(x) := µ(x)(x̄− x)V −
µ(x)

2

(
v(uµ(x)) + vpµ(x)

)
converges to 0 as x → x̄. Since 0 ∈ ri∂f(x̄), the interior of ∂f(x̄) relative to its affine hull, a
manifold that is parallel to V (cf. [LOS00, Prop. 2.2]), we obtain that

ω := 0⊕ ωµ(x) ∈ ri∂f(x̄) for x close enough to x̄.

Thus, from the definition of LU with (u, ḡ) = (uµ(x), ω) ∈ IRdim U × ri∂f(x̄) and Definition 1,

LU
(
uµ(x);ωµ(x)

)
= f(χ(uµ(x)))− ω>V̄ v(uµ(x)).

Since vpµ(x) ∈ IRdimV , LU
(
uµ(x);ωµ(x)

)
≤ f(x̄ + uµ(x)⊕ vpµ(x))− ω>V̄ vpµ(x). As a result,

f(χ(uµ(x)))− ω>V̄ v(uµ(x)) ≤ f(pµ(x))− ω>V̄ vpµ(x). (4)

By the definition of the proximal point mapping,

f(pµ(x)) +
µ

2
|pµ(x)− x|2 ≤ f(χ(uµ(x))) +

µ

2
|χ(uµ(x))− x|2. (5)

Combining the two inequalities above yields, after rearrangement of terms,

0 ≤ µ

2

(
|χ(uµ(x))− x|2 − |pµ(x)− x|2

)
+ ω>V̄ (v(uµ(x))− vpµ(x)). (6)

We now show that the inequality above is in fact an equality. To abbreviate notation, we
drop the argument “(x)” in uµ(x), pµ(x), v(uµ(x)), vpµ(x), and ωµ(x), and write instead uµ,
pµ, v(uµ), vpµ , and ωµ. First we expand the leading difference of squares term in (6) and use
the fact that χ(uµ) and pµ have the same U-component:

|χ(uµ)− x|2−|pµ − x|2 = (χ(uµ)− pµ)>(χ(uµ) + pµ − 2x)

=
(
V̄ (v(uµ)− vpµ)

)>(
V̄ (χ(uµ) + pµ − 2x)V

)
= (v(uµ)− vpµ)>V̄ >V̄

(
v(uµ) + vpµ − 2(x− x̄)V

)
= v(uµ)>V̄ >V̄ v(uµ)−v>pµ

V̄ >V̄ vpµ + 2(v(uµ)− vpµ)>V̄ >V̄ (x− x̄)V .

Then

µ

2

(
|χ(uµ)− x|2 − |pµ − x|2

)
=

µ

2

(
|V̄ v(uµ)|2 − |V̄ vpµ |2

)
− µ(v(uµ)− vpµ)>V̄ >V̄ (x̄− x)V .
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Now, since V̄ >ω = V̄ >V̄ ωµ, we use the definition of ωµ to write the second right hand side
term in (6) as follows:

ω>V̄ (v(uµ)− vpµ) = (v(uµ)− vpµ)>V̄ >ω = (v(uµ)− vpµ)>V̄ >V̄ ωµ

= (v(uµ)− vpµ)>V̄ >V̄
(
µ(x̄− x)V −

µ

2
(v(uµ) + vpµ)

)
= µ(v(uµ)−vpµ)>V̄ >V̄ (x̄− x)V−

µ

2

(
v(uµ)>V̄ >V̄ v(uµ)− v>pµ

V̄ >V̄ vpµ

)
.

Using these expressions in the right hand side in (6), we obtain that (6) holds with equality.
Since the inequality in (6) cannot be strict, we deduce that neither the inequality in (4) nor
the one in (5) can be strictly satisfied. In particular, since pµ(x) is unique, from (5) we obtain
that pµ(x) = χ(uµ(x)), i.e., that vpµ(x) = v(uµ(x)).

When µ is fixed, the above conclusion is extended to prox-regular and -bounded functions
in [MS05] and, with the addition of C2-substructure, in [Har03] and [MS04].

3 Approximating primal-dual track points

It is known that a sequence of null steps from a bundle mechanism can approximate a proximal
point with any desired accuracy. For our VU-algorithm, when a primal-dual track exists, we
also need to approximate points on the dual trajectory γ(u) defined in (1) and basis matrices
for the corresponding subspaces V(χ(u))⊥. We now show that a bundle subroutine can provide
such primal-dual approximations via the solution of two quadratic programming problems,
denoted below by χ-qp and γ-qp.

3.1 The bundle subroutine

Given a tolerance σ ∈ (0, 1/2], a prox-parameter µ > 0 and a prox-center x ∈ IRn, to find a
σ-approximation of pµ(x), our bundle subroutine accumulates information from past points
yi in the form {

(f(yi) , gi ∈ ∂f(yi))
}

i∈B
,

where B is some index set containing an index j such that yj = x. A handier representation
for this data set is given by introducing the linearization errors

ei := e(x, yi) := f(x)− f(yi)− g>i (x− yi) for i ∈ B,

which are nonnegative due to the convexity of f . Also, since

f(z) ≥ f(yi) + g>i (z − yi) for all z ∈ IRn,

adding 0 = ei − ei to this inequality gives

f(z) ≥ f(x) + g>i (z − x)− ei for all z ∈ IRn, (7)
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which means that each gi is an ei-subgradient of f at x, i.e., gi ∈ ∂eif(x) for i ∈ B. The
corresponding bundle of information{

(ei , gi ∈ ∂eif(x))
}

i∈B

is used at each iteration to define a V-model underestimating f via the cutting-plane function

ϕ(z) := f(x) + max
i∈B

{−ei + g>i (z − x)} for z ∈ IRn.

A pure cutting-plane algorithm [CG59], [Kel60] minimizes the polyhedral function ϕ to define
its next iterate. When V 6= IRn, this method can converge extremely slowly and become
unstable, essentially due to its over-estimation of the dimension of V. Bundle methods,
[HUL93, BGLS03], are stabilized cutting-plane algorithms. In their proximal form they
employ a quadratic term, depending on µ, which is added to the model function. In the
bundle context, the prox-parameter µ can be thought of as a “tightness” parameter where
larger values give a more compact bundle (see the expression for p̂ in (9) below).

To approximate a proximal point we solve a first quadratic programming subproblem
χ-qp, which has the following form and properties; see [BGLS03, Lemma 9.8]:
The problem

min
{

r +
1
2
µ|p− x|2 : (r, p) ∈ IR1+n , r ≥ f(x)− ei + g>i (p− x) for all i ∈ B

}
(χ-qp)

has a dual

min

{
1
2µ

∣∣∣ ∑
i∈B

αigi

∣∣∣2 +
∑
i∈B

eiαi : αi ≥ 0 for i ∈ B,
∑
i∈B

αi = 1

}
. (8)

Their respective solutions, denoted by (r̂, p̂) and α̂ = (α̂1, . . . , α̂|B|), satisfy

r̂ = ϕ(p̂) and p̂ = x− 1
µ

ĝ where ĝ :=
∑
i∈B

α̂igi. (9)

In addition, α̂i = 0 for all i ∈ B such that r̂ > f(x)− ei + g>i (p̂− x) and

ϕ(p̂) = f(x) +
∑
i∈B

α̂i (−ei + g>i (p̂− x)) = f(x)−
∑
i∈B

α̂iei −
1
µ
|ĝ|2. (10)

For convenience, in the sequel we denote the output of these calculations by

(p̂, r̂) = χ-qp
(
µ, x, {(ei, gi)}i∈B

)
.
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The vector p̂ is an estimate of a proximal point and, hence, approximates a primal track
point when the latter exists. To proceed further we define new data, corresponding to a new
index i+, by letting yi+ := p̂ and computing f(p̂) and gi+ ∈ ∂f(p̂). Note that since f(p̂) is
available, we can compute the V-model accuracy measure at p̂ defined by

ε̂ := f(p̂)− ϕ(p̂) = f(p̂)− r̂.

An approximate dual track point, denoted by ŝ, is constructed by solving a second quadratic
problem, that depends on a new index set

B̂ :=
{
i ∈ B : r̂ = f(x)− ei + g>i (p̂− x)

}
∪

{
i+

}
. (11)

The second quadratic programming problem

min
{

r +
1
2
|p− x|2 : (r, p) ∈ IR1+n , r ≥ g>i (p− x) for all i ∈ B̂

}
(γ-qp)

has a dual problem similar to (8), but without linearization error terms:

min

1
2

∣∣∣ ∑
i∈B̂

αigi

∣∣∣2 : αi ≥ 0 for i ∈ B̂ ,
∑
i∈B̂

αi = 1

 .

Similar to (9), the respective solutions, denoted by (r̄, p̄) and ᾱ, satisfy

p̄− x = −ŝ where ŝ :=
∑
i∈B̂

ᾱigi. (12)

Note that ŝ is the vector with smallest Euclidean norm in the convex hull of {gi : i ∈ B̂}.
Lemma 5 below will show that ŝ is an ε̂-subgradient of f at p̂. Furthermore, a by-product of
the above minimization is a basis matrix [Û V̂ ] for IRn such that Û has orthonormal columns
and V̂ >ŝ = 0. Thus, if pµ(x) is a primal track point χ(u) approximated by p̂, then the
convex hull of {gi : i ∈ B̂} approximates ∂f(χ(u)), so from (1) the corresponding γ(u) is
estimated by ŝ, and Û approximates a basis matrix for V(χ(u))⊥. See also Definition 1(ii)
and Lemma 3(iv) and (v) for this motivation. The matrix construction is as follows: Let a
(nonempty) active index set be defined by B̂act := {i ∈ B̂ : r̄ = g>i (p̄− x)}. Then, from (12),
r̄ = −g>i ŝ for all i ∈ B̂act, so

(gi − g`)>ŝ = 0 (13)

for all such i and for a fixed ` ∈ B̂act. Define a full column rank matrix V̂ by choosing the
largest number of indices i satisfying (13) such that the corresponding vectors gi − g` are
linearly independent and by letting these vectors be the columns of V̂ . Then let Û be a
matrix whose columns form an orthonormal basis for the null-space of V̂ > with Û = I if V̂
is vacuous.
For convenience, in the sequel we denote the output from these calculations by(

ŝ, Û
)

= γ-qp
(
{gi}i∈B̂

)
.
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The bundle subprocedure is terminated and p̂ is declared to be a σ-approximation of pµ(x) if

ε̂ ≤ σ

µ
|ŝ|2. (14)

Otherwise, B above is replaced by B̂ and new iterate data are computed by solving updated
subproblems (χ-qp) and (γ-qp). This update, appending (ei+ , gi+) to active data at the
previous (χ-qp) solution, ensures convergence to a minimizing point in case of nontermination;
see Theorem 8 in Section 5 below.

Lemma 5 Each iteration of the above bundle subprocedure, with output data

(p̂, r̂) = χ-qp
(
µ, x, {(ei, gi)}i∈B

)
,(

ŝ, Û
)

= γ-qp
(
{gi}i∈B̂

)
,

and ε̂ = f(p̂)− r̂ satisfies the following:

(i) each gi for i ∈ B̂ is an ε̂-subgradient of f at p̂;

(ii) ŝ is an ε̂-subgradient of f at p̂;

(iii) µ|p̂− pµ(x)|2 ≤ ε̂;

(iv) ŝ = Û Û>ŝ, with ŝ = 0 if Û is vacuous;

(v) |ŝ| ≤ |ĝ| where ĝ = µ(x− p̂);

In addition, for any parameter m ∈ (0, 1), satisfaction of (14) implies

f(p̂)− f(x) ≤ −m

2µ
|ĝ|2. (15)

Proof. Since gi+ ∈ ∂f(p̂) and ε̂ = f(p̂)− ϕ(p̂) ≥ 0, gi+ ∈ ∂ε̂f(p̂), so the result of item (i)
holds for i = i+. From the definitions of p̂, r̂ and B̂ we have that for all i 6= i+ in B̂

ϕ(p̂) = r̂ = f(x)− ei + g>i (p̂− x),

so for all such i
ε̂ = f(p̂)− ϕ(p̂) = f(p̂)− f(x) + ei − g>i (p̂− x).

Adding this result to (7) gives

f(z) ≥ f(p̂) + g>i (z − p̂)− ε̂ for all z ∈ IRn, (16)
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and completes the proof of item (i).
Now item (ii) follows by multiplying each inequality in (16) by its corresponding multiplier
ᾱi ≥ 0, summing these results and then using the definition of ŝ from (12) and the fact that
these multipliers sum to one.
In a similar manner, this time using the multipliers α̂i that solve dual problem (8) and define
ĝ in (9), together with α̂i+ := 0, we obtain the result that ĝ ∈ ∂ε̂f(p̂). This fact combined
with the Property (3)(i) result gµ(x) = µ(x−pµ(x)) ∈ ∂f(pµ(x)) and the convexity of f gives

f(p̂) + ĝ>(pµ(x)− p̂)− ε̂ ≤ f(pµ(x)) ≤ f(p̂)− gµ(x)>(p̂− pµ(x)),

so
(ĝ − gµ(x))>(pµ(x)− p̂)− ε̂ ≤ 0.

Then, since the expression for ĝ from (9) written in the form

ĝ = −µ(p̂− x) (17)

combined with the definition of gµ(x) from Property (3)(i) implies that ĝ−gµ(x) = µ(pµ(x)−
p̂), we obtain satisfaction of item (iii).
Item (iv) follows from the definitions of V̂ and Û and (13), because these items imply the
identity I = Û Û> + V̂ [V̂ >V̂ ]−1V̂ > and the result that V̂ >ŝ = 0.
Item (v) follows from the minimum norm property of ŝ, because (9), (8), (17) and the
definition of B̂ imply that µ(x− p̂) = ĝ is in the convex hull of {gi : i ∈ B̂}.
To show that for any m ∈ (0, 1) condition (15) holds when (14) holds, first note that, since
σ ≤ 1/2, we have σ ≤ 1 − m

2 . Thus if (14) holds then ε̂ ≤ [(1 − m
2 )/µ]|ŝ|2. This inequality

together with the definition of ε̂, (10) and the nonnegativity of ᾱiei gives

f(p̂)− f(x) = ε̂ + ϕ(p̂)− f(x)

= ε̂ −
∑
i∈B̂

ᾱiei −
1
µ
|ĝ|2

≤ [(1− m
2 )/µ]|ŝ|2 − 1

µ
|ĝ|2.

Finally, combining this inequality with item (v) gives (15).

In bundle terminology, (15) corresponds to declaring p̂ to be a “serious step” rather than
a “null step”; see [HUL93, Ch. XIV-XV] for more details.

The main algorithm depending on the above bundle subprocedure is defined next.

4 The VU-algorithm

Now we consider an algorithm depending on the VU-theory outlined in Section 2 and the
potential primal-dual track point approximations from Section 3. When the tracks exist, the
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algorithm moves approximately along the primal track by making a U-Newton predictor step
followed by a corrector step, or V-step, coming from a bundle subroutine proximal point
estimate.
Each U-step is an approximate Newton-step for minimizing LU (u; 0). The kth one corresponds
to a certain u and depends on:
– an εk-subgradient sk approximating γ(u) = Ū∇LU (u; 0) + o(|u|),
– a matrix Uk approximating a basis for V(χ(u))>, and
– a matrix Hk approximating∇2LU (u; 0) (if relevant second order information is not available,

a quasi-Newton method could be used).
This U-step is followed by the V-step numbered k +1. The sum of these two steps gives what
we call a “candidate” primal track point pc

k+1. This candidate is declared “good enough” if
it satisfies an f -value descent condition that is essentially testing for descent of LU ; see (18)
below. To deal with “bad” candidates, and ensure convergence to some minimizer from any
starting point, a possible line search is included. Nonsatisfaction of the descent condition
results in a second bundle subroutine run in a major iteration.

Algorithm 6
Initialization. Choose positive parameters ε , µ and m with m < 1. Let p0 ∈ IRn and g0 ∈

∂f(p0), respectively, be an initial point and subgradient. Also, let U0 be a matrix with
orthonormal n-dimensional columns estimating an optimal U-basis. Set s0 := g0 and k := 0.

Stopping test. Stop if |sk|2 ≤ ε.
U-Hessian. Choose an nk×nk positive definite matrix Hk, where nk is the number of columns

of Uk.
U-Step. Compute an approximate U-Newton step by solving the linear system

Hk∆u = −U>
k sk for ∆u = ∆uk ∈ IRnk .

Set xc
k+1 := pk + Uk∆uk = pk − UkH

−1
k U>

k sk.
Candidate primal-dual track data. Choose µk+1 ≥ µ, σk+1 ∈ (0, 1/2], initialize B and run the

following bundle subprocedure with x = xc
k+1:

Compute recursively
(p̂, r̂) = χ-qp

(
µk+1, x, {(ei, gi)}i∈B

)
,

ε̂ = f(p̂)− r̂, B̂ given by (11), and(
ŝ, Û

)
= γ-qp

(
{gi}i∈B̂

)
until satisfaction of (14) with (σ/µ) = (σk+1/µk+1).

Then set
(
εc
k+1, p

c
k+1, s

c
k+1, U

c
k+1

)
:= (ε̂, p̂, ŝ, Û).

Candidate evaluation and new iterate data determination. If

f(pc
k+1)− f(pk) ≤ − m

2µk+1
|sc

k+1|2 (18)
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then declare a successful candidate and set(
xk+1, εk+1, pk+1, sk+1, Uk+1

)
:=

(
xc

k+1, ε
c
k+1, p

c
k+1, s

c
k+1, U

c
k+1

)
.

Otherwise, execute a line search on the line determined by pk and pc
k+1 to find xk+1 thereon

satisfying f(xk+1) ≤ f(pk); reinitialize B and rerun the above bundle subroutine, but with
x = xk+1, to find new values for (ε̂, p̂, ŝ, Û); then set

(
εk+1, pk+1, sk+1, Uk+1

)
:=(ε̂, p̂, ŝ, Û).

Loop. Replace k by k + 1 and go to Stopping test.
ut

Remark 7 The following items concerning Algorithm 6 should be noted.

(i) An overall stopping test also should be placed inside the bundle procedure. For example,
to be consistent, it could be of the following form:
Stop if max{|ŝ|2, µ

σ
ε̂} ≤ ε.

(ii) As for the methods in [FQ96], [LS97b], [MSQ98], [CF99], this algorithm also can be
considered as a way to speed up the proximal point method. Instead of setting the next
iterate to be an approximation of a proximal point, here xc

k+1 is set equal to such an
approximation plus a non-null U-step. Note that we do not make a Newton-step in the
full space IRn as is done in the methods in the above four references. This means that
we take advantage of nonsmoothness to reduce the dimension of the space for which
second derivatives need to be estimated.

(iii) To have a U-quasi-Newton method, Hk+1 should be chosen to be positive definite, close
to Hk, and close to satisfying the secant equation

Hk+1U
>
k+1(pk+1 − pk) = U>

k+1(sk+1 − sk) . (19)

A way to deal with the case when the U -matrix changes dimension would be to use
a limited memory method [GL89], [LN89], [BNS94], [KON98] which stores a certain
number of past difference vectors pj − pj−1 and sj − sj−1 for j ≤ k + 1 and determines
Hk+1 by projecting all of them using Uk+1.

(iv) In addition to the stated possible line search it first may be beneficial to redefine xc
k+1

to be some other point on the half-line from pk in the direction Uk∆uk. This change
could be very helpful if a directional derivative underestimate at xc

k+1 does not satisfy
a Wolfe increase condition [BGLS03, Sec. 3.4]. If not satisfied, then f(xc

k+1) < f(pk)
and safeguarded quadratic extrapolation could be executed to find a point satisfying
such a derivative increase condition. Then xc

k+1 would be redefined, if necessary, to
be a search point found with least f -value. If nk = n then a more sophisticated line
search should be executed to attempt to get f(xc

k+1) sufficiently smaller than f(pk).
Information gained from this could go into the choice of µk+1 and initialization of B.
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(v) For the purpose of early detection of a smooth function with dim U = n a termina-
tion test for the bundle procedure, based on (18), could be included inside the bundle
procedure as follows: Immediately after xc

k+1 and µk+1 are generated the bundle sub-
procedure would initialize the index i+ so that yi+ = xc

k+1 and gi+ is a subgradient of
f at this point, as well as including i+ in the initialization of B. Then, if

f(yi+)− f(pk) ≤ − m

2µk+1
|gi+ |2,

the bundle procedure would be terminated and followed by the setting(
εc
k+1, p

c
k+1, s

c
k+1, U

c
k+1

)
:= (0, yi+ , gi+ , I),

so as to generate a successful candidate satisfying (18) and the subsequent results given
below in (20), (21) and (22). This setting does not have a proximal point interpretation,
but it does have a primal track one, since when dim U = n the primal track is a full-
dimensional ball about x̄.

(vi) The line search required when pc
k+1 is not a successful candidate can be executed very

simply by choosing xk+1 := argmin{f(pk), f(pc
k+1)}, a choice that is similar to an

ordinary serious step. However, a more expensive line search based on [LM82] has
the possibility of finding a better setting for xk+1 with better bundle initialization
information.

(vii) The following reasoning shows that whether or not pc
k+1 is a successful candidate

f(pk+1)− f(pk) ≤ − m

2µk+1
|sk+1|2 . (20)

In the successful case, (20) is the same as (18). Otherwise, (15) and Lemma 5(v) with
(µ, x, p̂, ŝ) = (µk+1, xk+1, pk+1, sk+1) imply that

f(pk+1)− f(xk+1) ≤ − m

2µk+1
|ĝ|2 ≤ − m

2µk+1
|sk+1|2 ,

and the line search gives f(xk+1) ≤ f(pk), so (20) also holds in the unsuccessful case. A
necessary, but not sufficient, condition for the unsuccessful case is f(xc

k+1) > f(pk). ut

5 Convergence properties of the algorithm

Throughout this section we assume that ε = 0 and that Algorithm 6 does not terminate.
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5.1 Global convergence

We first show that if some execution of the bundle procedure defined in Section 3 continues
indefinitely, then there is convergence to a minimizer of f .

Theorem 8 If the bundle procedure does not terminate, i.e., if (14) never holds, then the
sequence of p̂-values converges to pµ(x) and pµ(x) minimizes f . If the procedure terminates
with ŝ = 0, then the corresponding p̂ equals pµ(x) and minimizes f . In both of these cases
pµ(x)− x ∈ V(pµ(x)).

Proof. The recursion in the bundle subprocedure replacing B by B̂ (i.e., appending
(ei+ , gi+) to active data at the previous (χ-qp) solution) satisfies conditions (4.7) to (4.9)
in [CL93]. By Proposition 4.3 therein, if this procedure does not terminate then it generates
an infinite sequence of ε̂-values converging to zero. Since (14) does not hold, the sequence of
|ŝ|-values also converges to 0. Thus, item (iii) in Lemma5 implies that {p̂} → pµ(x). Then
the continuity of f and Lemma5(ii) gives

f(z) ≥ f(pµ(x)) for all z ∈ IRn.

The termination case with ŝ = 0 follows in a similar manner, since (14) implies ε̂ = 0 in
this case. In either case, by the minimality of pµ(x), 0 ∈ ∂f(pµ(x)). From Property (3)(i),
gµ(x) = µ(x − pµ(x)) ∈ ∂f(pµ(x)), so differencing these two subgradients at pµ(x) gives
0− µ(x− pµ(x)) ∈ V(pµ(x)) and the final result follows, since µ 6= 0.

If either case in Theorem 8 above holds then there is a minimizer x̄ = pµ(x) such that
x̄ − x ∈ V(x̄), so the net move from x to x̄ is in a subspace on which the V-approximation
(i.e., cutting-plane) aspect of bundling should be very efficient. However, this issue is an open
question except in the n = 1 case; see [LM82] and [Mif91].

From here on we assume that all executions of the bundle procedure terminate. Then
nontermination of Algorithm 6 with ε = 0 implies that infinite sequences{

(µk, σk),
(
xc

k, ε
c
k, p

c
k, s

c
k, U

c
k

)
,
(
xk, εk, pk, sk, Uk

)}
are generated such that, for all k, sk = UkU

>
k sk is not the zero vector, (20) holds and, from

Lemma 5(ii) and (14) with (µ, σ, ε̂, p̂, ŝ) = (µk, σk, εk, pk, sk),

f(pk) + s>k (z − pk)− εk ≤ f(z) for all z ∈ IRn and (21)

εk ≤ σk

µk
|sk|2. (22)

Our next theorem shows minimizing convergence from any initial point without assuming
the existence of a primal track.
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Theorem 9 Suppose that the Algorithm 6 sequence {µk} is bounded above by µ̄ . Then the
following hold:

(i) the sequence {f(pk)} is decreasing and either {f(pk)} → −∞ or {|sk|} and {εk} both
converge to 0;

(ii) if f is bounded from below, then any accumulation point of {pk} minimizes f .

Proof. Since |sk| 6= 0, (20) implies that {f(pk)} is decreasing. Suppose {f(pk)} 6→ −∞.
Then summing (20) over k and using the fact that

m

2µk
≥ m

2µ̄
for all k implies that {|sk|} → 0.

Then (22) with σk ≤ 1/2 and µk ≥ µ > 0 implies that {εk} → 0, which establishes (i).
Now suppose f is bounded from below and p̄ is any accumulation point of {pk}. Then,
because {|sk|} and {εk} converge to 0 by item (i), (21) together with the continuity of f
implies that f(p̄) ≤ f(z) for all z ∈ IRn and (ii) is proved.

In order to obtain convergence of the whole sequence {pk}, we need the concept of a
strong minimizer:

Definition 10 We say that x̄ is a strong minimizer of f if 0 ∈ ri∂f(x̄) and the corresponding
U-Lagrangian LU (u; 0) has a Hessian at u = 0 that is positive definite. ut

A first consequence of x̄ being a strong minimizer, following from positive definiteness of
∇2LU (0; 0), is that u = 0 is the unique minimizer of LU (u; 0). This result, together with
[LO01, Thm. 1], implies that x̄ is the unique minimizer of f . In addition, from [Roc76,
Thms. 27.1(d)-(f) and 8.4]

for any α ≥ f(x̄) the level set {z ∈ IRn : f(z) ≤ α} is compact. (23)

Corollary 11 Suppose that x̄ is a strong minimizer of f , as in Definition 10 and that the
Algorithm 6 sequence {µk} is bounded above by µ̄. Then {pk} converges to x̄. If, in addition,
the sequence

{H−1
k } is bounded, (24)

then {xc
k+1} and {xk} both converge to x̄ and {sc

k+1} converges to 0 ∈ IRn.

Proof. Since x̄ is a strong minimizer, it is the unique minimizer of f , f is bounded from
below by f(x̄), and {z : f(z) ≤ f(p0)} is compact by (23). Thus, {pk} is bounded and, from
item (ii) in Theorem 9, any accumulation point of {pk} is x̄.
Now suppose (24) holds. Then, since each Uk has orthonormal columns, the sequence {xc

k+1−
pk} = {−UkH

−1
k U>

k sk}, if infinite, converges to 0 ∈ IRn because, by Theorem 9(i), {sk} does
the same. Thus, {xc

k+1} has the same limit as {pk}, namely x̄. Next consider any infinite
subsequence of {xk+1} such that xk+1 6= xc

k+1. From the line search definition of xk+1

f(x̄) ≤ f(xk+1) ≤ f(pk) ≤ f(p0),
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so, as in the above proof for {pk}, this subsequence of {xk+1} converges x̄, which then
holds for the entire sequence, because {xc

k+1} → x̄. This also implies the final result that
{sc

k+1} → 0 because, from (15) and Lemma 5(v) with (x, p̂, ĝ, ŝ) = (xc
k+1, p

c
k+1, g

c
k+1, s

c
k+1)

and µ = µk+1 ≤ µ̄,
f(x̄)− f(xc

k+1) ≤ f(pc
k+1)− f(xc

k+1) ≤ − m

2µk+1
|gc

k+1|2 ≤ −m

2µ̄
|sc

k+1|2.

5.2 Superlinear convergence

For our local convergence analysis we need some technical results that are rather involved.
We give their proofs in Appendix A. In this subsection we summarize these intermediate
results before giving our main result on rate of convergence.

We first discuss the assumptions needed to show superlinear convergence. The initial
set of suppositions is related to existence of primal-dual tracks, and other basic algorithmic
requirements:

(S)(a) There exists a primal-dual track (χ(u), γ(u)) leading to (x̄, 0), as described in Defini-
tion 1, with x̄ a strong minimizer, as in Definition 10.

(S)(b) The Algorithm 6 sequences satisfy the following:

(i) {µk} is bounded above by µ̄;

(ii) {H−1
k } is bounded, i.e., (24) holds;

(iii) {σk} → 0 as k →∞, for example, by choosing σk+1 ≤ 1/(k + 2).

Combining these assumptions with Theorem 4 and Corollary 11 in a straightforward manner
gives the following primal track related results:

Lemma 12 Suppose that (S)(a), (S)(b)(i) and (ii) hold. Let uµ(x) be the function defined
in Theorem 4 and, for all k sufficiently large, let uk := uµk

(xk) and uc
k+1 := uµk+1

(xc
k+1).

Then for all k sufficiently large

(i) pµ(x) = x̄ + uµ(x)⊕ v(uµ(x)) for (µ, x) equal to (µk, xk) and to (µk+1, x
c
k+1) and

(ii) {uk} and {uc
k+1} both converge to 0 ∈ IRdim U . ut

In addition to (S)(a)-(b), we make the following algorithm assumptions stating how
well the dual track points γ(u) and corresponding U-basis and -Hessian matrices need to
be approximated. Since we are interested in a step from pk, depending on xk, to pc

k+1 via
xc

k+1, we introduce the following notation to be used with (µ, x) equal to (µk, xk) and to
(µk+1, x

c
k+1) as in Lemma 12(i):(

p̂µ(x), ŝµ(x)
)

:= (p̂, ŝ), output from χ-qp/γ-qp satisfying (14). (25)



19

(S)(c) For all k sufficiently large and for (µ, x) equal to (µk, xk) and to (µk+1, x
c
k+1) the γ-qp

output ŝµ(x), correspondingly equal to sk and to sc
k+1, satisfies

ŝµ(x)− γ(uµ(x)) = o(|ŝµ(x)|) + o(|uµ(x)|) (26)

where uµ(x) is defined in Theorem 4.

(S)(d) For all k sufficiently large nk = dim U and there exists a dim U × dim U orthogonal
matrix Qk with the corresponding product sequence {UkQ

>
k } converging to Ū .

(S)(e) For all k sufficiently large [QkHkQ
>
k − ∇2LU (0; 0)]uk = o(|sk|) + o(|uk|) where uk =

uµk
(xk) as in Lemma 12.

Remark 13 Some comments on the assumptions above are in order:

(i) If (S)(b)(iii) holds and if the approximation of γ(uµ(x)) by ŝµ(x) is as good as that
of gµ(x) by ĝµ(x) := µ(x− p̂µ(x)) in the sense that

ŝµ(x)− γ(uµ(x)) = O(|ĝµ(x)− gµ(x)|)

then (26) in (S)(c) holds. This follows, because Lemma5(iii) and (14) combined with
ĝµ(x) − gµ(x) = µ(pµ(x) − p̂µ(x)) imply |ĝµ(x) − gµ(x)| ≤

√
σ|ŝµ(x)|, and (S)(b)(iii)

implies σ → 0 as x → x̄.

(ii) (S)(d) allows an accumulation matrix of {Uk} to be a basis matrix for U other than
Ū , which then equals ŪQ for some orthogonal matrix Q (i.e., satisfying Q>Q = I).
This supposition means that all accumulation matrices of the bounded set {Uk} are
orthonormal basis matrices for U . The matrix UkQ

>
k is intended to approximate a basis

matrix for V(pµk
(xk))⊥ similar to Jχ(uk) which, by item (i) in Lemma 3, converges to

Ū linearly in uk. (S)(d) only asks for convergence with no particular speed thereof.

(iii) Assumptions (S)(d) and (e) are consistent with the quasi-Newton equation (19), be-
cause inserting I = Q>

k+1Qk+1 into this equation and multiplying by Qk+1 on the left
gives the equivalent quasi-Newton equation(

Qk+1Hk+1Q
>
k+1

) (
Uk+1Q

>
k+1

)> (pk+1 − pk) =
(
Uk+1Q

>
k+1

)> (sk+1 − sk) .ut

The following proposition summarizes some technical results following from our assump-
tions. These involve accuracy of primal track point approximation and a strengthening of
(S)(b)(iii) to ensure candidate success. They depend on the definition of p̂µ(x) in (25) and
that of uµ(x) in Theorem 4.

Proposition 14 Consider the sequences generated by Algorithm 6 with k sufficiently large
for the results of Lemma 12 to hold.
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(i) If (S)(a)-(c) hold, then p̂µ(x) − pµ(x) = o(|uµ(x)|) for (µ, x) equal to (µk, xk) and to
(µk+1, x

c
k+1).

(ii) If (S)(a)-(e) hold, then pc
k+1 − x̄ = o(|uk|).

(iii) If (S)(a)-(e) hold and σk+1 ≤ min{1/(k +2), |sk|2/|s0|2} for all k ≥ 0, then (18) holds
and pk+1 = pc

k+1.

Proof. The three stated items correspond, respectively, to Lemmas 17(iii), 18(ii), and 19
in Appendix A.

We conclude this subsection by giving our main rate of convergence result.

Theorem 15 Suppose that (S)(a)-(e) hold. Then for all k sufficiently large

(i) pc
k+1 − x̄ = o(|pk − x̄|) and

(ii) if, in addition, σk+1 ≤ min{1/(k +2), |sk|2/|s0|2}, then pk+1− x̄ = o(|pk− x̄|), i.e., the
sequence {pk} converges to x̄ superlinearly.

Proof. Since pk−x̄ = pk−pµk
(xk)+pµk

(xk)−x̄ = pk−pµk
(xk)+uk⊕v(uk), by Lemma 12(i)

with (µ, x) = (µk, xk), its U-component can be written as (pk − x̄)U = (pk − pµk
(xk))U + uk.

By Proposition 14(i), (pk − pµk
(xk))U = o(|uk|), so, |(pk − x̄)U | = |o(|uk|) + uk|. Combining

this with Proposition 14(ii) gives the ratio

pc
k+1 − x̄

|(pk − x̄)U |
=

o(|uk|)
|o(|uk|) + uk|

which converges to 0 as uk → 0. So, pc
k+1 − x̄ = o(|(pk − x̄)U |) and the first result follows,

because |(pk − x̄)U | ≤ |pk − x̄|.
The second result then follows from Proposition 14(iii).

6 Preliminary numerical results

In order to begin validation of our approach we wrote a matlab implementation of a simpli-
fied version of Algorithm 6, suitable for objective functions of the form

f = max
j∈J

fj where J is finite and each fj is C2 on IRn.

For each bundled subgradient gi we use a gradient of fji at yi where ji is an active index such
that fji(yi) = f(yi). In order to test these max-functions with good second order information
we do the following: When sk = ŝ in the algorithm then the matrix Hk is set equal to
U>

k (
∑

i∈B̂ ᾱiH
i)Uk where H i is the Hessian of fji at yi and the multipliers ᾱi correspond

to ŝ via (12). Here we are mainly testing to see if primal-dual points and associated basis
matrices can be approximated well enough. Future work will deal with less precise U-Hessian
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estimation. When this setting of Hk is not positive definite the nk × nk diagonal matrix
min{1/k, |sk|}I is added to it.

For our runs we used the following functions:

– F2d, the function in [LS97a], defined for x ∈ IR2 by F2d(x) := max
{

1
2(x2

1 + x2
2)− x2, x2

}
;

– F3d-Uν, four functions of three variables, where ν = 3, 2, 1, 0 denotes the corresponding
dimension of the U-subspace. Given e := (0, 1, 1)> and four parameter vectors βν ∈ IR4,
for x ∈ IR3

F3d-Uν(x) := max
{

1
2
(x2

1 + x2
2 + 0.1x2

3)− e>x− βν
1 , x2

1 − 3x1 − βν
2 , x2 − βν

3 , x2 − βν
4

}
,

where β3 := (−5.5, 10, 11, 20) , β2 := (−5, 10, 0, 10) , β1 := (0, 10, 0, 0) and β0 := (0.5,−2, 0, 0);

– MAXQUAD, the piecewise quadratic function described in [BGLS03, p. 131].

Table 1 shows some additional relevant data for the problems, including the dimensions
of V and U , the optimal values and solutions, and the starting points.

Table 1: Problem data
Name n dimV dim U f(x̄) x̄ Starting point
F2d 2 1 1 0. (0, 0) x̄ + (0.9, 1.9)
F3d-U3 3 0 3 0. (0, 1, 10) x̄ + (100, 33,−100)
F3d-U2 3 1 2 0. (0, 0, 10) x̄ + (100, 33,−100)
F3d-U1 3 2 1 0. (0, 0, 0) x̄ + (100, 33,−100)
F3d-U0 3 3 0 0. (1, 0, 0) x̄ + (100, 33,−100)
MAXQUAD 10 3 7 -0.8414083 see [BGLS03, p. 131] all components equal to 1

For comparison purposes, we also solved these problems using n1cv2, the proximal bundle
method from [LS97b] (with quadratic programming subproblems solved by the method de-
scribed in [Kiw86]), available upon request at http://www-rocq.inria.fr/estime/modulopt/
optimization-routines/n1cv2.html.

The settings of the Algorithm 6 parameters are ε := 10−8, m := 10−1 and U0 equal to the
n × n identity matrix. We take σk := 1/(k2 + 1) and µk to be a safeguarded version of the
reversal quasi-Newton scalar update in n1cv2; see [BGLS03, § 9.3.3]. More precisely,

µk+1 := min
(
10µk,max

(
µn1cv2

k+1 ,max
(
µ, 0.1µk

)))
for k ≥ 1, µ1 := 4, µ := 0.01µ1, and

µn1cv2
k+1 :=

|g(pk)− g(pk−1|2

(g(pk)− g(pk−1)>(pk − pk−1)
.
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For n1cv2 µk+1 := µn1cv2
k+1 with pk equal to the kth serious step point and µ1 :=

5|g(p0)|2

|f(p0)|
.

The stopping test in n1cv2 is chosen to correspond to the one in Algorithm 6 with the
above setting of ε. Both codes use a bundle management strategy that keeps only active
elements.

For Algorithm 6, after xc
k+1 is generated, B is initialized by appending an index corre-

sponding to xc
k+1-data to the B̂-set associated with (p̂, ŝ) = (pk, sk) as defined in Section 3. If

pc
k+1 is not a successful candidate then the simple setting xk+1 := argmin{f(pk), f(pc

k+1)} is
made. Then, if xk+1 = pk(pc

k+1, resp.) B is reinitialized by appending an index corresponding
to pc

k+1-data to the B̂-set associated with pk(pc
k+1, resp.).

Our numerical results are reported in Table 2 below. For each run of both algorithms,
we give the total number of evaluations of f and one gradient (and one Hessian in the case
of Algorithm 6) and an accuracy measure equal to the number of correct optimal objective
value digits after the decimal point.

Table 2: Summary of the results
F2d F3d-U3 F3d-U2 F3d-U1 F3d-U0 MAXQUAD

#f/g Acc #f/g Acc #f/g Acc #f/g Acc #f/g Acc #f/g Acc
Alg 6 20 9 5 16 24 10 15 13 20 12 79 14
n1cv2 30 4 45 6 43 4 31 4 45 6 156 8

For all six functions Algorithm 6 generated final basis matrix approximations having the
correct VU dimensions as given in Table 1.

In order to obtain a good picture of superlinear convergence, for the MAXQUAD function we
computed and plotted relative errors

{∣∣∣f(pk)−fbest
fbest

∣∣∣}, where fbest = −0.8414083345964012 is
our best known function value. For each algorithm Figure 1 on the next page shows relative
errors generated by 79 function evaluations. For Algorithm 6 this number of evaluations
generates 6 primal track estimates pk, while for n1cv2 it gives 25 serious step points pk. The
plots with a logarithmic vertical scale clearly show linear convergence of the pk sequence for
n1cv2 and superlinear behavior for Algorithm 6.

These favorable results demonstrate that it is worthwhile to continue development of the
VU-algorithm. This will entail adding line searches and then determining good choices for
µk (not depending on n1cv2), σk and Hk.

Concluding remarks

This paper has provided a minimization algorithm based on combining a V-model of the
objective with a U-model of a corresponding subspace Lagrangian. These two basic models are
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Figure 1: Relative errors for 79 MAXQUAD function evaluations

connected both theoretically (by proximal point and primal-dual track theory) and practically
(via a bundle subroutine that approximates related primal-dual track points). The method
can operate well on the large class of pdg -structured objective functions and at least converge
for more general convex functions. These are two among the several advantages of a bundle-
based approach. Moreover, the algorithm does not need explicit knowledge of existing pdg -
structure in order to exploit such a framework. It is broadly applicable, as many constraints
can be handled with penalty functions and it can be extended for solving large scale problems
by aggregating ([Kiw83], [CL93], [HUL93]) its χ-qp-subproblem constraints and/or using
a limited memory quasi-Newton method for estimating the U-Hessian; see Remark 7(iii).
However, including either one of the last two techniques most certainly will result in the loss
of superlinear convergence. Thus, large scale problems with known separable structure should
be handled, instead, by decomposition techniques [BGLS03, Ch. 10]. These produce a smaller
dimensional, typically nonsmooth, outer objective function whose evaluation separates into
independent optimization subproblems that, if necessary, can be solved in parallel with a
grid of computational devices. Our algorithm is especially suited for this kind of objective
function because it requires only one subgradient value with each function evaluation and the
class of pdg-structured functions contains many “infinitely-defined” max-functions. Another
way to view this algorithm is as an extension of a quasi-Newton method to the nonsmooth
convex case where, via exact penalty functions, nonsmoothness also encompasses constrained
problems, for example those with conic functions [LVBL98]. This will be a subject of future
work dealing with finding general pdg -structured functions satisfying conditions (S)(c)-(e).
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[LO01] C. Lemaréchal and F. Oustry. Growth conditions and U-Lagrangians. Set-Valued
Analysis, 9(1/2):123–129, 2001.
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Appendix A: Technical results for superlinear convergence

The initial set of suppositions, (S)(a)-(b), combined with Lemma 12 give the following
primal track related results:

Lemma 16 Suppose that (S)(a), (S)(b)(i) and (ii) hold and let {uk} and {uc
k+1} be the

zero-convergent sequences from Lemma 12 . Then for all k sufficiently large

(i) f(pµk
(xk))− f(pk) = |pk − pµk

(xk)|O(|uk|), and

(ii) f(pµk+1
(xc

k+1))− f(pµk
(xk)) ≤ −1

2λmin(H̄)|uk|2 + O
(
|uc

k+1|2
)

+ o(|uk|2) ,

where λmin(H̄) is the smallest eigenvalue of H̄ = ∇2LU (0; 0).

Proof. Lemma 12 with (µ, x) = (µk, xk) and the definition of χ(u) imply that pµk
(xk) =

x̄ + uk ⊕ v(uk) = χ(uk) so, by Lemma 3(v), γ(uk) ∈ ∂f(pµk
(xk)). By convexity of f ,

f(pµk
(xk)) + γ(uk)>(pk − pµk

(xk)) ≤ f(pk) .

Thus,
f(pµk

(xk))− f(pk) ≤ |γ(uk)| |pk − pµk
(xk)|,

and item (i) then follows because, from Lemma 3 (vi), γ(uk) = O(|uk|).
Writing Lemma 3(ii) for the primal track points pµk+1

(xc
k+1) and pµk

(xk) yields, respectively,
f(pµk+1

(xc
k+1)) = f(x̄) + 1

2(uc
k+1)

>H̄uc
k+1 + o(|uc

k+1|2) and f(pµk
(xk)) = f(x̄) + 1

2u>k H̄uk +
o(|uk|2). Therefore,

f(pµk+1
(xc

k+1))− f(pµk
(xk)) ≤ −1

2
λmin(H̄)|uk|2 − o(|uk|2) +

1
2
λmax(H̄)|uc

k+1|2 + o(|uc
k+1|2)

where λmax(H̄) is the largest eigenvalue of H̄. This implies the inequality in (ii) and completes
the proof.

By means of additional assumptions, (S)(b)(iii)-(c), concerning adequate approximation
of dual track points γ(uk), we now show correspondingly accurate approximation of the primal
track points pµk

(xk) and give a related result to be used later on for showing candidate success.
These results are all in terms of the unknown primal track quantities uk and uc

k+1, that are
useful for rate of convergence analysis, rather than their linearly-related computed quantities
sk and sc

k+1, that are good for rate of computational progress observation.
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Lemma 17 Suppose that (S)(a)-(c) hold and let {uk} and {uc
k+1} be the zero-convergent

sequences from Lemma12. Then for all k sufficiently large and for (µ, x) equal to (µk, xk)
and to (µk+1, x

c
k+1)

(i) ŝµ(x) = O(|uµ(x)|),

(ii) ŝµ(x)− γ(uµ(x)) = o(|uµ(x)|),

(iii) p̂µ(x)− pµ(x) = o(|uµ(x)|), and

(iv) if σk+1 = O(|sk|2) then |pc
k+1 − pµk+1

(xc
k+1)| = O(|uk|)O(|uc

k+1|).

Proof. For large k and (µ, x) equal to (µk, xk) or to (µk+1, x
c
k+1), (26) in (S)(c) and

Lemma 3 (vi) with u = uµ(x) gives

ŝµ(x)− o(|ŝµ(x)|) = γ(uµ(x)) + o(|uµ(x)|)
= O(|uµ(x)|) + o(|uµ(x)|).

This implies that item (i) holds, which together with (26) gives item (ii).
In addition, for such (µ, x) values and corresponding σ values, Lemma 5(iii) and(14), and
µ ≥ µ give

|p̂µ(x)− pµ(x)|2 ≤ σ

µ2
|ŝµ(x)|2 ≤ σ

µ2
|ŝµ(x)|2, (27)

which together with (S)(b)(iii) and item (i) implies the validity of item (iii).
Moreover, for (µ, x, σ) = (µk+1, x

c
k+1, σk+1) (27) becomes

|p̂µk+1
(xc

k+1)− pµk+1
(xc

k+1)|2 ≤
σk+1

µ2
|ŝµk+1

(xc
k+1)|2,

which implies, by item (i) with uµk+1
(xc

k+1) = uc
k+1, that

|pc
k+1 − pµk+1

(xc
k+1)| ≤

√
σk+1

µ
O(|uc

k+1|). (28)

Finally, if σk+1 = O(|sk|2) then, from item (i), this time with (µ, x) = (µk, xk) and uµk
(xk) =

uk, we have √σk+1 = O(|uk|) and, so, item (iv) follows from (28).

Next we append suppositions (S)(d) and (e), concerning adequate approximation of basis
and Hessian matrices, to obtain the main lemma for showing superlinear convergence. Its
first part shows that QkU

>
k γ(uk) and its approximant QkU

>
k sk behave like the U-gradient

∇LU (uk; 0) that, by Lemma3(iii), equals H̄uk + o(|uk|). The second part is concerned with
the u-rate of convergence of the candidate data.
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Lemma 18 Suppose that (S)(a)-(e) hold and let {uk} and {uc
k+1} be the zero-convergent

sequences from Lemma12. Then the sequences {UkH
−1
k U>

k } and {UkH
−1
k Q>

k } are bounded
and for all k sufficiently large

(i) QkU
>
k γ(uk) = H̄uk + o(|uk|), and

(ii) xc
k+1 − x̄ = o(|uk|), uc

k+1 = o(|uk|), pc
k+1 − x̄ = o(|uk|), and sc

k+1 = o(|uk|).

Proof. Since the matrices Uk and Qk have orthonormal columns, assumption (S)(b)(ii)
implies that {UkH

−1
k U>

k } and{UkH
−1
k Q>

k } are bounded.
By assumption (S)(d), QkU

>
k → Ū>, so by Lemma 3(vi) with u = uk, item (i) holds for all

k sufficiently large.
To show item (ii) we write xc

k+1 from Algorithm 6 using notation (25) and Lemma 17(iii):

xc
k+1 = p̂µk

(xk)− UkH
−1
k U>

k ŝµk
(xk) = pµk

(xk)− UkH
−1
k U>

k ŝµk
(xk) + o(|uk|), (29)

where uk = uµk
(xk). We now rewrite the second right hand side term above, using succes-

sively, Lemma 17(ii), Q>
k Qk = I together with the boundedness of {UkH

−1
k U>

k }, and item (i)
together with the boundedness of {UkH

−1
k Q>

k }:

UkH
−1
k U>

k ŝµk
(xk) = UkH

−1
k U>

k γ(uk) + UkHk
−1U>

k o(|uk|)
= UkH

−1
k (Q>

k Qk)U>
k γ(uk) + o(|uk|)

= UkH
−1
k Q>

k H̄uk + o(|uk|).

In turn, this last expression can be rewritten using (S)(e) together with Lemma 17(i), the
expression Hk

−1Q>
k QkHk = I, and (S)(d):

UkH
−1
k Q>

k H̄uk + o(|uk|) = (UkH
−1
k Q>

k )QkHkQ
>
k uk + o(|uk|)

= UkQ
>
k uk + Ūuk − Ūuk + o(|uk|)

= Ūuk + o(|uk|).

As a result, from (29) we obtain

xc
k+1 = pµk

(xk)− Ūuk + o(|uk|).

Now subtract x̄ and use Lemma 12 item (i) to obtain

xc
k+1 − x̄ = (uk ⊕ v(uk))− Ūuk + o(|uk|)

= o(|uk|),

where the last equality follows from (2) and the fact that Ū is the left basis matrix for the ⊕
decomposition.
We now show the last three equalities in item (ii). Note that pµk+1

(xc
k+1) − x̄ = o(|uk|), by

Property (3)(ii). From Lemma 12(i) with uµk+1
(xc

k+1) = uc
k+1, pµk+1

(xc
k+1) − x̄ = uc

k+1 ⊕
v(uc

k+1). Thus, |uc
k+1| ≤ |pµk+1

(xc
k+1)− x̄| and, hence, uc

k+1 = o(|uk|). Next, since pc
k+1− x̄ =
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pc
k+1− pµk+1

(xc
k+1)+ pµk+1

(xc
k+1)− x̄ and pc

k+1 = p̂µk+1
(xc

k+1) , it follows from Lemma 17(iii)
that pc

k+1−x̄ = o(|uc
k+1|)+o(|uk|) = o(|uk|). Finally, from Lemma 17(i), sc

k+1 = ŝµk+1
(xc

k+1) =
O(|uc

k+1|) = o(|uk|).

In order to have pc
k+1 be a successful candidate, we can strengthen assumption (S)(b)(iii)

by choosing σk+1 to be bounded above by a constant multiple of |sk|2 as follows:

Lemma 19 Suppose that (S)(a)-(e) hold and σk+1 ≤ min{1/(k + 2), |sk|2/|s0|2} for all
k ≥ 0. Then for all k sufficiently large, (18) holds and pk+1 = pc

k+1.

Proof. We start by writing f(pc
k+1)− f(pk) as the sum of three difference terms:(

f(pc
k+1)− f(pµk+1

(xc
k+1))

)
+

(
f(pµk+1

(xc
k+1))− f(pµk

(xk))
)

+
(
f(pµk

(xk))− f(pk)
)
.

Next we proceed to bound each one of the three terms. Let Lf be a Lipschitz constant for f
on a large enough ball about x̄. Then

|f(pc
k+1)− f(pµk+1

(xc
k+1))| ≤ Lf |pc

k+1 − pµk+1
(xc

k+1)|
= LfO(|uk|)O(|uc

k+1|)
= O(|uk|)o(|uk|)
= o(|uk|2),

where we used σk+1 ≤ |sk|2/|s0|2 together with Lemma 17(iv), and the fact that uc
k+1 =

o(|uk|) by Lemma 18(ii). The bounds for the other terms are given by Lemma 16. By item
(ii) therein and the Lemma 18 result uc

k+1 = o(|uk|),

f(pµk+1
(xc

k+1))− f(pµk
(xk)) ≤ −1

2λmin(H̄)|uk|2 + O(|uc
k+1|2) + o(|uk|2)

= −1
2λmin(H̄)|uk|2 + O(o(|uk|)2) + o(|uk|2)

= −1
2λmin(H̄)|uk|2 + o(|uk|2).

While, by item (i) of Lemma 16 and Lemma 17(iii) with (µ, x) = (µk, xk) and p̂µk
(xk) = pk,

f(pµk
(xk))− f(pk) ≤ |pk − pµk

(xk)|O(|uk|) = o(|uk|)O(|uk|) = o(|uk|2) .

Altogether, we obtain the inequality

f(pc
k+1)− f(pk) ≤ −1

2
λmin(H̄)|uk|2 + o(|uk|2) .

By Lemma 18, |sc
k+1|2 = |o(|uk|)|2 = o(|uk|2). Therefore, since µk+1 ≥ µ,

f(pc
k+1)− f(pk) +

m

2µk+1
|sc

k+1|2 ≤ −1
2
λmin(H̄)|uk|2 + o(|uk|2) .

Since the right hand side of this inequality is dominated by the negative term −1
2λmin(H̄)|uk|2

as uk → 0, inequality (18) is satisfied for k sufficiently large and the result is established.


