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Abstract

We show that a maximal curve over IF 2 given by an equation A(X) = F(Y),
where A(X) € F2[X] is additive and separable and where F(Y') € F2[Y] has
degree m prime to the characteristic p, is such that all roots of A(X) belong to
F,2. In the particular case where F'(Y') = Y™, we show that the degree m is a
divisor of ¢ 4+ 1.

MSC: 11G20; 11T23; 14H25; 14H40

1 Introduction

By a curve we mean a smooth geometrically irreducible projective curve. Explicit
curves (i.e., curves given by explicit equations) over finite fields with many rational
points with respect to their genera have attracted a lot of attention, after Goppa
discovered that they can be used to construct good linear error-correcting codes. For
the number of F,-rational points on the curve C of genus ¢g(C) over I, we have the
following bound

#C(Fy) <14 q+2y/q.9(C),

which is well-known as the Hasse-Weil bound. This is a deep result due to Hasse for
elliptic curves, and for general curves is due to A. Weil. When the cardinality of the
finite field is square, a curve C over F 2 is called maximal if it attains the Hasse-Weil
bound, i.e., if we have the equality

#C(F2) = 14 ¢ + 2¢.9(C).
From Ihara [9] we know that the genus of a maximal curve over Fp is bounded
by
q(q —1)
5 .
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There is a unique maximal curve over F > which attains the above genus bound, and
it can be given by the affine equation (see [14])

X9+ X =Yyt (1)
This is the so-called Hermitian curve over [F .

Remark 1.1. As J. P. Serre has shown, a subcover of a maximal curve is maximal
(see [10]). So one way to construct explicit maximal curves is to find equations for
Galois subcovers of the Hermitian curve (see [3] and [7]).

Let k be a field of positive characteristic p. An additive polynomial in k[X] is a

polynomial of the form

AX) =D X
=0
The polynomial A(X) is separable if and only if ag # 0. We consider here maximal
curves C over F2 of the form
A(X) = F(Y) (2)

where A(X) is an additive and separable polynomial in Fp2[X] and F(Y) € Fp[Y]
is a polynomial of degree m prime to the characteristic p > 0 of the finite field.
The assumption that F'(Y') is a polynomial is not too restrictive (see Lemma 4.1 and
Remark 4.2). The genus of the curve C is given by

29(C) = (degA — 1)(m — 1). 3)

Maximal curves given by equations as in (2) above were already studied. In [1] they
are classified under the assumption m = g+1 and a hypothesis on Weierstrass nongaps
at a point; in [4] it is shown that if A(X) has coefficients in the finite field F, and
F(Y) = Y9 then the curve C is covered by the Hermitian curve ; and in [5] it is
shown that if degF'(Y) = m = ¢+ 1, then the maximality of the curve C implies that
the polynomial A(X) has all roots in [Fpe.

Here we generalize the above mentioned result from [5]; i.e., we show that a
maximal curve C over 2 given by Equation (2) is such that all roots of A(X) belong
to F2 (see Theorem 4.3). The proof of this result uses ideas and arguments from [12]
and [13].

Our main result in this work is the following theorem. For the proof we will use the
p-adic Newton polygon of Artin-Schreier curves that is described in the next section
(see Remark 2.5 here).

Theorem 1.2. Let C be a maximal curve over Fp2 given by an equation of the form
AX)=Y"™ with gcd(p,m) =1, (4)

where A(X) € F2[X] is an additive and separable polynomial. Then we must have
that m divides q + 1.



2 p-Adic Newton Polygons

Let P(t) =Y a;it™" € Q,[t] be a monic polynomial of degree d. We are interested in
the p-adic values of its zeros (in an algebraic closure of Q,). These can be computed
by the (p-adic) Newton polygon of this polynomial.

The Newton polygon is defined as the lower convex hull of the points (i,v,(a;)),
i=0,...,d, where v, is the p-adic valuation normalized so that v,(q) = 1.

Let A be an abelian variety over F,, then the geometric Frobenius F4 € End(.A)
has a characteristic polynomial f4(t) = > 0;t*9~" € Z[t] C Q,[t]. By definition the
Newton polygon of A is the Newton polygon of f4(t). Note that (0,v,(by)) = (0,0)
because the polynomial is monic, and (2g, v,(be,)) = (29, g) because by, = ¢9. More-
over for the slope A of every side of this polygon we have 0 < A < 1. In fact ordinary
abelian varieties are characterized by the fact that the Newton polygon has g slopes
equal to 0, and ¢ slopes equal to 1. Supersingular abelian varieties turn out to be
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characterized by the fact that all 2g slopes are equal to ;. The p—rank is exactly

equal to the length of the slope zero segment of its Newton polygon.

Example 2.1. Let C be an elliptic curve over F,. There are only two possibilities for
the Newton polygon of C as illustrated in the following pictures:

2 23

The first case occurs if and only if C is an ordinary elliptic curve, and the second
one is the Newton polygon of supersingular elliptic curves.

Remark 2.2. In the case of curves, we know that if L(t) is the numerator of the zeta
function associated to the curve, then f(t) = t? L(¢~!) is the characteristic polynomial
of the Frobenius action on the Jacobian of the curve. The Newton polygon of the
curve is by definition the Newton polygon of the polynomial f(t).

We recall the following fact about maximal curves (see [17] and [15, page 189)) :

Proposition 2.3. Suppose q is square. For a smooth geometrically irreducible projec-
twe curve C of genus g, defined over k =T, the following conditions are equivalent:

e C is mazimal.
o L(t) = (14 /qt)*, where L(t) is the numerator of the associated zeta function.

e Jacobian of C is k—isogenous to the g-th power of a supersingular elliptic curve,
all of whose endomorphisms are defined over k.
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Now we can easily show that the following corollary holds, where we use the
notation of Remark 2.2.

Corollary 2.4. If the curve C is maximal, then all slopes of the Newton polygon of
C are equal to 1/2. In particular, its Hasse- Witt invariant is zero.

Proof. Write f(t) = 327, b#%~". We have from Proposition 2.3 that f(t) =
(t + /@)% and hence b; = (*)(,/q)". Thus v,(b;) = v,((*)) + % > i, and this
shows that all points (é,v,(b;)) are above or on the line y = . Note that by, = ¢7
and so (2g,v,4(bzg)) = (29, g) lies on the liney =5 . A

Remark 2.5. Consider the Artin-Schreier curve C given by X? — X = Y% where
ged(d,p) = 1 and d > 3. From Remark 1.4 of [19] we can describe the Newton polygon
of C as below:

Let o be the permutation in the symmetric group S;_; such that for every 1 <
n < d—1 we set o(n) the least positive residue of pn mod d. Write ¢ as a product
of disjoint cycles (including 1-cycles). For a cycle 7 = (ajas...a;) in Sy_; we define
N(7):=ai+as+...+a; Let g; be al;—cycle in 0. Let \; :== N(0;)/(dl;). Arrange o;
in an order such that \; < Ay < .... For every cycle o; in o let the pair (A\;, l;(p — 1))
represent the line segment of (horizontal) length [;(p — 1) and of slope A;. The joint of
the line segments (A;, [;(p— 1)) is the lower convex hull consisting of the line segments
(Ai, li(p — 1)) connected at their endpoints, and this is the Newton polygon of the
curve C. Note that this Newton polygon only depends on the residue class of p mod
d. For example if p = 1 (mod d), then o is the identity of Sy_; and so it is a product
of 1-cycles. We then get the Newton polygon from the following line segments:

1 2 d—1

(aap_1),(8,]9—1),...,(7,]9—1).

This Remark 2.5 will play a fundamental role in our proof of Theorem 4.10 and
Lemma 4.11.

3 Additive Polynomials

Let k be a perfect field of characteristic p > 0 (e.g. k =T, ) and let k be the algebraic
closure of k. Let A(X) be an additive and separable polynomial in k[X] :

AX) = ZaiXpi where aga, # 0.
i=0

Consider the equation

A(X) = 0. (5)

We know that the roots of Equation (5) form a vector space of dimension n over F,,.
Hence there exists a basis
Wi, w2, . ..,Wn
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for My := {w € k|A(w) = 0}. Every root is uniquely representable in the form
w=kuw +...+kw, where k; belongs to [F,.

On the other hand given a [F,—space M of dimension n, with M C k, we can
associate a monic additive polynomial A(X) € k[X] of degree p" having the elements
of M for roots.

Let wy,ws, . ..,w, be a basis for M. Let A;(X) (1 <t <n) be the monic additive
and separable polynomial in k[X] having the roots w below:

w=kiwy + ...+ kwy where k; belongs to [F,,.
Then we have the following description of the monic additive polynomial A;(X)

Awy,wa, .. ywy, X)

A X) =
() Awy,wa, ..o wy)
where
w1 0%)) . W
o Wb WY
A(wl,wg,...,wt) = det . .
wil)t71 ngl wft71
and
W] Wy wy X
Wb wy o XP
Afwr,wy, .. wi, X) =det | :
w{’t Wb W XP
Hence
At(X) = Atfl(X)At,1<X — (.L)t) Ce Atfl(X — (p — 1)wt) (6)

Let G(X) be a polynomial in k[X]. If there exist polynomials ¢(X) and h(X) in
k[X] such that G(X) = g(h(X)), then we say that G(X) is left divisible by g(X).

The following lemma is crucial for us (see [13, Equation 11]):

Lemma 3.1. Let A(X) = 321" a; X? be an additive and separable polynomial. Then
A(X) is left divisible by X? — aX if and only if a is a root of the equation

al/P"y =D/ (=1 APy T =D/ (-0 ) a}/l’y +ap=0. (7)

n—1

Definition. We say that an additive and separable polynomial A(X) = 37 a; X?'
has (x)—property if its coefficients satisfy the following equality:

an+a’_ +a ,+ .. +a =0. (8)



Corollary 3.2. If the polynomial A(X) =", a; X7 has (x)—property, then A(X)
is left divisible by a(X) = X? — X.

Proof. The result follows from Lemma 3.1 with o =1. B

Definition. For the additive and separable polynomial

1

A(X) = ap X" +an 1 X .+ XP +apX,
we define another additive polynomial A(X) as follows
A(X) = (aoX)”" + (@ X" + ..+ (an 1 X)P + a, X,
which is the so-called adjoint polynomial of A(X).

Lemma 3.3. If A(X) € k[X] is a monic additive and separable polynomial and
a~l € k is a root of the adjoint polynomial A(X), then a=*A(aX) has (*)—property.

Proof. Write A(X) as below
AX) = X" 4 a, X7 4 a1 XP 4 apX.

Take o € k such that a~! is a root of A(X). Clearly, we have

aPA(aX) = " IXP" a0 XY 4 40P X 4 g X (9)

Now we verify that o' A(aX) has (*x)—property. This follows from the choice of a™*

as a root of the adjoint polynomial of A(X). In fact we have
o "t (apa 0T TP 4 (@20 (ag)”
n 1 an_l al n n
=aof (= P+ (=) P 10
(= () e () ") (10)

=a” Al =0 N

Qo

+(a

Example 3.4. Consider the Hermitian curve C over Fp given by X+ X = Y71,
Take a € F 2 such that a? + a = 0. Changing variable X; := o~ !X we have that the
Hermitian curve can also be given as below:

Y = (aX))!+ (X)) = —a(X] — X1). (11)

With A(X) = X9+ X, we have a ' A(aX) = —(X{—X); i.e., the additive polynomial
a ' A(aX) has (x)—property.

The next lemma will be crucial in the proof of Theorem 4.3.

Lemma 3.5. With notation as above, we have My = {w € k|A(w) = 0} C k if and
only if Mz ={w € k|A(w) =0} C k.



Proof. First we show that M, C k implies M s C k. Suppose wi,ws,...,w, is a
basis for M 4. From the Equation (6) with ¢ = n, we have

An(X)=A, 1(X)A 1 (X —wy) ... Ay 1 (X — (p— Dwy).
Hence we have

A(X) = @, Au(X) = an (At (X)) = Ay (@) A (X)),
If we set a,, = bP for some b € k, which is possible since k is perfect, then

AX) = (0An1 (X)) = (bAn_1(wn))" ™ (bAn-1(X)).

This shows that A(X) is left divisible by X? — (bA,_1(w,))’ " X. On the other
hand, if we define

wl :<_1)n+1A(w27 CU3, . 7wn)
Awr,wa, .. wy)
o, :(_1)n+2A(w1,w3, e Wh)
A(wl,LUQ,.. 7wn) (]_2)
— A(W17w2a"'7wn—1)
Wy, 1= ,
Awy,ws, ... ,wy)
then we have Al ) .
W1, W2, -« y Wy
An—l(wn> = A L2 = —_
(W1,way vy Who1) Wy
Now according to Lemma 3.1, we can conclude that § := (bA,_1(wn))’ ' =

(b/@,)"~" must be a root of Equation (7). Thus

al/P" e =D/ (=1 | QU g D)y (U gt /ey gy g = 0.

n—1
Hence if we set A = b/@,,, then

1 (-p") 1 @—»p") s 1 @) 1 @ tep™) .

an(ﬁ) +G£—1(ﬁ) +...+db (ﬁ)

We then conclude that

n—2 n—1 n
]. 1 p n—2 1 p pnfl 1 p pn 1 p

an(ﬁ)ﬂLaﬁ—l(ﬁ) +... +dh <ﬁ) + ay (ﬁ> + ag (ﬁ) = 0.

This means that (@,/b)? is a root of A(X). By changing the order of the basis
elements w; of M 4, one can deduce in the same way that A(X) is left divisible by

XP— (b)) X for i=1,2,...,n.



So (w1 /b)?, (@2/b), ..., (@,/b)" are roots of A(X), and they form a basis over F, for
M ;. Hence we have shown that M4 C k implies M ; C k, since by Equation (12)
we see that (01/b),. .., (©0,/b) belong to k.

Conversely, consider f:l(X ) the adjoint polynomial of A(X). Then

1

AX)=a" X" +a X"+ +ad " XP+d X

Now one can verify that w! w8 ... w?" form a basis for M ;.
Assume M7 C k. Then we have already shown that M ; C k. Therefore the
elements wfn, wgn, ...,wP" belong to k and this shows that wy,ws, ..., w, belong to k,

since k is a perfect field. It yields M, C k. W

4 Certain Maximal Curves

In this section we consider curves C over k = [F 2 given by an affine equation

where A(X) is an additive and separable polynomial in Fp2[X] and F'(Y') is a rational
function in k(Y) such that every pole of F(Y) in k(Y) occurs with a multiplicity
relatively prime to the characteristic p.

We start with a simple lemma:

Lemma 4.1. With notation and hypotheses as above, if the curve C is mazimal over
Fp then F(Y) has only one pole which has order m < q + 1.

Proof. In [16] it was shown that the group of divisor classes of C of degree zero
and order p has rank o = (degA — 1)(r — 1) where r is the number of distinct poles
of F(Y) in kU {occ}. Hence r = 1, since according to Corollary 2.4 the Hasse-Witt
invariant of a maximal curve is zero. By the genus formula we know

29(C) = (degA — 1)(m — 1).
Now if C is maximal over F 2, then
#C(F2) =1+ ¢° +29(C)g.
On the other hand one can observe that
#C(Fpe) < (¢° + 1)degA.

Thus
2g(C)q < (q2 +1)(degA — 1).

Using the genus formula we obtain (m —1)¢g < ¢*+ 1. Hencem < ¢+ 1. B
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Remark 4.2. Since F(Y) is a rational function with coefficients in F. and Lemma
4.1 shows that F(Y') has a unique pole a € F,U{oc}, then this pole « lies in F2U{oo}.
If o € F 2 then performing the substitution Y — 1/(Y —«), we can assume that F'(Y")
is a polynomial in F[Y].

The following theorem is similar to Theorem 1 in [12]:

Theorem 4.3. Let C be a curve given by the equation A(X) = F(Y), where A(X) €

F2[X] is an additive and separable polynomial and F(Y') € Fp[Y] is a polynomial of

degree m relatively prime to the characteristic p. If the curve C is maximal over Iz,
then all roots of A(X) belong to Fp.

Proof. Let x; denote the canonical additive character of k& = 2. Denote by N the
number of affine solutions of A(X) = F(Y) over Fp.. The orthogonality relations of
characters (see [11, page 189]) imply the equality

¢*N = Z le —cF(y le (cA(x

cek yek €k

But we know from Theorem 5.34 in [11] that

0 if Alc
ZXl(CA($)) - { ¢ if /_l((c))j

z€k
So
N=¢+ Y O xl=cF))
cek*  yek
A(c)=0

We note that every affine point on the curve C over F2 is simple and C has exactly
one infinite point. Hence the maximality of C and Weil’s bound Theorem (see [11,
Theorem 5.38]) imply that Mz = {c € k | A(c) = 0} is a subset of F 2 and also that
> yer Xi(—=cF(y)) = (m — 1)q for any 0 # ¢ € M 4. So the desired result follows now
from Lemma 3.5. B

Remark 4.4. Let C be a curve over F . given by an affine equation
G(X)=F()

where G(X) and F(Y') are polynomials such that G(X) — F'(Y) € F[X, Y] is abso-
lutely irreducible. Suppose that G and F' are left divisible by g and f, respectively.
Then the curve C; given by

9(X) = f(Y),
is covered by the curve C. In fact, write G(X) = g(h1(X)) and F(Y) = f(h2(Y)) and
consider the surjective map from C to C; given by (z,y) — (h1(x), ha(y)).
Let A(X) be an additive and separable polynomial with all roots in F 2, that is left

divisible by an additive polynomial a(X). Then there exists an additive polynomial
u(X) such that



Let U := {a € Fp | u(o) = 0}. For a polynomial F(Y') € F2[Y] with degree m prime
to the characteristic p, the algebraic curves C and C; over F ;2 defined respectively by
AX)=F(Y) and  a(X)=F(Y)
with the additive polynomial u(X) such that A(X) = a(u(X)) as above, are such that
the first curve C is a Galois cover of the second C; with a Galois group isomorphic
to U. In fact, for each element o € U consider the automorphism of the first curve
given by
0 (X)=X+a and o,(Y)=Y.

Lemma 4.5. In the above situation, if the curve C given by A(X) = aY™ + b is
mazimal over k = F 2, then we must have that m is a divisor of ¢* — 1.

Proof. Let d denote the ged(m,q® — 1). The curve C; given by A(X) = aZ? + b is
also maximal since it is covered by the curve C (indeed, just set Z = Y @). We also
have that {& € Fp2 | a is m-th power } = {a € Fp | a is d-th power } and hence
#C(Fp2) = #C1(F,2). Therefore g(C) = g(Cy) and we then conclude from Equation
(3) that d=m. A

Lemma 4.6. If A(X) =
the curve X? — X = BF(

Y') is mazimal over Fpe, then there is a B € ]F;2 such that

F(
Y) is also mazimall.

Proof. Since A(X) = F(Y) is maximal over Fyz, Theorem 4.3 and Lemma 3.5 imply
that A(X) has all roots in F 2. Hence according to Lemma 3.3, there exists a € e
such that a ' A(aX) has (x)—property. Take 3 = a~!. It then follows from Corollary

3.2 and Remark 4.4, that the curve A(aX) = F(Y) covers the curve X?—X = F(Y).
By Remark 1.1, the last curve is maximal. W

Remark 4.7. Suppose m is a divisor of ¢ + 1. It is well-known that X¢ — X =Y™
is maximal over F . if and only if ¢ is even or m divides (¢ + 1)/2. By Corollary 3.2
we have that X? — X = Y™ is also maximal.

Lemma 4.8. Let § be an element of F7,. If the curve C given by X¥ — X = Y™ s
mazimal over Fp2 and ged(m,q+ 1) =1, then m divides (p — 1).

Proof. Since m divides ¢*> — 1 by Lemma 4.5 and ged(m,q + 1) = 1, then m is a
divisor of ¢ — 1. We denote by T'r the trace from F to IF,. By Hilbert 90 Theorem,
we know

#C(Fp)=1+p+mpB, (13)
where B := #{a € H | Tr(fa) = 0} and H denotes the subgroup of F?, with
(¢> — 1)/m elements. In fact, C has one infinite point, p points which correspond to
Y = 0 and some mpB other points. The existence of the latter points follows from
Hilbert 90 Theorem. Since the genus of this curve is g(C) = (m —1)(p—1)/2 and the
curve C is maximal, then

#C(F2) =1+ ¢+ (p—1)(m - 1)q. (14)
Comparing (13) and (14) gives
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1+ +(p—-1)(m—1qg=1+p+mpB.

Hence
(¢> = p)+ (p—1)(m — 1)g = mpB

or (¢*/p—1)+ (1 —p)g/p+m(p—1)q/p = mB. Thus m divides (¢/p — 1)(q + 1).
On the other hand we have ged(m, g + 1) = 1. Therefore m divides (¢ — p) , and the
result follows from the fact that m is a divisor of ¢ — 1. W

Remark 4.9. In Lemma 4.8, if the characteristic p = 2 then m = p — 1 = 1. The
curve C is rational in this case. If p = 3 in Lemma 4.8, then again m = 1. The other
possibility, m = p — 1 = 2 is discarded since we have ged(m,q + 1) = 1.

Theorem 4.10. Suppose that m > 2 is such that the characteristic p does not divide
m and ged(m,q+ 1) = 1. Then there is no maximal curve of the form A(X) =Y™
over F 2, where A(X) is an additive and separable polynomial.

Proof. If there is some maximal curve of this form, according to Lemma 4.6 and
Lemma 4.8 there exists a nonzero element 3 € 2 such that the curve C; given by
XP — X = BY™ is also maximal and m must divide p — 1. Now by using Remark
2.5, we know that the Newton polygon of C; has slopes 1/m,2/m,...,(m —1)/m.
Therefore Corollary 2.4 implies that this curve is not maximal. W

From the result above, we prove here Theorem 1.2 of Introduction.
Proof of Theorem 1.2. We consider two cases:

Case p = 2. In this case ged(¢+1,¢— 1) = 1, and we know that m divides ¢* — 1
by Lemma 4.5. From Remark 1.1 we have that A(X) = Y% is also maximal for any
prime divisor d of m. It now follows from Theorem 4.10 that this prime number d is
a divisor of ¢ + 1. Since ged(q + 1,¢ — 1) = 1, we conclude that m divides g + 1.

Case p = odd. In this case ged(q + 1,q — 1) = 2. Reasoning as in the case p = 2,
we get here that if d is an odd prime divisor of m then d is a divisor of ¢+ 1. The only
situation still to be investigated is the following: ¢ + 1 = 2"s with s an odd integer
and m = 2"s; with r; > r and s; is a divisor of s. But according to Lemma 4.6 and
the following lemma this case does not occur.

Lemma 4.11. Assume that the characteristic p is odd and write ¢ + 1 = 2".s with

s an odd integer. Denote by m := 2"+ Then there is no mazimal curve over Fpz of
the form X? — X = BY™ with 3 € F,.

Proof. Writing ¢ = p"” we consider two cases:

Case n is even. Clearly in this case we have ¢ + 1 = 2s with s an odd integer.
So we must show that there is no maximal curve C of the form X? — X = 3Y*. We
denote by T'r the trace from Fg. to IF,. By Hilbert 90 Theorem, we know

#C(F2) = 1+ p+ 4pB, (15)
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where B := #S, with S := {a € H | Tr(fa) = 0} and H denotes the subgroup of
F?, with (¢* — 1)/4 elements. Since the genus of this curve is g(C) = 3(p — 1)/2 and
the curve C is maximal, then

#C(Fpe) =1+¢*+3(p—1)q. (16)
Comparing (15) and (16) gives

14+ ¢ +3(p—1)g=14p+4pB.

Hence / L at1

qq/p— 14 q
On the other hand, we have F} C H since (p — 1) divides (¢° — 1)/4. In fact since
n is even we have that p — 1 divides (¢ — 1)/2. Therefore the multiplication by each
element of ) defines a map on S. This implies that p — 1 is a divisor of B and so
from Equation (17) we obtain that p — 1 divides (¢/p — 1)/2. But this is impossible
because n is even.

Case n is odd. We know the Newton polygon of a maximal curve over F . is max-
imal, i.e. all slopes are 1/2. Hence it is sufficient to show that the Newton polygon
of the curve C is not maximal. As n is an odd number, the hypothesis ¢ + 1 = 2".s
implies p + 1 = 2".s; with s; an odd integer. Hence p = 2" — 1 (mod 2"!) and
p(2"—1) =1 (mod 2"). Now if we set § := 2" — 1, with the notation of Remark 2.5,
the permutation ¢ has the 2-cycle (1) in its standard representation with disjoint
cycles. This 2-cycle (16) corresponds to the slope A = (0 +1)/(2.2""1) = 1/4 and this
finishes the proof. HE

B

We end up with some comments on known results and examples. Let ¢ = p™ and
let t be a positive integer. Wolfmann [18] considered the number of rational points
on the Artin-Schreier curve C defined over F ¢ by the equation

X— X =aY"+b

where a,b € F2t, a # 0 and m is any positive integer relatively prime to the charac-
teristic p.

Here we only consider the case m divides ¢' + 1. He showed that C is maximal
over F2 if and only if

1) Tr(b) =0  where T'r denotes the trace of F: over IF,.
2) a* = (—1)" where um = ¢* — 1 and vm = ¢' + 1.

We note here that the condition Tr(b) = 0, means that a? — o = b for some
element o € F2c by Hilbert 90 Theorem. So the curve C can be given by

qu - X1 =aY™ with Xl =X — .
Example 4.12. Suppose n is an odd number. The curve C given as follows

XY - X =Y"™ with m=(p"+1)/(p+1), (18)
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is maximal over F,2. (see [6] for the case n = 3). Setting here ¢ = p? then the curve
C is maximal over F,» with n odd. Hence this maximal curve is not among the ones
considered in [18].

In [8] it is proved that for p = 2 and n = 3 this curve in (18) is a Galois subcover
of the Hermitian curve. In [6] it is shown that this curve for p = 3 and n = 3 is not
a Galois subcover of the Hermitian curve.

Example 4.13. Suppose now that n = 2k is an even number. The curve given by
X - X = gy™

with gP"~! = —1 and m a divisor of p”+1 is a Galois subcover of the Hermitian curve.
Hence it is also maximal over [Fj2». This follows from the equation (see Example 3.4)

X7 X = (XP 4 X (X 4 X).

Setting here ¢ = p* then this curve C is maximal over F . Hence this maximal curve
is among the ones considered in [18].

Acknowledgment. We thank H. J. Zhu for helpful discussions on the p-adic
Newton polygon.
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