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1 Introduction

Recent papers devoted to the study of CMC surfaces in certain homogeneous
three-manifolds are based in the description of these ambient spaces as Rie-
mannian submersions over constant curvature model surfaces. For instance,
this is the case of [1], [3], [7] and [8]. In particular, in [3] the authors obtained
CMC graphs in the Heisenberg space regarding it as a submersion over R

2

fibered by geodesic flow lines of a Killing vector field. The goal in these works
is to extend classical results about CMC surfaces in Euclidean space as well
as more recent results in nonflat space forms to a more general setting.

One of the main issues in developing a theory for CMC hypersurfaces in
general Riemannian ambients is the existence of examples. Methods which
rely mainly on geometric constructions may fail if the ambient space lacks
appropriate symmetries or structures. However, the problem may be solvable
once it is reformulated in analytical terms as the existence of CMC graphs

∗Partially supported by Procad, CNPq and Faperj.
†Partially supported by CNPq and FUNCAP.
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for a suitable notion of graph. This is the case of Riemannian manifolds
carrying a Killing vector field where the natural notion of Killing graph has
been defined under additional assumptions.

The Dirichlet problem for prescribed mean curvature Killing graphs in
ambient spaces endowed with a Killing field with integrable orthogonal dis-
tribution was first solved for CMC surfaces in [6]. Then, it was extended
in [5] to hypersurfaces with prescribed mean curvature function. Under the
integrability assumption, the ambient manifold has a warped product struc-
ture with one of the factors giving rise to a totally geodesic hypersurface
foliation.

In this paper, we consider a generalization of [3] and [5] to Riemannian
submersion π : M̄n+1 → Mn whose vertical fibers are given by flow lines of a
Killing field. Thus, the normal distribution to the Killing field may fail to be
integrable. Our aim is to show that a natural setting of the Dirichlet problem
for Killing graphs (defined in Section 2) with prescribed mean curvature
function in this context is to consider these as leaves transversal to a solid
cylinder of the flow lines that project on a compact domain on the base
of the submersion. Using this approach, we give a unified proof of known
and completely new existence results in a wide range of ambient Riemannian
manifolds. Among the ambients for which this paper applies, we should
mention higher-dimensional Heisenberg spaces and odd-dimensional spheres
submersed in complex projective spaces.

The existence part of our result is proved using the continuity method
for quasilinear elliptic PDE. In order to obtain apriori estimates essential to
this method we use Killing cylinders as barriers. Given a domain Ω in M
with compact closure and boundary Γ, the Killing cylinders over Γ and Ω̄
are, respectively, the subsets K = π−1(Γ) and M0 = π−1(Ω̄). We denote by
Hcyl the inward mean curvature of K and by RicM̄ the Ricci tensor of M̄ .

With the above notations we have the following result.

Theorem 1. Let Ω ⊂M be a domain with compact closure and C2,α bound-

ary. Suppose that Hcyl > 0 and infM̄ RicM̄ ≥ −n infΓH
2
cyl. Let H ∈ Cα(Ω̄)

and φ ∈ C2,α(Γ) be given functions and ι : Ω̄ → M0 ⊂ M̄ be a C2,α immer-

sion transversal to the vertical fibers such that π ◦ ι = id|Ω̄. If

sup
Ω

|H| ≤ inf
Γ
Hcyl,

then there exists a unique function u ∈ C2,α(Ω̄) satisfying u|Γ = φ whose

Killing graph Σ has mean curvature H.
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The hypothesis on the existence of an immersion ι is used simultaneously
to introduce a set of coordinates well suited to the problem and to define
properly the notion of Killing graph. In terms of these coordinates, it may
be rendered evident that the ambient metric is stationary. Moreover, ι(Ω̄) is
used as barrier to producing an initial minimal graph by the direct method in
Calculus of Variations. In higher-dimensional Heisenberg spaces there exists
a minimal leaf transverse to the flow lines of the vertical vector field. Thus,
in this particular case there is no need of the hypothesis. By contrast, if we
consider the example of odd-dimensional spheres submersed in the complex
projective spaces, it is not guaranteed that always exist such minimal graphs
with respect to the Hopf fibers.

We remark that submersions with totally geodesic fibers constitute an
important example where we may construct initial Killing graphs. In fact, if
we also assume that the Killing cylinder M0 over Ω̄ is geodesically complete,
then geodesic cones with boundary in K and vertex at the mean convex side
of K may be taken, after smoothing around the vertex, as initial Killing
graphs. Thus, we may rule out the hypothesis in this case.

This paper is organized as follows. In Section 2, we fix notation and made
precise the notion of Killing graph. We deduce the mean curvature equation
and define adapted and basic reference frames crucial in the subsequent anal-
ysis. In Section 3, we present some basic geometry of Killing cylinders. In
Sections 4 and 5 we construct analytical barriers to obtain height and bound-
ary gradient estimates. Section 6 is devoted to the proof of interior gradient
estimates based in the technique of normal perturbation of the graph due
to Korevaar [13]. The continuity method and the existence of the minimal
initial solution are presented in the final section.

2 Killing graphs

Let π : M̄n+1 → Mn be a Riemannian submersion such that the leaves of
the vertical foliation are the trajectories of a nonsingular Killing vector field
denoted by Y ∈ X(M̄). Let Ω ⊂M be a C2,α domain with compact closure.
We assume that the integral curves of Y in

M0 := π−1(Ω̄)

are complete lines. Since the hypersurfaces we work with are graphs over Ω̄
along the integral curves, when these curves are circles we may pass to the
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universal cover of M0 without loss of generality.
Let ι : Ω̄ → M̄ be an immersion satisfying π ◦ ι = idΩ̄ such that the

hypersurface Σ0 = ι(Ω̄) is transversal to the flow lines. The initial values for
the flow Ψ: R × Σ0 → M0 of Y are taken at Σ0, i.e., Σ0 corresponds to the
level hypersurface s = 0 for the flow parameter s. Set Ψs = Ψ(s, · ). Then,
the level hypersurfaces Σs = Ψs(Σ0) constitute a foliation of M0 by isometric
hypersurfaces.

Fix a local reference frame v1, . . . , vn on Ω̄ and set

σij = 〈vi, vj〉.

Let v̄1, . . . , v̄n be the corresponding local frame on Σ0, i.e., v̄i(p) = ι∗vi(x)
if x ∈ Ω̄ and p = ι(x). By means of the flux Ψ we define a local frame at
q = Ψs(p) in M̄ by

∂s(q) =
d

ds
Ψ(s, p) = Y (Ψ(s, p)) = Ψ∗(s, p)∂s(p)

and
v̄i(q) =

(

Ψs ◦ ι
)

∗
vi(x).

Let D1, . . . , Dn in M̄ denote the basic vector fields π-related to v1, . . . , vn.
If q = Ψ(s, p) for p ∈ Σ0, then π(q) = π ◦ Ψ(s, p) = π(p). Therefore,

Di(q) = Ψ∗(s, p)Di(p)

since Ψ∗(s, p)Di(q) is horizontal and

π∗(q)Ψ∗(s, p)Di(p) = (π ◦ Ψ)∗(s, p)Di(p) = π∗(p)Di(p).

That π is a Riemannian submersion yields

〈Di, Dj〉 = 〈vi, vj〉 = σij .

Setting
D0 := f 1/2 ∂s,

we complete a local reference frame D0, D1, . . . , Dn on M̄ where f := 1/|Y |2
does not depend on s since Y is a Killing field..

We extend the frame v̄1, . . . , v̄n adapted to the leaves Σs to a frame
∇̄s, v̄1, . . . , v̄n in M̄ by adding the gradient vector field ∇̄s of the function s.
Using

π∗(q)v̄i = π∗(p)ι∗vi(x) = vi(x) = π∗(q)Di
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and
1 = ∂ss = 〈∇̄s, ∂s〉 = f−1/2〈∇̄s,D0〉,

we have that the two frames considered on M̄ are related by

{

∇̄s = f 1/2D0 + σjiDj(s)Di

v̄i = δiD0 +Di.

The functions δi are independent of s since

δi = 〈v̄i(q), D0(q)〉 = 〈Ψs∗(p)v̄i(p),Ψs∗(p)D0(p)〉 = 〈v̄i(p), D0(p)〉.

Thus, from
0 = v̄j(s) = 〈∇̄s, v̄j〉 = f 1/2δj +Dj(s)

we conclude that the functions Dj(s) are also independent of s.

The Killing graph Σ = Σu of a function u ∈ C2(Ω̄) is the hypersurface

Σu = {Ψ(u(p), p) : p ∈ Σ0},

where u is seen as a function on Σ0 by taking u(p) = u(x) when π(p) = x.
Since Σ can also be considered as given by the immersion

ιu : x ∈ Ω̄ 7→ Ψ(u(x), ι(x)),

its tangent bundle is spanned by the vector fields

(ιu)∗vi = vi(u) Ψs + (Ψ ◦ ι)∗vi = vi(u) ∂s + v̄i = f−1/2
vi(u)D0 + v̄i. (1)

We may regard u as a function in M0 by means of the extension

u(q) = u(x) if π(q) = x. (2)

Thus D0(u) = f 1/2∂su = 0, and hence

Di(u) = v̄i(u) − δiD0(u) = v̄i(u) = vi(u).

Therefore, we have using (1) that

(ιu)∗vi = (f−1/2Di(u) + δi)D0 +Di.
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It follows easily that a unit normal vector field to Σ pointing upwards is

N =
1

W
(f 1/2D0 − ûjDj), (3)

where
ûj := σijDi(u− s) (4)

and
W 2 := f + σij û

iûj = f + ûiûi

for ûi := σij û
j. Notice that ûj and W can also be seen as functions on M

since they are independent of s.

2.1 The mean curvature equation

To compute the mean curvature of Σ assume for simplicity that the tan-
gent frame v1, . . . , vn is orthonormal at x ∈ Ω. Hence, the basic frame
D0, D1, . . . , Dn is orthonormal at points of π−1(x). Thus,

〈∇̄D0
N,D0〉 =

f 1/2

W
〈∇̄D0

D0, D0〉 −
ûj

W
〈∇̄D0

Dj , D0〉 =
1

W
〈∇̄D0

D0, û
jDj〉,

where ∇̄ denotes the Riemannian connection on M̄ . We consider on M the
vector field

Du := ûj
vj = σijDi(u− s)vj.

Since ∇̄D0
D0 is a horizontal vector field and π∗(û

jDj) = ûj
vj, we obtain

〈∇̄D0
N,D0〉 =

1

W
〈π∗∇̄D0

D0, Du〉.

By the well-known O’Neill submersion formula [9], we have

∇̄Dk
Dj =

(

∇̄Dk
Dj

)h
+

1

2
[Dk, Dj]

v. (5)

Thus, we obtain for k ≥ 1 that

〈∇̄Dk
N,Dk〉 = −f

1/2

W
〈∇̄Dk

Dk, D0〉 − 〈∇̄Dk

( ûj

W
Dj

)

, Dk〉 = −〈∇
vk

Du

W
, vk〉

where ∇ denotes the Riemannian connection on M . We conclude that

nH = −divM̄N = divM
Du

W
− 1

W
〈π∗∇̄D0

D0, Du〉. (6)
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Denote the covariant derivative in M of Du = ûj
vj by

∇
vk
Du := ûj

;k vj

and set ûk;i := σjkû
j
;i. Computing at any point the divergence in (6) gives

divM
Du

W
= σik〈∇

vi

Du

W
, vk〉

=
σik

W 2
(W 〈∇

vi
Du, vk〉 − vi(W )〈ûj

vj , vk〉)

=
σik

W 3
(W 2〈ûj

;ivj, vk〉 −
1

2
vi(f + ûlûl)û

jσjk)

=
σik

W 3
(W 2σjkû

j
;i −

1

2
(vi(f) + 2ûlûl;i)û

jσjk)

=
1

W 3
(W 2σik − ûiûk) ûk;i −

1

2W 3
vi(f) ûi.

On the other hand,

vi(f) = −f 2
vi〈Y, Y 〉 = −f 2(δiD0〈Y, Y 〉 +Di〈Y, Y 〉)

= −2f 2〈∇̄Di
Y, Y 〉 = 2f 2〈∇̄Y Y,Di〉 = 2f〈∇̄D0

D0, Di〉
= 2f〈π∗∇̄D0

D0, vi〉.

Thus, the mean curvature equation (6) becomes

Aikûk;i − (f +W 2)〈π∗∇̄D0
D0, Du〉 = B, (7)

where
Aik := W 2σik − ûiûk and B := nH W 3.

We define the operator

Q[u] =
1

W 3
(Aijûj;i − (f +W 2)〈π∗∇̄D0

D0, Du〉).

Therefore, we have shown that Σ is a hypersurface with prescribed mean
curvature function H(x) and boundary condition φ if u is a solution to
the Dirichlet problem

{

Q[u] = nH

u|Γ = φ
(8)

where Γ = ∂Ω. The boundary of Σ is the Killing graph over Γ of φ.
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2.2 A commutation formula

In this subsection, we give a commutation formula for second covariant
derivatives that allow to conclude the ellipticity of the quasilinear operator
defined in the proceeding one.

Since Du = π∗∇̄(u− s) from (4) we obtain using (5) that

∇
vk
Du = ∇

vk
π∗∇̄(u− s)

= π∗(∇̄Dk
∇̄(u− s) − ∇̄Dk

〈∇̄(u− s), D0〉D0)

= σilπ∗(〈∇̄Dk
∇̄(u− s), Dl〉Di − 〈∇̄(u− s), D0〉〈∇̄Dk

D0, Dl〉Di)

= σil(∇̄2
Dk,Dl

(u− s) + (D0(u) −D0(s))〈∇̄Dk
Dl, D0〉) π∗Di

= σil
(

∇̄2
Dk,Dl

(u− s) − 1

2
f 1/2〈[Dk, Dl], D0〉

)

vi.

Therefore,

ûj;k = σjiû
i
;k = σjiσ

il
(

∇̄2
Dk,Dl

(u− s) − 1

2
f 1/2〈[Dk, Dl], D0〉

)

= ∇̄2
Dk,Dj

(u− s) +
1

2
γjk (9)

where γkj := f 1/2〈[Dk, Dj ], D0〉 is skew-symmetric. Since the Hessian is
symmetric we conclude that

ûj;k − ûk;j = γjk. (10)

Under the convention for u established in (2) we use the standard notation

ui = Di(u), ui = σijuj and ui;j = 〈∇̄Di
∇̄u,Dj〉.

Then the matrix (ûi;j) is related with the Hessian matrices (ui;j) and (si;j) by

ûi;j = 〈∇̄Dj
∇̄u,Di〉 − 〈∇̄Dj

∇̄s,Di〉 +
1

2
γij = ui;j − si;j +

1

2
γij. (11)

Hence, the principal part of the mean curvature equation (8) is given by the
matrix (Aij). This matrix is positive-definite. Indeed, we have that

f |ξ|2 ≤ Aijξiξj ≤ W 2|ξ|2. (12)
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3 Killing cylinders

The Killing cylinder over Γ is the hypersurface K = π−1(Γ). Thus

K = {Ψ(s, ι(x)) : s ∈ R, x ∈ Γ}

is ruled by the flow lines of Y through ι(Γ) ⊂ Σ0.
We denote by η̄ the inward pointing unit vector field normal toK. Clearly,

η̄ is a basic vector field and π∗ η̄ = η is the unit normal vector field to Γ in M
pointing inward. We work with a tangent frame satisfying that v1 = η and
v2, . . . , vn are orthogonal to v1. In particular, their horizontal lifts Di verify
along K that D1 = η̄ and Dj , 2 ≤ j ≤ n, is tangent to K. Set

f〈∇̄Y Y, η̄〉 = 〈∇̄D0
D0, η̄〉 = κ,

where κ can be seen as a function on Ω̄. In fact,

f〈∇̄Y Y, η̄〉 = −f〈∇̄η̄Y, Y 〉 =
1

2f
η̄(f).

Thus,

Y (κ) =
1

2f
Y (η̄(f)) =

1

2f
[Y, η̄](f) = 0

since [Y, η̄]h = 0 because π∗[Y, η̄]
h = [π∗Y, η] = [0, η]. Hence,

nHcyl =
∑

i,j

σij〈∇̄Di
Dj , η̄〉 + κ =

∑

i,j

σij〈∇
vi
vj, η〉 + κ = (n− 1)HΓ + κ

where HΓ is the mean curvature of Γ in M .
In the sequel, we deduce some useful properties of the distance function

d = dist( · , K) from K. We denote by Γǫ and Kǫ the level sets d = ǫ in
M and M̄ , respectively. Thus, Γǫ and Kǫ are equidistant from Γ and K,
respectively. It is immediate that Kǫ is a Killing cylinder over Γǫ. Since Γ is
assumed to be C2,α, the function d is also C2,α at points of Ψ(R×Ωǫ), where
Ωǫ ⊂ Ω is a tubular ǫ-neighborhood of Γ in M for small ǫ > 0.

Given q ∈ Ψ(R × Ωǫ) we write q = expp d η for some p ∈ K. Hence,

|D1| = |∇̄d| = 1.

It follows that

0 =
1

2
Di〈∇̄d, ∇̄d〉 = 〈∇̄Di

∇̄d, σjkDj(d)Dk〉 = dkdi;k.
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We also have
〈∇̄D0

∇̄d,D0〉 = −〈∇̄D0
D0, ∇̄d〉 := −κǫ

and

〈∇̄D1
∇̄d,D1〉 =

1

2
D1|∇̄d|2 = 0.

Therefore,

∆d|d=ǫ = −κǫσ
ij〈∇̄Di

∇̄d,Dj〉 = −κǫ − σij bǫij = −nHǫ
cyl, (13)

where bǫij are the components of the Weingarten operator Aǫ and Hǫ
cyl the

mean curvature of Kǫ.

Fact 2. All of the above calculations on the distance function d remain valid
if we replace Ωǫ by the larger subset Ω0 in Ω consisting of the points which
can be joined to Γ by a unique minimizing geodesic. It was shown in [12]
that in this set d has the same regularity as Γ.

In this paper the ambient Ricci tensor in direction v is defined by

RicM̄(v) =

n
∑

i=1

〈R̄(ei, v)v, ei〉,

where R̄ is the curvature tensor in M̄ and e1, . . . , en, v is an orthonormal
basis. We follow [11] or [15] and use the result in Fact 2 for the proof of the
following result.

Lemma 3. Assume that the Ricci curvature satisfies RicM̄ ≥ −n infΓH
2
cyl.

Let y0 ∈ Γ be the closest point to a given point x0 ∈ Γǫ ⊂ Ω0. If Hcyl > 0,
then, we have

Hcyl(ǫ)|x0
≥ Hcyl|y0

.

Proof: At d = ǫ and since D1 is the unit speed of a geodesic, on one hand
we have that

− d

dǫ
〈AǫDi, Dj〉 = D1〈∇̄Di

D1, Dj〉 = 〈∇̄D1
∇̄Di

D1, Dj〉 + 〈∇̄Di
D1, ∇̄D1

Dj〉
= −R̄ǫ(Di, Dj) − 〈∇[Di,D1]D1, Dj〉 + 〈∇̄Di

D1, ∇̄D1
Dj〉

= −R̄ǫ(Di, Dj) − 〈∇Dj
D1, [Di, D1]〉 + 〈∇̄Di

D1, ∇̄D1
Dj〉
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where R̄ǫ = 〈R(·, D1)D1, ·〉|d=ǫ. On the other hand,

d

dǫ
〈AǫDi, Dj〉 = 〈∇̄D1

AǫDi, Dj〉 + 〈AǫDi, ∇̄D1
Dj〉

= 〈(∇̄D1
Aǫ)Di, Dj〉 + 〈AǫDj, ∇̄D1

Di〉 − 〈∇̄Di
D1, ∇̄D1

Dj〉
= 〈A′

ǫDi, Dj〉 − 〈∇̄Di
D1, ∇̄D1

Dj〉 − 〈∇̄Dj
D1, ∇̄D1

Di〉.

Adding the above equations we have the Ricatti equation

A′

ǫ −A2
ǫ − R̄ǫ = 0,

Taking traces, we obtain

n
d

dǫ
Hǫ

cyl = D1(trAǫ) = tr∇̄D1
Aǫ = tr

(

A2
ǫ + R̄ǫ

)

≥ n(Hǫ
cyl)

2 + RicM̄(D1).

From our hypothesis on RicM̄ we have that z(d) = Hcyl(d)−Hcyl(y0) satisfies

z′(d) ≥ H2
cyl(d) − inf

Γ
H2

cyl ≥ H2
cyl(d) −H2

cyl(y0) = (Hcyl(d) +Hcyl(y0))z(d).

Since Hcyl > 0, it follows that z′(d) ≥ c z(d) in some interval d ∈ [0, d0 > 0]
for a constant c > 0. We obtain thatHǫ

cyl does not decrease with increasing d.
This concludes the proof of the lemma.

4 The C0 estimate

In this section, we obtain apriori C0 estimates for solutions of the Dirichlet
problem (8).

We construct barriers for u in (8) on Ω0 (see Fact 2) by

ϕ(x) = sup
Γ
φ+ h(d(x))

where d = dist( · ,Γ) is regarded as the distance from Γ onM and the function
h will be chosen later. We work with the frame v1 := ∇d, v2, . . . , vn and the
corresponding frame D0, D1, . . . , Dn. Thus,

Di(d) = 〈∇̄d,Di〉 = 〈D1, Di〉 = 〈v1, vi〉 = 〈∇d, vi〉 = vi(d).

We have,
ϕi = h′di and ϕi;j = h′′didj + h′di;j.
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We obtain from (4) and (11) that

ϕ̂j = σij(ϕi − si) = σij(h′di − si) = h′di − si

and

ϕ̂i;j = ϕi;j − si;j +
1

2
γij = h′′didj + h′di;j − si;j +

1

2
γij.

Since γij is skew-symmetric, we have from (3) and (3) that

Aijϕ̂j;i = W 2 ϕ̂j
;i − ϕ̂iϕ̂jϕ̂j;i

= W 2(h′′ + h′di
;i − si

;i) − (h′di − si
)(

h′dj − sj)(h′′didj + h′dj;i − sj;i)

= (W 2 − h′2 + 2h′〈∇̄d, ∇̄s〉 − 〈∇̄d, ∇̄s〉2) h′′ +W 2h′di
;i +R

where

R := −h′sisjdi;j −W 2si
;i + (h′2didj − h′(disj + djsi) + sisj)si;j. (14)

Using that

W 2 = f + ϕ̂kϕ̂k = f + h′2 − 2h′〈∇̄d, ∇̄s〉 + |∇̄s|2, (15)

we conclude that

Aijϕ̂j;i = (f + |∇̄s|2 − 〈∇̄d, ∇̄s〉2) h′′ +W 2h′di
;i +R (16)

where R is a polynomial of second degree in h′ and its coefficients are just
functions on M .

We have from (13) that

di
;i = σijdi;j = σij〈∇̄Di

∇̄d,Dj〉 = −σij bǫij = κǫ − nHǫ
cyl.

Since Dϕ = π∗(h
′ ∇̄d− ∇̄s) from (4), we also have

〈π∗∇̄D0
D0, Dϕ〉 = h′κǫ − 〈∇̄D0

D0, ∇̄s〉. (17)

Thus, we obtain

W 3Q[ϕ] = (f + |∇̄s|2 − 〈∇̄d, ∇̄s〉2)h′′ − (fκǫ + nW 2Hǫ
cyl)h

′ +R∗

where

R∗ := R+ (f +W 2)〈∇̄D0
D0, ∇̄s〉.
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We choose for (4) the test function

h =
eCA

C

(

1 − e−Cd
)

where A > diam(Ω̄) and C > 0 is a constant to be chosen later. Then,

h′ = eC(A−d) and h′′ = −Ch′.

Hence,

Q[ϕ] ≤ −(C + κǫ)
fh′

W 3
− h′

W
nHǫ

cyl +
R∗

W 3
.

Observe that f/W 2 ≤ 1. Moreover, as C → ∞ we have that 1/W → 0 and

h′

W
=

h′

(h′2 − 2h′〈∇̄d, ∇̄s〉 + |∇̄s|2 + f)1/2
→ 1.

In particular, we have

R∗

W 3
→ 0 as C → ∞.

Choose C ≫ 0 such that, in particular, C+κǫ > 0. Using supΩ |H| ≤ infΓHcyl

and Lemma 3, we obtain

Q[ϕ] < −n|H| ≤ nH.

Thus, one has at points of Ω0 that

Q[ϕ] < Q[u] = nH, ϕ|Γ ≥ u|Γ.

We now prove that ϕ ≥ u on Ω̄. By contradiction, assume that there exist
points for which the continuous function u∗ := u− ϕ satisfies u∗ > 0. Hence
m := u∗(y) > 0 at a maximum point y ∈ Ω̄ of u∗. Choose a minimizing
geodesic γ joining y to Γ for which the distance d = d(y,Γ) is attained.
Thus, γ(t) = expy0

tη, 0 ≤ t ≤ d, starts from a point y0 ∈ Γ with unit
speed η. Since γ is minimizing, we have d(γ(t),Γ) = t and the function ϕ
restricted to γ is differentiable with ϕ′(γ(t)) = eC(A−t). Since the maximum
of u∗ restricted to γ occurs at t = d, i.e., at the point y, one has that

u′(γ(d)) − ϕ′(γ(d)) = (u∗)′(γ(d)) ≥ 0.
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This implies that

〈∇u(y), γ′(d)〉 ≥ ϕ′(γ(d)) = eC(A−d) > 0.

In particular ∇u(y) 6= 0, and hence the level hypersurface

S = {x ∈ Ω ∩Br(y) : u(x) = u(y)}

is regular for small radius r. Along S we have

u∗(x) + ϕ(x) = u∗(y) + ϕ(y) ≥ u∗(x) + ϕ(y),

and since ϕ is an increasing function of d( · ,Γ) we have d(x,Γ) ≥ d(y,Γ) = d.
From this we conclude that the points in S are at a distance at least d from
Γ. Since S is C2 it satisfies the interior sphere condition: there exists a small
ball Bε(z) touching S at y contained in the side to which ∇u(y) and γ′(d)
points. Thus, the points of Bε(z) satisfy u(x) ≥ u(y), and hence

ϕ(x) +m ≥ u(x) ≥ u(y) = ϕ(y) +m, x ∈ Bε(z),

where in the first inequality we used the definition of m. Again because ϕ
is an increasing function of d, we have d(x,Γ) ≥ d on Bε(z) and therefore
this ball is contained in the interior of Ω far away from Γ. This allows us to
extend the geodesic γ through Bε(z). We claim that the center z of the ball is
contained in this extension. Otherwise, the broken line consisting of γ and of
the radius in Bε(z) from z to y has length smaller than a minimizing geodesic
joining z to y0 ∈ Γ (for a suitable small ε such a geodesic must cross the level
hypersurface S at a point x 6= y at distance to Γ greater than d). Thus, if
there exists at least two distinct minimizing geodesics joining y to Γ, then the
point z is contained in the extension of both geodesics after its intersection
at y. Choosing ε sufficiently small, we see that this configuration is not
possible (the construction we made above applies to both geodesics). This
contradiction implies that the maximum point y belongs to Ω0. However, in
this case, u∗(y) ≤ 0, a contradiction. We conclude that u ≤ ϕ throughout Ω̄
and therefore ϕ is a continuous super-solution for the Dirichlet problem (8).

In a similar way, we may construct lower barriers for u, that is, continuous
sub-solutions for (8). It is a standard fact that the existence of these barriers
implies the desired C0 apriori estimates. Thus, we have proved the following
result.
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Lemma 4. Under the assumptions of Theorem 1 there exists a constant

C = C(Ω, H) such that

|u|0 ≤ C + |φ|0
if u ∈ C2(Ω) ∩ C0(Ω̄) satisfies Q[u] = nH and u|Γ = φ.

5 Boundary gradient estimates

In this section our task is to produce apriori gradient estimates along Γ for
the Dirichlet problem (8). This is accomplished by constructing local lower
and upper barriers for Σ in a tubular neighborhood of Γ.

We construct barriers of the form w+φ along a tubular neighborhood Ωǫ

of Γ as defined in Section 3. Here, w = ψ(d(x)) for some real function ψ to
be chosen and d = dist( · ,Γ). Moreover, the boundary data φ is extended to
a function in Ωǫ along the normal geodesics in a way we make precise later.

We denote
Q̃[u] = Q[u] − nH.

A simple estimate using (12) and then (17) gives

Q̃[w + φ] = aij(x,∇w + ∇φ)(ŵi;j + φ̂i;j) + b(x,∇w + ∇φ) − nH

≤ aijŵi;j +
1

W
|φ|2,α + b− nH, (18)

where

aij :=
Aij

W 3
=

1

W
σij − 1

W 3
(ŵi + φ̂i)(ŵj + φ̂j)ŵi;j (19)

and

b = −f +W 2

W 3
(ψ′κǫ + 〈π∗∇̄D0

D0, Dφ〉 − 〈∇̄D0
D0, ∇̄s〉)

since κǫ = 〈∇̄D0
D0, ∇̄d〉 and

D(w + φ) = σij(ψ′dj + φj − sj)vj = Dφ+ π∗(ψ
′ ∇̄d− ∇̄s).

From now on Rj , j ≥ 1, denotes a polynomial of at most second degree in
ψ′ whose coefficients are functions in M . As in (15) and (16) we first obtain,

W 2 = f + ψ′2 − 2ψ′〈∇̄d, ∇̄s− ∇̄φ〉 + |∇̄s− ∇̄φ|2,
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and then

W 2ŵi
;i − ŵiŵjŵi;j = (f + |∇̄s− ∇̄φ|2 − 〈∇̄d, ∇̄s− ∇̄φ〉2)ψ′′ +W 2ψ′di

;i +R1.

Moreover,

ŵiφ̂jŵi;j = (ψ′di − si)φ̂j(ψ′′didj + ψ′di;j − si;j)

= −ψ′ψ′′〈∇̄d, ∇̄s− ∇̄φ〉 + ψ′′〈∇̄d, ∇̄s〉〈∇̄d, ∇̄s− ∇̄φ〉 +R2

and
φ̂iφ̂jŵi;j = φ̂iφ̂j(ψ′′didj + ψ′di;j − si;j) +R3.

Now define
ψ(d) = µ ln(1 +Kd)

for constants µ > 0 and K > 0 to be chosen later. We have

ψ′ =
µK

1 +Kd
and ψ′′ = −1

µ
ψ′2.

Then using di
;i = −nHǫ

cyl + κǫ we obtain

W 2ŵi
;i − ŵiŵjŵi;j = −ψ′(nHǫ

cyl − κǫ)W
2 +R4,

ŵiφ̂jŵi;j = −ψ′ψ′′〈∇̄d, ∇̄s− ∇̄φ〉 +R5

and
φ̂iφ̂jŵi;j = R6.

Since (19) gives

W 3aijŵi;j = W 2ŵi
;i − ŵiŵjŵi;j − (ŵiφ̂j + ŵjφ̂i)ŵi;j − φ̂iφ̂jŵi;j,

we now conclude from (18) that

W 3Q̃[w+φ] ≤ −ψ′(nHǫ
cyl−κǫ)W

2− 2

µ
ψ′3〈∇̄d, ∇̄s−∇̄φ〉+(b−nH)W 3 +R7.

From the expressions above for b and W 2 it follows that

bW 3 + ψ′κǫW
2 = R8.
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Hence, we obtain

W 3Q̃[w + φ] ≤ −(n(H +Hǫ
cyl) +

2

µ
〈∇̄d, ∇̄s− ∇̄φ〉)ψ′3 +R9.

We choose µ in such a way that µ→ 0 as K → ∞. Namely,

µ =
C

ln(1 +K)

for some constant C > 0 to be chosen later. As K → ∞ we have that

ψ′(0) =
CK

ln(1 +K)
→ +∞.

It also holds that ψ′/W ∼ 1 as K → ∞. Thus, at points of Γ the last
inequality becomes

W 3Q̃[w + φ] ≤ −(n(H +Hcyl) +
2

µ
〈∇̄s− ∇̄φ, η〉)ψ′3 +R9.

We choose the extension of φ in such a way that at points of Γ it holds

〈∇̄φ, η〉 < 〈∇̄s, η〉.

Therefore, assuming that Hcyl +H ≥ 0 and choosing K large enough, we
assure that Q̃[w + φ] < 0 on a small tubular neighborhood Ωǫ of Γ. Notice
that (w + φ)|Γ = φ|Γ. Choosing C and K large enough we also have that
w + φ ≥ u|Γǫ

+ φ. Therefore, w + φ is a locally defined upper barrier for the
Dirichlet problem (8). A lower barrier may be constructed in a similar way.
Thus, we have proved the following fact.

Lemma 5. Assume that u ∈ C2(Ω) ∩ C1(Ω̄) satisfies Q[u] = nH and

u|Γ = φ. If |u| is bounded in Ω̄, then

sup
Γ

|∇u| ≤ C

by a constant that depends on |u|0.
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6 Interior gradient estimates

6.1 The prescribed mean curvature case

In this general case, we adopt ideas from the classical estimate of Korevaar
[13]. Suppose that the maximum of |Du| is attained at an interior point,
say x0 ∈ Ω, where we may assume that |Du| 6= 0 without loss of generality.
Consider a geodesic ball B = B(x0, ρ) ⊂ Ω centered at x0 with small radius
ρ ≤ 1 so that |Du| ≥ C at points of B̄ for some positive constant C. Without
loss of generality, we may assume after a translation along the flow lines of
Y , if necessary, that u < 0 at points of the solid cylinder π−1(B̄).

Let η(x, s) ≥ 0 be a continuous function defined in B̄×R
− that vanishes

on ∂B×R
− and is smooth wherever it is positive. Then, let Σ̄ be the normal

geodesic graph over Σ defined by

q = expp ǫη(p)N(p)

where p ∈ Σ is parametrized by (x, u(x)). Recall that N given in (3) was
fixed to be upwards.

For small ǫ > 0, we may describe Σ̄ as a Killing graph of some function ū
defined in Ω̄. We denote by y the point in Ω that maximizes ū−u. It is clear
that y ∈ B and that Diū = Diu at this point. From (3) the tangent planes
to both graphs have the same slope with respect to the flow line π−1(y) of Y .

We claim that
Hū(y) ≤ Hu(y) (20)

where Hu and Hū denote the mean curvature of Σ and Σ̄, respectively. In
fact, moving Σ upward along the flow lines until the points (y, u(y)) ∈ Σ
and (y, ū(y)) ∈ Σ̄ coincide, we obtain a tangency point for both graphs.
Moreover, by the choice of y it is clear that the translated copy of Σ is above
Σ̄ locally around the point. Thus, the inequality (20) is consequence of the
comparison principle for the mean curvature PDE.

In analytical terms, the above geometrical reasoning is justified in the
following way: one has Hu(x) = Q[u](x) and Hū(x) = Q[ū](x) since both
hypersurfaces are described as Killing graphs. By construction, u = ū at ∂B
and u ≤ ū in B̄ (this time, we are not considering the translation of the geo-
metric proof). If Q[ū] ≥ Q[u] in B, then the analytical comparison principle
(cf. Thm. 10.1 em [11]) assures that ū ≤ u in B. Thus, this contradiction
shows that (20) holds.
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It is a well-known fact that since the variation of Σ we consider is along
the normal direction, then the mean curvature may be expanded as

nHū(x̄) = nHu(x) + ǫJη +O(ǫ2), (21)

where (x, u(x)) and (x̄, ū(x̄)) parametrize correspondent points in Σ and Σ̄
along the same normal geodesic and

J = ∆Σ + |A|2 + RicM̄(N,N)

is the Jacobi operator produced by the linearization of the mean curvature
equation. Here, ∆Σ is the Laplace-Beltrami operator on Σ and |A| denotes
the norm of its second fundamental form.

Let x̄ = y for some x. It follows from (20) and (21) that

ǫJη + O(ǫ2) = n(Hū(y) −Hu(x)) ≤ n(Hu(y) −Hu(x)).

On the other hand, Taylor’s expansion of Hu gives

Hu(y) = Hu(x) + ǫηHiT
i +O(ǫ2),

where T i are the components of the horizontal projection of the normal vector
field N . Thus, we get at y that

∆Ση + |A|2η + Ric(N,N)η ≤ nηHiT
i +O(ǫ).

Therefore,
∆Ση −Mη ≤ O(ǫ) (22)

for some constant M > 0 which does not depend on η.
Next we proceed as in [13] choosing η = g(θ(x, s)) for some real function

g to be chosen and a function θ defined so that ∆Ση is large for sufficiently
large |Du(x)|. Since ǫ is chosen small, then (22) will give a contradiction.
Observe that C being large implies that the tangent hyperplanes to Σ near
(y, u(y)) are very sloppy.

That a tangent hyperplane to Σ is almost vertical means the tangential
component ∇Σθ of the gradient of θ is approximately θs. Then, we define

θ(x, s) = (Ks+ (ρ2 − r2))+

for some small constant K > 0, where r(x) = distM(x0, x) is the geodesic
distance measured from the center x0 of B and ( · )+ means positive part. We
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have that 0 ≤ θ ≤ ρ. Since we are assuming height estimates for Σ, we may
choose K sufficiently small in such a way that θ > 0 in a neighborhood of
(y, u(y)) in B×R

−. We restrict ourselves to points where θ is differentiable.
There,

θs = K > 0.

Since
∆Ση = g′′|∇Σθ|2 + g′∆Σθ, (23)

we have from (22) and (23) that

g′′|∇Σθ|2 + g′∆Σθ −Mg ≤ O(ǫ). (24)

By hypothesis, the tangent plane of Σ at (y, u(y)) is not horizontal. Other-
wise, we obtain from (3) that Du(y) = 0. Let e be the unit vector that gives
the steepest ascent direction in the tangent plane of Σ at (y, u(y)), namely,

e =
1

W |Du|(|Du|
2D0 + f 1/2ûjDj).

Denoting by ∇̄θ the ambient gradient of θ and using that ρ ≤ 1, we have

〈∇Σθ, e〉 = 〈∇̄θ, e〉 =
f 1/2

W

(

K|Du| + ûjDj(θ)

|Du|
)

≥ f 1/2

W
(K|Du| − ĈK − 2),

where Ĉ > 0 is a constant independent of u given by the following estimate:

ûj

|Du|Dj(θ) =
ûj

|Du|(KDj(s) − 2rvj(r)) ≥ −2 − ĈK.

Since K and Ĉ are independent of u and the parameter s, we may assume
that |Du| > 2/K + Ĉ, and conclude that

|∇Σθ| > 0.

Finally, for C1 > 0 large we choose

g(θ) = eC1θ − 1.

It is easily seen that this choice leads to a contradiction with (24). We
conclude that |Du| and therefore |∇u| is bounded by some constant which
does not depend on u.
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Lemma 6. Assume that u ∈ C3(Ω) ∩ C1(Ω̄) satisfies Q[u] = nH and

u|Γ = φ. If u is bounded in Ω and |∇u| is bounded in Γ, then |∇u| is bounded

in Ω by a constant that depends only on |u|0 and supΓ |∇u|.

The usual elliptic regularity results guarantee that the above estimate is
also true for a C2,α function (see [11]).

6.2 The constant mean curvature case

In this case a standard argument works. In fact, consider the positive function

Θ := 〈N, Y 〉 =
f

√

f + |Du|2

since a lower estimate of Θ clearly yields an upper estimate for |∇u|. Under
the assumption that H is constant and being Y a Killing field, it is well-
known (cf. [2]) that Θ is a Jacobi field, namely, JΘ = 0. By assumption
the Ricci tensor is bounded from below. Thus, since Σ is compact there is a
constant c ≥ 0 such that |A|2 +RicM̄(N,N) ≥ −c. Thus Θ is a supersolution
to the elliptic operator ∆Σ−c. Hence, the classical minimum principle states
that

min
Σ

Θ ≥ min
∂Σ

Θ.

This assures that |∇u| is uniformly bounded from above by a constant in-
volving the boundary estimates for |∇u|.

7 The proof of the theorem

In view of the Continuity Method, one must seek for an initial minimal
surface with boundary given by Γ. This may be accomplished by defining
the sets

C = {u ∈ C0,1(Ω) : u|Γ = 0}
and, given k > 0,

Ck = {u ∈ C : |u|0,1 ≤ k}.
The hypothesis on the existence of an immersion ι : Ω̄ → M̄ assures that
the set C is non-empty since we may consider the hypersurface ι(Ω̄) as the
graph Σ0 of the function u = 0. For the case κ = 0, if we assume M0
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is geodesically complete, the immersion ι may be obtained as follows: we
construct a geodesic cone by joining points of a Killing graph in K over Γ
to a vertex p0 inside M0. This cone is contained inside M0 since the Killing
cylinder K is mean convex and M0 is geodesically complete. Moreover, it
may be smoothed out near the vertex. The resulting hypersurface may be
given as a Killing graph since the geodesic cone is always transversal to the
geodesic vertical fibers.

We then formulate the issue of the existence of a minimal graph spanning
ι(Γ) as the minimization of the functional

I(u) =

∫

Ω

W (x,∇u(x))
√
σdx, u ∈ C,

where
W =

√

f + ûiûi

and the first derivatives of u are taken in a weak sense. Notice that f and
ûi = ui − f 1/2δi do not depend on u. It is clear that u is a critical point of I
if and only if is a weak solution of the mean curvature equation in divergence
form. Since the principal part of the mean curvature equation is positive-
definite and the coefficients of this equation (including H) do not depend on
the function, it follows from Theorem 11.10 and Theorem 11.11 in [11] that
I has a extremum in C. In fact, these theorems require upper bounds in
the Lipschitz norm of the candidates u ∈ C which may be obtained from the
apriori C1 estimates we derived earlier.

The C2,α regularity of the minimizer function u0 follows from very general
results found in [14]. This function defines a minimal graph over Ω with
boundary Γ.

For the proof of the existence part we apply the well-known continuity
method to the family of Dirichlet problems

Qσ[u] = nσH, u|Γ = σφ,

where σ ∈ [0, 1]. The subset I of [0, 1] consisting of values of σ for which there
is a solution is non-empty since we have an initial minimal graph spanning
the boundary data φ. The openness of I is a direct consequence of a standard
application of the implicit function theorem since the derivative of Qσ is a
linear homeomorphism. The closedness of I follows from the apriori estimates
we had proved and linear elliptic PDE theory. Thus, the continuity method
assures that 1 ∈ I.
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In order to prove the uniqueness statement, we deduce a kind of flux
formula. We suppose that there exists a hypersurface Σ′ in M0 with ∂Σ′ = Γ
and whose mean curvature is the same as Σ at corresponding points in flow
lines. This means that if x = π(p) for p ∈ Σ′ then the mean curvature of Σ′

at p is H(x). Translating Σ′ we may suppose that Σ, Σ′ and a part of the
cylinder K form an oriented cycle which bounds a domain U in M0. Since
Y is tangent to the part of the boundary of U contained in K, we conclude
from divergence theorem applied to the field HY in U that

∫

Σ′

〈HY,N ′〉 =

∫

Σ

〈HY,N〉

where N and N ′ define respectively the orientations in Σ and Σ′. Applying
now the divergence theorem to the hypersurfaces Σ and Σ′ we obtain that

∫

Γ

〈Y, ν〉 =

∫

Γ′

〈Y, ν ′〉

where ν and ν ′ are respectively the outward unit co-normals to Γ with respect
to Σ and Σ′. This implies that there exists a point p in Γ where Σ and Σ′

are tangent, that is, where ν|p = ν ′|p. Thus, since Σ′ is locally a graph near
p, we conclude from the the boundary maximum principle that Σ = Σ′. This
concludes the proof of the theorem.
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