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Abstract

Overlapping balancing domain decomposition methods and their combination with
restricted additive Schwarz methods are proposed for the Helmholtz equation. These
new methods also extend previous work on non-overlapping balancing domain de-
composition methods toward simplifying their coarse problems and local solvers.
They also extend restricted Schwarz methods, originally designed to overlapping
domain decomposition and Dirichlet local solvers, to the case of non-overlapping
domain decomposition and/or Neumann and Sommerfeld local solvers. Finally, we
introduce coarse spaces based on partitions of unity and planes waves, and show
how oblique projection coarse problems can be designed from restricted additive
Schwarz methods. Numerical tests are presented.
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1 Introduction

In this paper we introduce new two-level overlapping Schwarz preconditioners
for the Helmholtz equation based on Overlapping Balancing Domain Decom-
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position (OBDD) and Restricted Additive Schwarz (RAS) algorithms. Bal-
ancing Domain Decomposition (BDD) methods [22] belong to a family of
preconditioners based on non-overlapping decomposition of subregions that
have been tested successfully on several challenging large scale applications
[18,23,24,31,32,34]. The BDD algorithms were extended recently to the case
of overlapping subregions and named Overlapping Balancing Domain Decom-
position (OBDD) algorithms; see [17]. Like on the BDD methods, coarse space
and weighting diagonal matrices play crucial roles in making the proposed al-
gorithms both scalable with respect to the number of subdomains [16] as well
as to make the local Neumann subproblems on the overlapping subregions
consistent on each iteration of the preconditioned system. These algorithms
also differ from the standard overlapping additive Schwarz (AS) methods on
hybrid II form [26,31,34] since those are based on Dirichlet local problems on
the overlapping subregions.

The main goal of this paper is to introduce new effective preconditioners for
the Helmholtz equation based on two-level overlapping domain decomposi-
tion techniques. We generalize the OBDD methods to the Helmholtz equation
by considering Sommerfeld interface condition for the local problems instead
of Neumann interface condition and name them OBDD-H methods. The use
of Sommerfeld boundary conditions makes the local problems solvable and
hence, coarse problems are only introduced to accelerate the convergence rate
of the iterative schemes. We propose coarse spaces based on combinations of
partitions of unity [28,30,29] and plane waves [7,9,21,25,35]. We also intro-
duce several OBDD-H variations based on the RAS class of preconditioners
[2,3,10,34] such as WRAS, WASH and RASHO, i.e. the Weighted Restricted
Additive Schwarz, the Weighted Additive Schwarz with Harmonic Extensions
and the Restricted Additive Schwarz with Harmonic Extension methods. In
the numerical experiment section we show that such variations improves con-
siderably the convergence of the iterative schemes. Finally we introduce a new
concept for designing very effective coarse problems. We also extend the RAS
technique to define restriction and prolongation operators and coarse matrices
for the coarse problem.

We remark that there are some papers that address preconditioning for the
Helmholtz equation. For overlapping type methods there are the two-level
overlapping RAS methods [3] and the one-level OSM-D [1,4,15]. For the non-
overlapping cases we cite a few approaches such as FETI-H [7,9], the two-
Lagrange multipliers methods and optimized interface conditions [5,8,11–13,19–
21], and also [33,35,14] and references therein.

The paper is organized as follows: we devote Section 2 to formulate the problem
and introduce its finite element discretization; in Section 3 we describe all
local and global components of the OBDD-H, WASH-H, and WRAS-H, while
in Section 4 we build the associated algorithms and construct the Restricted
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Coarse Problems; in Section 5, we test numerically the algorithms on the Wave
Guided Problem, and in Section 6 we make some conclusions.

2 The Finite Element Formulation

Consider the Helmholtz problem:

−∆u∗ − k2u∗ = f in Ω (1)

u∗ = gD on ∂ΩD

∂u∗

∂n
= gN on ∂ΩN

∂u∗

∂n
+ iku∗ = gS on ∂ΩS

where Ω is a bounded polygonal region in <n, and ∂ΩD, ∂ΩN , and ∂ΩS are
the subsets of ∂Ω where the Dirichlet, Neumann, and Sommerfeld boundary
conditions are imposed, respectively. From a Green’s formula and conjugation
of the test functions, we can reduce (1) into the following problem on the
variational form: find u∗ − u∗

D ∈ H1
D(Ω) such that,

a(u∗, v)=
∫
Ω
(∇u∗ · ∇v̄ − k2u∗v̄) dx + ik

∫
∂ΩS

u∗v̄ ds (2)

=
∫
Ω

f v̄ dx +
∫

∂ΩN

gN v̄ ds +
∫

∂ΩS

gS v̄ = F (v), ∀v ∈ H1
D(Ω),

where u∗
D is an extension of gD to H1(Ω), and H1

D(Ω) is the subspace of H1(Ω)
consisting of functions vanishing on ∂ΩD.

Let V ⊂ H1
D(Ω) be the finite element space of continuous piecewise linear func-

tions vanishing on ∂ΩD and associated with a standard triangulation Th(Ω).
We also assume that uD on ∂ΩD is a piecewise linear continuous function on
T h(∂ΩD) and we have eliminated uD by a trivial extension by zero on all the
remaining nodes of Th(Ω). We then obtain a discrete problem on the following
form: find u ∈ V such that

a(u, v) = f(v), ∀ v ∈ V. (3)

Using the standard basis functions, (3) can be rewritten as a linear system of
equations of the form

Au = f. (4)
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3 Overlapping Schwarz Methods

3.1 Partitioning and Subdomains

Given the triangulation T h(Ω), we assume that a domain partition by elements
has been applied and resulted in N non-overlapping connected subdomains
Ωi, i = 1, . . .N , such that

Ω = ∪N
i=1Ωi and Ωi ∩ Ωj = ∅, for j 6= i.

We define the overlapping subdomains Ωδ
i as follows: let Ω1

i be the one-overlap
element extension of Ωi, where Ω1

i ⊃ Ωi is obtained by including all the im-
mediate neighboring elements τh ∈ T h(Ω) of Ωi such that τ h ∩ Ωi 6= ∅. Using
the idea recursively, we can define a δ-extension overlapping subdomains Ωδ

i

Ωi = Ω0
i ⊂ Ω1

i ⊂ · · · ⊂ Ωδ
i .

Here the integer δ ≥ 0 indicates the level of element extension and δh the
approximate length of the extension.

3.2 Partitions of the Unity

In this section we construct a partition of unity (PU) on Ω. We first construct
the piecewise linear and continuous function ϑ̂e

i and then we define the parti-
tion of unity ϑe

i . Here the integer e ≥ 1 has similar meaning as δ except that
we associate the extension e = c to define the partition of unity functions that
will be used as coarse basis functions for the coarse problem, and e = w to
define the weighting diagonal matrices used on the restriction and extension
local operators. We associate δ to define the extended subdomains where the
local solvers are defined. As we will see, the support of ϑe

i is going to be Ω
e

i ,
i.e. as if we had extended Ωi recursively e layers. The ϑ̂e

i is built as follows: let
ϑ̂e

i (x) = 1 on nodes x of Ωi. For the first layer of neighboring nodes x of Ωi

we set ϑ̂e
i (x) = 1 − 1/e, and recursively until m = e, we set ϑ̂e

i (x) = 1 − m/e
for the (m)st layer of neighboring nodes x of Ωi. For the remaining nodes, i.e.
for nodes x on Ω\Ω

e

i we define ϑ̂e
i (x) = 0. Here and later in this paper, we im-

plicitly assume that a piecewise linear and continuous function is constructed
from the nodal values. The partition of unity ϑe

i is defined as

ϑe
i = Ih(

ϑ̂e
i∑N

j=1 ϑ̂e
j

), i = 1, · · · , N,

where Ih is the nodal piecewise linear interpolant on T h(Ω). It is easy to verify
that

∑N
i=1 ϑe

i (x) = 1, 0 ≤ ϑe
i (x) ≤ 1, and |∇ϑe

i (x)| ≤ C/(eh), when x ∈ Ω,
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and the support of ϑe
i is Ω

e

i . On Figure 1 we illustrate a case in which the
function ϑ3

i is associated to a subdomain Ωi touching the boundary ∂Ω.
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Fig. 1. An illustration of a function ϑ3
i

We note that the ϑe
i does not vanish on the Dirichlet boundary ∂ΩD and

therefore, they do not belong to V . Hence, we modify ϑe
i by defining θe

i (x) =
ϑe

i (x) on the nodes x in Ω\∂ΩD, and θe
i (x) = 0 on the nodes x on ∂ΩD. We

obtain θe
i ∈ V . We remark that we could have defined smoother θe

i ∈ V by
forcing a controlled energy decrease near ∂ΩD (see[28]), however the numerical
tests indicate that such a strategy does not bring any gain for the Helmholtz
problem.

3.3 Coarse Spaces and Coarse Problems

Let c be a positive integer. For the Poisson problem case, the coarse space
V c,p

0 ⊂ V is defined as the space spanned by the discrete functions Ih(θ
c

i Qj), i =
1, . . . , N , and j = 1, · · · , p. For example, if we take p = 1 we let Q1(x) = 1,
and if we take p = 3 we include also the linear functions, Q2(x) = x1 and
Q3(x) = x2 i.e. the first and second coordinate of x. Or we can consider Qi

as the i eigenfunction associated to the i lowest eigenvalue of the discrete
Poisson problem on Ωδ

i with Neumann data; see [30]. For the Helmholtz equa-
tion, the coarse basis functions are built from the θc

i and planar waves, where
the coarse space V c,p

0 ⊂ V is defined as the space spanned by the discrete

functions Ih(θ
c

i Qj), i = 1, . . . , N , and j = 1, · · · , p, where Qj(x) = eikΘT
j

x,
ΘT

j = (cos(θj), sin(θj)), and θj = (j − 1) × 2π
p

, j = 1, · · · , p. The use of pla-
nar waves for coarse space functions or for finite element discretizations are
widely used nowadays and can be found for instance in [9,21,25,35]. For an
illustration for the case p = 8, see Fig 2. We define the coarse space projection
P c,p

0 : V → V c,p
0 as

a(P c,p
0 u, v) = a(u, v), ∀v ∈ V c,p

0 .
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We next express P c,p
0 in matrix notation. Defining the extension matrix (Rc,p

0 )T :
ZN∗p → V consisting of columns Ih(θ

c

i Qj), the projection P c,p
0 can be written

as

P c,p
0 = (Rc,p

0 )T [Rc,p
0 A(Rc,p

0 )T ]−1Rc,p
0 . (5)
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Fig. 2. An illustration of planar waves with p = 8

3.4 Local Problems

We next review some of the known local problems based on overlapping
Schwarz methods [1–3,10,17,31,33] and then we propose new ones.

3.4.1 Additive Schwarz

Let Ωδ
i be the extended subdomain associated to Ωi with 1 ≤ δ. Let us denote

by V δ
i ⊂ V , i = 1, · · · , N , the local space of functions in H1(Ωδ

i ) which
are continuous and piecewise linear on the elements of T h(Ωδ

i ) and vanishing
on ∂Ωδ

i \{∂ΩN ∪ ∂ΩS}. For each subdomain Ωδ
i , we define the corresponding

restriction operator Rδ
i : V → V δ

i , i = 1, · · · , N, by vδ
i = Rδ

i v, where
vδ

i (x) = v(x) for any node x ∈ Ωδ
i ∪ {∂ΩN ∪ ∂ΩS} and vδ

i (x) = 0 for any node
x ∈ ∂Ωδ

i \∂ΩD. We note that (Rδ
i )

T V δ
i ⊂ V and V =

∑N
i=1(R

δ
i )

T V δ
i .

We define the local space projection operators T̃i,AS : V → V δ
i as

ai(T̃i,ASu, v) = a(u, (Rδ
i )

T v), ∀v ∈ V δ
i ,

where

ai(u, v) = a((Rδ
i )

T u, (Rδ
i )

T v), ∀u, v ∈ V δ
i ,

and define Ti,AS = (Rδ
i )

T T̃i,AS. In matrix notation,

Ti,AS = (Rδ
i )

T [Rδ
i A(Rδ

i )
T ]−1Rδ

i A.
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Except for sufficient small subdomains, we cannot guarantee that local Dirich-
let problems are invertible for the Helmholtz problem; see [1,4,25].

3.4.2 Restricted Additive Schwarz

Let 1 ≤ w ≤ δ, and Ωδ
i , V δ

i and Rδ
i be given as before. We introduce the

weighting diagonal matrix Dw

i : V → V by defining vw

i = Dw

i v, where vw

i (x) =
θw

i (x)v(x) for any node x ∈ Ω. Note that vw

i ∈ (Rδ
i )

T V δ
i whenever 1 ≤ w ≤

δ. We introduce two versions of RAS local solvers: the Weighted Restricted
Additive Schwarz (WRAS) and the Weighted Additive Schwarz with Harmonic
Extension (WASH); see [3,10]. Algebraically these two local solvers are defined
as follows:

Tw

i,WRAS = (Rδ
i D

w

i )T [Rδ
i A(Rδ

i )
T ]−1Rδ

i A,

or
Tw

i,WASH = (Rδ
i )

T [Rδ
i A(Rδ

i )
T ]−1Rδ

i D
w

i A.

Again, except for sufficient small subdomains, we cannot guarantee that the
local problems are invertible for the Helmholtz problem.

3.4.3 Overlapping Balancing Domain Decomposition for Helmholtz

Let Ωδ
i and Dw

i be given as above, and here we assume 1 ≤ w ≤ δ + 1. The
fundamental difference between the local problems introduced previously and
the ones to be introduced here is that previously we had used zero Dirich-
let boundary condition on the interior interfaces for the local problems while
here we use Sommerfeld boundary conditions. As a consequence we can allow
non-overlapping (δ = 0) and the more general case w = δ + 1, and so permit-
ting the weighting matrices Dw

i not to vanish on the boundary nodes of the
subdomains.

Let us denote by Ṽ δ
i , i = 1, · · · , N , the local space of functions in H1(Ωδ

i ) which
are continuous and piecewise linear on T h(Ωδ

i ) and vanishing on ∂Ωδ
i ∩ ∂ΩD.

For each subdomain Ωδ
i , we define the corresponding restriction operator R̃δ

i :

V → Ṽ δ
i , i = 1, · · · , N, by vδ

i = R̃δ
i v, where vδ

i (x) = v(x) for any x ∈ Ω
δ

i .
For the local solvers, we respect the original boundary condition and impose
Sommerfeld boundary condition on ∂Ωδ

i \∂Ω. The corresponding local bilinear
forms on Ṽ δ

i are defined as

ãi(ui, vi) =
∫
Ωδ

i

(∇ui · ∇vi − k2uivi) dx + ik
∫

∂Ωδ
i
\(∂ΩD∪∂ΩN )

uivi ds.

We note that having Sommerfeld boundary condition on a positive measure
set guarantees that local Helmholtz problems are well-posed on the continu-
ous partial differential equation sense; see [25]. Such approach, i.e. considering
Sommerfeld boundary conditions on the interior boundaries, has been widely
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used on methods based on non-overlapping subdomains; see [1,5,9]. The asso-
ciated local problem operators for the OBDD-H methods are then defined as
T̃w

i,OBDD−H : V → Ṽ δ
i

ãi(T̃
w

i,OBDD−Hu, v) = a(u, (R̃δ
i D

w

i )T v), ∀v ∈ Ṽ δ
i , i = 1, · · · , N, (6)

and then setting T w

i,OBDD−H = (R̃δ
i D

w

i )T T̃w

i,OBDD−H . The matrix form of the
local problems (6) are given by

Tw

i,OBDD−H = (R̃δ
i D

w

i )T (Ãδ
i )

−1R̃δ
i D

w

i A (7)

where the matrix Ãδ
i is obtained from the ãi(·, ·) by using the basis functions

of Ṽ δ
i .

3.4.4 Restricted Additive Schwarz for Helmholtz

We next extend the RAS technique to the OBDD-H local problems. The
Weighted Restricted Additive Schwarz (WRAS-H) and the Weighted Additive
Schwarz with Harmonic Extension (WASH-H) local solvers for the Helmholtz
problems are defined as

Tw

i,WRAS−H = (R̃δ
i D

w

i )T (Ãδ
i )

−1R̃δ
i A, (8)

and

Tw

i,WASH−H = (R̃δ
i )

T (Ãδ
i )

−1R̃δ
i D

w

i A. (9)

4 Two-level Hybrid Preconditioners

In this section we build several preconditioners on a hybrid II format; see
[31]. We describe implementation issues in more detail for the Overlapping
Sommerfeld-Sommerfeld preconditioner and then setup the stage to present
the other algorithms.

OBDD-H Algorithm:

Tw ,c,p
OBDD−H = P c,p

0 + (I − P c,p
0 )(

N∑
i=1

Tw

i,OBDD−H)(I − P c,p
0 ). (10)

Let us define an initial guess z ∈ V δ
0 by z = P c,p

0 u. The function z can be
calculated without knowledge of the exact solution u because

P c,p
0 u = (Rc,p

0 )T [Rc,p
0 A(Rc,p

0 )T ]−1Rc,p
0 f.
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Let the error e be defined by e = u− z. Using the definition of T w ,c,p
OBDD−H , and

the fact that P c,p
0 is an orthogonal projection, we obtain

Tw ,c,p
OBDD−He = g, (11)

where

g = (I − P c,p
0 )(

N∑
i=1

Tw

i,OBDD−H)(I − P c,p
0 )u.

The function g can be calculated without knowledge of the exact solution u
because

(
N∑

i=1

Tw

i,OBDD−H)(I − P c,p
0 )u =

N∑
i=1

(R̃w

i )T (Ãδ
i )

−1R̃w

i (f − Az).

Instead of solving Au = f , we solve (11) by PGMRES. If a PGMRES is used,
the Krylov space is built by forming powers (T w

i,OBDD−H)mg. Hence, using that
(I −P c,p

0 )2 = I −P c,p
0 , we need to solve only one coarse problem per iteration

of the preconditioned system.

To resume the section, we write down the other operators based on the local
problems previously defined.

AS Algorithm:

Tw ,c,p
AS = P c,p

0 + (I − P c,p
0 )(

N∑
i=1

Tw

i,AS)(I − P c,p
0 ), (12)

WRAS Algorithm:

Tw ,c,p
WRAS = P c,p

0 + (I − P c,p
0 )(

N∑
i=1

Tw

i,WRAS)(I − P c,p
0 ), (13)

WASH Algorithm:

Tw ,c,p
WASH = P c,p

0 + (I − P c,p
0 )(

N∑
i=1

Tw

i,WASH)(I − P c,p
0 ). (14)

WRAS-H Algorithm:

Tw ,c,p
WRAS−H = P c,p

0 + (I − P c,p
0 )(

N∑
i=1

Tw

i,WRAS−H)(I − P c,p
0 ), (15)

WASH-H Algorithm:
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Tw ,c,p
WASH−H = P c,p

0 + (I − P c,p
0 )(

N∑
i=1

Tw

i,WASH−H)(I − P c,p
0 ). (16)

When using the right preconditioned GMRES, our numerical experiments
show that the WRAS-H Algorithm outperforms the other algorithms; see
Tables 1-3. We next show how can we improve even further the convergence
rate of this algorithm by introducing new coarse problems based on RAS.

As we will see in the numerical experiments, the larger the size of the support
of the coarse basis functions is, the more effective the preconditioner is. We
note that after solving the local problems the fine residual is more concentrated
near the boundary of the subdomains. The idea of introducing the restricted
coarse problem is to force the coarse basis functions to act on the residuals
near their center of gravity and hence, the coarse problem is going to be better
conditioned. The restricted coarse matrix extension (R̃w ,p

0 )T : ZN∗p → V
consists of the columns (Rw

i )T Rw

i IhQj. In matrix notation the coarse problem
can be written as

P c,w ,p
0,RC = (Rc,p

0 )T [R̃w ,p
0 A(Rc,p

0 )T ]−1R̃w ,p
0 ,

and the WRAS-H Algorithm with restricted coarse problems as

WRAS-H-RC Algorithm:

Tw ,c,p
WRAS−H−RC = P c,w ,p

0,RC + (I − P c,w ,p
0,RC )(

N∑
i=1

Tw

i,WRAS−H)(I − P c,w ,p
0,RC ). (17)

5 Numerical Results

As a test problem we consider the Wave Guided Problem for solving the
Helmholtz’s equation on the unit square with all three boundary conditions:
homogeneous Neumann on the horizontal sides, homogeneous Sommerfeld on
the right vertical side and a constant Dirichlet condition identical to 1 on the
left vertical side; see [7,9]. The constant k denotes the wave number associated
with the original problem. For each subdomain, on a preconditioning coarse
level, we use a superposition of p local planar waves smoothed by a partition
of unity. The parameter δ refers to the size of the overlap; δ = 0 means a non-
overlapping domain decomposition method. We note that δ is an important
factor for the cost of the computation because it decides the size of local
problems, hence, the small overlap cases [6] are stressed on the tests. The
parameter w refers to the support of the weighted restriction operator: if we
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impose Dirichlet boundary condition on inner boundaries, then we require 1 ≤
w ≤ δ, or if we impose Sommerfeld condition instead, we require 1 ≤ w ≤ δ+1 .
The parameter c refers to the size of the support of the coarse basis functions.
We also check the numerical behavior of the preconditioners with respect
to different meshes measured by n, the number of nodes in each direction.
The integer nsub represents the number of subdomains in each direction. In
all experiments we run right preconditioned GMRES [27] until the l2 initial
residual is reduced by a factor of 10−6.

From Tables 1-3 we test a variety of combinations of overlap (δ,w ,c), mesh sizes
and number of subdomains. The restricted version of Overlapping Sommerfeld-
Sommerfeld Balancing Domain Decomposition Methods outperforms the other
versions. In addition, we see that the new restricted coarse problem has an im-
pressive performance for making the Helmholtz preconditioners very effective
even in the cases where the overlap is small or zero.

We now focus on the WRAS-H-RC Algorithm since it outperforms the
other algorithms considered in this paper. We also focus on the case w = δ+1
since it gives the best combination between w and δ for best performance;
see Table 1 and a comparison between Tables 2 and 3. This combination
is equivalent to choosing a w as large as possible so that the partition of
unity (R̃δ

i )
T R̃δ

i D
w

i is preserved. The Table 4 indicates that the coarse functions
should be as smooth as possible, i.e. the parameter c should be as larger as
possible. Also, the more we increase the overlap size δ of the subdomains the
more effective the preconditioner is going to be in terms of iterations. On Table
5 we can see that the preconditioner is more than scalable when we increase
the number of subdomains and keep the size of the local problems fixed. This
effect is well-known since the discrete problem becomes very ill-conditioned for
the Helmholtz problem when the mesh size resolution gets coarse compared
to the wave length O(1/k); see also Tables 6 and 7. Comparing Tables 5, 8
and 9 we see that the number of plane waves p to build the coarse problem
is also an important factor to improve the performance of the preconditioners
when k gets larger.

6 Conclusions

We present new two-level overlapping Schwarz preconditioners for the Helmholtz
equation. These methods are based on Overlapping Balancing Domain De-
composition and Restricted Additive Schwarz methods. The preconditioners
are of algebraic nature and are easy to implement on unstructured meshes.
We also introduce the Restricted Coarse Problem technique to improve the
convergence rate. The numerical experiments on the Wave Guided Problem
show that among all the algorithms considered in this paper the WRAS-H-
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RC Algorithm is the most robust and scalable with respect to overlapping
sizes, mesh sizes and number of subdomains. The results also show that the
new Restricted Coarse Problem is a very effective preconditioner tool for the
Helmholtz equation.

Table 1
Conditions: n = 257, nsub = 8, p = 4, k = 20.

(δ,w , c) = (1,1,7) (2,2,7) (0,1,7) (1,2,7) (2,3,7)

OBDD − H 153 84 158 85 43

WASH − H 33 30 166 84 42

WRAS − H 26 21 150 74 36

WRAS − H − RC 23 17 34 19 13

Table 2
Conditions: p = 4, k = 20, and extension sizes (δ = 1,w = 1, c = 7)

n (nsub) = 65 (2) 129 (4) 257 (8) 513 (16)

OBDD − H 66 158 153 41

WRAS − H 33 65 26 31

WRAS − H − RC 32 62 23 11

Table 3
Conditions: p = 4, k = 20, and extension sizes (δ = 1,w = 2, c = 7)

n (nsub) = 65 (2) 129 (4) 257 (8) 513 (16)

OBDD − H 51 106 85 20

WRAS − H 43 87 74 17

WRAS − H − RC 40 71 19 6

Table 4
WRAS-H-RC Conditions: n = 257, nsub = 8, p = 4, k = 20

w = δ + 1

c= 1 2 3 4 5 6 7 8

δ =0 78 67 54 46 40 37 34 32

δ =1 36 31 25 22 21 19 18

δ =2 19 18 16 14 13 12
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Table 5
WRAS-H-RC Conditions: p = 4, k = 20

δ = 1,w = 2

n (nsub), c= 2 3 4 5 6 7

65 (2) 41 40 40 40 40 40

129 (4) 76 77 71 69 68 71

257 (8) 36 31 25 22 21 19

513 (16) 10 10 8 7 7 6

Table 6
WRAS-H-RC Conditions: p = 4, n = 257

(δ,w , c) ( 0, 1, 7 )

nsub \ k= 5 10 20 40

2 17 28 74 103

4 10 32 104 229

8 4 13 34 257

Table 7
WRAS-H-RC Conditions: p = 4, n = 513

(δ,w , c) ( 0, 1, 7 )

nsub \ k= 10 20 40

4 38 107 238

8 12 49 285

16 4 12 42

Table 8
WRAS-H-RC Conditions: p = 8, k = 20

δ = 1,w = 2

n (nsub), c= 2 3 4 5 6

65 (2) 37 36 35 34 34

129 (4) 13 14 14 13 14

257 (8) 4 5 5 4 4

513 (16) 2 2 2 2 2
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