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Abstract. The deformation of a nonlinear pulse traveling in a dispersive random medium can be
studied with asymptotic analysis based on separation of scales when the propagation distance is large
compared to the correlation length of the random medium. We consider shallow water waves with
a spatially random depth. We use a formulation in terms of a terrain-following Boussinesq system.
We compute the effective evolution equation for the front pulse which can be written as a dissipative
Kortweg-de Vries equation. We study the soliton dynamics driven by this system. We show, both
theoretically and numerically, that a solitary wave is more robust than a linear wave in the early steps
of the propagation. However, it eventually decays much faster after a critical distance corresponding
to the loss of about half of its initial amplitude. We also perform an asymptotic analysis for a class
of random bottom topographies. A universal behavior is captured through the asymptotic analysis
of the metric term for the corresponding change to terrain-following coordinates. Within this class
we characterize the effective height for highly disordered topographies. The probabilistic asymptotic
results are illustrated by performing Monte Carlo simulations with a Schwarz-Christoffel Toolbox.
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1. Introduction. We address the propagation of nonlinear dispersive free sur-
face waves in a disordered one-dimensional fluid body. Regarding wave-topography
interaction in homogeneous medium three characteristic length scales are important in
studying different regimes of propagation: the typical depth h0, the typical wavelength
λ0, and the typical amplitude of the wave elevation a0. We consider the framework
corresponding to shallow water waves where a0 � h0 � λ, so that the problem can
be written as a weakly dispersive, weakly nonlinear system. In this paper the lower
boundary is a disordered surface modelled by a stationary random process. Two new
length scales appear: the horizontal length scale, defined as the correlation length of
the random fluctuations of the bottom, is denoted by lc, while the typical amplitude of
the random fluctuations is denoted by δh. We shall study this problem in two different
asymptotic regimes. We assume either that the amplitude of the fluctuations of the
bottom is small compared to the average depth δh � h0, or that the typical amplitude
is of the same order as the average depth δh ∼ h0, but the correlation length is much
smaller than the typical wavelength lc � λ. We also assume that the propagation
distance is large. We carry out an asymptotic analysis based on these assumptions.
Our goal is to derive an effective evolution equation governing the propagation of the
free surface wave. This is done by applying an asymptotic stochastic analysis to the
Lagrangian formulation of the problem, following the strategy that we introduced in
[12] in a weakly heterogeneous regime for a nonlinear hyperbolic system. Here we
start with a one-dimensional, shallow water Boussinesq system which is transformed
into a Lagrangian frame by using the Riemann invariants of the underlying nondisper-
sive, constant coefficient system. Applying a limit theorem for stochastic differential
equations we characterize the flow along the wavefront by a viscous Kortweg-de Vries
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(KdV) equation. Actually the diffusive-like term is more complicated than an effective
viscosity and has the form of a pseudo-differantial operator, but it reduces to such a
term when the correlation length of the medium is much smaller than the pulse width.

We give a brief background on the mathematical theory that has been developed
and which is along the lines of our study. We use a mathematical formulation that has
been successfully used by the authors in other nonlinear settings, namely a nonlinear
conservation law (shallow water system) and a nonlinear advection diffusion equation
(viscous shallow water model). Now we apply the technique to a different class of
partial differential equations (PDEs). In the sequel we use Riemann invariants in a
weakly dispersive, weakly nonlinear setting for which we can consider solitary waves
interacting with disorder. We shall contrast the behavior of a solitary wave with its
linear counterpart. The propagation of a linear pulse through a random medium has
been extensively studied [1]. In particular the O’Doherty-Anstey (ODA) theory pre-
dicts that, if the pulse is observed in a Lagrangian frame that moves with a random
velocity, then the pulse appears to retain its shape up to a slow spreading and atten-
uation [29]. A rather convincing heuristic explanation of this phenomenon is given
in [5]. The mathematical treatment of this issue is addressed in [5, 6, 20, 21, 3]. An
extension to dispersive water waves is provided in [11, 13, 23]. We have extended this
theory to inviscid nonlinear waves in [12] and to viscous waves in [16].

This paper is organized as follows. In Section 2 we introduce the nonlinear shallow
water wave model with a random depth together with the corresponding Riemann
invariants. In Section 3 we derive the effective viscous KdV equation governing the
evolution of the front pulse in the case of a small-amplitude slowly-varying topography.
Section 4 is devoted to the same problem with a rapidly-varying topography. In
this section we also perform an asymptotic analysis for a class of rapidly varying
bottom topographies. Within this class, a universal behavior is captured through
the asymptotic analysis of the metric term for the corresponding change to terrain-
following coordinates. In Section 5 we discuss and compare the pulse attenuation
and spreading in the linear regime and in the soliton regime. In Section 6 we present
numerical simulations to illustrate the accuracy of the theoretical predictions of the
asymptotic analysis.

2. Shallow water waves with random depth.

2.1. The terrain-following Boussinesq system. We consider the Boussinesq
equation that describes the evolution of surface waves in shallow channels [25]

Mηt +
[

(1 +
αη

M
)u
]

ξ
− β

2
(y2

0 − 1

3
) [Mη]ξξt = 0 ,(2.1)

ut + ηξ + α

[

u2

2M2

]

ξ

+
β

2
(y2

0 − 1)uξξt = 0 ,(2.2)

where η is the wave elevation and u is the terrain-following velocity at the relative
depth y0 [27, 25] (y0 = 0 is the bottom, y0 = 1 is the free surface). ξ and t are the
space and time coordinates, respectively. The parameter α is the ratio of the typical
wave amplitude over the mean depth. It governs the strength of the nonlinearity. The
parameter β is the ratio of the squared mean depth over the squared characteristic
wavelength of the wave. It governs the strength of the dispersion. These two param-
eters are assumed to be small. The system (2.1-2.2) is derived from first principles
(mass and momentum conservations) in the asymptotics α � 1 and β � 1, and it
neglects terms of order O(α2), O(αβ), and O(β2). The system is a weakly nonlinear,
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weakly dispersive approximation of the potential theory equations for an irrotational,
incompressible, and inviscid fluid. A first version of this terrain-following model was
given in [27]. It was then modified in [33], to the same order of approximation, having
as a special feature the fact that the full existence and well-posedness proof could be
established. A property that played a key role in the proof was that for y2

0 = 2/3 an
energy-type integral could be found. Here, for a different reason, the same parameter
value will play an important role.

The variable coefficient M(ξ) is a smooth orography-dependent function which
appears as a consequence of a change of variables from cartesian to curvilinear co-
ordinates. M(ξ) is the leading-order term of the Jacobian of the transform and
it is deduced from the physical orography y = h(x) which describes the channel’s
depth, whose averaged value has been normalized to 1. The topography profile
h(x) = 1 + n(x) can be rapidly varying, discontinuous, or even multi-valued, and
no mild slope condition is required. The only requirement is that there exists a con-
stant C ∈ (0, 1) such that ‖n‖∞ ≤ C. In the terrain following system the physical
orography h(x) = 1 + n(x) is replaced by the metric coefficient

M(ξ) = 1 +
π

4
√

β

∫ ∞

−∞

n(x(ξ0,−
√

β))

cosh2
[

π
2
√

β
(ξ0 − ξ)

]dξ0 ,(2.3)

where (x, y) 7→ (ξ, ζ) is the coordinate transform used for the conformal mapping in
the derivation of the system [27]. Note that the amplitude of M can be of order 1
and it is a C∞-function by the convolution with the sech2 function.

In this paper we shall model the random topography n(x) as the realization of a
stationary random process. This in turn implies that M is a smooth random process.
The random process n that describes the fluctuations of the bottom is assumed to be
bounded by a deterministic constant less than 1 and to have strong mixing properties.
The autocorrelation function

γ(x) = E[n(y)n(y + x)](2.4)

is assumed to decay fast enough so that it belongs to L1/2, i.e. γ decays at infinity
fast enough to ensure the convergence of the integral

∫∞
−∞ |γ(x)|1/2dx. We define the

correlation length of the medium as

lc =

∫∞
−∞ |γ(x)|dx

γ(0)
.(2.5)

It represents the typical variation length scale of the random topography.

2.2. The Riemann invariants. We introduce the local propagation speed cor-
responding to the flat bottom c =

√
1 + αη. We can reformulate Equations (2.1-2.2)

in terms of c and u to obtain

ct +
α

2c

[

(

1 +
c2 − 1

M2

)

uξ +

(

c2 − 1

M2

)

ξ

u

]

− β

2c
(y2

0 − 1

3
)(cct)ξξ = 0,(2.6)

ut +
α

2

[

u2

M2

]

ξ

+
1

α

[

c2 − 1

M

]

ξ

+
β

2
(y2

0 − 1)uξξt = 0.(2.7)

We define the Riemann invariants (corresponding to the unperturbed nonlinear hy-
perbolic system):

A(ξ, t) =
αu − 2c + 2

α
, B(ξ, t) =

αu + 2c − 2

α
.(2.8)
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Indeed, if the dispersion parameter is vanishing β = 0, and the bottom is flat M = 1,
then we get back the standard left- and right-going modes (A and B, respectively) of
the nonlinear hyperbolic system:

At − c−Aξ = 0, Bt + c+Bξ = 0 ,

with c− = c − αu = 1 − α(3A + B)/4 and c+ = c + αu = 1 + α(A + 3B)/4. The
identities (2.8) can be inverted

u =
A + B

2
, c = 1 + α

B − A

4
.

Substituting these expressions into (2.6-2.7), we get the system governing the dy-
namics of the Riemann invariants in the presence of nonlinearity, dispersion, and
randomness. If we neglect the terms of order α2, the Riemann invariants satisfy

At − Aξ +
α

4
(3A + B)Aξ −

β

6
Aξξt =

β

2
(
2

3
− y2

0)Bξξt

+
1

2
(

1

M
− 1)(Aξ − Bξ) +

1

2
(

1

M
)ξ(A − B)

+αAAξ(1 − 1

M2
) +

α

8
(

2

M2
− 1

M
− 1)(A − B)(Aξ − Bξ)

− α

16
(

1

M
)ξ

[

(A − B)2 +
4

M
(3A2 + 2AB − B2)

]

,(2.9)

Bt + Bξ +
α

4
(3B + A)Bξ −

β

6
Bξξt =

β

2
(
2

3
− y2

0)Aξξt

+
1

2
(

1

M
− 1)(Aξ − Bξ) +

1

2
(

1

M
)ξ(A − B)

+αBBξ(1 − 1

M2
) +

α

8
(

2

M2
− 1

M
− 1)(A − B)(Aξ − Bξ)

− α

16
(

1

M
)ξ

[

(A − B)2 +
4

M
(−A2 + 2AB + 3B2)

]

.(2.10)

In these equations we have neglected terms of order O(α2), consistently with the
derivation of the system (2.1-2.2), but we have kept all terms depending on M . In
absence of random perturbations, that is to say if M = 1, these equations can be
reduced to

At − Aξ +
α

4
(3A + B)Aξ −

β

6
Aξξξ =

β

2
(
2

3
− y2

0)Bξξt ,(2.11)

Bt + Bξ +
α

4
(3B + A)Bξ +

β

6
Bξξξ =

β

2
(
2

3
− y2

0)Aξξt .(2.12)

By choosing y2
0 = 2/3, the right-hand sides vanish, and we get that the system

supports pure left- and right-going waves satisfying a KdV equation. From now on
we adopt this choice for y0. Recall that this is the special value that enables the
existence and well-posedness proof given in [33].

In the following sections, we consider the system (2.9-2.10) in the presence of a
random topography in the right half-space, while the medium is unperturbed in the
left half-space. The system is completed by the initial condition corresponding to a
right-going wave incoming from the homogeneous left half-space

A(ξ, t) = 0, B(ξ, t) = f(t − ξ), t < 0 ,(2.13)

where the function f is compactly supported in (0,∞).



Effective Behavior of Solitary Waves over Random Topography 5

2.3. The linear hyperbolic approximation. If we neglect terms of order α
and β, that is to say if we neglect all nonlinear and dispersive contributions, then the
system for the Riemann invariants can be reduced to

1

2

(

1 + 1
M 1 − 1

M
−1 + 1

M −1 − 1
M

)

∂

∂ξ

(

A
B

)

=
∂

∂t

(

A
B

)

+
1

2
(

1

M
)ξ

(

−1 1
−1 1

)(

A
B

)

.

The matrix in front of the partial ξ-derivative can be inverted which gives

∂

∂ξ

(

A
B

)

= Q
∂

∂t

(

A
B

)

+
1

2

Mξ

M

(

1 −1
−1 1

)(

A
B

)

,(2.14)

where

Q(ξ) =
1

2

(

M(ξ) + 1 M(ξ) − 1
1 − M(ξ) −M(ξ) − 1

)

.(2.15)

The identity (2.14), which holds true up to terms of order O(α), O(β), will be used in
the forthcoming sections to rewrite the system (2.9-2.10) for the Riemann invariants
as a partial differential equation of the form

∂

∂ξ

(

A
B

)

= F (A, B, At, Bt, Att, Btt, Attt, Bttt, M, Mξ, Mξξ) ,

with the same accuracy as the original system, that is to say up to terms of order
O(α2), O(β2), and O(αβ).

In the linear hyperbolic approximation, Eq. (2.14) can be directly processed to
study the wave dynamics. Indeed, the matrix Q can be diagonalized. The eigenvalues
of the matrix Q(ξ) are ±M 1/2(ξ). We introduce the matrix U defined by

U(ξ) =
1

2

(

M1/4(ξ) + M−1/4(ξ) −M1/4(ξ) + M−1/4(ξ)

−M1/4(ξ) + M−1/4(ξ) M1/4(ξ) + M−1/4(ξ)

)

,(2.16)

which is such that

U−1(ξ)Q(ξ)U(ξ) = M1/2(ξ)

(

1 0
0 −1

)

.

In terms of the new variables
(

A1

B1

)

(ξ, t) = U−1(ξ)

(

A
B

)

(ξ, t)
1

M1/2(ξ)
,

Eq. (2.14) has the simple form

∂

∂ξ

(

A1

B1

)

= M1/2

(

1 0
0 −1

)

∂

∂t

(

A1

B1

)

− 1

4

Mξ

M

(

0 1
1 0

)(

A1

B1

)

.(2.17)

This equation clearly exhibits the two relevant phenomena in linear random medium.
The first term in the right-hand side describes a change of the velocity described by
M1/2. The second term in the right-hand side describes a coupling between the two
modes imposed by the term Mξ/M which is the reflectivity coefficient as in [3].
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3. Small-amplitude, slowly-varying topography. We consider the weakly
nonlinear, weakly dispersive system (2.9-2.10). We introduce a small dimensionless
parameter ε > 0 so that the small nonlinear and dispersion parameters can be written
as

α = ε2α0, β = ε2β0 .(3.1)

Here α0 (resp. β0) is the normalized nonlinearity (resp. dispersion) parameter which
is a nonnegative number of order 1. In this section we also assume that the random
topography has small-amplitude fluctuations and is slowly-varying, in the sense that
its correlation length is of the same order as the typical wavelength of the incoming
wave. It turns out that the suitable scaling that gives rise to a non-trivial asymptotic
regime consists in taking

n(x) = εn0(x) ,(3.2)

where n0 is a stationary random process with standard deviation and correlation
length of order 1.

3.1. Smooth topography. In this section we assume that n0 possesses deriva-
tives, and that it satisfies the moment conditions E[n0(x0)

2] < ∞ and E[n′
0(x0)

2] < ∞.
In this framework the metric coefficient M(ξ) is not changed with respect to 1 + n(x)
to leading order in ε, but there is a correction of order ε2 described in the following
lemma.

Lemma 3.1. The metric coefficient M(ξ) can be expanded as

M(ξ) = 1 + εn0(ξ) + ε2 (n1(ξ) − γ0(0)) + o(ε2),(3.3)

where n1 is a zero-mean random process and γ0(x) = E[n0(x0)n0(x0 + x)] is the
autocorrelation function of n0.

Proof. The process M(ξ) is defined by (2.3). It is given by the convolution of a
smooth sech2 kernel with the composition of the random process n0 and the real part
of the conformal map x(ξ, ζ) evaluated at the unperturbed bottom −√

β = −√
β0ε.

The imaginary part y(ξ, ζ) satisfies the Laplace equation ∆y = 0 in the domain
R× (−

√
β0ε, 0), and the Dirichlet boundary conditions y(ξ, 0) = 0 and y(ξ,−ε

√
β0) =

−ε
√

β0[1 + εn0(x(ξ,−ε
√

β0))]. Of course, at zero-th order, we have x = ξ and y = ζ.
By Fourier transform we can find the following representation for y:

y(ξ, ζ) = ζ +
ε2
√

β0

2π

∫

sinh(kζ)

sinh(kε
√

β0)
n̂1(k)eikξdk

where n̂1(k) is the Fourier transform (in ξ) of n0(x(ξ,−
√

β0ε). Using the Cauchy-
Riemann equation xξ = yζ gives

xξ(ξ, ζ) = 1 +
ε2
√

β0

2π

∫

k cosh(kζ)

sinh(kε
√

β0)
n̂1(k)eikξdk

Since ζ is of order ε, we can expand the cosh and the sinh to obtain xξ(ξ, ζ) =
1 + εn0(x(ξ,−

√
β0ε)) + o(ε2) for all ζ ∈ [−ε

√
β0, 0]. Note that, if we assume that n0

is twice differentiable, then the o(ε2) is O(ε3). Since M(ξ) = xξ(ξ, 0) by definition
[28], this gives the first corrective term of the expansion (3.3). We can also obtain a
precise description of the higher-order correction. The process Xε defined by

Xε(ξ) := x(
ξ

ε2
,−
√

β0ε) −
ξ

ε2
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satisfies the random ordinary differential equation

dXε

dξ
=

1

ε
n0(

ξ

ε2
+ Xε) + o(1)

By applying a diffusion-approximation theorem [31], Xε(ξ) converges in distribution
as ε → 0 to the diffusion process X(ξ) with the infinitesimal generator

L =

∫ ∞

0

E

{

n0(x)
∂

∂x

[

n0(u + x)
∂

∂x

]}

du =

∫ ∞

0

γ0(u)du
∂2

∂x2
+

∫ ∞

0

γ′
0(u)du

∂

∂x

that can be identified as

X(ξ) =
√

2αWξ − γ0(0)ξ

where α =
∫∞
0 γ0(u)du and Wξ is a standard Brownian motion. This shows that the

drift of X is constant and equal to −γ0(0), which gives the result.
In the forthcoming asymptotic analysis, the most important term in the expansion

(3.3) is εn0(ξ), since it is the one that is responsible for the coupling between left and
right-going modes. The contribution of the zero-mean process n1 vanishes in the limit
ε → 0. The correction to the average depth

E[M(ξ)] = 1 − ε2
E[n0(0)2] + o(ε2)

will play a role, because it induces a change in the average velocity of order ε2, which
gives a shift of order 1 after a propagation distance of order ε−2.

Our goal is to study the wave propagation for times and distances of order ε−2.
Accordingly we can neglect in Eqs. (2.9-2.10) the terms of order ε3. We can also use
Eq. (2.14), valid up to order ε, to rewrite some ξ derivatives as time derivatives. This
can be done with a sufficient accuracy for the nonlinear and dispersive terms. As a
result, we obtain

∂

∂ξ

(

A
B

)

= Q(ξ)
∂

∂t

(

A
B

)

+
Mξ

2M

(

1 −1
−1 1

)(

A
B

)

+ε2 α0

4

(

3A + B 0
0 A + 3B

)

∂

∂t

(

A
B

)

+ε2 β0

6

(

−1 0
0 1

)

∂3

∂t3

(

A
B

)

+ O(ε3) ,(3.4)

where Mξ is a zero-mean process of order ε and Q is given by (2.15). The first step
of the derivation of the effective equation for the front pulse is based on a series of
transformations to rewrite the evolution equations (3.4) of the modes by centering
along the characteristic of the right-going mode. This gives an upper-triangular sys-
tem that can be integrated more easily. In a second step an averaging theorem is
applied to this system to establish an effective nonlinear equation for the front pulse
for times and distances of order ε−2. These computations follow the lines of the proof
of the front pulse analysis in the random, nonlinear, hyperbolic case given in [12].
The result can be stated as follows.

Proposition 3.2. Let B̃0 be the solution of the deterministic equation

∂B̃0

∂ξ
= LB̃0 +

3α0

4
B̃0

∂B̃0

∂τ
+

β0

6

∂3B̃0

∂τ3
,(3.5)
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starting from B̃0(0, τ) = f(τ). The front pulse Bε(ξ, τ) := B(ξ/ε2, τ + ξ/ε2), ξ ∈
[0,∞), τ ∈ R, converges in distribution in the space of the continuous functions
(equipped with the topology associated to the supremum norm over the compact inter-
vals) to B̃ given by

B̃(ξ, τ) = B̃0

(

ξ, τ −
√

b0(0)√
2

Wξ −
γ0(0)

2
ξ

)

.(3.6)

Here Wξ is a standard Brownian motion and the operator L can be written explicitly
in the Fourier domain as

∫ ∞

−∞
LB(τ)eiωτ dτ = −b0(2ω)ω2

4

∫ ∞

−∞
B(τ)eiωτ dτ ,(3.7)

b0(ω) =

∫ ∞

0

γ0(x)eiωxdx ,(3.8)

where γ0(x) = E[n0(x0)n0(x0 + x)] is the autocorrelation function of n0.
The Brownian motion Wξ represents the random time shift imposed by the ran-

dom propagation speed. L is a pseudo-differential operator that models the deter-
ministic pulse deformation. It can be interpreted as an effective pseudo-viscosity
originating from the random forcing. The effective equation for the front pulse de-
pends on randomness (through the function b0), on dispersion (through β0), and on
nonlinearity (through α0).

First, the pseudo-differential operator L satisfies a special but rather intuitive
time property. Indeed, in the time domain, we can write

LB(τ) =

[

1

8
γ0

(τ

2

)

1[0,∞)(τ)

]

∗
[

∂2B

∂τ2
(τ)

]

=
1

8

∫ ∞

0

γ0

(s

2

) ∂2B

∂τ2
(τ − s)ds .

The indicator function 1[0,∞) is essential to interpret correctly the convolution. It
means that the effective viscosity cannot diffuse the wave energy in the forward direc-
tion (ahead the front), but only in the backward direction (behind the front). This in
turn implies that the reduction of the pseudo-differential operator L to a second-order
diffusion operator that we discuss next should be handled with precaution.

We now discuss further properties of the pseudo-differential operator L. It can
be divided into two parts L = Lr + Li:

∫ ∞

−∞
LrB(τ)eiωτ dτ = −br(2ω)ω2

4

∫ ∞

−∞
B(τ)eiωτdτ ,(3.9)

∫ ∞

−∞
LiB(τ)eiωτ dτ = − ibi(2ω)ω2

4

∫ ∞

−∞
B(τ)eiωτ dτ ,(3.10)

where br and bi are respectively the real and imaginary part of b0

br(ω) =

∫ ∞

0

E[n0(0)n0(x)] cos(ωx)dx, bi(ω) =

∫ ∞

0

E[n0(0)n0(x)] sin(ωx)dx .

By the Wiener-Khintchine theorem [22], br is proportional to the power spectral
density of the random stationary process n0. As a result, br is nonnegative which
shows that Lr can be interpreted as an effective diffusion operator. More precisely,
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for small frequencies, Lr behaves like a second-order diffusion. Indeed, if ωlc � 1,
then br(ω) ' µ0 where µ0 :=

∫∞
0 γ0(x)dx, and

Lr ' µ0

4

∂2

∂τ2
.

On the other hand br decays to zero for high-frequencies ω such that ωlc � 1. Indeed
we have assumed that E[n′2

0 (0)] < ∞, which is equal to −γ ′′
0 (0). By use of the inverse

Fourier transform this shows that
∫

ω2br(ω)dω < ∞ and ω2br(ω) should decay fast
enough as ω goes to infinity to ensure the convergence of this integral. As a result Lr

has no effect on the high-frequency components.
Li is an effective dispersion operator, since it preserves the energy. It behaves like

a third-order dispersion for small frequencies. Indeed, if ωlc � 1, then bi(ω) ' ωβ1

where β1 :=
∫∞
0

xγ0(x)dx, and

Li ' −β1

2

∂3

∂τ3
.

Furthermore, similarly as for br, bi decays to zero for high-frequencies, so that Li has
no effect on the high-frequency components.

It is interesting to determine which operator, Lr or Li, is the most important one.
By scaling arguments, we get that ω3β1 is of the order of (ωlc)µ0l

2
c which is smaller

than µ0ω
2 if ωlc � 1. As a result, the effective dispersion for small frequencies is

usually smaller than the effective diffusion. Furthermore, we usually have β1 > 0.
This is the case, for instance, for a Gaussian autocorrelation function of the form

γ0(x) = exp

(

−πx2

l2c

)

The length lc is indeed the correlation length of the medium in the sense of (2.5).
Besides, we have µ0 = lc/2, and β1 = l2c/(2π). The fact that β1 > 0 shows that
the dispersion is reduced compared to the original one: the third-order dispersion
coefficient, that is equal to β0/6 in absence of randomness, takes the value β0/6−β1/2
in presence of random topography. This dispersion reduction will be illustrated in the
numerical simulations reported at the end of the paper. Note, however, that special
configurations can be encountered that do not belong to the general case described
above. One interesting case deserves an aparte. Let us consider for a while that the
process n0 is the derivative of a smooth stationary zero-mean random process ν, such
as a Gaussian random process with Gaussian autocorrelation function. We then have
γ0(u) = −∂2

uE[ν(0)ν(u)], and µ0 = 0 while β1 = −E[ν(0)2] < 0. This shows that,
in this very particular case, the dominant operator is the dispersion operator, and it
enhances the original dispersion.

To sum-up, in the general case where µ0 > 0, if the typical wavelength of the
original pulse f is larger than the correlation radius of the medium, then the early
steps of the effective evolution equation is that of the viscous KdV equation

∂B̃0

∂ξ
=

µ0

4

∂2B̃0

∂τ2
+

3α0

4
B̃0

∂B̃0

∂τ
+ (

β0

6
− β1

2
)
∂3B̃0

∂τ3
.(3.11)

In this case we have an eddy viscosity [32] which looks like a kinematic viscosity.
Both forms of viscosity removes energy from the coherent wavefront in a diffusive like
manner. We can think of a low-pass Gaussian filter. However, the energy filtered
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by a kinematic viscosity is lost forever and can not be recovered. As discussed in a
recent letter [15] the energy filtered by the eddy viscosity corresponds to a conversion
of coherent energy transported by the front pulse into incoherent energy contained
in the small wave fluctuations following the front pulse. The energy filtered by the
eddy viscosity can be recovered along the coherent wavefront by a time-reversal re-
compression using a time-reversal mirror. This surprising result shows that, although
the kinematic and eddy viscosity appear with the same form, they are of very different
nature.

Finally, note that Eq. (3.11) may be only valid during the early steps of the
wave propagation. Indeed, new wavelengths generated by the nonlinearity may lie
in the tail of the function b0(2ω), and it is then necessary to take into account the
complete pseudo-differential operator, and not only its expansion. Note also that we
cannot consider the true white noise case, because a white noise does not fulfill the
boundedness requirement that is necessary to ensure the convergence result. Indeed
the assumption E[n0(0)2] < ∞ (and E[n′

0(0)2] < ∞) is important for the proof of
the convergence result and it is not fulfilled by the white noise whose variance is
infinity. Nevertheless, qualitatively speaking, white noise disorder would affect the
entire spectrum of the pulse as opposed to the case discussed here.

3.2. Rough topography. We now consider the case of a rough topography to
emphasize that the class of topographies, that can be considered, is broader than those
described by the proposition above. It is well known that stepped profiles, joining
regions of different depths, is a difficult problem of interest, since this corresponds
to waves propagating over, for instance, the continental shelf [9, 10]. Also many
times stepped topographies are considered as an approximation strategy for arbitrary
bottom slopes [10, 8]. Thus we will present a case of a randomly stepped profile for
which certain statistical quantities can be computed explicitly. Moreover as in the
linear problems considered in [10, 8] we consider the wide-spacing hypothesis in the
sense that the jumps are separated by a distance of order one.

Namely in this section we assume that the topography is a rough, stepped profile,
in the sense that the random process n0 is bounded and satisfies E[n0(0)2] < ∞, but
it has jumps. For the sake of simplicity, we shall assume that n0 can be modeled by

n0(x) = n∞(−1)Nx ,(3.12)

where (Nx)x≥0 is a Poisson process with intensity 1/lc. This means that i) Nx takes
integer values ii) the increments of the process are independent and iii) the distribu-
tion of Nx is P(Nx = k) = exp(−x/lc)(x/lc)

kk!, k ∈ N. As a result, the process n0 is
Markov, takes values in {−n∞, n∞}, has mean zero, variance n2

∞, and its autocorre-
lation function is

E[n0(x0)n0(x0 + x)] = n2
∞ exp

(

−2|x|
lc

)

.

Note that lc is indeed the correlation length of the medium in the sense of (2.5).
Contrarily to the smooth topography case studied in the previous section, the metric
process M(ξ) is here different from 1 + εn0 because the jumps of n0 are smoothed.
The analysis of the smoothing can be carried out by considering first the case where

n0,1(x) = n∞sgn(x) ,
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which is an elementary jump from −n∞ to n∞. Using the Schwarz-Christoffel formula
[28] we get the following representation for the corresponding metric coefficient:

M1(ξ) = C





cosh( πξ
2
√

β0ε
)

cosh(π(ξ−a)

2
√

β0ε
)





1/2

,

where

C =
√

1 − ε2n2
∞ , a =

2
√

β0ε

π
ln

(

1 + εn∞

1 − εn∞

)

.

An expansion with respect to ε gives to leading order

M1(ξ) = 1 + εn∞ tanh

(

πξ

2
√

β0ε

)

,

which can also be written in the convolution form

M1(ξ) = 1 + εKε ∗ n0,1(ξ) , Kε(ξ) =
π

4
√

β0ε cosh2
(

πξ
2
√

β0ε

) .(3.13)

Since the random process n0 defined by (3.12) is stepwise constant and its jumps are
separated by a distance of order one, the previous analysis gives the leading-order
expression for the metric coefficient M

M(ξ) = 1 + εKε ∗ n0(ξ) ,(3.14)

where Kε is the kernel (3.13). The derivative of M has the form

M ′(ξ) =
πn∞

2
√

β0







1

2

1

cosh2
[

πξ
2
√

β0ε

] +

∞
∑

j=1

(−1)j

cosh2
[

π(ξ−Xj)

2
√

β0ε

]







,

where the Xj are the random positions of the jumps of n0. From a statistical point
of view, X0 = 0 and (Xj −Xj−1)j≥1 is a sequence of independent and identically dis-
tributed random variables with exponential distribution and mean lc. The derivative
M ′(ξ) is therefore a collection of alternatively negative and positive peaks with the
same sech2 shape, amplitude of order 1 and width of order ε. Although the scaling
regime is different, the same analysis as in the previous section can be carried out,
leading to the same result as stated in Proposition 3.2. The real and imaginary parts
of the Fourier transform of the pseudo-differential operator L are here given by

−br(2ω)ω2

4
= − n2

∞lcω
2

8(1 + ω2l2c)
, −bi(2ω)ω2

4
= − n2

∞l2cω

8(1 + ω2l2c)
.

Note that the diffusive and dispersive parts of the pseudo-differential operator do not
vanish when ωlc � 1, but they behave like

−br(2ω)ω2

4
→ −n2

∞
8lc

, −bi(2ω)ω2

4
→ −n2

∞ω

8
.
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As a consequence, when the correlation length lc of the random topography is larger
than the pulse width, then the effective pulse front equation has the form of a KdV
equation with damping:

∂B̃0

∂ξ
− n2

∞
8

∂B̃0

∂τ
= −n2

∞
8lc

B̃0 +
3α0

4
B̃0

∂B̃0

∂τ
+

β0

6

∂3B̃0

∂τ3
.(3.15)

The analysis of the random topography of the form (3.12) shows that the regulariza-
tion effect due to stochastic forcing is more important for a rough topography than
for a smooth one. This analysis is also interesting because it allows an explicit char-
acterization of the regularization effect of the pseudo-damping. Indeed, in the special
case β0 = 0, a closed form expression for the solution of (3.15) can be obtained by
the method of characteristics

∂B̃0

∂τ
(ξ, τ) =

exp(− cξ
lc

)f ′(τ + cξ)

1 − 3α0lc
4c [1 − exp(− cξ

lc
)]f ′(τ + cξ)

,

where f is the initial pulse shape (supposed to be smooth) at ξ = 0, f ′ is its derivative,
and c = n2

∞/8. This expression of the (derivative of the) solution is valid as long as the
denominator does not vanish. As a consequence, the shock formation is determined
by the value of the parameter

S :=
6α0lc
n2
∞

max
τ∈R

fτ (τ) .

1) If S > 1, then a shock occurs at the propagation distance

ξs =
8lc
n2
∞

ln

(

S

S − 1

)

.

2) If S ≤ 1 then the solution of (3.15) is global. The effective damping removes energy
in a fast enough manner to prevent from the shock formation.

4. Large-amplitude, rapidly-varying topography. In this section we still
write the small nonlinear and dispersion parameters as α = ε2α0 and β = ε2β0, but
we assume that the random topography has a correlation length smaller than the
wavelength. The suitable scaling that will give rise to a non-trivial asymptotic regime
consists in taking

n(x) = εpn0(
x

ε2−2p
) ,(4.1)

where n0 is a stationary random process with standard deviation and correlation
length of order 1, and p ∈ (3/8, 1/2). Eq. (4.1) models a rapidly-varying random
topography:

1. The assumption p < 1/2 ensures that the correlation length ε2−2p of the
random bottom is much smaller than the scale ε of the smoothing kernel in
(2.3). The smoothing effect then plays a primary role. Note that, if p > 1/2,
then the correlation length is much larger than the scale of the smoothing
kernel, and the smoothing effect is negligible. The metric coefficient is of the
form M(ξ) = 1 + εpm(ξ/ε2−2p) with m ' n0 to leading order. We then get
the same results as in Section 3.
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2. The restriction p > 3/8 allows us to obtain a universal statistical description
of the metric coefficient M , in the sense that it does not depend on the detail
of the statistics of n0. When going to p < 3/8, the statistics become more
complicated as we shall see below.

3. The amplitude factor εp is chosen so that the integrated covariance of the
random process n is of order ε2, i.e. of the same order as the dispersion
and nonlinearity parameters. The effects of the random perturbations then
become of order one after a propagation distance of order ε−2.

4. In terms of smoothness we assume that there exists a constant C ∈ (0, 1) such
that ‖n0‖∞ ≤ C almost surely, and we require n0 to be differentiable with
E[n′

0(0)2] < ∞. We also assume that the random process possesses strong
mixing properties, more precisely that it is φ-mixing with φ ∈ L1/2 (see [19,
pp. 82-83]).

In this framework, we shall see that the scale of variations of the metric coefficient
M(ξ) is different from the original scale of the topographic coefficient n. This scale
is imposed by the convolution of the fast topographic process with the scaled sech2

function.

4.1. Asymptotic analysis of the conformal mapping. The metric coeffi-
cient M(ξ) is defined by (2.3). It is given by the convolution of a smooth explicit
kernel with the composition of the random process n0 and the real part of the confor-
mal map x(ξ, ζ) evaluated at the unperturbed bottom −

√
β. The goal of this section

is to get an asymptotic expansion of x(ξ,−√
β) as ε → 0. This requires to analyze

the conformal mapping introduced in [27, 28]. We start by considering the problem

∆ξ(x, y) = 0 ,(4.2)

with the boundary condition ξy = 0 at y = 0 and

ξn = ξy +
√

βn′(x)ξx = 0 at y = −
√

β(1 + n(x)) .(4.3)

To solve this problem in the asymptotic ε → 0, we first replace the boundary condition
at the random bottom y = −

√
β(1+n(x)) by a boundary condition at the flat bottom

y = −√
β = −ε

√
β0:

ξy +
√

β0ε
3p−1n′

0(
x

ε2−2p
)ξx = Rε

1 + Rε
2 ,

with

Rε
1 =

√

β0ε
1+pn0(

x

ε2−2p
)

∫ 1

0

ξyy

(

x,−
√

β0ε(1 + θεpn0(
x

ε2−2p
))
)

dθ ,

Rε
2 = β0ε

4pn0n
′
0(

x

ε2−2p
)

∫ 1

0

ξxy

(

x,−
√

β0ε(1 + θεpn0(
x

ε2−2p
))
)

dθ .

The corrective terms Rε
1 and Rε

2 are the Lagrange remainders of the Taylor expansions
of ξy and

√
β0ε

3p−1n′
0(

x
ε2−2p )ξx at y = −ε

√
β0. The solution has the form

ξ(x, y) = ξ0(x) + ξ1(x, y) + ξr(x, y) ,(4.4)

where ξ0(x) = x is the identity describing the conformal map in absence of pertur-
bation, ξ1 is the first order corrective term satisfying the Laplace equation ∆ξ1 =
0, the boundary condition ξ1y = 0 at y = 0 and the boundary condition ξ1y +
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√
β0ε

3p−1n′
0(x/ε2−2p)ξ0x = 0 at y = −

√
β0ε. After a Fourier transform with respect

to x, we find that

ξ1(x, y) =
i
√

β0ε
1+p

2π

∫

cosh(kyε2p−2)

sinh(k
√

β0ε2p−1)
eik x

ε2−2p n̂0(k)dk ,

where the Fourier transform is defined by

n̂0(k) =

∫

n0(x)e−ikxdx .

At the unperturbed bottom y = −
√

β0ε the random correction ξ1 is a zero-mean
process (in x) with autocorrelation function

E

[

ξ1(x0,−ε
√

β0)ξ1(x0 + ε2−2px,−ε
√

β0)
]

=
β0ε

2+2p

2π

∫

γ̂0(k)eikxdk + o(ε2+2p)

= β0ε
2+2pγ0(x) + o(ε2+2p) ,

where

γ0(x) = E[n0(x0)n0(x0 + x)](4.5)

is the autocorrelation function of the process n0, γ̂0 is its Fourier transform which is
proportional to the power spectral density of the random process n0:

E
[

n̂0(k)n̂0(k + k′)
]

= 2πγ̂0(k)δ(k′) .

This result also shows that Rε
1 = O(ε6p−2) and Rε

2 = O(ε9p−3) which means that the
terms Rε

j are higher order corrections in (4.3) in the case p > 1/3. It also shows that

ξr = O(ε4p). Inverting relation (4.4) at the undisturbed bottom, we have

x(ξ,−ε
√

β0) = ξ + ε1+pXε(ξ) + O(ε4p) ,(4.6)

with Xε(ξ) a fast varying (at scale ε2−2p) zero-mean process with standard-deviation
of order one given by

Xε(ξ) = − i
√

β0

2π

∫

cosh(k
√

β0ε
2p−1)

sinh(k
√

β0ε2p−1)
eik ξ

ε2−2p n̂0(k)dk .(4.7)

4.2. Asymptotic analysis of the metric coefficient. The goal of this section
is to prove the following proposition.

Proposition 4.1. The orography-dependent coefficient M(ξ) in the case of a
large-amplitude rapidly-varying random topography (4.1) acquires Gaussian statistics
in the limit ε → 0, with the asymptotic autocorrelation function

1

ε
E [(M(ξ0) − 1) (M(ξ0 + εξ) − 1)]

ε→0−→ γm(ξ) ,(4.8)

where

γm(x) =
πµ0√

β0

πx
2
√

β0

cosh( πx
2
√

β0

) − sinh( πx
2
√

β0

)

sinh3( πx
2
√

β0

)
,(4.9)
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and µ0 is the integrated correlation function of the random topography

µ0 =

∫ ∞

0

E[n0(0)n0(x)]dx .

Proof. We shall prove the proposition by showing that, for any ξ ′ and for any
smooth test function g, the sequence of random variables

Gε
ξ′ (g) =

∫ [

1√
ε

(M(ξ′ + εξ) − 1)

]

g(ξ)dξ(4.10)

converges in distribution as ε → 0 to a Gaussian random variable whose variance
can be identified. This convergence result will be obtained by computing the limiting
moments of Gε

ξ′(g).
From the definition (2.3) of the coefficient M , the complete expression of Gε

ξ′(g)
is

Gε
ξ′(g) =

π

4
√

β0ε3/2−p

∫ ∫

n0(
x(ξ0)
ε2−2p )g(ξ)

cosh2
[

π
2
√

β0ε
(ξ0 − ξ′ − εξ)

]dξ0dξ .(4.11)

By (4.6), we first note that

x(ξ0)

ε2−2p
=

ξ0

ε2−2p
+ O(ε3p−1) .

Since n′
0 can be bounded (in quadratic mean), it is possible to substitute n0(

ξ0

ε2−2p )

for n0(
x(ξ0)
ε2−2p ) in (4.11) up to an error of order εp−3/2 × ε3p−1 × ε = ε4p−3/2. Since

p > 3/8, this error is negligible and we get that, to leading order in ε,

Gε
ξ′(g) =

π

4
√

β0ε3/2−p

∫ ∫

n0(
ξ0

ε2−2p )g(ξ)

cosh2
[

π
2
√

β0ε
(ξ0 − ξ′ − εξ)

]dξ0dξ .

We next perform the change of variable ξ0 7→ u0 = (ξ0 − ξ′)/ε2−2p:

Gε
ξ′(g) =

πε1/2−p

4
√

β0

∫ ∫

n0(
ξ′

ε2−2p + u0)g(ξ)

cosh2
[

π
2
√

β0

(ε1−2pu0 − ξ)
]du0dξ .

We denote ε′ = ε1−2p. Remember that p < 1/2 so that ε′ goes to zero as ε goes to
zero. We fix q ∈ N and we consider the 2q-th moment. Using the stationarity of the
process n0, we have:

E
[

Gε
ξ′(g)2q

]

=

(

π2ε′

16β0

)q ∫

ξ1,···,ξ2q

∫

u1,···,u2q

E[
∏2q

j=1 n0(uj)]
∏

j g(ξj)
∏

j cosh2
[

π
2
√

β0

(ε′uj − ξj)
]dujdξj .

The integrand in this equation is symmetric with respect to the set (ui)i=1,···,2q, so
we can write

E
[

Gε
ξ′ (g)2q

]

=

(

π2ε′

16β0

)q

(2q)!

∫

ξ1,···,ξ2q

∫

u1<···<u2q

E[
∏2q

j=1 n0(uj)]
∏

j g(ξj)
∏

j cosh2
[

π
2
√

β0

(ε′uj − ξj)
]dujdξj .



16 J. Garnier, J. C. Muñoz Grajales, and A. Nachbin

By setting u2i−1 = v2i−1/ε′ and u2i = u2i−1 + v2i:

E
[

Gε
ξ′(g)2q

]

=

(

π2

16β0

)q

(2q)!

∫

ξ1,···,ξ2q

∫

v1<v1+ε′v2<v3<v3+ε′v4<···<v2p−1<v2q−1+ε′v2q

× E
[
∏q

i=1 n0(
v2i−1

ε′ )n0(
v2i−1

ε′ + v2i)
]
∏q

i=1 g(ξ2i−1)g(ξ2i)
∏q

i=1 cosh2
[

π
2
√

β0

(v2i−1 − ξ2i−1)
]

cosh2
[

π
2
√

β0

(v2i−1 + ε′v2i − ξ2i)
]

2q
∏

i=1

dvidξi .

We now use the strong mixing properties of the process n0 which implies that, for
any v1 < v3 < · · · < v2q−1 and for any v2, · · · , v2q ≥ 0:

E

[

q
∏

i=1

n0(
v2i−1

ε′
)n0(

v2i−1

ε′
+ v2i)

]

ε→0−→
q
∏

i=1

γ0(v2i) ,

where γ0(x) = E[n0(x0 + x)n0(x0)]. As a result,

E
[

Gε
ξ′(g)2q

] ε→0−→
(

π2

16β0

)q

(2q)!

∫

ξ1,···,ξ2q

∫

v1<v3<···<v2q−1

∫

v2>0,···,v2q>0

×
q
∏

i=1

γ0(v2i)g(ξ2i−1)g(ξ2i)

cosh2
[

π
2
√

β0

(v2i−1 − ξ2i−1)
]

cosh2
[

π
2
√

β0

(v2i−1 − ξ2i)
]dv2i−1dv2idξ2i−1dξ2i

The multiple integral is symmetric with respect to the set (v2i−1)i=1,···,q , so we can
write

E
[

Gε
ξ′(g)2q

] ε→0−→
(

π2

16β0

)q
(2q)!

q!

∫

ξ1,···,ξ2q

∫

v1,v3,···,v2q−1

∫

v2>0,···,v2q>0

×
q
∏

i=1

γ0(v2i)g(ξ2i−1)g(ξ2i)

cosh2
[

π
2
√

β0

(v2i−1 − ξ2i−1)
]

cosh2
[

π
2
√

β0

(v2i−1 − ξ2i)
]dv2i−1dv2idξ2i−1dξ2i .

This multiple integral can now be factorized:

E
[

Gε
ξ′(g)2q

] ε→0−→
(

π2

16β0

)q
(2q)!

q!

×





∫

v1

∫

v2>0

∫

ξ1,ξ2

γ0(v2)g(ξ1)g(ξ2)

cosh2
[

π
2
√

β0

(v1 − ξ1)
]

cosh2
[

π
2
√

β0

(v1 − ξ2)
]dv1dv2dξ1dξ2





q

.

By integrating the integral with respect to v1 and v2, we get:

E
[

Gε
ξ′(g)2q

] ε→0−→ (2q)!

2qq!
×
(∫

ξ1,ξ2

γm(ξ1 − ξ2)g(ξ1)g(ξ2)dξ1dξ2

)q

,(4.12)

where γm is given by (4.9).

Let us now consider an odd moment of the form E

[

Gε
ξ′(g)2q+1

]

, where q is a

nonnegative integer. This moment involves the expectation of the product of an
odd number of terms n0(x(ξ′)/ε′ + ui), and following the same lines as the previous
analysis, we get that this expectation converges to 0 as ε → 0, so that we obtain

E
[

Gε
ξ′ (g)2q+1

] ε→0−→ 0 .(4.13)
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The limits (4.12-4.13) are the moments of a zero-mean Gaussian random variable with
variance

∫

ξ1,ξ2

γm(ξ1 − ξ2)g(ξ1)g(ξ2)dξ1dξ2, thus Gε
ξ′ (g) converges in distribution to

this random variable. This holds true for any test function g. As a result, this shows
that (ε−1/2(M(ξ′ + εξ) − 1))−∞<ξ<∞ converges to a Gaussian process. The limiting
Gaussian process has zero-mean and its autocorrelation function is γm.

The computations carried out in this section can be used to prove a numerical
observation reported in the literature, and also to comment on the range of validity
of Proposition 4.1. From (2.3) and (4.6) the expected value of the metric coefficient
M can be expanded as

E [M(ξ)] = 1 +
πε4p−2

4
√

β0

∫

E[n′
0(ξ0ε

2p−2)Xε(ξ0)]

cosh2
[

π
2
√

β0ε
(ξ − ξ0)

]dξ0 + · · ·

where Xε is defined by (4.7). In the asymptotic ε → 0, we obtain

E [M(ξ)] = 1 − ε4p−1

√
β0

2π

∫

γ̂0(k)|k|dk + · · ·(4.14)

where γ̂0 is the Fourier transform of the autocorrelation function (4.5) of the process
n0, which is nonnegative by the Wiener-Khintchine theorem. This shows that the first-
order correction to the expectation of the metric coefficient is negative valued, which
means that the effective bottom is located at a depth < 1. The fact that a zero-mean
varying random topography can give rise to a non-zero average depth through the
conformal mapping was already pointed out in [26]. In our setting p ∈ (3/8, 1/2), this
effect is negligible. However, as p → 3/8, the expansion (4.14) shows that the average
value of M − 1 becomes of order ε1/2, which is of the same order as the standard
deviation of the asymptotic zero-mean Gaussian process described in Proposition
4.1. This remark shows that the situation becomes more complicated, and it will be
addressed in a future work.

4.3. Asymptotic analysis of the front pulse. As shown in the previous sec-
tion, in the regime where the random topographic coefficient n(x) has the form (4.1)
with p ∈ (3/8, 1/2), the metric coefficient M is asymptotically Gaussian distributed
with the autocorrelation function (4.8-4.9). Accordingly we can write

M(ξ) = 1 + ε1/2m(
ξ

ε
) ,(4.15)

where m is a zero-mean smooth stationary random process with the autocorrelation
function γm. The variance of m is E[m(0)2] = γm(0) = πµ0/(3

√
β0). We also know

that m is Gaussian distributed, but this hypothesis is not used in the derivation of the
results of this section. The expression (4.15) is the leading-order term of the random
coefficient M(ξ). As is usual in the asymptotic analysis of randomly forced ODEs,
the higher-order zero-mean corrections play no role and vanish in the limit ε → 0.
The deterministic corrections such that (4.14) survive in the limit ε → 0, and they
take here the form of a deterministic shift. This can be explained by the fact that the
average bottom, and therefore the average velocity, are modified. We will not discuss
further this point as we are mainly interested in the wave deformation in this paper.

We now revisit the derivation of the effective equation for the front pulse in the
case where the metric coefficient has the form (4.15). We first expand the system
by keeping the leading order terms in ε (i.e., those which play a role for propagation
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distances of the order of ε−2)

∂

∂ξ

(

A
B

)

= Q(ξ)
∂

∂t

(

A
B

)

+
1

2ε1/2
m′(

ξ

ε
)

(

1 −1
−1 1

)(

A
B

)

+ε2 α0

4

(

3A + B 0
0 A + 3B

)

∂

∂t

(

A
B

)

+ε2 β0

6

(

−1 0
0 1

)

∂3

∂t3

(

A
B

)

+ ε1/2 β0

12
m′′(

ξ

ε
)

(

−1 1
−1 1

)

∂

∂t

(

A
B

)

,(4.16)

where

Q(ξ) =

(

1 + ε1/2

2 m( ξ
ε ) ε1/2

2 m( ξ
ε )

− ε1/2

2 m( ξ
ε ) −1− ε1/2

2 m( ξ
ε )

)

.(4.17)

The third and fourth terms (nonlinear and dispersive) of the right-hand side of (4.16)
are similar to the ones appearing in (3.4), but the other terms are rather different.
In particular the second term involves highly fluctuating random components, with
amplitudes of order ε−1/2, and the asymptotic analysis requires more elaborate tools
than in the slowly varying case addressed in the previous section, where the amplitude
of the random fluctuations was of order ε. An efficient and rigorous study can be
performed in absence of nonlinearity, and we present this study here below.

We assume for a while that α0 = 0. We apply a Fourier transform with respect
to time

Â(ξ, ω) =

∫

A(ξ, t)eiωtdt, B̂(ξ, ω) =

∫

B(ξ, t)eiωtdt ,(4.18)

so that the PDE (4.16) can be reduced to an infinite set of ordinary differential
equations (ODEs) for the the modes Â and B̂:

∂

∂ξ

(

Â

B̂

)

=

{

iωQ(ξ) +
1

2
√

ε
m′(

ξ

ε
)

(

1 −1
−1 1

)

−iω3ε2 β0

6

(

−1 0
0 1

)

+ iωε1/2 β0

12
m′′(

ξ

ε
)

(

−1 1
−1 1

)}(

Â

B̂

)

.(4.19)

The boundary conditions corresponding to a right-going pulse coming from the ho-
mogeneous half-space ξ < 0 are

B̂(0, ω) = f̂(ω), Â(L/ε2, ω) = 0 .

The problem, from the analytic point of view, is very simple because each frequency-
dependent pair of ODEs is uncoupled (from the rest) and linear. However, from the
statistical point of view, these ODEs are coupled because they share the same process
m (and its derivatives). The analysis of the correlation between different frequency
components plays a central role in the convergence result.

We next rescale the propagation distances and introduce the left and right-going
modes centered along the deterministic characteristic lines:

Âε
1(ξ, ω) = Â(

ξ

ε2
, ω) exp

(

−iω
ξ

ε2

)

, B̂ε
1(ξ, ω) = B̂(

ξ

ε2
, ω) exp

(

iω
ξ

ε2

)

,
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so that the system now has the form

∂

∂ξ

(

Âε
1

B̂ε
1

)

=

{

1

2ε5/2
m′(

ξ

ε3
)

(

1 −e−2iω ξ

ε2

−e2iω ξ

ε2 1

)

+
iω

2ε3/2
m(

ξ

ε3
)

(

1 e−2iω ξ

ε2

−e2iω ξ

ε2 −1

)

− iω3β0

6

(

−1 0
0 1

)

+
iωβ0

12ε3/2
m′′(

ξ

ε3/2
)

(

−1 e−2iω ξ

ε2

−e2iω ξ

ε2 1

)}

(

Âε
1

B̂ε
1

)

.(4.20)

The first term of the right-hand side, of the form ε−5/2q(ξ/ε3), is not written in a
form suitable for the application of a diffusion-approximation theorem, that requires
a scaled random term of the form ε−p/2q(ξ/εp). It is possible to rewrite the first term
in a more convenient form. Noting that

1

ε5/2
m′(

ξ

ε3
)e−2iω ξ

ε2 =
d

dξ

{

ε1/2m(
ξ

ε3
)e−2iω ξ

ε2

}

+
2iω

ε3/2
m(

ξ

ε3
)e−2iω ξ

ε2 ,

1

ε5/2
m′(

ξ

ε3
)e2iω ξ

ε2 =
d

dξ

{

ε1/2m(
ξ

ε3
)e2iω ξ

ε2

}

− 2iω

ε3/2
m(

ξ

ε3
)e2iω ξ

ε2 ,

we can rewrite the system as

∂

∂ξ

(

Âε
1

B̂ε
1

)

= [Mε(ξ) + Nε(ξ)]

(

Âε
1

B̂ε
1

)

− iω3β0

6

(

−1 0
0 1

)(

Âε
1

B̂ε
1

)

,(4.21)

where

Mε(ξ) =

(

Mε
1 (ξ) Mε

2 (ξ)

M
ε

2(ξ) M
ε

1(ξ)

)

, Nε(ξ) =

(

Nε
1 (ξ) Nε

2 (ξ)

N
ε

2(ξ) N
ε

1(ξ)

)

,

Mε
1 (ξ) =

iω

2ε3/2

[

m(
ξ

ε3
) − β0

6
m′′(

ξ

ε3
)

]

, Nε
1 (ξ) =

ε1/2

2

d

dξ

{

m(
ξ

ε3
)

}

,

Mε
2 (ξ) =

−iω

2ε3/2

[

m(
ξ

ε3
) − β0

6
m′′(

ξ

ε3
)

]

e−2iω ξ

ε2 , Nε
2 (ξ) = −ε1/2

2

d

dξ

{

m(
ξ

ε3
)e−2iω ξ

ε2

}

Note that the scaling of the matrix M ε is appropriate for the application of an
diffusion-approximation theorem, while the matrix N ε is the derivative of a process
of order

√
ε.

The quantity that we are interested in is the front pulse:

B(
L

ε2
,

L

ε2
+ t) =

1

2π

∫

B̂1(
L

ε2
, ω)e−iωtdω .(4.22)

We thus recover the situation studied in [6], which dealt with the hyperbolic acoustic
equations. However, there are three differences:
1) The non-diagonal terms in the matrix M ε(ξ) have components β0m

′′. This differ-
ence does not present any difficulty and the analysis goes exactly along the same lines
as in absence of these terms.
2) There exists a second matrix N ε (which was absent in [6]). This matrix can be
incorporated in the convergence result, and it turns out that it gives a vanishing
contribution in the asymptotic ε → 0 because it is the derivative of a process with
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amplitude
√

ε.
3) The scalings are different from the ones encountered in [6]. In the paper [6], the
scaled ODE is of the form

dXε

dz
=

1

ε
F
(

q(
z

ε2
),

z

ε
, Xε

)

,

where q is a stationary random process, (q, h, x) 7→ F (q, h, x) is a smooth function,
periodic with respect to h, and satisfying the centering condition E[F (q(0), h, x)] = 0
for all h and x. The asymptotic of the solution Xε of this equation is given by a
standard diffusion-approximation theorem [31]. In our case, we can set ε̃ = ε3/2 so
that the ODE is of the form

dX ε̃

dz
=

1

ε̃
F
(

q(
z

ε̃2
),

z

ε̃2/3
, X ε̃

)

,

with X ε̃ = (Âε
1, B̂

ε
1), q = (m, m′′), and F is given by Eq. (4.21). We can then make

use of the generalized multi-scale approximation-diffusion theorem given in [14] to get
the limit. Finally, we obtain that B(L/ε2, τ +L/ε2) converges as ε → 0 to the process

1

2π

∫

f̂(ω)e
iω

√
µm√
2

WL−ω2 µm
4

L−iω3 β0

6
L
e−iωτdω

where WL is a standard Brownian motion, and

µm =

∫ ∞

0

E

[(

m(0) − β0

6
m′′(0)

)(

m(u) − β0

6
m′′(u)

)]

du .

Using the relations E[m′′(0)m(u)] = E[m(0)m′′(u)] = γ′′
m(u) and E[m′′(0)m′′(u)] =

γ′′′′
m (u), we get that

µm =

∫ ∞

0

γm(u)du +
β0

3
γ′

m(0) − β2
0

36
γ′′′

m(0) =

∫ ∞

0

γm(u)du .(4.23)

Here we have also used the fact that the autocorrelation function γm is a smooth even
function, so that the odd-order derivatives of γm at 0 are vanishing. Using the explicit
expression (4.9) of γm and integrating (4.23), we find that µm is equal to µ0, which is
the integrated autocorrelation function of the process n0 describing the fluctuations of
the bottom of the channel. Going back to the time domain, and taking into account
the nonlinear term, we get the following proposition.

Proposition 4.2. Up to a random shift, the front pulse Bε(ξ, τ) := B(ξ/ε2, τ +
ξ/ε2) converges to the solution B̃0 of the deterministic equation

∂B̃0

∂ξ
=

µ0

4

∂2B̃0

∂τ2
+

3α0

4
B̃0

∂B̃0

∂τ
+

β0

6

∂3B̃0

∂τ3
,(4.24)

starting from B̃0(0, τ) = f(τ).
Note that the variance of the random time delay as well as the effective noise-

induced diffusion depend only on the parameter µ0 which is the integrated autocor-
relation function of the process n0. The result stated in the proposition has been
proved in the linear case α = 0, but not in the general case α > 0. Indeed, the
nonlinearity is not easy to manipulate in the Fourier domain. However, in the scaled
regime addressed in this section, the nonlinearity is of order one, so we can expect and
conjecture that the result is true and we observe it numerically, as shown in Section
6.
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4.4. Discussion. In this brief section we summarize the main results exhibited
in Section 4. We use here the original units, i.e. we do not write ε. In the weakly
nonlinear, weakly dispersive regime, when the bottom n(x) fluctuates rapidly within a
certain scale range as indicated in the beginning of Section 4, the physical orography
h(x) = 1 + n(x) is replaced in the terrain-following system by a metric coefficient
M(ξ) that obeys Gaussian statistics with the autocorrelation function

E [(M(ξ0) − 1)(M(ξ0 + ξ) − 1)] =
πµ√

β

πξ
2
√

β
cosh( πξ

2
√

β
) − sinh( πξ

2
√

β
)

sinh3( πξ
2
√

β
)

,(4.25)

where µ =
∫∞
0 E[n(0)n(x)]dx is the only parameter that remains from the random

topography. This result shows that the wave dynamics acquires a universal behavior
driven by a random Gaussian process with a specific autocorrelation function. The
power spectral density of this process, given by the Fourier transform of the autocor-
relation function (4.25), is

P (k) = µ

( √
βk

sinh(
√

βk)

)2

.

Furthermore, if we restrict our attention to the coherent front, then the picture be-
comes even simpler. Up to a random time shift, the dynamics of the coherent front
pulse is governed by a deterministic diffusive KdV-type equation whose diffusion co-
efficient depends only on the randomness through the parameter µ.

5. Solitary pulse dynamics. In this section we study the front pulse dynamics
driven by the effective equation (3.11) or (4.24):

∂B

∂ξ
=

µ

4

∂2B

∂τ2
+

3α

4
B

∂B

∂τ
+

β

6

∂3B

∂τ3
(5.1)

and we focus our attention on the role of nonlinearity. Indeed the unperturbed KdV
equation ((5.1) with µ = 0) supports soliton solutions, and it has been recognized in
different situations that the soliton dynamics in presence of random perturbations can
be quite different from the dynamics of a small-amplitude pulse with the same profile
(see for instance the review [2] and references therein). For the sake of a quantitative
analysis we introduce the pulse energy, or L2-norm, E(ξ) =

∫

B2(ξ, τ)dτ .

5.1. Linear regime. We first study the pulse dynamics in absence of nonlinear-
ity and dispersion, that is to say the heat equation (5.1) with α = β = 0. We consider
a sech2 profile

f(τ) = a0sech
2(κ0τ)

with amplitude a0 and energy E0 = 4a2
0/(3κ0). We can solve the effective equation

in the Fourier domain, and using the Fourier representations of the pulse amplitude
and energy

a(ξ) =
1

2π

∫

B̂(ξ, ω)dω, E(ξ) =
1

2π

∫

|B̂|2(ξ, ω)dω ,

we get that the pulse amplitude and energy evolve as

a(ξ) = a0F (
ξ

ξ0
), E(ξ) = E0G(

ξ

ξ0
) ξ0 =

1

µκ2
0

,(5.2)
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where

F (Z) =
1

2

∫

e−
Zw2

4

w

sinh(πw
2 )

dw, G(Z) =
3π

8

∫

e−
Zw2

2

w2

sinh2(πw
2 )

dw .(5.3)

We have F (0) = 1 and F ′(0) = −1/2, which gives an estimate of the initial decay
rate of the sech2 pulse amplitude.

5.2. Soliton decay. We now assume that the initial pulse corresponds to a
soliton solution of the unperturbed KdV equation ((5.1) with µ = 0):

f(τ) =
8β

3α
κ2

0sech
2(κ0τ) ,

with initial amplitude a0 = 8βκ2
0/(3α) and energy E0 = 256β2κ3

0/(27α2). In the
presence of diffusion we use a perturbation theory for the soliton dynamics based
on the Inverse Scattering Transform and we get that the initial soliton looses energy
through the emission of continuous radiation. The soliton parameter evolves as [17]

dκ

dξ
=

µ

8

∫

∂2
τ [sech2(κτ)]sech2(κτ)dτ ,(5.4)

starting from κ(0) = κ0. By computing the integral we get the simple ODE dκ/dξ =
−2µκ3/15. By integrating this equation, we find that the soliton amplitude and
energy decay as

a(ξ) =
a0

1 + 4ξ
15ξ0

, E(ξ) =
E0

(

1 + 4ξ
15ξ0

)3/2
.(5.5)

where ξ0 = 1/(µκ2
0). Note that 4/15 ' 0.27. By comparing the amplitude decay rate

of the soliton (5.5) with the one of the linear hyperbolic pulse (5.2), we observe that
the soliton is initially more stable than the corresponding linear pulse. However, as the
propagation distance increases, the soliton looses its stability and eventually becomes
less stable than the linear pulse (see figure 5.1). Indeed, the soliton stability results
from a balance between dispersion and nonlinearity. Therefore, when the soliton
amplitude decays, the nonlinear effects are reduced and it is natural to expect that
the random and dispersive effects are not compensated for anymore. The asymptotic
decay rate of the soliton is 1/ξ, while the asymptotic decay rate of the linear pulse is
1/

√
ξ.

6. Numerical simulations. In this section we present numerical experiments
that illustrate theoretical results obtained in this paper. We assume here that the
random process n is continuous piecewise linear:

n(x) =
∑

j

1[jlc,(j+1)lc)(x) (ηj + (ηj+1 − ηj)(x/lc − j)) ,

where the correlation length is lc and (ηj)j≥0 is a collection of independent and identi-
cally distributed random variables with uniform distribution over (−σ, σ). As a result
the effective diffusion coefficient is µ = σ2lc/6 and

γ̂(k) =
4σ2lc

3

[1 − cos(klc)]
2

(klc)4
.
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Fig. 5.1. Pulse amplitude versus propagation distance for a soliton in presence of nonlinearity,
dispersion, and randomness (dashed lines) and for a sech2 pulse in presence of randomness and in
absence of nonlinearity and dispersion (solid line). Here ξ0 = 1/(µκ2

0
). The crossing of the two

lines occurs at the critical distance 4.2ξ0, when the pulse amplitude has been reduced by about 50%.
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Fig. 6.1. The thin solid line plots a realization of the process n, the thick dotted solid line is
the corresponding realization of the process M . Here lc = 0.5, σ = 0.5, β = 0.25.

In the first series of numerical experiments we have generated several realizations
of the random process n(x) and we have analyzed the statistical properties of the
corresponding metric coefficient M(ξ) (see Figure 6.1 for a realization). In particular
we compare in Figure 6.2 the numerical average of M with the theoretical prediction
(4.14) for the statistical mean of M , which has here the form

E[M(ξ)] ' 1 −
√

βσ2

lc

4 ln 2

3π
(6.1)

We consider different sets of values for the parameters lc, σ, and β. It appears that
the formula (6.1) for the theoretical mean is in good agreement with the numerical
averages as long as lc is not too small compared to

√
β. In case c, the expansion that

leads to formula (6.1) is not valid anymore. The Monte Carlo (Schwarz-Christoffel
mapping) experiments for the metric term were done with the Schwarz-Christoffel
Toolbox [7].

Two other sets of numerical experiments have been performed to study wave
propagation in different regimes. In these simulations we used σ = 0.5 and lc = 0.6.
First we present a Monte Carlo simulation illustrating the behavior predicted in figure
5.1. Below we provide a physical interpretation for this figure. Then we consider the
issue of the effective reduction of the dispersion level, due to randomness, using the
classical member of the Boussinesq family of systems (2.1-2.2), namely for the relative
depth value y2

0 = 1/3. Over a flat bottom (M ≡ 1) this system reduces to the classical
dimensionless (depth-averaged) Boussinesq system [27, 34].
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a) lc = 0.5, σ = 0.5, β = 0.25 b) lc = 0.25, σ = 0.5, β = 0.25
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c) lc = 0.1, σ = 0.5, β = 0.25 d) lc = 0.1, σ = 0.5, β = 0.01

Fig. 6.2. Particular realizations of the process n are plotted in dotted lines. The straight lines
represent the theoretical values (6.1). The dashed lines plot the averages of 60 realizations of the
process M for (a) and (b) and 30 realizations for (c) and (d).

For the first set of experiments we use a new spectral scheme developed for system
(2.1-2.2), with y2

0 = 2/3. Details for this numerical scheme will be published elsewhere.
The second set of numerical experiments were performed with the same predictor-
corrector finite difference scheme as in [23, 24, 25] Details can be found in these
references.

On the one hand, we have performed numerical simulations with evanescent non-
linearity and dispersion α = β = 0 and with an input sech2 pulse with initial width
κ0 =

√
3/2. In this linear regime the theoretical decay for the pulse amplitude is given

by (5.2) with ξ0 = 1/(µκ2
0) = 53.3. This theoretical formula can be compared directly

with the results of the numerical simulations because the asymptotic analysis has
shown that the variable ξ is equivalent to leading order to the propagation distance
or to the propagation time (the velocity is normalized to one). On the other hand,
we have carried out simulations in the nonlinear dispersive regime α = β = 0.03, and
we have considered an input sech2 pulse with initial width κ0 =

√
3/2 and amplitude

corresponding to a soliton. The theoretical amplitude decay is then (5.5). Further-
more the critical distance at which the soliton becomes less stable than the equivalent
linear pulse is 4.2ξ0 ' 225. The results of the simulations are presented in figure 6.3.
The simulations have captured the amplitude decay of the sech2 profile in both the
linear hyperbolic and the solitary wave (namely weakly dispersive, weakly nonlinear)
regimes. To reduce the residual fluctuations (since the parameter ε is not very small
in the simulations) we perform several numerical experiments over different realiza-
tions of the bottom topography, and averaged the amplitude over these realizations.
The final result is presented in figure 6.3 which matches very well with the theoretical
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result given in figure 5.1.
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Fig. 6.3. The solid line corresponds to a linear nondispersive (α = β = 0) wave, having a
sech2 profile, as the solitary wave. A total of 17 realizations for the bottom topography were used
in computing the averaged amplitude decay for the wavefront. The dotted line corresponds to the
solitary wave (namely with α = β = 0.003). A total of 19 realizations of the bottom topography were
used in computing the corresponding averaged amplitude decay for the wavefront.

An interesting physical intrepretation can be given to the behavior described in
figure 5.1, obtained theoretically, and illustrated numerically. We observe that after
the soliton’s amplitude has decayed beyond a certain threshold (and therefore the wave
is in the linear dispersive regime) then it decays faster than its hyperbolic counterpart.
A physical conclusion that one can extract from this fact is that monochromatic signals
are converted faster into noise (i.e. into random fluctuations) than when travelling
together with other Fourier modes. In other words, the linear hyperbolic sech2 profile
is more resistant to the random environment than its dispersive counterpart since all
Fourier modes travel at the same phase speed. Once the solitary wave enters the
linear regime (due to its amplitude decay) a nearly monochromatic oscillatory tail
develops behind the wavefront [34] and this tail is more rapidly converted into noise.

Next we move on to our second set of experiments to provide a numerical illus-
tration of the effective dispersion reduction due to the random environment. In figure
6.4 we can see that the effective dispersion, due to the presence of randomness, is
smaller than the original dispersion level of the model. Great part of the energy con-
tained in the tail of the Airy function-type solution [23, 25] has been converted into
a randomly fluctuating (transmitted and reflected) signal. In the linear regime, one
mathematical manifestation of this phenomenon is through the ODA filter (namely a
Gaussian kernel [11, 23]) that removes higher frequency components from the leading
wavefront. Hence the wavefront appears to be under less dispersion, by noting that
it has a shorter and more rapidly decaying, deterministic oscillatory tail.

But in this paper we are mostly concerned with the nonlinear regime. In figure
6.5 we can see the same effect but now in the nonlinear regime. In this case the
effective decrease of dispersion is presented/described in a different manner. Over a
flat bottom a solitary wave is a travelling wave due to the perfect balance between
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dispersion and nonlinearity. In the presence of randomness the effective dispersion
is smaller than that of the underlying model, hence smaller than the nonlinearity
level. In figure 6.5 this is clearly observed through the steepening of the solitary
wavefront. The steepening is a manifestation of a lack of balance between nonlinearity
and dispersion, now effectively reduced by randomness.
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Fig. 6.4. Reduction of the effective dispersion in the presence of randomness. For the case of a
flat bottom we have the top graph (a): Initial profile (dashed line) and a long time propagated pulse
developing into an Airy function (solid line). For the case of a random topography (b): solid line is
the ODA approximation from [23] and the dashed line is the numerical solution of the Boussinesq
system (with y2

0
= 1/3). The leading deterministic pulse appears to be under less dispersion than

the solution given in part (a), for a flat bottom, where the deterministic oscillatory tail is longer
and decaying at a slower rate.
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