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Abstract

We describe a general projective framework for finding a zero of the sum of n
maximal monotone operators over a real Hilbert space. Unlike prior methods for this
problem, we neither assume n = 2 nor first reduce the problem to the case n = 2.
Our analysis defines a closed convex extended solution set for which we can construct
a separating hyperplane by individually evaluating the resolvent of each operator. At
the cost of a single, computationally simple projection step, this framework gives rise
to a family of splitting methods of unprecedented flexibility: numerous parameters,
including the proximal stepsize, may vary by iteration and by operator. The order of
operator evaluation may vary by iteration, and may be either serial or parallel. The
analysis essentially generalizes our prior results for the case n = 2. We also include a
relative error criterion for approximately evaluating resolvents, which was not present
in our earlier work.

1 Background and introduction

This paper considers the inclusion

0 ∈ T1(x) + · · ·+ Tn(x), (1)

where n ≥ 2 and T1, · · · , Tn, are set-valued maximal monotone operators on some real Hilbert
space H. Our interest is in splitting methods for this problem: iterative algorithms which may
evaluate the individual operators Ti or (perhaps approximately) their resolvents (I + λTi)

−1,
λ > 0, at various points in H, but never resolvents of sums of the Ti. The idea is that (1)
has been formulated so that each individual Ti has some relatively convenient structure, but
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sums of two or more of the Ti might not. Thus, we seek iterative decomposition algorithms
that evaluate only the “easy” resolvents (I + λTi)

−1, and not “difficult” compound resolvents
such as (I + λ(Ti + Tj))

−1, i 6= j.
Algorithms of this form have been studied since the 1970’s [14], although their roots in

numerical methods for single-valued and in particular linear mappings are much older [5, 17].
In the extensive literature of these methods, the case n = 2 predominates. The most
attractive convergence theory among n = 2 algorithms belongs to the Peaceman-Rachford
and Douglas-Rachford class, which form a single related family. References to this class of
methods in the context of set-valued monotone operators include [14, 12, 6, 7]. The method
of partial inverses [22] is a special case of this approach.

Another family of n = 2 methods is the double-backward class; see for example [13, 16,
4, 2]. Such methods have attractive convergence properties, but for a variational inequality
different from (1). Only if the proximal parameters λ in the resolvents are driven to zero in a
particular way is this approach known to solve (1). It does not appear that double-backward
algorithms are used in practice for (1).

Splitting methods of the forward-backward class, generalizing standard gradient projec-
tion methods for variational inequalities and optimization problems, are more popular than
double-backward methods. References applying such methods to problems in the form (1)
with n = 2 include [9, 23]. However, such methods must typically impose additional as-
sumptions on at least one of the operators.

Traditionally, splitting algorithms allowing n > 2 have either explicitly or implicitly
relied on reduction of (1) to the case n = 2 in the product space Hn, endowed with with
the canonical inner product 〈(x1, . . . , xn), (y1, . . . , yn)〉 =

∑n
i=1〈xi, yi〉, as follows: define the

closed subspace

W
def
= {(w1, . . . , wn) ∈ Hn | w1 + w2 + · · ·+ wn = 0} , (2)

whose orthogonal complement is

W⊥ = {(v1, . . . , vn) ∈ Hn | v1 = v2 = · · · = vn} = {(v, v, . . . , v) | v ∈ H} .

Next, define two operators A,B : Hn ⇒ Hn via A
def
= T1 ⊗ T2 ⊗ · · · ⊗ Tn and B

def
= NW⊥ , the

normal cone map of W⊥, that is,

A(x1, . . . , xn) = T1(x1)× T2(x2)× · · · × Tn(xn) (3)

B(x1, . . . , xn) =

{
W, x1 = x2 = · · · = xn
∅, otherwise.

(4)

Using the maximal monotonicity of T1, . . . , Tn, it is straightforward to establish that A and
B are maximal monotone on Hn, and that

0 ∈ A(x1, . . . , xn) +B(x1, . . . , xn) (5)

⇔ x1 = x2 = . . . = xn, ∃ yi ∈ Ti(xi), i = 1, . . . , n : y1 + y2 + · · ·+ yn = 0

⇔ x1 = x2 = . . . = xn solves (1).

Applying Douglas-Rachford splitting to (5) produces Spingarn’s method [22, Section 5], in
which one performs independent proximal steps on each of the operators T1, . . . , Tn, and then
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computes the next iterate by essentially averaging the results. In this setting, a proximal
step on one operator cannot “feed” information into the proximal step for another operator
within the same iteration. Applying a different n = 2 splitting method to (5) cannot alter
this situation: evaluating the resolvent of A as defined in (3) will always yield independent,
essentially simultaneous resolvent evaluations for T1, . . . , Tn.

Here, we propose to take a new, projective approach to splitting algorithms with n ≥ 2,
generalizing our prior work [8] for the case n = 2. We make use of a product space, but
in a different manner: we define an extended solution set corresponding to (1) in Hn+1,
and use what is an essentially a generic projection algorithm to produce a sequence weakly
convergent to a point in that set. The decomposition properties of the algorithm arise from
the particular way in which we construct the separating hyperplanes used by this projection
method. This approach allows for a generality and flexibility not present in prior splitting
methods for (1).

The remainder of this paper is organized as follows: Section 2 defines the extended
solution set, and analyzes some of its fundamental properties. To clarify the basic structure
of our algorithm, we then introduce it in two stages: Section 3 first describes a generic,
abstract family of projection methods for finding a point in the extended solution set, giving
general convergence conditions. Section 4 then specializes this abstract family to a concrete
family characterized by a large number of parameters, presenting conditions under which
it conforms to Section 3’s convergence conditions. Section 5 describes some variations and
special cases of the algorithm of Section 4, in particular showing that it subsumes Spingarn’s
method [22]. Section 6 gives some conclusions and topics for future research, while two
appendices prove some technical results needed for Sections 3 and 4.

2 The extended solution set and its separators

Consider now the Hilbert space H ×Hn = Hn+1 under the canonical inner product

〈(v, w1, . . . , wn), (x, y1, . . . , yn)〉 = 〈v, x〉+
∑n

i=1〈wi, yi〉,

and define the closed linear subspace

V
def
= H ×W =

{
(v, w1, . . . , wn) ∈ Hn+1 | w1 + . . .+ wn = 0

}
. (6)

We define the extended solution set for problem (1) to be

Se(T1, . . . , Tn)
def
= {(z, w1, . . . , wn) ∈ V | wi ∈ Ti(z), i = 1, · · · , n} . (7)

For a point (z, w1, . . . , wn) ∈ Hn+1 to be in Se(T1, . . . , Tn), it must satisfy two conditions:
(z, wi) must be in in the graph of Ti for all i, and w1+· · ·+wn = 0, so that (z, w1, . . . , wn) ∈ V .
We now establish two basic properties of Se(T1, . . . , Tn), the first of which is elementary:

Lemma 1 Finding a point in Se(T1, . . . , Tn) is equivalent to solving (1) in the sense that

0 ∈ T1(z) + · · ·+ Tn(z) ⇐⇒ ∃w1, . . . , wn ∈ H : (z, w1, · · · , wn) ∈ Se(T1, . . . , Tn). (8)
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Proof. For any z ∈ H,

0 ∈ T1(z) + · · ·+ Tn(z)

⇐⇒ ∃w1, . . . , wn ∈ H :
∑n

i=1wi = 0, wi ∈ Ti(z), i = 1, · · · , n
⇐⇒ ∃w1, . . . , wn ∈ H : (z, w1, . . . , wn) ∈ Se(T1, . . . , Tn). �

Lemma 2 If the monotone operators T1, . . . , Tn : H ⇒ H are maximal, the corresponding
extended solution set Se(T1, . . . , Tn) is closed and convex in Hn+1.

Proof. Closedness of Se(T1, . . . , Tn) follows immediately from (7), the closedness of the
linear subspace V , and the closedness of the graphs of the maximal monotone operators
T1, . . . , Tn. To prove convexity, take any scalars p, q ≥ 0, p+ q = 1, and any

(z, w1, . . . , wn), (z′, w′1, . . . , w
′
n) ∈ Se(T1, . . . , Tn).

If we can establish that

p(z, w1, . . . , wn) + q(z′, w′1, . . . , w
′
n) ∈ Se(T1, . . . , Tn),

the proof will be complete. Since V ⊃ Se(T1, . . . , Tn) is a linear subspace, it is clear that
p(z, w1, . . . , wn) + q(z′, w′1, . . . , w

′
n) ∈ V . From (7), it thus remains only to show that for all

j = 1, . . . , n,
pwj + qw′j ∈ Tj(pz + qz′). (9)

To this end, fix any j ∈ {1, . . . , n}. By the monotonicity of the Ti, 〈z − z′, wi − w′i〉 ≥ 0 for
all i = 1, . . . , n, and so

0 ≤ 〈z − z′, wj − w′j〉 ≤
∑n

i=1〈z − z′, wi − w′i〉 = 〈z − z′,
∑n

i=1wi −
∑n

i=1w
′
i〉.

Since
∑n

1 wi = 0 and
∑n

1 w
′
i = 0, we conclude that 〈z − z′, wj − w′j〉 = 0. Now, consider an

arbitrary (ẑ, ŵj) ∈ Gph(Tj), and observe that we therefore have

〈ẑ − (pz + qz′), ŵj − (pwj + qw′j)〉
= p〈ẑ − z, ŵj − wj〉+ q〈ẑ − z′, ŵj − w′j〉+ pq〈z − z′, w′j − wj〉
= p〈ẑ − z, ŵj − wj〉+ q〈ẑ − z′, ŵj − w′j〉.

The monotonicity of Tj implies that 〈ẑ − z, ŵj − wj〉 ≥ 0 and 〈ẑ − z′, ŵj − w′j〉 ≥ 0, so
we conclude that

〈ẑ − (pz + qz′), ŵj − (pwj + qw′j)〉 ≥ 0.

Since (ẑ, ŵj) ∈ Gph(Tj) was arbitrary and Tj is maximal, it follows that (9) holds. �

Several variations on the definition of Se(T1, . . . , Tn) are also possible. One possibility is to
implicitly define wn in terms of w1, . . . , wn−1, obtaining

{(z, w1, . . . , wn−1) | wi ∈ Ti(z), i = 1, . . . , n− 1, −(w1 + · · ·+ wn−1) ∈ Tn(z)} . (10)
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This variation, in the case n = 2, is used in our earlier work [8]. Another possible variation
is to use the set (z1, . . . , zn, w1, . . . , wn)

∣∣∣∣∣∣
z1 = z2 = · · · = zn
w1 + w2 + · · ·+ wn = 0
wi ∈ Ti(zi), i = 1, · · · , n

 , (11)

which is the intersection of the sets Gph(NW⊥) and (after some permutation of indices)
Gph(T1) × Gph(T2) × · · · × Gph(Tn) in H2n. Such variations should not lead to material
differences in the resulting algorithms.

In view of Lemmas 1 and 2, we attempt to solve (1) by finding a point in Se(T1, . . . , Tn),
a problem we in turn approach by using a separator-projection algorithm. The separating
hyperplanes used in our algorithm are constructed in a simple manner from points (xi, yi) ∈
Gph(Ti), i = 1, . . . , n. The following lemma details the construction and properties of these
separators:

Lemma 3 Given (xi, yi) ∈ Gph(Ti), i = 1, · · · , n, define ϕ : V → R via

ϕ(z, w1, . . . , wn) =
∑n

i=1〈z − xi, yi − wi〉. (12)

Then, for any (z, w1, . . . , wn) ∈ Se(T1, . . . , Tn), one has ϕ(z, w1, . . . , wn) ≤ 0, that is,

Se(T1, . . . , Tn) ⊆ {(z, w1, . . . , wn) ∈ V | ϕ(z, w1, . . . , wn) ≤ 0} .

Additionally, ϕ is affine on V , with

∇ϕ = (
∑n

i=1 yi, x1 − x̄, x2 − x̄, · · · , xn − x̄) , where x̄
def
= 1

n

∑n
i=1 xi, (13)

and

∇ϕ = 0 ⇐⇒ (x1, y1, . . . , yn) ∈ Se(T1, . . . , Tn), x1 = · · · = xn

⇐⇒ ϕ(z, w1, . . . , wn) = 0, ∀(z, w1, . . . , wn) ∈ V.

Proof. Take any (z, w1, . . . , wn) ∈ Se(T1, . . . , Tn). For each i = 1, · · · , n, we have wi ∈ Ti(z)
and yi ∈ T (xi). Since Ti is monotone, we have 〈z − xi, wi − yi〉 ≥ 0. Negating and summing
these inequalities, we conclude that ϕ(z, w1, . . . , wn) ≤ 0, proving the first claim.

Next, take (z, w1, . . . , wn) to be an arbitrary element of V . Expanding and regrouping
the inner products in (12), we obtain

ϕ(z, w1, . . . , wn) = 〈z,
∑n

i=1 yi〉 − 〈z,
∑n

i=1wi〉 −
∑n

i=1〈xi, yi〉+
∑n

i=1〈xi, wi〉 (14)

= 〈z,
∑n

i=1 yi〉 −
∑n

i=1〈xi, yi〉+
∑n

i=1〈xi, wi〉 (15)

= 〈z,
∑n

i=1 yi〉 −
∑n

i=1〈xi, yi〉+
∑n

i=1〈xi − x̄, wi〉+ 〈x̄,
∑n

i=1wi〉 (16)

= 〈z,
∑n

i=1 yi〉+
∑n

i=1〈xi − x̄, wi〉 −
∑n

i=1〈xi, yi〉 (17)

= 〈(z, w1, . . . , wn), (
∑n

i=1 yi, x1 − x̄, . . . , xn − x̄)〉 −
∑n

i=1〈xi, yi〉, (18)

where (15) and (17) follow from
∑n

i=1wi = 0, since (z, w1, . . . , wn) ∈ V . Since
∑n

i=1(xi−x̄) =∑n
i=1 xi −

∑n
i=1 xi = 0, we have that (

∑n
i=1 yi, x1 − x̄, . . . , xn − x̄) ∈ V . Thus, (18) shows

that ϕ is indeed an affine function on the space V , and ∇ϕ = (
∑n

i=1 yi, x1 − x̄, . . . , xn − x̄).
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Finally, we note that ∇ϕ = 0 if and only if
∑n

i=1 yi = 0 and x1 = · · · = xn = x̄. In
that case, since yi ∈ Ti(xi), i = 1, . . . , n, one also has (x1, y1, . . . , yn) = (x̄, y1, . . . , yn) ∈
Se(T1, . . . , Tn). In this case, we have

∑n
i=1〈xi, yi〉 = 〈x1,

∑n
i=1 yi〉 = 〈x1, 0〉 = 0, and we

conclude from (18) that ϕ is the zero function. �

Note that ϕ is not an affine function on the space Hn+1, but only on its subspace V , where
the “cross term” 〈z,

∑n
i=1wi〉 in (14) must be zero. We will thus implement our algorithm

within the subspace V .
Next, it is natural to ask, given a point (z, w1, . . . , wn) in V \Se(T1, . . . , Tn), how to choose

the pairs (xi, yi) ∈ Gph(Ti) so that ϕ separates (z, w1, . . . , wn) from Se(T1, . . . , Tn), that is,
ϕ(z, w1, . . . , wn) > 0. In fact, such a choice may be accomplished by a “prox” operation
on each of the operators T1, . . . , Tn. By the maximal monotonicity of the Ti and the classic
results of [15], there exists for each i = 1, . . . , n a unique (xi, yi) ∈ Gph(Ti) such that xi+yi =
z+wi. Rearranging this equation, we obtain, z−xi = yi−wi, and thus that ϕ(z, w1, . . . , wn) =∑n

i=1 ‖z − xi‖
2. Thus, ϕ(z, w1, . . . , wn) > 0 unless x1 = · · · = xn = z, in which case it is

easily deduced that yi = wi for all i, and therefore (z, w1, . . . , wn) ∈ Se(T1, . . . , Tn), contrary
to the assumption. Finding the necessary (xi, yi) ∈ Gph(Ti) is equivalent to evaluating the
resolvent (I+Ti)

−1, which is by assumption tractable for each individual Ti. We will greatly
generalize this procedure for determining a separator in Section 4 below.

3 An abstract family of projection algorithms

We now have the necessary ingredients for implementing a projection method: a closed
convex set S and at least one tractable procedure for calculating a separator between S and
any p 6∈ S. Therefore, we may apply the following algorithmic template:

Algorithm 1 Suppose S 6= ∅ is a closed convex set in a real Hilbert space U . Start with an
arbitrary p0 ∈ U . Then, for k = 0, 1, . . ., repeat:

1. Determine a non-constant differentiable affine function ϕk : U → R such that ϕk(p) ≤ 0
for all p ∈ S.

2. Let pk be the projection of pk onto the halfspace Hk
def
= {p ∈ U | ϕk(p) ≤ 0}, that is,

pk = pk − max{0, ϕk(pk)}
‖∇ϕk‖2

∇ϕk. (19)

3. Choose some relaxation parameter ρk ∈ (0, 2), and set

pk+1 = pk + ρk(p
k − pk).

The last two steps may simply be condensed to

pk+1 = pk − ρk
max{0, ϕk(pk)}
‖∇ϕk‖2

∇ϕk. (20)
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The basic properties of this algorithmic form may be derived by following the analysis of
classical projection algorithms, dating back to Cimmino [3] and Kaczmarz [10, 11] in the
late 1930’s. A comprehensive review of projection algorithms may be found in [1]. As in any
(relaxed) projection method, the sequences generated by Algorithm 1 behave as follows: for
any p∗ ∈ S, then p∗ ∈ Hk and the firm nonexpansiveness property of the projection mapping
onto Hk assures that for all k ≥ 0,∥∥p∗ − pk∥∥2 ≤

∥∥p∗ − pk∥∥2 −
∥∥pk − pk∥∥2

(21)∥∥p∗ − pk+1
∥∥2 ≤

∥∥p∗ − pk∥∥2 − ρk(2− ρk)
∥∥pk+1 − pk

∥∥2
. (22)

The basic behavior of this class of methods is as follows; we omit the proof, which is entirely
standard.

Proposition 4 Any infinite sequence {pk} generated by Algorithm 1 behaves as follows:

1. For any p∗ ∈ S, the sequence {‖pk − p∗‖} is nonincreasing — that is, {pk} is Fejér
monotone to S.

2. If pk0 ∈ S for some k0 ≥ 0 then pk = pk0 for all k ≥ k0.

3. If {pk} has a strong accumulation point in S, then the whole sequence converges to that
point.

4. If S is non-empty, then {pk} is bounded. Moreover, if there exist ρ, ρ such that 0 <
ρ ≤ ρk ≤ ρ < 2 for all k, then

∞∑
k=0

∥∥pk − pk∥∥2
<∞

∞∑
k=0

∥∥pk − pk+1
∥∥2
<∞. (23)

5. The sequence {pk} has at most one weak accumulation point in S.

Note, however, that the basic template of Algorithm 1 is not sufficient to ensure weak
convergence of {pk} to a point in S, because the separators ϕk might not be chosen to
actually separate pk from S, or might separate in a pathologically “shallow” way. The
analysis of [8] guarantees convergence using the condition ϕk(p

k) ≥ ξ ‖∇ϕk‖2 for all k ≥ 0,
where ξ > 0 is a fixed constant. We will also use this condition below.

We now restate and specialize Algorithm 1 for the case U = V and S = Se(T1, . . . , Tn),
with the separators constructed as in Lemma 3. We do not for the moment assume any
particular way of choosing the (xi, yi) ∈ Gph(Ti) yielding the separator.

Algorithm 2 Start with an arbitrary p0 = (z0, w0
1, . . . , w

0
n) ∈ V . Then, for k = 0, 1, . . .,

repeat:

1. For i = 1, . . . , n, choose some (xki , y
k
i ) ∈ Gph(Ti).

2. If xk1 = xk2 = · · · = xkn and
∑n

i=1 y
k
i = 0, let wk+1

i = yki for i = 1, . . . , n and zk+1 = xk1.
Otherwise, continue:

7



3. Define ϕk : V → R to be the separator derived from (xki , y
k
i ) via (12), that is,

ϕk(z, w1, . . . , wn)
def
=
∑n

i=1〈z − xki , yki − wi〉,

and let pk+1 = (zk+1, wk+1
1 , . . . , wk+1

n ) be the projection of pk onto the halfspace Hk
def
=

{p ∈ V | ϕk(p) ≤ 0}, with an overrelaxation factor ρk ∈ (0, 2), that is,

x̄k = 1
n

∑n
i=1 x

k
i (24)

θk =
max{0,

∑n
i=1〈zk − xki , yki − wki 〉}∥∥∑n

i=1 y
k
i

∥∥2
+
∑n

i=1

∥∥xki − x̄k∥∥2 (25)

zk+1 = zk − ρkθk
∑n

i=1 y
k
i (26)

wk+1
i = wki − ρkθk(xki − x̄k) i = 1, . . . , n. (27)

Note that the test in step 2 guarantees that the denominator in (25) cannot be zero.
Lemma 3’s formula for the gradient of ϕk implies that (24)-(27) indeed calculate the overre-
laxed projection of pk onto Hk, and Algorithm 2 is thus Algorithm 1 specialized to U = V and
S = Se(T1, . . . , Tn). Note also that pk ∈ V and the update (27) ensure wk+1

1 + · · ·+wk+1
n = 0,

so by induction the entire iterate sequence {pk} = {(zk, wk1 , . . . , wkn)} produced by Algo-
rithm 2 lies in V .

We now perform a preliminary analysis of the convergence properties of Algorithm 2:

Proposition 5 Suppose that the following conditions are met in Algorithm 2:

1. Se(T1, . . . , Tn) 6= ∅.

2. 0 < ρ ≤ ρk ≤ ρ < 2 for all k.

3. There exists some scalar ξ > 0 such that

ϕ(pk) = ϕk(z
k, wk1 , . . . , w

k
n) ≥ ξ ‖∇ϕk‖2 = ξ

(∥∥∑n
i=1 y

k
i

∥∥2
+
∑n

i=1

∥∥xki − x̄k∥∥2
)

(28)

for all k ≥ 0.

Then ∇ϕk → 0, that is, xki − xkj → 0 for all i, j = 1, . . . , n, and
∑n

i=1 y
k
i → 0. Furthermore,

ϕk(p
k)→ 0. If it is also true that

4. Either H has finite dimension or the operator
∑n

i=1 Ti is maximal.

5. zk − x̄k → 0.

6. wki − yki → 0, for i = 1, . . . , n,

then {(zk, wk1 , . . . , wkn)} converges weakly to some p∞ = (z∞, w∞1 , . . . , w
∞
n ) ∈ Se(T1, . . . , Tn),

which implies that z∞ solves (1). Furthermore, xki
w→ z∞ and yki

w→ w∞i for i = 1, . . . , n.
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Proof. The hypothesis that ϕk(p
k) ≥ ξ ‖∇ϕk‖2 implies that ϕk(p

k) is always nonnegative,
so we obtain from (19) that ∥∥pk − pk∥∥ =

ϕk(p
k)

‖∇ϕk‖
(29)

for all k having ∇ϕk 6= 0. Substituting ϕk(p
k) ≥ ξ ‖∇ϕk‖2 into this equation, we obtain∥∥pk − pk∥∥ ≥ ξ ‖∇ϕk‖ , (30)

which clearly also holds for k having ∇ϕk = 0. From (23), which holds by hypothesis 2 and
Proposition 4(4), we have

∥∥pk − pk∥∥→ 0, so (30) implies ∇ϕk → 0. From the expression for
∇ϕk in (13), we immediately conclude

∑n
i=1 y

k
i → 0 and xki − x̄k → 0 for i = 1, . . . , n, and

thus xki − xkj → 0 for all i, j = 1, . . . , n. Multiplying (29) by ‖∇ϕk‖, we obtain that

ϕk(p
k) =

∥∥pk − pk∥∥ ‖∇ϕk‖ (31)

whenever ∇ϕk 6= 0. By Lemma 3, ϕk(p
k) = 0 whenever ∇ϕk = 0, so (31) holds for all

k ≥ 0. Since we have established that ∇ϕk → 0, and we also know that
∥∥pk − pk∥∥ → 0 ,

(31) implies that ϕk(p
k)→ 0. The first set of conclusions are now established; note also that

by hypothesis 1 and Fejér monotonicity, the sequence {pk} is bounded.
To prove the remainder of the proposition, we now assume that hyphotheses 4-6 also

hold. From hypothesis 5 and xki − x̄k → 0, we immediately obtain

zk − xki → 0 i = 1, . . . , n. (32)

In hypothesis 4, suppose first that H is finite-dimensional. Let p∞ = (z∞, w∞1 , . . . , w
∞
n ) be

any cluster point of the bounded sequence {pk}. There then exists a subsequence {pk}k∈K

converging to p∞. From (32), we must then have xki →k∈K z∞, i = 1, . . . , n. Similarly,
hypothesis 6 implies yki →k∈K w∞i , i = 1, . . . , n. Since (xki , y

k
i ) ∈ Gph(Ti) for all i and k, and

the maximality of the operators Ti imply that the sets Gph(Ti) are closed, we then obtain
w∞i ∈ Ti(z∞) for all i = 1, . . . , n. Furthermore, since {pk} ⊂ V and V is a closed subspace,
we also have p∞ ∈ V and thus p∞ ∈ Se(T1, . . . , Tn). Finally, we apply Proposition 4(3) to
obtain that the entire sequence {pk} converges to p∞ ∈ Se(T1, . . . , Tn).

Now assume the other alternative in hypothesis 4, that
∑n

i=1 Ti is maximal monotone.
Let p∞ be any weak cluster point of {pk}. Then there exists a subsequence {pk}k∈K weakly

convergent to p∞, and, using hypotheses 5 and 6, we conclude that (xki , y
k
i )

w→k∈K (z∞, w∞i ),
i = 1, . . . , n. Next, we apply Proposition 8 from Appendix A to conclude that p∞ =
(z∞, w∞1 , . . . , w

∞
n ) ∈ Se(T1, . . . , Tn). Since p∞ was chosen arbitrarily, all weak cluster points

of {pk} are in Se(T1, . . . , Tn). Then we may apply Proposition 4(5) to conclude that the
entire the sequence {pk} converges weakly to p∞.

In either case, the remaining conclusions follow from hypothesis 6 and (32). �

4 A general projective splitting scheme

To convert Algorithm 2 into an implementable procedure for solving (1), we must specify a
way of choosing the (xki , y

k
i ) ∈ Gph(Ti) so that the hypotheses of Proposition 5 are satisfied.

9



One simple approach, as mentioned at the end of Section 2, would be to choose the unique
(xki , y

k
i ) ∈ Gph(Ti) satisfying xki + yki = zk + wki . A simple generalization would be to add a

proximal parameter λki > 0, yielding

xki + λki y
k
i = zk + λkiw

k
i . (33)

This scheme may in fact be greatly generalized without sacrificing its basic decompos-
ability. Suppose for the moment that in each iteration we perform the proximal calculations
for the Ti sequentially, starting with i = 1 and finishing with i = n. We may then wish to
use the “recent” information generated in calculating (xkj , y

k
j ), where j < i, when calculating

(xki , y
k
i ). Specifically, when calculating (xki , y

k
i ), we consider replacing zk with an affine com-

bination of zk and the xkj , j < i. In particular, we first find the unique (xk1, y
k
1) ∈ Gph(T1)

such that
xk1 + λk1y

k
1 = zk + λk1w

k
1 .

We next take some αk21 ∈ R and find the unique (xk2, y
k
2) ∈ Gph(T2) such that

xk2 + λk2y
k
2 = (1− αk21)z

k + αk21x
k
1 + λk2w

k
2 .

To continue, we choose some αk31, α
k
32 ∈ R and find the unique (xk3, y

k
3) ∈ Gph(T3) such that

xk3 + λk3y
k
3 = (1− αk31 − αk32)z

k + αk31x
k
1 + αk32x

k
2 + λk3w

k
3 ,

and so forth. In general, we choose (xki , y
k
i ) to satisfy the conditions

xki + λki y
k
i =

(
1−

∑i−1
j=1 α

k
ij

)
zk +

i−1∑
j=1

αkijx
k
j + λkiw

k
i yki ∈ Ti(xki ). (34)

In addition to the flexibility afforded by the choice of the αkij and λki , we consider several
further generalizations of (34):

• We will allow errors eki ∈ H in satisfying (34), so long as they satisfy the approximation
criterion (42) below.

• The order of processing the operators may vary from iteration to iteration. At iteration
k, we process the operators in the order specified by an arbitrary permutation πk(·) of
{1, . . . , n}.

Thus, we arrive at the general scheme that for all i = 1, . . . , n and k ≥ 0, we have yki ∈ Ti(xki )
and

xkπk(i) + λki y
k
πk(i) =

(
1−

∑i−1
j=1 α

k
ij

)
zk +

i−1∑
j=1

αkijx
k
πk(j) + λkiw

k
πk(i) + eki . (35)

Note that the notion of processing the operators in some particular order πk(·) does not
necessarily preclude parallelism over i in evaluating (35), depending on how one chooses the
αkij. For example, if we choose αkij = 0 for all i, j and set the error terms eki = 0, then (35)
reduces to (33), which may be calculated independently and in parallel over i.

10



To analyze this scheme, we will employ some standard matrix analysis: given an n × n
real matrix L, we define ‖L‖ to be its operator 2-norm and κ(L) to be the smallest eigenvalue
of its symmetric part, that is

‖L‖ = max
x∈Rn

‖x‖=1

‖Lx‖ sym L
def
= 1

2
(L + L>) κ(L)

def
= min eig sym L.

Note that it is straightforward to show that κ(L) ≤ ‖L‖, and that for any x ∈ Rn, 〈x,Lx〉 ≥
κ(L) ‖x‖2. Analogously to the usual linear map Rn → Rn associated with L, we can define
a linear mapping Hn → Hn corresponding to L via

Lu = L(u1, . . . , un) = (v1, . . . , vn), where vi =
n∑
j=1

`ijuj ∈ H, (36)

with `ij denoting the elements of L. As one would intuitively expect, this mapping retains
key spectral properties that L exhibits over Rn:

Lemma 6 Let L be any n× n real matrix. For all u = (u1, . . . , un) ∈ Hn,

‖Lu‖ ≤ ‖L‖ ‖u‖ (37)

〈u,Lu〉 ≥ κ(L) ‖u‖2 , (38)

where Lu is defined by (36), 〈·, ·〉 denotes the canonical inner product for Hn induced by the
inner product for H, and ‖·‖ applied to elements of Hn denotes the norm induced by this
inner product.

Appendix B proves this result. Of particular interest are the matrices

Λk
def
= diag(λk1, λ

k
2, . . . , λ

k
n) (39)

Ak
def
=


1
−α21 1
−α31 −α32 1

...
...

. . .

−αn1 −αn2 · · · −αn,n−1 1

 , (40)

that is, Ak = [a
(k)
ij ]i,j=1,...,n, where

a
(k)
ij =


1, i = j
−αkij, i > j
0, i < j.

We will show that if there exist β, ζ > 0 such that

κ(Λ−1
k Ak) ≥ ζ

∥∥Λ−1
k Ak

∥∥ ≤ β ∀ k ≥ 0, (41)

then choosing the (xki , y
k
i ) ∈ Gph(Ti) via (35) will meet all the hypotheses of Proposition 5,

and we will obtain weak convergence. Stated in full, including the approximate calculation
criterion, the algorithm is as follows:

11



Algorithm 3 Choose scalars β, ζ > 0, 0 < ρ ≤ ρ < 2, and σ ∈ [0, 1). Start with an
arbitrary p0 = (z0, w0

1, . . . , w
0
n) ∈ V , that is, any z0, w0

1, . . . , w
0
n ∈ H with w0

1 + · · ·+ w0
n = 0.

Then, for k = 0, 1, . . ., repeat:

1. Choose scalars λki > 0, i = 1, . . . , n, and αkij, 1 ≤ j < i ≤ n, such that κ(Λ−1
k Ak) ≥ ζ

and
∥∥Λ−1

k Ak

∥∥ ≤ β, where Λk and Ak are defined by (39) and (40), respectively. Let
πk(·) be any permutation of {1, . . . , n}. For i = 1, · · · , n, find (xki , y

k
i ) ∈ Gph(Ti)

satisfying (35),

xkπk(i) + λki y
k
πk(i) =

(
1−

∑i−1
j=1 α

k
ij

)
zk +

i−1∑
j=1

αkijx
k
πk(j) + λkiw

k
πk(i) + eki ,

where
n∑
i=1

(
λki
)−2 ∥∥eki ∥∥2 ≤ σ2κ(Λ−1

k Ak)
2

n∑
i=1

∥∥xki − zk∥∥2
. (42)

2. If xk1 = xk2 = · · · = xkn and
∑n

i=1 y
k
i = 0, let wk+1

i = yki for i = 1, . . . , n, and zk+1 = xk1.
Otherwise, continue:

3. Choose some ρk ∈ [ρ, ρ] and set

x̄k = 1
n

∑n
i=1 x

k
i (43)

θk =

∑n
i=1〈zk − xki , yki − wki 〉∥∥∑n

i=1 y
k
i

∥∥2
+
∑n

i=1

∥∥xki − x̄k∥∥2 (44)

zk+1 = zk − ρkθk
∑n

i=1 y
k
i (45)

wk+1
i = wki − ρkθk(xki − x̄k) i = 1, . . . , n. (46)

The error condition (42) is an n-operator generalization of the relative error tolerance pro-
posed in [19, 18, 21] for modified proximal-extragradient projection methods. Note that β’s
only role in the statement of the algorithm is to guarantee ‖Λ−1

k Ak‖ remains bounded, that
is, that {Λ−1

k Ak} is a bounded sequence of matrices. Such boundedness may be assured by

any sufficient condition bounding the absolute values |a(k)
ij /λ

k
i | of all entries of {Λ−1

k Ak}. For

example, if there exist λ, α ≥ 0 such that λki ≥ λ and |αkij| ≤ α for all k ≥ 1, i = 1, . . . , n,

and 1 ≤ j < i, then {Λ−1
k Ak} must be bounded, and some β satisfying the condition

‖Λ−1
k Ak‖ ≤ β for all k ≥ 0 must exist. In practice, we may therefore substitute conditions

such as λki ≥ λ, |αkij| ≤ α for the condition ‖Λ−1
k Ak‖ ≤ β in step 1 of the algorithm. We

now prove convergence of the method:

Proposition 7 Suppose that either H has finite dimension or the operator T1 + · · · + Tn
is maximal. Suppose also that (1) has a solution. Then, in Algorithm 3, the sequences
{zk}, {xk1}, . . . , {xkn} ⊂ H all weakly converge to some z∞ solving (1). For each i = 1, . . . , n,

we also have wki , y
k
i

w→ y∞i , where y∞i ∈ Ti(z∞) and y∞1 + · · ·+ y∞n = 0.
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Proof. Define auxiliary sequences {uk} = {(uk1, . . . , ukn)} ⊂ Hn and {vk} = {(vk1 , . . . , vkn)} ⊂
Hn via

uki
def
= xki − zk vki

def
= wki − yki (47)

for all i = 1, . . . , n and k ≥ 0, and note (defining pk as in Algorithms 1 and 2) that

φk(p
k) = 〈uk, vk〉 =

∑n
i=1〈uki , vki 〉. (48)

Further, define ek = (ek1, . . . , e
k
n) ∈ Hn for all k ≥ 0, and observe that by taking square roots

and substituting the definitions of ek and uk, (42) simplifies via the notation (36) and (39)
to ∥∥Λ−1

k ek
∥∥ ≤ σκ(Λ−1

k Ak)
∥∥uk∥∥ . (49)

Take any i ∈ {1, . . . , n}. Subtracting zk from both sides of (35) and regrouping yields

(xkπk(i) − zk) + λki y
k
πk(i) =

i−1∑
j=1

αkij(x
k
πk(j) − zk) + λkiw

k
πk(i) + eki

⇔ (xkπk(i) − zk)−
i−1∑
j=1

αkij(x
k
πk(j) − zk)− eki = λki (w

k
πk(i) − ykπk(i)).

Dividing by λki and substituting the definitions of uki and vki yields(
1

λki

)(
uπk(i) −

i−1∑
j=1

αkijuπk(j) − eki

)
= vπk(i). (50)

Applying the notation (36) to (50) for i = 1, . . . , n produces

vk =
(
ΠkΛ

−1
k AkΠ

>
k

)
uk −

(
ΠkΛ

−1
k

)
ek, (51)

where Πk is the n× n permutation matrix corresponding to the permutation πk(·). Substi-
tuting (51) into (48) and using the Cauchy-Schwarz inequality yields

ϕk(p
k) = 〈uk, ΠkΛ

−1
k AkΠ

>
ku

k〉 − 〈uk, ΠkΛ
−1
k ek〉

≥ κ
(
ΠkΛ

−1
k AkΠ

>
k

) ∥∥uk∥∥2 −
∥∥uk∥∥∥∥ΠkΛ

−1
k ek

∥∥ [ using (38) ]

= κ
(
Λ−1
k Ak

) ∥∥uk∥∥2 −
∥∥uk∥∥∥∥Λ−1

k ek
∥∥

≥ κ
(
Λ−1
k Ak

) ∥∥uk∥∥2 − σκ(Λ−1
k Ak)

∥∥uk∥∥2
[ using (49) ]

= (1− σ)κ(Λ−1
k Ak)

∥∥uk∥∥2

≥ (1− σ)ζ
∥∥uk∥∥2

. [ using (41) ] (52)

To meet hypothesis 3 of Proposition 5, we need to convert this lower bound on ϕk(p
k),

expressed in terms of ‖uk‖2, to one expressed in terms of ‖∇ϕk‖2. To do so, first note that
since

∑n
i=1w

k
i = 0,∑n

i=1 v
k
i =

∑n
i=1(w

k
i − yki ) = −

∑n
i=1 y

k
i ⇒

∥∥∑n
i=1 v

k
i

∥∥2
=
∥∥∑n

i=1 y
k
i

∥∥2
. (53)
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Next, define

ūk
def
= 1

n

∑n
i=1 u

k
i = 1

n

∑n
i=1(x

k
i − zk) = x̄k − zk,

and observe that for all i = 1, . . . , n and k ≥ 0,

uki − ūk = xki − zk − (x̄k − zk) = xki − x̄k. (54)

Substituting (53) and (54) into the expression for ‖∇ϕk‖2 arising from Lemma 3, we obtain

‖∇ϕk‖2 =
∥∥∑n

i=1 y
k
i

∥∥2
+
∑n

i=1

∥∥xkk − x̄k∥∥2

=
∥∥∑n

i=1 v
k
i

∥∥2
+
∑n

i=1

∥∥uki − ūk∥∥2

= 〈vk,Evk〉+
∥∥Muk

∥∥2
,

where we define n× n matrices

E
def
=


1 1 · · · 1
1 1 · · · 1
...

...
. . .

...
1 1 · · · 1

 M
def
= I− 1

n
E =


n−1
n
− 1
n
· · · − 1

n

− 1
n

n−1
n
· · · − 1

n
...

...
. . .

...
− 1
n
− 1
n
· · · n−1

n

 .
Applying the Cauchy-Schwarz inequality and (37), it then follows that

‖∇ϕk‖2 ≤
∥∥vk∥∥∥∥Evk∥∥+

∥∥Muk
∥∥2 ≤ ‖E‖

∥∥vk∥∥2
+ ‖M‖2

∥∥uk∥∥2
. (55)

Over Rn, the matrix M represents orthogonal projection onto the nontrivial subspace T =
{(t1, . . . , tn) ∈ Rn | t1 + · · ·+ tn = 0}, so we conclude ‖M‖ = 1. It also follows that I −M
represents orthogonal projection onto the nontrivial subspace T⊥, so ‖I −M‖ = 1 and
‖E‖ = ‖n(I −M)‖ = n ‖I −M‖ = n. Therefore, (55) reduces to

‖∇ϕk‖2 ≤ n
∥∥vk∥∥2

+
∥∥uk∥∥2

. (56)

Starting with (51), we obtain∥∥vk∥∥2
=
∥∥(ΠkΛ

−1
k AkΠ

>
k

)
uk −ΠkΛ

−1
k ek

∥∥2

≤
(∥∥(ΠkΛ

−1
k AkΠ

>
k

)
uk
∥∥+

∥∥ΠkΛ
−1
k ek

∥∥)2

[ triangle inequality ]

≤
(∥∥ΠkΛ

−1
k AkΠ

>
k

∥∥∥∥uk∥∥+
∥∥Λ−1

k ek
∥∥)2

[ using (37) ]

≤
(∥∥Λ−1

k Ak

∥∥∥∥uk∥∥+ σκ(Λ−1
k Ak)

∥∥uk∥∥)2

[ using (49) ]

≤
(
β
∥∥uk∥∥+ σβ

∥∥uk∥∥)2 [κ(Λ−1
k Ak) ≤

∥∥Λ−1
k Ak

∥∥ ≤ β ]

= (1 + σ)2β2
∥∥uk∥∥2

. (57)

Combining (56) and (57) yields

‖∇ϕk‖2 ≤
(
n(1 + σ)2β2 + 1

) ∥∥uk∥∥2
.
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Combining this inequality with (52) yields

ϕk(p
k) ≥ (1− σ)ζ

n(1 + σ)2β2 + 1
‖∇ϕk‖2 , (58)

implying that hypothesis 3 of Proposition 5 is satisfied by setting

ξ =
(1− σ)ζ

n(1 + σ)2β2 + 1
> 0.

Note that (58) implies ϕk(pk) is always nonnegative, so that (44) is equivalent to (25), even
though the max{0, ·} operation is omitted. In view of (58), Proposition 5 guarantees that
∇ϕk → 0 and ϕk(p

k) → 0. From (52), we then conclude uk → 0, from which (57) implies
that vk → 0. Thus, we have uki = xki − zk → 0 and vki = wki − yki → 0 for all i = 1, . . . , n,
fulfilling hypotheses 5 and 6 of Proposition 5. Hypothesis 4 is satisfied by assumption, so all
the hypotheses of Proposition 5 hold. The (weak) convergence of the sequences {zk}, {xki },
{wki }, and {yki } then follow from Proposition 5. �

Note that the approximation criterion (42) is implied by the simpler condition

n∑
i=1

(
λki
)−2 ∥∥eki ∥∥2 ≤ σ2ζ2

n∑
i=1

∥∥xki − zk∥∥2
, (59)

which might be more convenient to use in practice. The most convenient way to meet ei-
ther (42) or (59) will likely depend on the application. One common situation is that only
one of the operators, say T1, has a resolvent difficult enough to warrant approximate compu-

tation. In this case, (42) would just simplify to ‖eπ−1
k (1)‖2 ≤ σ2κ(Λ−1

k Ak)
2∑n

i=1

∥∥xki − zk∥∥2
.

If more than one operator is a candidate for approximate computation, one simple option
would be to requre(

λki
)−2 ∥∥eki ∥∥2 ≤ σ2κ(Λ−1

k Ak)
2 ∥∥xki − zk∥∥2

i = 1, . . . , n,

since summing these inequalities yields (42). However, this approach may be more restrictive
than necessary. Typically, when an operator Ti is suitable for approximate calculation, the
resolvent (I + λTi)

−1 is itself evaluated by some kind of iterative method. Thus, a less
restrictive option would be to interleave iterations for calculating all of the (xi, yi) ∈ Gph(Ti),
and terminate as soon as (42) itself is satisfied.

5 Variations and special cases

Rewriting (35) as

xkπk(i) + λki y
k
πk(i) = zk +

i−1∑
j=1

αkij(xπk(j) − zk) + λkiw
k
πk(i) + eki ,
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it is natural to consider whether the algorithm could be further generalized by treating the
yki in a matter symmetric to the xki . That is, for some βkij, 1 ≤ j < i ≤ n, one might try to
use the ykπk(j) information generated earlier in the same iteration by replacing (35) with

xkπk(i) + λki y
k
πk(i) = zk +

i−1∑
j=1

αkij(xπk(j) − zk) + λki

[
wkπk(i) +

i−1∑
j=1

βkij(yπk(j) − wkπk(j))

]
+ eki .

However, if eki ≡ 0, it turns out that this modification does not add any generality to the
algorithm. The reason is that it is possible to redefine the αkij to obtain an equivalent recur-
sion with βkij ≡ 0. We omit the analysis in the interest of brevity; while more complicated,
it resembles that for a similar 2-operator result in [8].

5.1 Including a scaling factor

A simple variation of the algorithm may be obtained by multiplying the inclusion (1) through
by any scalar η > 0, arriving at the rescaled formulation

0 ∈ ηT1(x) + · · ·+ ηTn(x),

Applying Algorithm 3 to this formulation under the substitutions

Ti ← ηTi λki ← ηλki

yki ← ηyki wki ← ηwki

yields, after some minor algebraic manipulation, a procedure identical to Algorithm 3, except
that (44)-(46) are modified to incorporate η:

yki ∈ Ti(xki ) i = 1, . . . , n (60)

xkπk(i) + λki y
k
πk(i) =

(
1−

∑i−1
j=1 α

k
ij

)
zk +

i−1∑
j=1

αkijx
k
πk(j) + λkiw

k
πk(i) + eki i = 1, . . . , n (61)

x̄k = 1
n

∑n
i=1 x

k
i (62)

θk =

∑n
i=1〈zk − xki , yki − wki 〉

η
∥∥∑n

i=1 y
k
i

∥∥2
+ 1

η

∑n
i=1

∥∥xki − x̄k∥∥2 (63)

zk+1 = zk − ρkθkη
∑n

i=1 y
k
i (64)

wk+1
i = wki −

ρkθk
η

(xki − x̄k) i = 1, . . . , n. (65)

This set of recursions produces sequences guaranteed to converge under the same conditions
and in the same manner set forth in Proposition 7. Essentially, η sets the relative weight the
algorithm ascribes to its two main goals: achieving

∑n
i=1 y

k
i = 0, and achieving xk1 = · · · = xkn.

In practice, η could be adjusted as the algorithm runs if it appears that these goals are not
properly balanced; with the theory presented here, however, convergence is only guaranteed
for fixed η.

Suppose n = 2, ek1 = ek2 = 0 for all k ≥ 0, and πk is the identity map on {1, 2} for all k ≥ 0.
Then, letting η = 1/

√
2 causes (60)-(65) to reduce precisely, after some changes of notation

and minor algebraic manipulations, to the two-operator projective splitting algorithm of [8].
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5.2 Spingarn’s algorithm

In [22], Spingarn describes a partial inverse method for solving the inclusion η1T1(x) +
η2T2(x) + · · ·+ ηnTn(x) 3 0. With η1 = η2 = · · · = ηn, this method reduces, in the notation
of this paper, to the following set of recursions to solve (1):

yki ∈ Ti(xki ) i = 1, . . . , n (66)

xki + yki = zk + wki i = 1, . . . , n (67)

zk+1 = 1
n

∑n
i=1 x

k
i (68)

wk+1
i = yki − 1

n

∑n
j=1 y

k
j i = 1, . . . , n. (69)

The resolvent evaluations entailed in (66)-(67) are in fact the same as suggested for the
separator calculation at the end of Section 2 of this paper, and are clearly a special case of
our general recursion (35). In fact, we now demonstrate that Spingarn’s method (66)-(69) is
a special case of the scaled variant (60)-(65) of our algorithm. Consider (60)-(65) with, for
all k ≥ 0,

λki = 1 i = 1, . . . , n (70)

πk(i) = i i = 1, . . . , n (71)

αkij = 0 1 ≤ j < i ≤ n (72)

eki = 0 i = 1, . . . , n (73)

ρk = 1. (74)

Then the main resolvent relation (61) reduces immediately to (67). Rearranging (67) into
zk − xki = yki − wki , we deduce that the numerator of (63) is

n∑
i=1

〈zk − xki , yki − wki 〉 =
n∑
i=1

∥∥zk − xki ∥∥2
. (75)

Now consider the denominator of (63). With regard to the first term, we rewrite (67) as
yki = zk − wki + yki and then observe that since

∑n
i=1w

k
i = 0,

n∑
i=1

yki =
n∑
i=1

(
zk − wki + xki

)
= nzk −

n∑
i=1

xki = n(zk − x̄k). (76)

With regard to the second term in the denominator of (63), we calculate

n∑
i=1

∥∥xki − x̄k∥∥2
=

n∑
i=1

∥∥(xki − zk)− (x̄k − zk)
∥∥2

=
n∑
i=1

∥∥xki − zk∥∥2 − 2
〈∑n

i=1(x
k
i − zk), x̄k − zk

〉
+ n

∥∥x̄k − zk∥∥2

=
n∑
i=1

∥∥xki − zk∥∥2 − 2
〈
n(x̄k − zk), x̄k − zk

〉
+ n

∥∥x̄k − zk∥∥2

=
n∑
i=1

∥∥xki − zk∥∥2 − n
∥∥x̄k − zk∥∥2

. (77)
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Using (76) and (77), we calculate that the denominator of (63) is

η
∥∥∑n

i=1 y
k
i

∥∥2
+

1

η

n∑
i=1

∥∥xki − x̄k∥∥2
= n2η

∥∥zk − x̄k∥∥2
+

1

η

(
n∑
i=1

∥∥xki − zk∥∥2 − n
∥∥x̄k − zk∥∥2

)

=

(
n2η − n

η

)∥∥zk − x̄k∥∥2
+

1

η

n∑
i=1

∥∥xki − zk∥∥2
. (78)

Solving the equation n2η − n/η = 0, we conclude that the first term in (78) will vanish if
η = 1/

√
n. Combining (63), (75), and (78) with η = 1/

√
n, we obtain

θk =

∑n
i=1

∥∥xki − zk∥∥2

1
η

∑n
i=1

∥∥xki − zk∥∥2 = η =
1√
n
,

unless the denominator is zero, in which case (zk, wk1 , . . . , w
k
n) is already a solution to (1).

Substituting ρk = 1, θk = η = 1/
√
n, and (76) into (64), we obtain

zk+1 = zk +
1

n

(
n∑
i=1

yki

)
= zk +

1

n

(
n(zk − x̄k)

)
= x̄k,

which is identical to (68). Similarly substituting ρk = 1 and θk = η = 1/
√
n into (65) yields

wk+1
i = wki −

η

η
(xki − x̄k) = wki − xki + x̄k.

From (67), we have wki − xki = yki − zk; using this fact and the definition of x̄k, we then have

wk+1
i = yki − zk +

1

n

n∑
i=1

xki .

Finally, we rearrange (67) into xki = zk + wki − yki and obtain, using
∑n

i=1w
k
i = 0, that

wk+1
i = yki − zk +

1

n

n∑
i=1

(
zk + wki − yki

)
= yki − zk +

1

n

(
nzk −

n∑
i=1

yki

)

= yki −
1

n

n∑
i=1

yki ,

which is identical to (69). Thus, we conclude that with the parameter choices (70)-(74)
and η = 1/

√
n, the scaled projective algorithm (60)-(65) reduces exactly to Spingarn’s

algorithm (66)-(69).
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We should also note that, by scaling the operators T1, . . . , Tn by some fixed λ > 0,
and applying an overrelaxed proximal algorithm (see for example [6]) to the partial inverse
operator, Spingarn’s original algorithm (66)-(69) for (1) is easily generalized to

yki ∈ Ti(xki ) i = 1, . . . , n

xki + λyki = zk + λwki i = 1, . . . , n

zk+1 = (1− ρk)zk +
ρk
n

∑n
i=1 x

k
i

wk+1
i = (1− ρk)wki + ρk

(
yki − 1

n

∑n
j=1 y

k
j

)
i = 1, . . . , n,

where 0 < ρ ≤ ρk ≤ ρ < 2 for all k. By a similar analysis, but using η = λ/
√
n, this

generalized Spingarn algorithm also turns out to be a special case of the scaled projective
method (60)-(65).

6 Conclusions and future research

We have proved convergence of a very general class of projective splitting algorithms, ex-
tending the results of [8] by allowing for more than two operators, changing order of operator
evaluation, and approximate calculation of resolvents using a “relative” error criterion.

At this point, the key question becomes whether the new flexibility our framework affords
in comparison with prior splitting algorithms is of significant practical value. By taking
advantage of this new flexibility and larger number of parameters, can one significantly
accelerate the convergence of splitting-based algorithms for practical problems?

Answering this question is outside the scope of this paper, but we hope to address it in
future research. In particular, one might anticipate dynamically adjusting the parameters
{αkij}, {λki }, {ρk}, and perhaps η, to attempt to optimize some convergence criterion or error
bound. However, the details are may very well vary by application. Another interesting
topic would be to examine applying the techniques of [20] to force strong convergence, and
perhaps to improve practical finite-dimensonal convergence behavior.
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A A technical result for infinite dimension

Proposition 8 Let T1, . . . , Tn : H ⇒ H be maximal monotone, and suppose that their sum
T1 + · · ·+ Tn is also maximal. Suppose the sequences {(xki , yki )}∞k=1 ⊂ Gph(Ti), i = 1, . . . , n,
and points z, w1, . . . , wn ∈ H have the properties

(xki , y
k
i )

w→ (z, wi) i = 1, . . . , n (79)∑n
i=1 y

k
i → 0 (80)

‖xki − xkj‖ → 0 i, j = 1, . . . , n. (81)

Then (z, w1, . . . , wn) ∈ Se(T1, . . . , Tn).

Proof. First we claim that
0 ∈ (T1 + · · ·+ Tn)(z). (82)

To prove this claim, take an arbitrary (z′, w′) ∈ Gph(T1 + · · ·+Tn). Then, there exist points
w′i ∈ Ti(z′), i = 1, . . . , n, such that w′ =

∑n
i=1w

′
i. Since all the Ti are monotone,

〈xki − z′, yki − w′i〉 ≥ 0 i = 1, . . . , n. (83)

Define ȳk =
∑n

i=1 y
k
i , and fix any j ∈ {1, . . . , n}. We may rewrite the i = j case of (83) as

〈
xkj − z′, ȳk − w′ +

n∑
i=1
i 6=j

(w′i − yki )
〉
≥ 0,

and so

〈xkj − z′,−w′〉 ≥ −〈xkj − z′, ȳk〉+
n∑
i=1
i 6=j

〈xkj − z′, yki − w′i〉 (84)

For any i 6= j, we have, courtesy of (83), that

〈xkj − z′, yki − w′i〉 = 〈xki − z′, yki − w′i〉+ 〈xkj − xki , yki − w′i〉 ≥ 〈xkj − xki , yki − w′i〉,
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and substituting these inequalities into (84) yields

〈xkj − z′,−w′〉 ≥ −〈xkj − z′, ȳk〉+
n∑
i=1
i 6=j

〈xki − xkj , yki − w′i〉 (85)

We now consider taking k → ∞ in (85). Since xkj
w→ z by (79), the limit of the left-hand

side of (85) is 〈z − z′,−w′〉. Since the weakly convergent sequence {xkj} must be bounded,
and ȳk → 0 by (80), we have 〈xkj − z′, ȳk〉 → 0. Similarly, for each i 6= j, we have that
xki − xkj → 0 by (81), and the weakly convergent sequence {yki } must be bounded, so that
〈xki − xkj , yki − w′i〉 → 0. Thus, taking the limit in (85) yields

〈z − z′,−w′〉 ≥ 0.

Since T1 + · · · + Tn is maximal monotone, and (z′, w′) ∈ Gph(T1 + · · · + Tn) was arbitrary,
we conclude that (82) holds.

Next, we claim that

lim
k→∞
〈xki , yki 〉 = 〈z, wi〉 i = 1, . . . , n. (86)

In view of (82), there must exist ui ∈ Ti(z), i = 1, . . . , n, such that
∑n

i=1 ui = 0. Since the
Ti are monotone, we have

〈xki − z, yki − ui〉 ≥ 0 i = 1, . . . , n,

which we may rearrange to obtain

〈xki , yki 〉 ≥ 〈z, yki − ui〉+ 〈xki , ui〉 i = 1, . . . , n.

From (79), it is easily deduced that the right-hand sides of the above inequalities converge
respectively to 〈z, wi〉. Hence,

lim inf
k→∞

〈xki , yki 〉 ≥ 〈z, wi〉 i = 1, . . . , n. (87)

Once again, fix some j ∈ {1, . . . , n}. Then, we observe that

〈xkj , ykj 〉 = 〈xkj , ȳk〉 −
n∑
i=1
i 6=j

〈xkj , yki 〉

= 〈xkj , ȳk〉 −
n∑
i=1
i 6=j

(
〈xki , yki 〉+ 〈xkj − xki , yki 〉

)
.

We now take the lim sup as k → ∞ of the above equation. Using logic resembling that
for (85), we observe that 〈xkj , ȳk〉 → 0 and 〈xkj − xki , yki 〉 → 0. Therefore, using (87),

lim sup
k→∞

〈xkj , ykj 〉 ≤ −
n∑
i=1
i 6=j

〈z, wi〉 = −
〈
z,

n∑
i=1
i 6=j

wi

〉
. (88)
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Since yki
w→ wi, i = 1, . . . , n, we have

∑n
i=1 y

k
i

w→
∑n

i=1wi, and therefore, also using that∑n
i=1 y

k
i → 0,〈∑n
i=1wi,

∑n
i=1wi

〉
= limk→∞

〈∑n
i=1 y

k
i ,
∑n

i=1wi
〉

=
〈
limk→∞

∑n
i=1 y

k
i ,
∑n

i=1wi
〉

= 0,

so we must have
∑n

i=0wi = 0. Therefore, (88) may be rewritten

lim sup
k→∞

〈xkj , ykj 〉 ≤ 〈z, wj〉,

which, combined with (87), means that limk→∞〈xkj , ykj 〉 = 〈z, wj〉. Since j ∈ {1, . . . , n} was
arbitrary, (86) holds.

Finally, we claim that

(z, wi) ∈ Gph(Ti), i = 1, . . . , n. (89)

To prove this inclusion, take any i ∈ {1, . . . , n} and (z′, w′i) ∈ Gph(Ti). Then the mono-
tonicity of Ti implies

〈xki − z′, yki − w′i〉 = 〈xki , yki 〉 − 〈z′, yki 〉 − 〈xki , w′i〉+ 〈z′, w′i〉 ≥ 0.

Applying (79) and (86) while taking the limit as k →∞ yields

〈z, wi〉 − 〈z′, wi〉 − 〈z, w′i〉+ 〈z′, w′i〉 ≥ 0.

which is equivalent to 〈z − z′, wi − w′i〉 ≥ 0. Since the Ti are maximal and both (z′, w′i) ∈
Gph(Ti) and i ∈ {1, . . . , n} were arbitrary, we conclude that (89) holds.

Finally, since we have already established that
∑n

i=0wi = 0, it follows from (89) that we
must have (z, w1, . . . , wn) ∈ Se(T1, . . . , Tn). �

B Proof of Lemma 6

Proof. If u = 0, then Lu = 0 and (37)-(38) hold trivially, so it remains to consider the case
that at least one ui is nonzero. Given any such u, let v = (v1, . . . , vn) and `ij be defined
as in (36). Define U ⊆ H to be the finite-dimensional subspace spanned by u1, . . . , un in
H. From (36), we have vi ∈ U for i = 1, . . . , n, and thus u, v ∈ Un. Let B = (b1, . . . , bn′),
1 ≤ n′ ≤ n, be some orthonormal basis for U , where n′ denotes the dimension of U . From
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B, we may create an orthonormal basis B = (b1, . . . , bn′n) for Un via

b1 = (b1, 0, 0, . . . , 0)

b2 = (0, b1, 0, . . . , 0)
...

bn = (0, 0, . . . , 0, b1)

bn+1 = (b2, 0, 0, . . . , 0)

bn+2 = (0, b2, 0, . . . , 0)
...

b2n = (0, 0, . . . , 0, b2)
...

b(n′−1)n+1 = (bn′ , 0, 0, . . . , 0)

b(n′−1)n+2 = (0, bn′ , 0, . . . , 0)

...

bn′n = (0, 0, . . . , 0, bn′).

Let u ∈ Rn′n be the unique representation of u with respect to this basis, that is, its elements
um, m = 1, . . . , n′n, are such that u =

∑n′n
m=1 umbm. Similarly, let v ∈ Rn′n be the unique

representation of v. By the orthonormality of the basis B, it follows that ‖u‖ = ‖u‖,
‖v‖ = ‖v‖, and 〈u,Lu〉 = 〈u, v〉 = u>v. Let us now examine the action of the linear
mapping defined by (36) on the basis B, namely

b1 = (b1, 0, 0, . . . , 0) 7→ (`11b1, `21b1, . . . , `n1b1) = `11b1 + `21b2 + · · ·+ `n1bn

b2 = (0, b1, 0, . . . , 0) 7→ (`12b1, `22b1, . . . , `n2b1) = `12b1 + `22b2 + · · ·+ `n2bn
...

bn = (0, 0, . . . , 0, b1) 7→ (`1nb1, `2nb1, . . . , `nnb1) = `1nb1 + `2nb2 + · · ·+ `nnbn

bn+1 = (b2, 0, 0, . . . , 0) 7→ (`11b2, `21b2, . . . , `n1b2) = `11bn+1 + `21bn+2 + · · ·+ `n1b2n

bn+2 = (0, b2, 0, . . . , 0) 7→ (`12b2, `22b2, . . . , `n2b2) = `12bn+1 + `22bn+2 + · · ·+ `n2b2n
...

bn′n = (0, 0, . . . , 0, bn′) 7→ (`1nbn′ , `2nbn′ , . . . , `nnbn′)

= `1nb(n′−1)n+1 + `2nb(n′−1)n+2 + · · ·+ `nnbn′n.

Thus, in terms of the basis B, the action of the linear mapping (36) is that of the n′n× n′n
block-diagonal matrix

L
def
=


L

L
. . .

L


︸ ︷︷ ︸

n′ times

,
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and we must have v = Lu. We have

sym L =


sym L

sym L
. . .

sym L

 ,
so sym L has the same eigenvalues as sym L, and thus κ(L) = κ(L). Using standard eigen-
value analysis in Rn′n, we therefore have

u>Lu ≥ κ(L) ‖u‖2 = κ(L) ‖u‖2 .

Substituting ‖u‖ = ‖u‖ and 〈u,Lu〉 = 〈u, v〉 = u>v = u>Lu into this relation yields (38).
To establish (37), we observe that∥∥L∥∥2

= max
{∥∥Lx

∥∥2
∣∣∣ x ∈ Rn′n, ‖x‖ = 1

}
= max

{
n′∑
j=1

‖Lxj‖2
∣∣∣∣∣ x1, . . . ,xn′ ∈ Rn,

n′∑
j=1

‖xj‖2 = 1

}

= max

{
n′∑
j=1

max

{
‖Lx‖2

∣∣∣∣ x ∈ Rn

‖x‖2 = νj

} ∣∣∣∣ ν1, . . . , νn′ ≥ 0
ν1 + · · ·+ νn′ = 1

}

= max

{
n′∑
j=1

νj ‖L‖2
∣∣∣∣ ν1, . . . , νn′ ≥ 0

ν1 + · · ·+ νn′ = 1

}
= ‖L‖2 .

Thus, we may substitute
∥∥L∥∥ = ‖L‖ into the inequality

∥∥Lu
∥∥ ≤ ∥∥L∥∥ ‖u‖, along with∥∥Lu

∥∥ = ‖v‖ = ‖v‖ = ‖Lu‖ and ‖u‖ = ‖u‖, to obtain (37). �
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