
BLOW-UP EXAMPLES FOR THE YAMABE PROBLEM

FERNANDO C. MARQUES

Abstract. It has been conjectured that if solutions to the Yamabe
PDE on a smooth Riemannian manifold (Mn, g) blow-up at a point p ∈
M , then all derivatives of the Weyl tensor Wg of g, of order less than or
equal to [n−6

2
], vanish at p ∈ M . In this paper we will construct smooth

counterexamples to the Weyl Vanishing Conjecture for any n ≥ 25.

1. Introduction

Let (Mn, g) be a smooth compact Riemannian manifold of dimension
n ≥ 3. The Yamabe problem consists of finding metrics of constant scalar
curvature in the conformal class of g. This problem reduces to a semi-linear
elliptic PDE: indeed, a conformal metric of the form u

4
n−2 g has constant

scalar curvature c if and only if

4(n− 1)
n− 2

∆gu−Rg u+ c u
n+2
n−2 = 0, (1)

where ∆g is the Laplace operator with respect to g and Rg denotes the scalar
curvature of g. Every solution of (1) is a critical point of the functional

Eg(u) =

∫
M

(4(n−1)
n−2 |du|2g +Rg u

2
)
dvolg( ∫

M u
2n

n−2 dvolg
)n−2

n

. (2)

The existence of a minimizing solution to the Yamabe problem is well-known
and follows from the combined works of Yamabe [22], Trudinger [21], Aubin
[3], and Schoen [17].

In a topics course at Stanford in 1988 Richard Schoen raised the question
of compactness of the full set of solutions and proved some special cases of it.
Over the past several years many authors (Schoen [19], Li-Zhu [15], Druet
[8], Marques [16] and Li-Zhang [13], [14]) have studied this problem. The
Compactness Conjecture is now known to be true if and only if n ≤ 24. In
[12], Khuri, Marques and Schoen have proved compactness of the full set of
solutions if n ≤ 24. The first smooth counterexamples were constructed by
S. Brendle in [5] if n ≥ 52, while in [7] Brendle and Marques have extended
these counterexamples to the remaining dimensions 25 ≤ n ≤ 51. See [6] for
a survey of this problem.
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In this paper we address a related important question (see [20]), known as
the Weyl Vanishing Conjecture. It states that if a sequence vν of solutions
to (1) blows-up at p ∈M , then one should have

∇l
gWg(p) = 0 for every 0 ≤ l ≤

[n− 6
2

]
. (3)

Here Wg denotes the Weyl tensor of the metric g.
This was in fact one of the fundamental pieces of the program proposed

by Schoen in [19] to establish compactness in high dimensions. The Weyl
Vanishing Conjecture has been verified for n ≤ 7 in [16], n ≤ 9 in [13],
n ≤ 11 in [14] and n ≤ 24 in [12] (see Theorem 1.2 of that paper).

The goal of this paper is to construct counterexamples for any n ≥ 25.
We will show how to use the methods of [5] and [7] to obtain blow-up ex-

amples concentrating at a point where the metric does not satisfy condition
(3). We should note that the blow-up examples constructed in those papers
have the property that the Weyl tensor of the underlying metric vanishes to
all orders at the concentration point.

Our main theorem is:

Theorem 1.1. Let n, l ∈ N satisfy one of the following three conditions:
(1) n ≥ 52 and l ≥ 3;
(2) 30 ≤ n ≤ 51 and l ≥ 5;
(3) 25 ≤ n ≤ 29 and l ≥ 7.

Then there exists a Riemannian metric g on Sn (of class C∞), a point
p ∈ Sn, and a sequence of positive functions vν ∈ C∞(Sn) (ν ∈ N) with the
following properties:

(i) vν is a solution of the Yamabe PDE (1) for all ν ∈ N
(ii) Eg(vν) < Y (Sn) for all ν ∈ N, and Eg(vν) → Y (Sn) as ν →∞
(iii) p ∈ Sn is a blow-up point of vν

(iv) ∇j
gWg(p) = 0 for all 0 ≤ j < l, but ∇l

gWg(p) 6= 0.

(Here, Y (Sn) denotes the Yamabe energy of the round metric on Sn.)

The construction relies on a glueing procedure based on some local model
metric. The model metrics are of the form g(x) = exp(h(x)), x ∈ Rn, where

hik(x) = f(|x|2)
∑
p,q

Wipkqxpxq,

f is a polynomial, and W : Rn × Rn × Rn × Rn → R is a multi-linear form
which satisfies all the algebraic properties of the Weyl tensor.

The idea is to find the blow-up solutions as critical points of the energy
function defined on a finite dimensional space of approximate solutions. This
energy function is well approximated at appropriate scales by an auxiliary
function F (ξ, ε), ξ ∈ Rn, ε ∈ (0,∞), and we are left with the algebraic prob-
lem of finding a polynomial f such that F (ξ, ε) has a strict local minimum
at (0, 1) with F (0, 1) < 0.
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The bubbles concentrate at the origin along the x1 direction, and by
introducing a perturbation of higher order depending only on the x2, . . . , xn

variables, we find an example with

∇2 deg(f)+1
g Wg(0) 6= 0.

Our examples are perturbations of the ones in [5] and [7] if n ≥ 52 or
25 ≤ n ≤ 29, respectively. If 30 ≤ n ≤ 51 we improve the calculations of
[7] by finding a polynomial f of one degree lower (degree 2). That is the
content of Section 4.

We should note that Wg(p) = 0 if n ≥ 6 and ∇Wg(p) = 0 if n ≥ 8, at a
blow-up point p (see [16] and [13]). It is also possible to see that the results
of [12] imply

∇2Wg(p) = 0, ∇3Wg(p) = 0 if 25 ≤ n ≤ 51,

and
∇4Wg(p) = 0, ∇5Wg(p) = 0 if 25 ≤ n ≤ 29.

We will now explain the structure of the paper. In Section 2, we recall that
the problem can be reduced to finding critical points of a certain function
Fg(ξ, ε), where ξ is a vector in Rn and ε is a positive real number. This
idea has been used by many authors (see, e.g., [2], [4], [5], [7]). In Section
3, we show that the function Fg(ξ, ε) can be approximated by an auxiliary
function F (ξ, ε). In Section 4, we prove that if 30 ≤ n ≤ 51, then there exists
a polynomial f of degree 2 such that the function F (ξ, ε) has a critical point,
which is a strict local minimum. Finally, in Section 5, we prove Theorem
1.1 by a perturbation argument.

The author is especially grateful to Professor Simon Brendle for the many
invaluable conversations. He is also indebted to Professor Richard Schoen
for the interest and constant support. The author was supported by CNPq-
Brazil and FAPERJ.

2. Lyapunov-Schmidt reduction

In this section, we collect some basic results established in [5]. Let

E =
{
w ∈ L

2n
n−2 (Rn) ∩W 1,2

loc (Rn) :
∫

Rn

|dw|2 <∞
}
.

By Sobolev’s inequality, there exists a constant K, depending only on n,
such that ( ∫

Rn

|w|
2n

n−2

)n−2
n

≤ K

∫
Rn

|dw|2

for all w ∈ E . We define a norm on E by ‖w‖2
E =

∫
Rn |dw|2. It is easy to see

that E , equipped with this norm, is complete.
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Given any pair (ξ, ε) ∈ Rn × (0,∞), we define a function u(ξ,ε) : Rn → R
by

u(ξ,ε)(x) =
( ε

ε2 + |x− ξ|2
)n−2

2
.

The function u(ξ,ε) satisfies the elliptic PDE

∆u(ξ,ε) + n(n− 2)u
n+2
n−2

(ξ,ε) = 0.

It is well known that ∫
Rn

u
2n

n−2

(ξ,ε) =
( Y (Sn)

4n(n− 1)

)n
2

for all (ξ, ε) ∈ Rn × (0,∞). We next define

ϕ(ξ,ε,0)(x) =
( ε

ε2 + |x− ξ|2
)n+2

2 ε2 − |x− ξ|2

ε2 + |x− ξ|2

and

ϕ(ξ,ε,k)(x) =
( ε

ε2 + |x− ξ|2
)n+2

2 2ε (xk − ξk)
ε2 + |x− ξ|2

for k = 1, . . . , n. Finally, we define a closed subspace E(ξ,ε) ⊂ E by

E(ξ,ε) =
{
w ∈ E :

∫
Rn

ϕ(ξ,ε,k)w = 0 for k = 0, 1, . . . , n
}
.

Clearly, u(ξ,ε) ∈ E(ξ,ε).

Proposition 1. Consider a Riemannian metric on Rn of the form g(x) =
exp(h(x)), where h(x) is a trace-free symmetric two-tensor on Rn satisfying
h(x) = 0 for |x| ≥ 1. There exists a positive constant α0 ≤ 1, depending
only on n, with the following significance: if |h(x)|+ |∂h(x)|+ |∂2h(x)| ≤ α0

for all x ∈ Rn, then, given any pair (ξ, ε) ∈ Rn × (0,∞) and any function
f ∈ L

2n
n+2 (Rn), there exists a unique function w = G(ξ,ε)(f) ∈ E(ξ,ε) such

that ∫
Rn

(
〈dw, dψ〉g +

n− 2
4(n− 1)

Rg wψ − n(n+ 2)u
4

n−2

(ξ,ε)wψ
)

=
∫

Rn

f ψ

for all test functions ψ ∈ E(ξ,ε). Moreover, we have ‖w‖E ≤ C ‖f‖
L

2n
n+2 (Rn)

,

where C is a constant that depends only on n.

Proposition 2. Consider a Riemannian metric on Rn of the form g(x) =
exp(h(x)), where h(x) is a trace-free symmetric two-tensor on Rn satisfying
h(x) = 0 for |x| ≥ 1. Moreover, let (ξ, ε) ∈ Rn × (0,∞). There exists a
positive constant α1 ≤ α0, depending only on n, with the following signifi-
cance: if |h(x)|+ |∂h(x)|+ |∂2h(x)| ≤ α1 for all x ∈ Rn, then there exists a
function v(ξ,ε) ∈ E such that v(ξ,ε) − u(ξ,ε) ∈ E(ξ,ε) and∫

Rn

(
〈dv(ξ,ε), dψ〉g +

n− 2
4(n− 1)

Rg v(ξ,ε) ψ − n(n− 2) |v(ξ,ε)|
4

n−2 v(ξ,ε) ψ
)

= 0
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for all test functions ψ ∈ E(ξ,ε). Moreover, we have the estimate

‖v(ξ,ε) − u(ξ,ε)‖E

≤ C
∥∥∥∆gu(ξ,ε) −

n− 2
4(n− 1)

Rg u(ξ,ε) + n(n− 2)u
n+2
n−2

(ξ,ε)

∥∥∥
L

2n
n+2 (Rn)

,

where C is a constant that depends only on n.

We next define a function Fg : Rn × (0,∞) → R by

Fg(ξ, ε) =
∫

Rn

(
|dv(ξ,ε)|2g +

n− 2
4(n− 1)

Rg v
2
(ξ,ε) − (n− 2)2 |v(ξ,ε)|

2n
n−2

)
− 2(n− 2)

( Y (Sn)
4n(n− 1)

)n
2
.

If we choose α1 small enough, then we obtain the following result:

Proposition 3. The function Fg is continuously differentiable. Moreover,
if (ξ̄, ε̄) is a critical point of the function Fg, then the function v(ξ̄,ε̄) is a
non-negative weak solution of the equation

∆gv(ξ̄,ε̄) −
n− 2

4(n− 1)
Rg v(ξ̄,ε̄) + n(n− 2) v

n+2
n−2

(ξ̄,ε̄)
= 0.

3. An estimate for the energy of a “bubble”

Throughout this paper, we fix a multi-linear formW : Rn×Rn×Rn×Rn →
R. We assume that Wijkl satisfy all the algebraic properties of the Weyl
tensor. Moreover, we assume that some components of W are non-zero, so
that

n∑
i,j,k,l=1

(Wijkl +Wilkj)2 > 0.

For abbreviation, we put

Hik(x) =
n∑

p,q=1

Wipkq xp xq

and
H ik(x) = f(|x|2)Hik(x),

where f(s) is a polynomial of degree m. We have that Hik(x) is trace-free,∑n
i=1 xiHik(x) = 0, and

∑n
i=1 ∂iHik(x) = 0 for all |x| ≤ 1.

Let Tik(x) be a symmetric matrix of smooth functions so that Tik(x) is
trace-free,

∑n
i=1 xi Tik(x) = 0, and

∑n
i=1 ∂iTik(x) = 0 for all x ∈ Rn. We

will also assume
n∑

i,k=1

(
|Tik(x)|+ |x||∂Tik(x)|+ |x|2|∂2Tik(x)|

)
≤ β |x|t

for some integer t, 0 ≤ β ≤ 1, and all |x| ≤ 1.
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Throughout the rest of the paper we will suppose

2m+ 2 < min{t, n− 2
2

}. (4)

We consider a Riemannian metric of the form g(x) = exp(h(x)), where
h(x) is a trace-free symmetric two-tensor on Rn satisfying h(x) = 0 for
|x| ≥ 1,

|h(x)|+ |∂h(x)|+ |∂2h(x)| ≤ α1

for all x ∈ Rn, and

hik(x) = µλ2m f(λ−2 |x|2)Hik(x) + Tik(x)

for |x| ≤ ρ. We assume that the parameters λ, µ, and ρ are chosen such that
µ ≤ 1 and λ ≤ ρ ≤ 1. Note that

∑n
i=1 xi hik(x) = 0 and

∑n
i=1 ∂ihik(x) = 0

for |x| ≤ ρ.
Given any pair (ξ, ε) ∈ Rn×(0,∞), there exists a unique function w(ξ,ε) ∈

E(ξ,ε) such that∫
Rn

(
〈dw(ξ,ε), dψ〉 − n(n+ 2)u

4
n−2

(ξ,ε)w(ξ,ε) ψ
)

= −
∫

Rn

n∑
i,k=1

µλ2m f(λ−2 |x|2)Hik(x) ∂i∂ku(ξ,ε) ψ

for all test functions ψ ∈ E(ξ,ε). Moreover, by Proposition 2, there exists a
unique function v(ξ,ε) such that v(ξ,ε) − u(ξ,ε) ∈ E(ξ,ε) and∫

Rn

(
〈dv(ξ,ε), dψ〉g +

n− 2
4(n− 1)

Rg v(ξ,ε) ψ − n(n− 2) |v(ξ,ε)|
4

n−2 v(ξ,ε) ψ
)

= 0

for all test functions ψ ∈ E(ξ,ε).
For abbreviation, let

Ω =
{

(ξ, ε) ∈ Rn × R : |ξ| < 1,
1
2
< ε < 2

}
.

If (ξ, ε) ∈ λΩ, then the function w(ξ,ε) satisfies the estimates

|w(ξ,ε)(x)| ≤ C λ
n−2

2 µ (λ+ |x|)2m+4−n

|∂w(ξ,ε)(x)| ≤ C λ
n−2

2 µ (λ+ |x|)2m+3−n

|∂2w(ξ,ε)(x)| ≤ C λ
n−2

2 µ (λ+ |x|)2m+2−n

for all x ∈ Rn (see [5]).
The following result is proved in the Appendix A of [5]. A similar formula

is derived in [2]. We use repeated indices to indicate summation.

Proposition 4. Consider a Riemannian metric on Rn of the form g(x) =
exp(h(x)), where h(x) is a trace-free symmetric two-tensor on Rn satisfying
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|h(x)| ≤ 1 for all x ∈ Rn. Let Rg be the scalar curvature of g. There exists
a constant C, depending only on n, such that

∣∣∣Rg − ∂i∂khik + ∂i(hil ∂khkl)−
1
2
∂ihil ∂khkl +

1
4
∂lhik ∂lhik

∣∣∣
≤ C |h|2 |∂2h|+ C |h| |∂h|2.

In what follows θk = 1 if k = n−2
2 , and θk = 0 otherwise.

Proposition 5. Assume that (ξ, ε) ∈ λΩ. Then we have

∥∥∥∆gu(ξ,ε) −
n− 2

4(n− 1)
Rg u(ξ,ε) + n(n− 2)u

n+2
n−2

(ξ,ε)

∥∥∥
L

2n
n+2 (Rn)

≤ C λ2m+2 µ+ C β λt
(
1 + log(

ρ

λ
)
)n+2

2n
θt

+ C
(λ
ρ

)n−2
2

and

∥∥∥∆gu(ξ,ε) −
n− 2

4(n− 1)
Rg u(ξ,ε) + n(n− 2)u

n+2
n−2

(ξ,ε)

+
n∑

i,k=1

µλ2m f(λ−2 |x|2)Hik(x) ∂i∂ku(ξ,ε)

∥∥∥
L

2n
n+2 (Rn)

≤ C λ
(2m+2)(n+2)

n−2 µ2 + C β λt
(
1 + log(

ρ

λ
)
)n+2

2n
θt

+ C
(λ
ρ

)n−2
2
.

Proof. Note that
∑n

i=1 ∂ihik(x) = 0 for |x| ≤ ρ. Hence, it follows from
Proposition 4 that

|Rg(x)| ≤ C |h(x)|2 |∂2h(x)|+ C |∂h(x)|2

≤ C µ2 (λ+ |x|)4m+2 + C β2 (λ+ |x|)2t−2

for |x| ≤ ρ. This implies

∣∣∣∆gu(ξ,ε) −
n− 2

4(n− 1)
Rg u(ξ,ε) + n(n− 2)u

n+2
n−2

(ξ,ε)

∣∣∣
=

∣∣∣∣ n∑
i,k=1

∂i

[
(gik − δik) ∂ku(ξ,ε)

]
− n− 2

4(n− 1)
Rg u(ξ,ε)

∣∣∣∣
≤ C λ

n−2
2 µ (λ+ |x|)2m+2−n + C β λ

n−2
2 (λ+ |x|)t−n
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and∣∣∣∆gu(ξ,ε) −
n− 2

4(n− 1)
Rg u(ξ,ε) + n(n− 2)u

n+2
n−2

(ξ,ε) +
n∑

i,k=1

(hik − Tik) ∂i∂ku(ξ,ε)

∣∣∣
=

∣∣∣ n∑
i,k=1

∂i

[
(gik − δik + hik) ∂ku(ξ,ε)

]
− n− 2

4(n− 1)
Rg u(ξ,ε)

∣∣∣
+

∣∣∣ n∑
i,k=1

Tik ∂i∂ku(ξ,ε)

∣∣∣
≤ C λ

n−2
2 µ2 (λ+ |x|)4m+4−n + C β λ

n−2
2 (λ+ |x|)t−n

for |x| ≤ ρ. From this the assertion follows.

Corollary 6. The function v(ξ,ε) − u(ξ,ε) satisfies the estimate

‖v(ξ,ε)−u(ξ,ε)‖
L

2n
n−2 (Rn)

≤ C λ2m+2 µ+C β λt
(
1+log(

ρ

λ
)
)n+2

2n
θt

+C
(λ
ρ

)n−2
2

whenever (ξ, ε) ∈ λΩ.

Proof. It follows from Proposition 2 that

‖v(ξ,ε) − u(ξ,ε)‖
L

2n
n−2 (Rn)

≤ C
∥∥∥∆gu(ξ,ε) −

n− 2
4(n− 1)

Rg u(ξ,ε) + n(n− 2)u
n+2
n−2

(ξ,ε)

∥∥∥
L

2n
n+2 (Rn)

,

where C is a constant that depends only on n. Hence, the assertion follows
from Proposition 5.

Corollary 7. The function v(ξ,ε) − u(ξ,ε) − w(ξ,ε) satisfies the estimate

‖v(ξ,ε) − u(ξ,ε) − w(ξ,ε)‖
L

2n
n−2 (Rn)

≤ C λ
(2m+2)(n+2)

n−2 µ
n+2
n−2 + C β λt

(
1 + log(

ρ

λ
)
)n+2

2n
θt

+ C
(λ
ρ

)n−2
2

whenever (ξ, ε) ∈ λΩ.

Proof. Consider the functions

B1 =
n∑

i,k=1

∂i

[
(gik − δik) ∂kw(ξ,ε)

]
− n− 2

4(n− 1)
Rg w(ξ,ε)

and

B2 =
n∑

i,k=1

µλ2m f(λ−2 |x|2)Hik(x) ∂i∂ku(ξ,ε).



BLOW-UP EXAMPLES FOR THE YAMABE PROBLEM 9

By definition of w(ξ,ε), we have∫
Rn

(
〈dw(ξ,ε), dψ〉g +

n− 2
4(n− 1)

Rg w(ξ,ε) ψ − n(n+ 2)u
4

n−2

(ξ,ε)w(ξ,ε) ψ
)

= −
∫

Rn

(B1 +B2)ψ

for all functions ψ ∈ E(ξ,ε). Since w(ξ,ε) ∈ E(ξ,ε), it follows that

w(ξ,ε) = −G(ξ,ε)(B1 +B2).

Moreover, we have

v(ξ,ε) − u(ξ,ε) = G(ξ,ε)

(
B3 + n(n− 2)B4

)
,

where

B3 = ∆gu(ξ,ε) −
n− 2

4(n− 1)
Rg u(ξ,ε) + n(n− 2)u

n+2
n−2

(ξ,ε)

and

B4 = |v(ξ,ε)|
4

n−2 v(ξ,ε) − u
n+2
n−2

(ξ,ε) −
n+ 2
n− 2

u
4

n−2

(ξ,ε) (v(ξ,ε) − u(ξ,ε)).

Thus, we conclude that

v(ξ,ε) − u(ξ,ε) − w(ξ,ε) = G(ξ,ε)

(
B1 +B2 +B3 + n(n− 2)B4

)
.

Note that

‖B1‖
L

2n
n+2 (Rn)

≤ C λ
(2m+2)(n+2)

n−2 µ2 + C λ2m+2+t
(
1 + log(

ρ

λ
)
)n+2

2n
θ2m+2+t

µβ

+ C
(λ
ρ

)n−2
2

and

‖B2+B3‖
L

2n
n+2 (Rn)

≤ C λ
(2m+2)(n+2)

n−2 µ2+C β λt
(
1+log(

ρ

λ
)
)n+2

2n
θt

+C
(λ
ρ

)n−2
2

by Proposition 5. Moreover, we have

‖B4‖
L

2n
n+2 (Rn)

≤ C ‖v(ξ,ε) − u(ξ,ε)‖
n+2
n−2

L
2n

n−2 (Rn)

≤ C λ
(2m+2)(n+2)

n−2 µ
n+2
n−2 + C λ

t(n+2)
n−2

(
1 + log(

ρ

λ
)
) (n+2)2

2n(n−2)
θt

β
n+2
n−2

+ C
(λ
ρ

)n+2
2

by Corollary 6. Hence, it follows from Proposition 1 that

‖v(ξ,ε) − u(ξ,ε) − w(ξ,ε)‖
L

2n
n−2 (Rn)

≤ C
∥∥B1 +B2 +B3 + n(n− 2)B4

∥∥
L

2n
n+2 (Rn)

≤ C λ
(2m+2)(n+2)

n−2 µ
n+2
n−2 + C λt

(
1 + log(

ρ

λ
)
)n+2

2n
θt

β + C
(λ
ρ

)n−2
2
.
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This completes the proof.

Proposition 8. We have

∣∣∣∣ ∫
Rn

(
|dv(ξ,ε)|2g − |du(ξ,ε)|2g +

n− 2
4(n− 1)

Rg (v2
(ξ,ε) − u2

(ξ,ε))
)

+
∫

Rn

n(n− 2) (|v(ξ,ε)|
4

n−2 − u
4

n−2

(ξ,ε))u(ξ,ε) v(ξ,ε)

−
∫

Rn

n(n− 2) (|v(ξ,ε)|
2n

n−2 − u
2n

n−2

(ξ,ε))

−
∫

Rn

n∑
i,k=1

µλ2m f(λ−2 |x|2)Hik(x) ∂i∂ku(ξ,ε)w(ξ,ε)

∣∣∣∣
≤ C λ

(2m+2)2n
n−2 µ

2n
n−2 + C λ2m+2 µ

(λ
ρ

)n−2
2 + C β2 λ2t

(
1 + log(

ρ

λ
)
)n+2

n
θt

+ C β λt+2m+2µ
(
1 + log(

ρ

λ
)
)n+2

2n
θt

+ C
(λ
ρ

)n−2
.

whenever (ξ, ε) ∈ λΩ.

Proof. By definition of v(ξ,ε), we have

∫
Rn

(
|dv(ξ,ε)|2g − 〈du(ξ,ε), dv(ξ,ε)〉g +

n− 2
4(n− 1)

Rg v(ξ,ε) (v(ξ,ε) − u(ξ,ε))
)

−
∫

Rn

n(n− 2) |v(ξ,ε)|
4

n−2 v(ξ,ε) (v(ξ,ε) − u(ξ,ε)) = 0.
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Using Proposition 5 and Corollary 6, we obtain∣∣∣∣ ∫
Rn

(
〈du(ξ,ε), dv(ξ,ε)〉g − |du(ξ,ε)|2g +

n− 2
4(n− 1)

Rg u(ξ,ε) (v(ξ,ε) − u(ξ,ε))
)

−
∫

Rn

n(n− 2)u
n+2
n−2

(ξ,ε) (v(ξ,ε) − u(ξ,ε))

−
∫

Rn

n∑
i,k=1

µλ2m f(λ−2 |x|2)Hik(x) ∂i∂ku(ξ,ε) (v(ξ,ε) − u(ξ,ε))
∣∣∣∣

≤
∥∥∥∆gu(ξ,ε) −

n− 2
4(n− 1)

Rg u(ξ,ε) + n(n− 2)u
n+2
n−2

(ξ,ε)

+
n∑

i,k=1

µλ2m f(λ−2 |x|2)Hik(x) ∂i∂ku(ξ,ε)

∥∥∥
L

2n
n+2 (Rn)

· ‖v(ξ,ε) − u(ξ,ε)‖
L

2n
n−2 (Rn)

≤ C λ
(2m+2)2n

n−2 µ3 + C λ2m+2 µ
(λ
ρ

)n−2
2 + C β2 λ2t

(
1 + log(

ρ

λ
)
)n+2

n
θt

+ Cλt+2m+2
(
1 + log(

ρ

λ
)
)n+2

2n
θt

µβ + C
(λ
ρ

)n−2
.

Moreover, we have∣∣∣∣ ∫
Rn

n∑
i,k=1

µλ2m f(λ−2 |x|2)Hik(x) ∂i∂ku(ξ,ε) (v(ξ,ε) − u(ξ,ε) − w(ξ,ε))
∣∣∣∣

≤ C (λ2m+2 µ) ‖v(ξ,ε) − u(ξ,ε) − w(ξ,ε)‖
L

2n
n−2 (Rn)

≤ C λ
(2m+2)2n

n−2 µ
2n

n−2 + C λ2m+2 µ
(λ
ρ

)n−2
2

+ Cµβ λt+2m+2
(
1 + log(

ρ

λ
)
)n+2

2n
θt

by Corollary 7. Putting these facts together, the assertion follows.

Proposition 9. We have∣∣∣∣ ∫
Rn

(|v(ξ,ε)|
4

n−2 − u
4

n−2

(ξ,ε))u(ξ,ε) v(ξ,ε) −
2
n

∫
Rn

(|v(ξ,ε)|
2n

n−2 − u
2n

n−2

(ξ,ε))
∣∣∣∣

≤ C λ
(2m+2)2n

n−2 µ
2n

n−2 + C λ
2nt
n−2

(
1 + log(

ρ

λ
)
)n+2

n−2
θt

β
2n

n−2 + C
(λ
ρ

)n

whenever (ξ, ε) ∈ λΩ.
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Proof. We have the pointwise estimate∣∣∣(|v(ξ,ε)|
4

n−2 − u
4

n−2

(ξ,ε))u(ξ,ε) v(ξ,ε) −
2
n

(|v(ξ,ε)|
2n

n−2 − u
2n

n−2

(ξ,ε))
∣∣∣

≤ C |v(ξ,ε) − u(ξ,ε)|
2n

n−2 ,

where C is a constant that depends only on n. This implies∣∣∣∣ ∫
Rn

(|v(ξ,ε)|
4

n−2 − u
4

n−2

(ξ,ε))u(ξ,ε) v(ξ,ε) −
2
n

∫
Rn

(|v(ξ,ε)|
2n

n−2 − u
2n

n−2

(ξ,ε))
∣∣∣∣

≤ C ‖v(ξ,ε) − u(ξ,ε)‖
2n

n−2

L
2n

n−2 (Rn)

≤ C λ
(2m+2)2n

n−2 µ
2n

n−2 + C λ
2nt
n−2

(
1 + log(

ρ

λ
)
)n+2

n−2
θt

β
2n

n−2 + C
(λ
ρ

)n
.

Proposition 10. We have∣∣∣∣ ∫
Rn

(
|du(ξ,ε)|2g +

n− 2
4(n− 1)

Rg u
2
(ξ,ε) − n(n− 2)u

2n
n−2

(ξ,ε)

)
−

∫
Rn

1
2

n∑
i,k,l=1

hil hkl ∂iu(ξ,ε) ∂ku(ξ,ε)

+
∫

Rn

n− 2
16(n− 1)

n∑
i,k,l=1

(∂lhik)2 u2
(ξ,ε)

∣∣∣∣
≤ C λ

(2m+2)2n
n−2 µ3 + C λ

2nt
n−2 β3 + C

(λ
ρ

)n−2

whenever (ξ, ε) ∈ λΩ.

Proof. Note that∣∣∣gik(x)− δik + hik(x)−
1
2

n∑
l=1

hil(x)hkl(x)
∣∣∣

≤ C |h(x)|3 ≤ C µ3 (λ+ |x|)3(2m+2) + C β3 (λ+ |x|)3t

for |x| ≤ ρ. This implies∣∣∣∣ ∫
Rn

(
|du(ξ,ε)|2g − |du(ξ,ε)|2

)
+

∫
Rn

n∑
i,k=1

hik ∂iu(ξ,ε) ∂ku(ξ,ε)

−
∫

Rn

1
2

n∑
i,k,l=1

hil hkl ∂iu(ξ,ε) ∂ku(ξ,ε)

∣∣∣∣
≤ C λ

(2m+2)2n
n−2 µ3 + C λ

2nt
n−2 β3 + C

(λ
ρ

)n−2
.
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At this point, we use the formula

∂iu(ξ,ε) ∂ku(ξ,ε) −
n− 2

4(n− 1)
∂i∂k(u2

(ξ,ε))

=
1
n

(
|du(ξ,ε)|2 −

n− 2
4(n− 1)

∆(u2
(ξ,ε))

)
δik.

Since hik is trace-free, we obtain

n∑
i,k=1

hik ∂iu(ξ,ε) ∂ku(ξ,ε) =
n− 2

4(n− 1)

n∑
i,k=1

hik ∂i∂k(u2
(ξ,ε)),

hence ∫
Rn

n∑
i,k=1

hik ∂iu(ξ,ε) ∂ku(ξ,ε) =
∫

Rn

n− 2
4(n− 1)

n∑
i,k=1

∂i∂khik u
2
(ξ,ε).

Since
∑n

i=1 ∂ihik(x) = 0 for |x| ≤ ρ, it follows that

∣∣∣∣ ∫
Rn

n∑
i,k=1

hik ∂iu(ξ,ε) ∂ku(ξ,ε)

∣∣∣∣ ≤ C ρ2
(λ
ρ

)n−2
.

By Proposition 4, the scalar curvature of g satisfies the estimate∣∣∣∣Rg(x) +
1
4

n∑
i,k,l=1

(∂lhik(x))2
∣∣∣∣

≤ C |h(x)|2 |∂2h(x)|+ C |h(x)| |∂h(x)|2

≤ C µ3 (λ+ |x|)6m+4 + C β3 (λ+ |x|)3t−2

for |x| ≤ ρ. This implies∣∣∣∣ ∫
Rn

Rg u
2
(ξ,ε) +

∫
Rn

1
4

n∑
i,k,l=1

(∂lhik)2 u2
(ξ,ε)

∣∣∣∣
≤ C λ

(2m+2)2n
n−2 µ3 + C λ

2nt
n−2 β3 + C ρ2

(λ
ρ

)n−2
.

Putting these facts together, the assertion follows.

Therefore we have proved
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Corollary 11. The function Fg(ξ, ε) satisfies the estimate

∣∣∣∣Fg(ξ, ε)−
∫

Rn

1
2

n∑
i,k,l=1

hil hkl ∂iu(ξ,ε) ∂ku(ξ,ε)

+
∫

Rn

n− 2
16(n− 1)

n∑
i,k,l=1

(∂lhik)2 u2
(ξ,ε)

−
∫

Rn

n∑
i,k=1

µλ2m f(λ−2 |x|2)Hik(x) ∂i∂ku(ξ,ε)w(ξ,ε)

∣∣∣∣
≤ C λ

(2m+2)2n
n−2 µ

2n
n−2 + C λ2m+2 µ

(λ
ρ

)n−2
2 + C

(
1 + log(

ρ

λ
)
)n+2

n
θt

λ2t β2

+ Cλt+2m+2µβ
(
1 + log(

ρ

λ
)
)n+2

2n
θt

+ C
(λ
ρ

)n−2
.

whenever (ξ, ε) ∈ λΩ.

We define a function F : Rn × (0,∞) → R as follows: given any pair
(ξ, ε) ∈ Rn × (0,∞), we define

F (ξ, ε) =
∫

Rn

1
2

n∑
i,k,l=1

H il(x)Hkl(x) ∂iu(ξ,ε)(x) ∂ku(ξ,ε)(x)

−
∫

Rn

n− 2
16(n− 1)

n∑
i,k,l=1

(∂lH ik(x))2 u(ξ,ε)(x)
2

+
∫

Rn

n∑
i,k=1

H ik(x) ∂i∂ku(ξ,ε)(x) z(ξ,ε)(x),

where z(ξ,ε) ∈ E(ξ,ε) satisfies the relation

∫
Rn

(
〈dz(ξ,ε), dψ〉 − n(n+ 2)u(ξ,ε)(x)

4
n−2 z(ξ,ε) ψ

)
= −

∫
Rn

n∑
i,k=1

H ik ∂i∂ku(ξ,ε) ψ

for all test functions ψ ∈ E(ξ,ε).

The next Proposition follows from Corollary 11.
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Proposition 12. The function Fg(ξ, ε) satisfies the estimate∣∣∣∣Fg(λ ξ, λ ε)− µ2 λ2(2m+2) F (ξ, ε)
∣∣∣∣

≤ C µ
2n

n−2 λ
(2m+2)2n

n−2 + C µλ2m+2
(λ
ρ

)n−2
2

+ C µβ λt+2m+2
(
1 + log(

ρ

λ
)
)

+ Cβ2λ2t
(
1 + log(

ρ

λ
)
)2

+ C
(λ
ρ

)n−2

whenever (ξ, ε) ∈ Ω.

4. Finding a critical point of an auxiliary function

In this section we will prove that for all 30 ≤ n ≤ 51 there exists a
polynomial f of degree 2 such that the corresponding F (ξ, ε) has a strict local
minimum at (0, 1) with F (0, 1) < 0. It has been proved that in dimensions
n ≥ 52 (see [5]) one can choose a polynomial of degree 1, while in dimensions
25 ≤ n ≤ 51 (see [7]) there exists a polynomial of degree 3.

Proposition 13. The function F (ξ, ε) satisfies F (ξ, ε) = F (−ξ, ε) for all
(ξ, ε) ∈ Rn × (0,∞). Consequently ∂

∂ξp
F (0, ε) = 0 and ∂2

∂ε ∂ξp
F (0, ε) = 0 for

all ε > 0 and p = 1, . . . , n.

Proof. This follows immediately from the relation H ik(−x) = H ik(x).

The following Proposition was proved in [7].

Proposition 14. We have

F (0, ε) = − n− 2
16n(n− 1)(n+ 2)

|Sn−1|
n∑

i,j,k,l=1

(Wijkl +Wilkj)2

·
∫ ∞

0
εn−2 (ε2 + r2)2−n rn+1

·
[
(n+ 2) f(r2)2 + 4 r2 f(r2) f ′(r2) + 2 r4 f ′(r2)2

]
dr.

For the rest of this section we will choose

f(s) = τ + 5s− 3
4
s2,

where τ is a real parameter.

Proposition 15. The function F (0, ε) can be written in the form

F (0, ε) = − n− 2
16n(n− 1)(n+ 2)

|Sn−1|
n∑

i,j,k,l=1

(Wijkl +Wilkj)2

· I(ε2)
∫ ∞

0
(1 + r2)2−n rn+7 dr,
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where

I(s) =
n− 12
n+ 6

n− 10
n+ 4

(n− 8) τ2 s2 + 10
n− 12
n+ 6

(n− 10) τ s3

+
(
25(n+ 8)

(n− 12)
n+ 6

− 3(n− 12)
2

τ
)
s4 − 15(n+ 12)

2
s5

+
n+ 8
n− 14

9(n+ 18)
16

s6.

Proof. It is straightforward to check that

(n+ 2) f(s)2 + 4s f(s) f ′(s) + 2s2 f ′(s)2

= (n+ 2)τ2 + 10(n+ 4)τ s+
(
25(n+ 8)− 3(n+ 6)

2
τ
)
s2

− 15(n+ 12)
2

s3 +
9(n+ 18)

16
s4.

This implies∫ ∞

0
εn−2 (ε2 + r2)2−n rn+1

·
[
(n+ 2) f(r2)2 + 4 r2 f(r2) f ′(r2) + 2r4 f ′(r2)2

]
dr

= (n+ 2)τ2 ε4
∫ ∞

0
(1 + r2)2−n rn+1 dr

+ 10(n+ 4)τ ε6
∫ ∞

0
(1 + r2)2−n rn+3 dr

+
(
25(n+ 8)− 3(n+ 6)

2
τ
)
ε8

∫ ∞

0
(1 + r2)2−n rn+5 dr

− 15(n+ 12)
2

ε10

∫ ∞

0
(1 + r2)2−n rn+7 dr

+
9(n+ 18)

16
ε12

∫ ∞

0
(1 + r2)2−n rn+9 dr.

Using the identity∫ ∞

0
(1 + r2)2−n rβ+2 dr =

β + 1
2n− β − 7

∫ ∞

0
(1 + r2)2−n rβ dr,

we obtain∫ ∞

0
εn−2 (ε2 + r2)2−n rn+1

·
[
(n+ 2) f(r2)2 + 4 r2 f(r2) f ′(r2) + 2r4 f ′(r2)2

]
dr

= I(ε2)
∫ ∞

0
(1 + r2)2−n rn+7 dr.
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This completes the proof.

In the next result, proved in [7], we compute the Hessian of F at (0, ε).

Proposition 16. The second order partial derivatives of the function F (ξ, ε)
are given by

∂2

∂ξp ∂ξq
F (0, ε)

= − 2(n− 2)2

n(n+ 2)(n+ 4)
|Sn−1|

n∑
i,k,l=1

(Wipkl +Wilkp) (Wiqkl +Wilkq)

·
∫ ∞

0
εn−2 (ε2 + r2)−n rn+5

[
2 f(r2) f ′(r2) + r2 f ′(r2)2

]
dr

− (n− 2)2

2n(n+ 2)(n+ 4)
|Sn−1|

n∑
i,j,k,l=1

(Wijkl +Wilkj)2 δpq

·
∫ ∞

0
εn−2 (ε2 + r2)−n rn+5

[
2 f(r2) f ′(r2) + r2 f ′(r2)2

]
dr

+
(n− 2)2

4n(n− 1)(n+ 2)
|Sn−1|

n∑
i,j,k,l=1

(Wijkl +Wilkj)2 δpq

·
∫ ∞

0
εn−2 (ε2 + r2)1−n rn+5 f ′(r2)2 dr.

We now compute:

Proposition 17. We have∫ ∞

0
εn−2 (ε2 + r2)−n rn+5

[
2 f(r2) f ′(r2) + r2 f ′(r2)2

]
dr

= J(ε2)
∫ ∞

0
(1 + r2)−n rn+9 dr,

where

J(s) = 10
n− 10
n+ 8

n− 8
n+ 6

τ s2 +
n− 10
n+ 8

(75− 3τ) s3

− 75
2
s4 +

9
2
n+ 10
n− 12

s5.

Proof. Note that

2 f(s) f ′(s) + s f ′(s)2

= 10τ + (75− 3τ) s− 75
2
s2 +

9
2
s3.
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This implies∫ ∞

0
εn−2 (ε2 + r2)−n rn+5

[
2 f(r2) f ′(r2) + r2 f ′(r2)2

]
dr

= 10τ ε4
∫ ∞

0
(1 + r2)−n rn+5 dr

+ (75− 3τ) ε6
∫ ∞

0
(1 + r2)−n rn+7 dr

− 75
2
ε8

∫ ∞

0
(1 + r2)−n rn+9 dr

+
9
2
ε10

∫ ∞

0
(1 + r2)−n rn+11 dr.

Hence, the assertion follows from the identity∫ ∞

0
(1 + r2)−n rβ+2 dr =

β + 1
2n− β − 3

∫ ∞

0
(1 + r2)−n rβ dr.

Proposition 18. Assume that 30 ≤ n ≤ 51. Then we can choose τ ∈ R
such that I ′(1) = 0, I ′′(1) < 0, and J(1) < 0.

Proof. The condition I ′(1) = 0 is equivalent to

an τ
2 + bn τ + cn = 0,

where

an = 4
n− 12
n+ 6

n− 10
n+ 4

(n− 8)

bn = 60
n− 12
n+ 6

(n− 10)− 12(n− 12)

cn = 200
n− 12
n+ 6

(n+ 8)− 75(n+ 12) +
27
4

n+ 8
n− 14

(n+ 18).

By inspection, one verifies that 225
4 an − 15

2 bn + cn < 0 for 30 ≤ n ≤ 51.
Since an is positive, there exists a unique real number τ < −15

2 such that
an τ

2 + bn τ + cn = 0. Moreover, we have

I ′′(1)− I ′(1) = αn τ + βn

and

J(1) = γn τ + δn,
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where

αn = 30
n− 12
n+ 6

(n− 10)− 12 (n− 12)

βn = 200
n− 12
n+ 6

(n+ 8)− 225
2

(n+ 12) +
27
2

n+ 8
n− 14

(n+ 18)

γn = −3
n− 10
n+ 8

+ 10
(n− 10)
n+ 8

n− 8
n+ 6

δn = 75
n− 10
n+ 8

− 75
2

+
9
2
n+ 10
n− 12

.

By inspection, one verifies that 15αn > 2βn > 0 and 15γn > 2δn > 0 for
30 ≤ n ≤ 51. This implies I ′′(1) = αn τ + βn < −15

2 αn + βn < 0 and
J(1) = γn τ + δn < −15

2 γn + δn < 0. This completes the proof.

Corollary 19. Assume that τ is chosen such that I ′(1) = 0, I ′′(1) < 0, and
J(1) < 0. Then the function F (ξ, ε) has a strict local minimum at (0, 1),
and F (0, 1) < 0.

Proof. It follows from Proposition 14 that F (0, 1) < 0.
Since I ′(1) = 0, we have ∂

∂εF (0, 1) = 0. Therefore, (0, 1) is a critical point
of the function F (ξ, ε). Since J(1) < 0, we have∫ ∞

0
(1 + r2)−n rn+5

[
2 f(r2) f ′(r2) + r2 f ′(r2)2

]
dr < 0

by Proposition 17. Hence, it follows from Proposition 16 that the matrix
∂2

∂ξp ∂ξq
F (0, 1) is positive definite. Finally, the inequality I ′′(0) < 0 implies

that ∂2

∂ε2F (0, 1) > 0. Consequently, the function F (ξ, ε) has a strict local
minimum at (0, 1).

5. Proof of the main theorem

In this section we will use the notation of Section 3.

Proposition 20. Let g be a smooth metric on Rn of the form g(x) =
exp(h(x)), where h(x) is a trace-free symmetric two-tensor on Rn such that
|h(x)| + |∂h(x)| + |∂2h(x)| ≤ α ≤ α1 for all x ∈ Rn, h(x) = 0 for |x| ≥ 1,
and

hik(x) = µλ2m f(λ−2 |x|2)Hik(x) + β Tik(x)
for |x| ≤ ρ. Suppose f is such that the function F (ξ, ε) has a strict lo-
cal minimum at (0, 1) with F (0, 1) < 0. If α, ρ2−nµ−2 λn−2−2(2m+2) and
λt−(2m+2)

(
1+ log( ρ

λ)
)
µ−1 are sufficiently small, then there exists a positive

function v such that

∆gv −
n− 2

4(n− 1)
Rg v + n(n− 2) v

n+2
n−2 = 0,
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Rn

v
2n

n−2 <
( Y (Sn)

4n(n− 1)

)n
2
,

and sup|x|≤λ v(x) ≥ c λ
2−n

2 . Here, c is a positive constant that depends only
on n.

Proof. Since the function F (ξ, ε) has a strict local minimum at (0, 1)
with F (0, 1) < 0, we can find an open set Ω′ ⊂ Ω such that (0, 1) ∈ Ω′ and

F (0, 1) < inf
(ξ,ε)∈∂Ω′

F (ξ, ε) < 0.

Using Proposition 12, we obtain

|Fg(λξ, λε)− λ2(2m+2) µ2 F (ξ, ε)|

≤ C λ
(2m+2)2n

n−2 µ
2n

n−2 + C λ2m+2 µ
(λ
ρ

)n−2
2

+ Cλt+2m+2
(
1 + log(

ρ

λ
)
)
µβ + Cβ2λ2t

(
1 + log(

ρ

λ
)
)2

+ C
(λ
ρ

)n−2

for all (ξ, ε) ∈ Ω. This implies

|λ−2(2m+2)µ−2Fg(λξ, λε)− F (ξ, ε)|

≤ C λ
(2m+2)4

n−2 µ
4

n−2 + C ρ
2−n

2 µ−1 λ
n−2

2
−(2m+2) + C ρ2−n µ−2 λn−2−2(2m+2)

+ C λt−(2m+2)
(
1 + log(

ρ

λ
)
)
µ−1 β + C µ−2 β2 λ2t−2(2m+2)

(
1 + log(

ρ

λ
)
)2

for all (ξ, ε) ∈ Ω. If ρ2−nµ−2 λn−2−2(2m+2) and λt−(2m+2)
(
1 + log( ρ

λ)
)
µ−1

are sufficiently small, then we have

Fg(0, λ) < inf
(ξ,ε)∈∂Ω′

Fg(λξ, λε) < 0.

Consequently, there exists a point (ξ̄, ε̄) ∈ Ω′ such that

Fg(λξ̄, λε̄) = inf
(ξ,ε)∈Ω′

Fg(λξ, λε) < 0.

By Proposition 3, the function v = v(λξ̄,λε̄) is a non-negative weak solution
of the partial differential equation

∆gv −
n− 2

4(n− 1)
Rg v + n(n− 2) v

n+2
n−2 = 0.

Using a result of N. Trudinger, we conclude that v is smooth (see [21],
Theorem 3 on p. 271). Moreover, we have

2(n− 2)
∫

Rn

v
2n

n−2 = 2(n− 2)
( Y (Sn)

4n(n− 1)

)n
2 + Fg(λξ̄, λε̄)

< 2(n− 2)
( Y (Sn)

4n(n− 1)

)n
2
.
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Finally, it follows from Proposition 2 that ‖v−u(λξ̄,λε̄)‖
L

2n
n−2 (Rn)

≤ C α. This

implies

|Bλ(0)|
n−2
2n sup

|x|≤λ
v(x) ≥ ‖v‖

L
2n

n−2 (Bλ(0))
≥ ‖u(λξ̄,λε̄)‖

L
2n

n−2 (Bλ(0))
− C α.

Hence, if α is sufficiently small, then we obtain λ
n−2

2 sup|x|≤λ v(x) ≥ c.

The Theorem 1.1 will follow from the next result.

Proposition 21. Let n, l ∈ N satisfy one of the following three conditions:
(1) n ≥ 52 and l ≥ 3;
(2) 30 ≤ n ≤ 51 and l ≥ 5;
(3) 25 ≤ n ≤ 29 and l ≥ 7.

Then there exists a smooth metric g on Rn with the following properties:
(i) gik(x) = δik for |x| ≥ 1

2
(ii) There exists a sequence of non-negative smooth functions vν (ν ∈ N)

such that

∆gvν −
n− 2

4(n− 1)
Rg vν + n(n− 2) v

n+2
n−2
ν = 0

for all ν ∈ N, ∫
Rn

v
2n

n−2
ν <

( Y (Sn)
4n(n− 1)

)n
2

for all ν ∈ N
(iii) 0 ∈ Rn is a blow-up point of vν

(iv) ∇j
gWg(0) = 0 for all 0 ≤ j < l, but ∇l

gWg(0) 6= 0.

Proof. It follows from [5], [7], and Section 4 of the present paper that,
for every n ≥ 25, there exists a polynomial f with

deg(f) =

 1 if n ≥ 52,
2 if 30 ≤ n ≤ 51,
3 if 25 ≤ n ≤ 29,

and such that the function F (ξ, ε) has a strict local minimum at (0, 1) with
F (0, 1) < 0.

Let W : Rn × Rn × Rn × Rn → R be a multi-linear form with all the
algebraic properties of the Weyl tensor such that

n∑
i,k,p,q=1

(W ipkq +W iqkp)2 > 0.

We will further assume that

W 1pkq = 0 for all 1 ≤ k, p, q ≤ n

if l is even, and

W 1pkq = W 2pkq = 0 for all 1 ≤ k, p, q ≤ n
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if l is odd.
We define

Tik(x) = |x′|l
n∑

p,q=2

W ipkqxpxq

if l is even, and

Tik(x) = x2|x′|l−1
n∑

p,q=3

W ipkqxpxq

if l is odd, where

x′ = (x2, . . . , xn).

It is not difficult to check that Tik(x) = Tki(x),
∑n

i=1 xiTik(x) = 0,∑n
i=1 Tii(x) = 0,

∑n
i=1 ∂iTik(x) = 0, and

Tik(x1, x
′) = Tik(0, x′),

for all x = (x1, x
′) ∈ Rn.

Here t = l + 2.
Choose a smooth cutoff function η : R → R such that η(s) = 1 for s ≤ 1

and η(s) = 0 for s ≥ 2. We define a trace-free symmetric two-tensor on Rn

by

hik(x) =
∞∑

N=N0

η(4N2 |x− yN |) 2−(m+ 1
8
)N f(2N |x− yN |2)Hik(x− yN )

+β η(4|x|)Tik(x),

where yN = ( 1
N , 0, . . . , 0) ∈ Rn. It is straightforward to verify that h(x) is

C∞ smooth.
Moreover, if N0 is sufficiently large and β is sufficiently small, then we

have h(x) = 0 for |x| ≥ 1
2 and |h(x)|+ |∂h(x)|+ |∂2h(x)| ≤ α for all x ∈ Rn.

(Here, α is the constant that appears in Proposition 20.)
We now define a Riemannian metric g by g(x) = exp(h(x)). Since

Tik(x) = Tik(x− yN ) and l > 2 deg(f), the metric

g(N)(z) = g(z + yN )

satisfies the hypotheses of Proposition 20 with ρN = 1
4N2 , µN = 2−

N
8 ,

and λN = 2−
N
2 . The assertion follows from Proposition 20 and the Taylor

expansion

gik(x) = δik + β Tik(x) +O(|x|2l+4)

at the origin. We are using that, in conformal normal coordinates, the Weyl
tensor and the Riemann curvature tensor have the same order of vanishing
at a point (see [11]).
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