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Abstract

We show that a maximal curve over Fq2 given by an equation A(X) = F (Y ),
where A(X) ∈ Fq2 [X] is additive and separable and where F (Y ) ∈ Fq2 [Y ] has
degree m prime to the characteristic p, is such that all roots of A(X) belong to
Fq2 . In the particular case where F (Y ) = Y m, we show that the degree m is a
divisor of q + 1.

MSC : 11G20; 11T23; 14H25; 14H40

1 Introduction

By a curve we mean a smooth geometrically irreducible projective curve. Explicit
curves (i.e., curves given by explicit equations) over finite fields with many rational
points with respect to their genera have attracted a lot of attention, after Goppa
discovered that they can be used to construct good linear error-correcting codes. For
the number of Fq-rational points on the curve C of genus g(C) over Fq we have the
following bound

#C(Fq) ≤ 1 + q + 2
√

q.g(C),
which is well-known as the Hasse-Weil bound. This is a deep result due to Hasse for
elliptic curves, and for general curves is due to A. Weil. When the cardinality of the
finite field is square, a curve C over Fq2 is called maximal if it attains the Hasse-Weil
bound, i.e., if we have the equality

#C(Fq2) = 1 + q2 + 2q.g(C).
From Ihara [9] we know that the genus of a maximal curve over Fq2 is bounded

by

g ≤ q(q − 1)

2
.
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There is a unique maximal curve over Fq2 which attains the above genus bound, and
it can be given by the affine equation (see [14])

Xq + X = Y q+1. (1)

This is the so-called Hermitian curve over Fq2 .

Remark 1.1. As J. P. Serre has shown, a subcover of a maximal curve is maximal
(see [10]). So one way to construct explicit maximal curves is to find equations for
Galois subcovers of the Hermitian curve (see [3] and [7]).

Let k be a field of positive characteristic p. An additive polynomial in k[X] is a
polynomial of the form

A(X) =
n∑

i=0

aiX
pi

.

The polynomial A(X) is separable if and only if a0 6= 0. We consider here maximal
curves C over Fq2 of the form

A(X) = F (Y ) (2)

where A(X) is an additive and separable polynomial in Fq2 [X] and F (Y ) ∈ Fq2 [Y ]
is a polynomial of degree m prime to the characteristic p > 0 of the finite field.
The assumption that F (Y ) is a polynomial is not too restrictive (see Lemma 4.1 and
Remark 4.2). The genus of the curve C is given by

2g(C) = (degA− 1)(m− 1). (3)

Maximal curves given by equations as in (2) above were already studied. In [1] they
are classified under the assumption m = q+1 and a hypothesis on Weierstrass nongaps
at a point; in [4] it is shown that if A(X) has coefficients in the finite field Fq and
F (Y ) = Y q+1, then the curve C is covered by the Hermitian curve ; and in [5] it is
shown that if degF (Y ) = m = q + 1, then the maximality of the curve C implies that
the polynomial A(X) has all roots in Fq2 .

Here we generalize the above mentioned result from [5]; i.e., we show that a
maximal curve C over Fq2 given by Equation (2) is such that all roots of A(X) belong
to Fq2 (see Theorem 4.3). The proof of this result uses ideas and arguments from [12]
and [13].

Our main result in this work is the following theorem. For the proof we will use the
p-adic Newton polygon of Artin-Schreier curves that is described in the next section
(see Remark 2.5 here).

Theorem 1.2. Let C be a maximal curve over Fq2 given by an equation of the form

A(X) = Y m with gcd(p, m) = 1, (4)

where A(X) ∈ Fq2 [X] is an additive and separable polynomial. Then we must have
that m divides q + 1.
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2 p-Adic Newton Polygons

Let P (t) =
∑

ait
d−i ∈ Qp[t] be a monic polynomial of degree d. We are interested in

the p-adic values of its zeros (in an algebraic closure of Qp). These can be computed
by the (p-adic) Newton polygon of this polynomial.
The Newton polygon is defined as the lower convex hull of the points (i, vq(ai)),
i = 0, . . . , d, where vq is the p-adic valuation normalized so that vq(q) = 1.

Let A be an abelian variety over Fq, then the geometric Frobenius FA ∈ End(A)
has a characteristic polynomial fA(t) =

∑
bit

2g−i ∈ Z[t] ⊂ Qp[t]. By definition the
Newton polygon of A is the Newton polygon of fA(t). Note that (0, vq(b0)) = (0, 0)
because the polynomial is monic, and (2g, vq(b2g)) = (2g, g) because b2g = qg. More-
over for the slope λ of every side of this polygon we have 0 ≤ λ ≤ 1. In fact ordinary
abelian varieties are characterized by the fact that the Newton polygon has g slopes
equal to 0, and g slopes equal to 1. Supersingular abelian varieties turn out to be
characterized by the fact that all 2g slopes are equal to 1

2
. The p−rank is exactly

equal to the length of the slope zero segment of its Newton polygon.

Example 2.1. Let C be an elliptic curve over Fq. There are only two possibilities for
the Newton polygon of C as illustrated in the following pictures:

The first case occurs if and only if C is an ordinary elliptic curve, and the second
one is the Newton polygon of supersingular elliptic curves.

Remark 2.2. In the case of curves, we know that if L(t) is the numerator of the zeta
function associated to the curve, then f(t) = t2gL(t−1) is the characteristic polynomial
of the Frobenius action on the Jacobian of the curve. The Newton polygon of the
curve is by definition the Newton polygon of the polynomial f(t).

We recall the following fact about maximal curves (see [17] and [15, page 189]) :

Proposition 2.3. Suppose q is square. For a smooth geometrically irreducible projec-
tive curve C of genus g, defined over k = Fq, the following conditions are equivalent:

• C is maximal.

• L(t) = (1+
√

qt)2g, where L(t) is the numerator of the associated zeta function.

• Jacobian of C is k−isogenous to the g-th power of a supersingular elliptic curve,
all of whose endomorphisms are defined over k.
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Now we can easily show that the following corollary holds, where we use the
notation of Remark 2.2.

Corollary 2.4. If the curve C is maximal, then all slopes of the Newton polygon of
C are equal to 1/2. In particular, its Hasse-Witt invariant is zero.

Proof. Write f(t) =
∑2g

i=0 bit
2g−i. We have from Proposition 2.3 that f(t) =

(t +
√

q)2g and hence bi =
(
2g
i

)
(
√

q)i. Thus vq(bi) = vq(
(
2g
i

)
) + i

2
> i

2
, and this

shows that all points (i, vq(bi)) are above or on the line y = x
2
. Note that b2g = qg

and so (2g, vq(b2g)) = (2g, g) lies on the line y = x
2

. �

Remark 2.5. Consider the Artin-Schreier curve C given by Xp − X = Y d, where
gcd(d, p) = 1 and d ≥ 3. From Remark 1.4 of [19] we can describe the Newton polygon
of C as below:

Let σ be the permutation in the symmetric group Sd−1 such that for every 1 ≤
n ≤ d − 1 we set σ(n) the least positive residue of pn mod d. Write σ as a product
of disjoint cycles (including 1-cycles). For a cycle τ = (a1a2 . . . at) in Sd−1 we define
N(τ) := a1 +a2 + . . .+at. Let σi be a li−cycle in σ. Let λi := N(σi)/(dli). Arrange σi

in an order such that λ1 ≤ λ2 ≤ . . . . For every cycle σi in σ let the pair (λi, li(p− 1))
represent the line segment of (horizontal) length li(p−1) and of slope λi. The joint of
the line segments (λi, li(p−1)) is the lower convex hull consisting of the line segments
(λi, li(p − 1)) connected at their endpoints, and this is the Newton polygon of the
curve C. Note that this Newton polygon only depends on the residue class of p mod
d. For example if p ≡ 1 (mod d), then σ is the identity of Sd−1 and so it is a product
of 1-cycles. We then get the Newton polygon from the following line segments:

(
1

d
, p− 1), (

2

d
, p− 1), . . . , (

d− 1

d
, p− 1).

This Remark 2.5 will play a fundamental role in our proof of Theorem 4.10 and
Lemma 4.11.

3 Additive Polynomials

Let k be a perfect field of characteristic p > 0 (e.g. k = Fq ) and let k̄ be the algebraic
closure of k. Let A(X) be an additive and separable polynomial in k[X] :

A(X) =
n∑

i=0

aiX
pi

where a0an 6= 0.

Consider the equation
A(X) = 0. (5)

We know that the roots of Equation (5) form a vector space of dimension n over Fp.
Hence there exists a basis

ω1, ω2, . . . , ωn
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for MA := {ω ∈ k̄|A(ω) = 0}. Every root is uniquely representable in the form

ω = k1ω1 + . . . + knωn where ki belongs to Fp.

On the other hand given a Fp−space M of dimension n, with M ⊆ k̄, we can
associate a monic additive polynomial A(X) ∈ k̄[X] of degree pn having the elements
of M for roots.

Let ω1, ω2, . . . , ωn be a basis for M. Let At(X) (1 ≤ t ≤ n) be the monic additive
and separable polynomial in k̄[X] having the roots ω below:

ω = k1ω1 + . . . + ktωt where ki belongs to Fp.

Then we have the following description of the monic additive polynomial At(X)

At(X) =
∆(ω1, ω2, . . . , ωt, X)

∆(ω1, ω2, . . . , ωt)
,

where

∆(ω1, ω2, . . . , ωt) = det

∣∣∣∣∣∣∣∣∣
ω1 ω2 . . . ωt

ωp
1 ωp

2 . . . ωp
t

... . . . . . .
...

ωpt−1

1 ωpt−1

2 . . . ωpt−1

t

∣∣∣∣∣∣∣∣∣
and

∆(ω1, ω2, . . . , ωt, X) = det

∣∣∣∣∣∣∣∣∣
ω1 ω2 . . . ωt X
ωp

1 ωp
2 . . . ωp

t Xp

... . . . . . .
...

...

ωpt

1 ωpt

2 . . . ωpt

t Xpt

∣∣∣∣∣∣∣∣∣ .

Hence
At(X) = At−1(X)At−1(X − ωt) . . . At−1(X − (p− 1)ωt). (6)

Let G(X) be a polynomial in k[X]. If there exist polynomials g(X) and h(X) in
k[X] such that G(X) = g(h(X)), then we say that G(X) is left divisible by g(X).

The following lemma is crucial for us (see [13, Equation 11]):

Lemma 3.1. Let A(X) =
∑n

i=0 aiX
pi

be an additive and separable polynomial. Then
A(X) is left divisible by Xp − αX if and only if α is a root of the equation

a1/pn

n Y (pn−1)/((p−1)pn−1) + a
1/pn−1

n−1 Y (pn−1−1)/((p−1)pn−2) + . . . + a
1/p
1 Y + a0 = 0. (7)

Definition. We say that an additive and separable polynomial A(X) =
∑n

i=0 aiX
pi

has (∗)−property if its coefficients satisfy the following equality:

an + ap
n−1 + ap2

n−2 + ... + apn

0 = 0. (8)
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Corollary 3.2. If the polynomial A(X) =
∑n

i=0 aiX
pi

has (∗)−property, then A(X)
is left divisible by a(X) = Xp −X.

Proof. The result follows from Lemma 3.1 with α = 1. �

Definition. For the additive and separable polynomial

A(X) = anX
pn

+ an−1X
pn−1

+ . . . + a1X
p + a0X,

we define another additive polynomial Ā(X) as follows

Ā(X) = (a0X)pn

+ (a1X)pn−1

+ . . . + (an−1X)p + anX,

which is the so-called adjoint polynomial of A(X).

Lemma 3.3. If A(X) ∈ k[X] is a monic additive and separable polynomial and
α−1 ∈ k̄ is a root of the adjoint polynomial Ā(X), then α−1A(αX) has (∗)−property.

Proof. Write A(X) as below

A(X) = Xpn

+ an−1X
pn−1

+ ... + a1X
p + a0X.

Take α ∈ k̄ such that α−1 is a root of Ā(X). Clearly, we have

α−1A(αX) = αpn−1Xpn

+ an−1α
pn−1−1Xpn−1

+ ... + a1α
p−1Xp + a0X. (9)

Now we verify that α−1A(αX) has (∗)−property. This follows from the choice of α−1

as a root of the adjoint polynomial of A(X). In fact we have

αpn−1 + (an−1α
pn−1−1)p + ... + (a1α

p−1)pn−1

+ (a0)
pn

= αpn

.(
1

α
+ (

an−1

α
)p + ... + (

a1

α
)pn−1

+ (
a0

α
)pn

)

= αpn

.Ā(α−1) = 0. �

(10)

Example 3.4. Consider the Hermitian curve C over Fq2 given by Xq + X = Y q+1.
Take α ∈ Fq2 such that αq + α = 0. Changing variable X1 := α−1X we have that the
Hermitian curve can also be given as below:

Y q+1 = (αX1)
q + (αX1) = −α(Xq

1 −X1). (11)

With A(X) = Xq+X, we have α−1A(αX) = −(Xq
1−X1); i.e., the additive polynomial

α−1A(αX) has (∗)−property.

The next lemma will be crucial in the proof of Theorem 4.3.

Lemma 3.5. With notation as above, we have MA = {ω ∈ k̄|A(ω) = 0} ⊂ k if and
only if MĀ = {ω ∈ k̄|Ā(ω) = 0} ⊂ k.
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Proof. First we show that MA ⊂ k implies MĀ ⊂ k. Suppose ω1, ω2, . . . , ωn is a
basis for MA. From the Equation (6) with t = n, we have

An(X) = An−1(X)An−1(X − ωn) . . . An−1(X − (p− 1)ωn).

Hence we have

A(X) = anAn(X) = an(An−1(X)p − An−1(ωn)p−1An−1(X)).

If we set an = bp for some b ∈ k, which is possible since k is perfect, then

A(X) = (bAn−1(X))p − (bAn−1(ωn))p−1(bAn−1(X)).

This shows that A(X) is left divisible by Xp − (bAn−1(ωn))p−1X. On the other
hand, if we define

ω̄1 :=(−1)n+1 ∆(ω2, ω3, . . . , ωn)

∆(ω1, ω2, . . . , ωn)

ω̄2 :=(−1)n+2 ∆(ω1, ω3, . . . , ωn)

∆(ω1, ω2, . . . , ωn)
...

ω̄n :=
∆(ω1, ω2, . . . , ωn−1)

∆(ω1, ω2, . . . , ωn)
,

(12)

then we have

An−1(ωn) =
∆(ω1, ω2, . . . , ωn)

∆(ω1, ω2, . . . , ωn−1)
=

1

ω̄n

.

Now according to Lemma 3.1, we can conclude that β := (bAn−1(ωn))p−1 =
(b/ω̄n)p−1 must be a root of Equation (7). Thus

a1/pn

n β(pn−1)/((p−1)pn−1)+a
1/pn−1

n−1 β(pn−1−1)/((p−1)pn−2)+. . .+a
1/p2

2 β(p+1)/p+a
1/p
1 β+a0 = 0.

Hence if we set λ = b/ω̄n, then

an(
1

λp
)
(1−pn)

+ap
n−1(

1

λp
)
(p−pn)

+ . . .+apn−2

2 (
1

λp
)
(pn−2−pn)

+apn−1

1 (
1

λp
)
(pn−1−pn)

+apn

0 = 0.

We then conclude that

an(
1

λp
) + ap

n−1(
1

λp
)
p

+ . . . + apn−2

2 (
1

λp
)
pn−2

+ apn−1

1 (
1

λp
)
pn−1

+ apn

0 (
1

λp
)
pn

= 0.

This means that (ω̄n/b)
p is a root of Ā(X). By changing the order of the basis

elements ωi of MA, one can deduce in the same way that A(X) is left divisible by

Xp − (b/ω̄i)
p−1X for i = 1, 2, . . . , n.
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So (ω̄1/b)
p, (ω̄2/b)

p, . . . , (ω̄n/b)
p are roots of Ā(X), and they form a basis over Fp for

MĀ. Hence we have shown that MA ⊂ k implies MĀ ⊂ k, since by Equation (12)
we see that (ω̄1/b), . . . , (ω̄n/b) belong to k.

Conversely, consider ¯̄A(X) the adjoint polynomial of Ā(X). Then

¯̄A(X) = apn

n Xpn

+ apn

n−1X
pn−1

+ . . . + apn

1 Xp + apn

0 X.

Now one can verify that ωpn

1 , ωpn

2 , . . . , ωpn

n form a basis for M ¯̄A.
Assume MĀ ⊂ k. Then we have already shown that M ¯̄A ⊂ k. Therefore the

elements ωpn

1 , ωpn

2 , . . . , ωpn

n belong to k and this shows that ω1, ω2, . . . , ωn belong to k,
since k is a perfect field. It yields MA ⊂ k. �

4 Certain Maximal Curves

In this section we consider curves C over k = Fq2 given by an affine equation

A(X) = F (Y )

where A(X) is an additive and separable polynomial in Fq2 [X] and F (Y ) is a rational
function in k(Y ) such that every pole of F (Y ) in k̄(Y ) occurs with a multiplicity
relatively prime to the characteristic p.

We start with a simple lemma:

Lemma 4.1. With notation and hypotheses as above, if the curve C is maximal over
Fq2 then F (Y ) has only one pole which has order m ≤ q + 1.

Proof. In [16] it was shown that the group of divisor classes of C of degree zero
and order p has rank σ = (degA − 1)(r − 1) where r is the number of distinct poles
of F (Y ) in k̄ ∪ {∞}. Hence r = 1, since according to Corollary 2.4 the Hasse-Witt
invariant of a maximal curve is zero. By the genus formula we know

2g(C) = (degA− 1)(m− 1).

Now if C is maximal over Fq2 , then

#C(Fq2) = 1 + q2 + 2g(C)q.

On the other hand one can observe that

#C(Fq2) ≤ (q2 + 1)degA.

Thus
2g(C)q ≤ (q2 + 1)(degA− 1).

Using the genus formula we obtain (m− 1)q ≤ q2 + 1. Hence m ≤ q + 1. �
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Remark 4.2. Since F (Y ) is a rational function with coefficients in Fq2 and Lemma
4.1 shows that F (Y ) has a unique pole α ∈ F̄q∪{∞}, then this pole α lies in Fq2∪{∞}.
If α ∈ Fq2 then performing the substitution Y → 1/(Y −α), we can assume that F (Y )
is a polynomial in Fq2 [Y ].

The following theorem is similar to Theorem 1 in [12]:

Theorem 4.3. Let C be a curve given by the equation A(X) = F (Y ), where A(X) ∈
Fq2 [X] is an additive and separable polynomial and F (Y ) ∈ Fq2 [Y ] is a polynomial of
degree m relatively prime to the characteristic p. If the curve C is maximal over Fq2,
then all roots of A(X) belong to Fq2.

Proof. Let χ1 denote the canonical additive character of k = Fq2 . Denote by N the
number of affine solutions of A(X) = F (Y ) over Fq2 . The orthogonality relations of
characters (see [11, page 189]) imply the equality

q2N =
∑
c∈k

(
∑
y∈k

χ1(−cF (y)))(
∑
x∈k

χ1(cA(x))).

But we know from Theorem 5.34 in [11] that∑
x∈k

χ1(cA(x)) =

{
0 if Ā(c) 6= 0
q2 if Ā(c) = 0.

So
N = q2 +

∑
c∈k∗

Ā(c)=0

(
∑
y∈k

χ1(−cF (y))).

We note that every affine point on the curve C over Fq2 is simple and C has exactly
one infinite point. Hence the maximality of C and Weil’s bound Theorem (see [11,
Theorem 5.38]) imply that MĀ = {c ∈ k̄ | Ā(c) = 0} is a subset of Fq2 and also that∑

y∈k χ1(−cF (y)) = (m− 1)q for any 0 6= c ∈MĀ. So the desired result follows now
from Lemma 3.5. �

Remark 4.4. Let C be a curve over Fq2 given by an affine equation

G(X) = F (Y )

where G(X) and F (Y ) are polynomials such that G(X)− F (Y ) ∈ Fq2 [X, Y ] is abso-
lutely irreducible. Suppose that G and F are left divisible by g and f , respectively.
Then the curve C1 given by

g(X) = f(Y ),

is covered by the curve C. In fact, write G(X) = g(h1(X)) and F (Y ) = f(h2(Y )) and
consider the surjective map from C to C1 given by (x, y) 7−→ (h1(x), h2(y)).
Let A(X) be an additive and separable polynomial with all roots in Fq2 , that is left
divisible by an additive polynomial a(X). Then there exists an additive polynomial
u(X) such that

A(X) = a(u(X)).
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Let U := {α ∈ Fq2 | u(α) = 0}. For a polynomial F (Y ) ∈ Fq2 [Y ] with degree m prime
to the characteristic p, the algebraic curves C and C1 over Fq2 defined respectively by

A(X) = F (Y ) and a(X) = F (Y )
with the additive polynomial u(X) such that A(X) = a(u(X)) as above, are such that
the first curve C is a Galois cover of the second C1 with a Galois group isomorphic
to U . In fact, for each element α ∈ U consider the automorphism of the first curve
given by

σα(X) = X + α and σα(Y ) = Y.

Lemma 4.5. In the above situation, if the curve C given by A(X) = aY m + b is
maximal over k = Fq2 , then we must have that m is a divisor of q2 − 1.

Proof. Let d denote the gcd(m, q2 − 1). The curve C1 given by A(X) = aZd + b is
also maximal since it is covered by the curve C (indeed, just set Z = Y

m
d ). We also

have that {α ∈ Fq2 | α is m-th power } = {α ∈ Fq2 | α is d-th power } and hence
#C(Fq2) = #C1(Fq2). Therefore g(C) = g(C1) and we then conclude from Equation
(3) that d = m. �

Lemma 4.6. If A(X) = F (Y ) is maximal over Fq2, then there is a β ∈ F∗q2 such that
the curve Xp −X = βF (Y ) is also maximal.

Proof. Since A(X) = F (Y ) is maximal over Fq2 , Theorem 4.3 and Lemma 3.5 imply
that Ā(X) has all roots in Fq2 . Hence according to Lemma 3.3, there exists α ∈ F∗q2

such that α−1A(αX) has (∗)−property. Take β = α−1. It then follows from Corollary
3.2 and Remark 4.4, that the curve A(αX) = F (Y ) covers the curve Xp−X = βF (Y ).
By Remark 1.1, the last curve is maximal. �

Remark 4.7. Suppose m is a divisor of q + 1. It is well-known that Xq −X = Y m

is maximal over Fq2 if and only if q is even or m divides (q + 1)/2. By Corollary 3.2
we have that Xp −X = Y m is also maximal.

Lemma 4.8. Let β be an element of F∗q2. If the curve C given by Xp −X = βY m is
maximal over Fq2 and gcd(m, q + 1) = 1, then m divides (p− 1).

Proof. Since m divides q2 − 1 by Lemma 4.5 and gcd(m, q + 1) = 1, then m is a
divisor of q − 1. We denote by Tr the trace from Fq2 to Fp. By Hilbert 90 Theorem,
we know

#C(Fq2) = 1 + p + mpB, (13)

where B := #{α ∈ H | Tr(βα) = 0} and H denotes the subgroup of F∗q2 with

(q2 − 1)/m elements. In fact, C has one infinite point, p points which correspond to
Y = 0 and some mpB other points. The existence of the latter points follows from
Hilbert 90 Theorem. Since the genus of this curve is g(C) = (m− 1)(p− 1)/2 and the
curve C is maximal, then

#C(Fq2) = 1 + q2 + (p− 1)(m− 1)q. (14)

Comparing (13) and (14) gives
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1 + q2 + (p− 1)(m− 1)q = 1 + p + mpB.

Hence
(q2 − p) + (p− 1)(m− 1)q = mpB

or (q2/p− 1) + (1− p)q/p + m(p− 1)q/p = mB. Thus m divides (q/p− 1)(q + 1).
On the other hand we have gcd(m, q + 1) = 1. Therefore m divides (q − p) , and the
result follows from the fact that m is a divisor of q − 1. �

Remark 4.9. In Lemma 4.8, if the characteristic p = 2 then m = p − 1 = 1. The
curve C is rational in this case. If p = 3 in Lemma 4.8, then again m = 1. The other
possibility, m = p− 1 = 2 is discarded since we have gcd(m, q + 1) = 1.

Theorem 4.10. Suppose that m > 2 is such that the characteristic p does not divide
m and gcd(m, q + 1) = 1. Then there is no maximal curve of the form A(X) = Y m

over Fq2 , where A(X) is an additive and separable polynomial.

Proof. If there is some maximal curve of this form, according to Lemma 4.6 and
Lemma 4.8 there exists a nonzero element β ∈ Fq2 such that the curve C1 given by
Xp − X = βY m is also maximal and m must divide p − 1. Now by using Remark
2.5, we know that the Newton polygon of C1 has slopes 1/m, 2/m, . . . , (m − 1)/m.
Therefore Corollary 2.4 implies that this curve is not maximal. �

From the result above, we prove here Theorem 1.2 of Introduction.
Proof of Theorem 1.2. We consider two cases:

Case p = 2. In this case gcd(q + 1, q− 1) = 1, and we know that m divides q2− 1
by Lemma 4.5. From Remark 1.1 we have that A(X) = Y d is also maximal for any
prime divisor d of m. It now follows from Theorem 4.10 that this prime number d is
a divisor of q + 1. Since gcd(q + 1, q − 1) = 1, we conclude that m divides q + 1.

Case p = odd. In this case gcd(q + 1, q − 1) = 2. Reasoning as in the case p = 2,
we get here that if d is an odd prime divisor of m then d is a divisor of q+1. The only
situation still to be investigated is the following: q + 1 = 2rs with s an odd integer
and m = 2r1s1 with r1 > r and s1 is a divisor of s. But according to Lemma 4.6 and
the following lemma this case does not occur.

Lemma 4.11. Assume that the characteristic p is odd and write q + 1 = 2r.s with
s an odd integer. Denote by m := 2r+1. Then there is no maximal curve over Fq2 of
the form Xp −X = βY m with β ∈ F∗q2 .

Proof. Writing q = pn we consider two cases:
Case n is even. Clearly in this case we have q + 1 = 2s with s an odd integer.

So we must show that there is no maximal curve C of the form Xp −X = βY 4. We
denote by Tr the trace from Fq2 to Fp. By Hilbert 90 Theorem, we know

#C(Fq2) = 1 + p + 4pB, (15)
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where B := #S, with S := {α ∈ H | Tr(βα) = 0} and H denotes the subgroup of
F∗q2 with (q2 − 1)/4 elements. Since the genus of this curve is g(C) = 3(p− 1)/2 and
the curve C is maximal, then

#C(Fq2) = 1 + q2 + 3(p− 1)q. (16)

Comparing (15) and (16) gives

1 + q2 + 3(p− 1)q = 1 + p + 4pB.

Hence

B =
q/p− 1

2
.
q + 1

2
+

q

p
(p− 1). (17)

On the other hand, we have F∗p ⊂ H since (p − 1) divides (q2 − 1)/4. In fact since
n is even we have that p− 1 divides (q − 1)/2. Therefore the multiplication by each
element of F∗p defines a map on S. This implies that p − 1 is a divisor of B and so
from Equation (17) we obtain that p − 1 divides (q/p − 1)/2. But this is impossible
because n is even.

Case n is odd. We know the Newton polygon of a maximal curve over Fq2 is max-
imal, i.e. all slopes are 1/2. Hence it is sufficient to show that the Newton polygon
of the curve C is not maximal. As n is an odd number, the hypothesis q + 1 = 2r.s
implies p + 1 = 2r.s1 with s1 an odd integer. Hence p ≡ 2r − 1 (mod 2r+1) and
p(2r−1) ≡ 1 (mod 2r+1). Now if we set θ := 2r−1, with the notation of Remark 2.5,
the permutation σ has the 2-cycle (1θ) in its standard representation with disjoint
cycles. This 2-cycle (1θ) corresponds to the slope λ = (θ +1)/(2.2r+1) = 1/4 and this
finishes the proof. ��

We end up with some comments on known results and examples. Let q = pn and
let t be a positive integer. Wolfmann [18] considered the number of rational points
on the Artin-Schreier curve C defined over Fq2t by the equation

Xq −X = aY m + b

where a, b ∈ Fq2t , a 6= 0 and m is any positive integer relatively prime to the charac-
teristic p.

Here we only consider the case m divides qt + 1. He showed that C is maximal
over Fq2t if and only if

1) Tr(b) = 0 where Tr denotes the trace of Fq2t over Fq.

2) au = (−1)v where um = q2t − 1 and vm = qt + 1.
We note here that the condition Tr(b) = 0, means that αq − α = b for some

element α ∈ Fq2t by Hilbert 90 Theorem. So the curve C can be given by

X1
q −X1 = aY m with X1 := X − α.

Example 4.12. Suppose n is an odd number. The curve C given as follows

Xp2 −X = Y m with m = (pn + 1)/(p + 1), (18)
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is maximal over Fp2n (see [6] for the case n = 3). Setting here q = p2 then the curve
C is maximal over Fqn with n odd. Hence this maximal curve is not among the ones
considered in [18].

In [8] it is proved that for p = 2 and n = 3 this curve in (18) is a Galois subcover
of the Hermitian curve. In [6] it is shown that this curve for p = 3 and n = 3 is not
a Galois subcover of the Hermitian curve.

Example 4.13. Suppose now that n = 2k is an even number. The curve given by

Xpk −X = βY m

with βpn−1 = −1 and m a divisor of pn+1 is a Galois subcover of the Hermitian curve.
Hence it is also maximal over Fp2n . This follows from the equation (see Example 3.4)

Xpn −X = (Xpk

+ X)pk − (Xpk

+ X).

Setting here q = pk then this curve C is maximal over Fq4 . Hence this maximal curve
is among the ones considered in [18].

Acknowledgment. We thank H. J. Zhu for helpful discussions on the p-adic
Newton polygon.
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