BLOW-UP EXAMPLES FOR THE YAMABE PROBLEM

FERNANDO C. MARQUES

ABSTRACT. It has been conjectured that if solutions to the Yamabe
PDE on a smooth Riemannian manifold (M", g) blow-up at a point p €
M, then all derivatives of the Weyl tensor W of g, of order less than or

n—6

equal to [*3°], vanish at p € M. In this paper we will construct smooth
counterexamples to the Weyl Vanishing Conjecture for any n > 25.

1. INTRODUCTION

Let (M™, g) be a smooth compact Riemannian manifold of dimension
n > 3. The Yamabe problem consists of finding metrics of constant scalar
curvature in the conformal class of g. This problem reduces to a semi-linear
elliptic PDE: indeed, a conformal metric of the form uﬁ g has constant
scalar curvature c if and only if

45?_21)Agu—Rgu—i—cuﬁg:O, (1)

where A is the Laplace operator with respect to g and R, denotes the scalar
curvature of g. Every solution of (1) is a critical point of the functional

Ju (4(7?—_21) |dul; + Ry u?) dvol (2)
(o= dvoly) =
The existence of a minimizing solution to the Yamabe problem is well-known
and follows from the combined works of Yamabe [22], Trudinger [21], Aubin
[3], and Schoen [17].

In a topics course at Stanford in 1988 Richard Schoen raised the question
of compactness of the full set of solutions and proved some special cases of it.
Over the past several years many authors (Schoen [19], Li-Zhu [15], Druet
[8], Marques [16] and Li-Zhang [13], [14]) have studied this problem. The
Compactness Conjecture is now known to be true if and only if n < 24. In
[12], Khuri, Marques and Schoen have proved compactness of the full set of
solutions if n < 24. The first smooth counterexamples were constructed by
S. Brendle in [5] if n > 52, while in [7] Brendle and Marques have extended
these counterexamples to the remaining dimensions 25 < n < 51. See [6] for
a survey of this problem.

Eg(u) =
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In this paper we address a related important question (see [20]), known as
the Weyl Vanishing Conjecture. It states that if a sequence v, of solutions
to (1) blows-up at p € M, then one should have

VZgWg(p) =0 forevery 0<1< [nT—G} (3)

Here W, denotes the Weyl tensor of the metric g.

This was in fact one of the fundamental pieces of the program proposed
by Schoen in [19] to establish compactness in high dimensions. The Weyl
Vanishing Conjecture has been verified for n < 7 in [16], n < 9 in [13],
n < 11 in [14] and n < 24 in [12] (see Theorem 1.2 of that paper).

The goal of this paper is to construct counterexamples for any n > 25.

We will show how to use the methods of [5] and [7] to obtain blow-up ex-
amples concentrating at a point where the metric does not satisfy condition
(3). We should note that the blow-up examples constructed in those papers
have the property that the Weyl tensor of the underlying metric vanishes to
all orders at the concentration point.

Our main theorem is:

Theorem 1.1. Let n,l € N satisfy one of the following three conditions:

(1) n>52 and [ > 3;
(2) 30<n <51 andl>5;
(3) 25<n<29 andl>T1.

Then there exists a Riemannian metric g on S™ (of class C*), a point
p € S™, and a sequence of positive functions v, € C*°(S™) (v € N) with the
following properties:

(i) vy is a solution of the Yamabe PDE (1) for all v € N
(ii) Ey(vy) <Y(S™) for allv € N, and E4(v,) — Y (S™) as v — oo
(iii) p € S™ is a blow-up point of v,
(iv) VgWy(p) =0 for all 0 < j <1, but Vi Wy(p) # 0.
(Here, Y (S™) denotes the Yamabe energy of the round metric on S™.)

The construction relies on a glueing procedure based on some local model
metric. The model metrics are of the form g(x) = exp(h(x)), € R"™, where

hig(x) = f(|z[?) Z WipkqTpTq,

p.q

f is a polynomial, and W : R” x R” x R" x R™ — R is a multi-linear form
which satisfies all the algebraic properties of the Weyl tensor.

The idea is to find the blow-up solutions as critical points of the energy
function defined on a finite dimensional space of approximate solutions. This
energy function is well approximated at appropriate scales by an auxiliary
function F'(§,¢), £ € R", ¢ € (0,00), and we are left with the algebraic prob-
lem of finding a polynomial f such that F'(£,¢) has a strict local minimum
at (0,1) with £(0,1) < 0.
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The bubbles concentrate at the origin along the z1 direction, and by
introducing a perturbation of higher order depending only on the xo,...,x,
variables, we find an example with

v?}deg( +1W( )750

Our examples are perturbations of the ones in [5] and [7] if n > 52 or
25 < n < 29, respectively. If 30 < n < 51 we improve the calculations of
[7] by finding a polynomial f of one degree lower (degree 2). That is the
content of Section 4.

We should note that Wy(p) = 0if n > 6 and VIW,(p) = 0if n > 8, at a
blow-up point p (see [16] and [13]). It is also possible to see that the results
of [12] imply

VAW, (p) = 0, V*W,(p) = 0 if 25 <n < 51,

and
VAW, (p) = 0, VoW, (p) = 0 if 25 < n < 29.

We will now explain the structure of the paper. In Section 2, we recall that
the problem can be reduced to finding critical points of a certain function
Fy(&,¢), where £ is a vector in R™ and ¢ is a positive real number. This
idea has been used by many authors (see, e.g., [2], [4], [5], [7]). In Section
3, we show that the function F,(§,¢) can be approximated by an auxiliary
function F'(§,¢). In Section 4, we prove that if 30 < n < 51, then there exists
a polynomial f of degree 2 such that the function F'(§, ) has a critical point,
which is a strict local minimum. Finally, in Section 5, we prove Theorem
1.1 by a perturbation argument.

The author is especially grateful to Professor Simon Brendle for the many
invaluable conversations. He is also indebted to Professor Richard Schoen
for the interest and constant support. The author was supported by CNPq-
Brazil and FAPERJ.

2. LYAPUNOV-SCHMIDT REDUCTION

In this section, we collect some basic results established in [5]. Let

loc

£= {weLn 2(R”)OW12(R")-/n]dw]2<oo}.

By Sobolev’s inequality, there exists a constant K, depending only on n,

such that
_2n_ nT_z 2
(=) " <x [ lau
n Rn

for all w € £. We define a norm on & by [[w||? = [p. [dw[?. It is easy to see
that &, equipped with this norm, is complete.
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Given any pair (§,¢) € R" x (0,00), we define a function u ) : R* — R
by

n—2

e (z) = <7€ )T
e\ =\ 2 ¢ e :
The function w ) satisfies the elliptic PDE

n+2

Aue oy +n(n —2) u(g;) =0.

2 V(S 3
—2 _
/n Yee) = (4n(n — 1))
for all (§,e) € R™ x (0,00). We next define

It is well known that

W=(arpe)  rpi
P(&e.0) 2+ |z — &2 €2 + |z — |2

and

2 )%2 2¢ (5 — &)
€2+’(E—§|2 €2+‘x_§‘2
for k =1,...,n. Finally, we define a closed subspace £ ) C £ by
Eee) = {w S / Preeryw=0 fork= 0,1,...,n},
R

Clearly, ue ) € Ege)-

Plee k) (T) = <

Proposition 1. Consider a Riemannian metric on R™ of the form g(x) =
exp(h(z)), where h(x) is a trace-free symmetric two-tensor on R™ satisfying
h(z) = 0 for |x| > 1. There exists a positive constant oy < 1, depending
only on n, with the following significance: if |h(z)|+|0h(z)| +|0%h(z)| < ag
for all x € R™, then, given any pair (§,¢) € R™ x (0,00) and any function
fe L%(Rn), there erists a unique function w = G¢ ) (f) € Ee ey such
that
n

-9 4
/n <<dw,d¢>g+ngwz/J—n(n—i—Q)u(&s)ww) = Rnf¢

for all test functions ¢ € ¢ ). Moreover, we have ||w[le < C ||f||L 2n

m(Rn)’

where C is a constant that depends only on n.

Proposition 2. Consider a Riemannian metric on R™ of the form g(x) =
exp(h(x)), where h(x) is a trace-free symmetric two-tensor on R™ satisfying
h(z) = 0 for |x| > 1. Moreover, let ({,e) € R™ x (0,00). There exists a
positive constant a1 < «q, depending only on n, with the following signifi-
cance: if |h(x)| + |0h(z)| +|0*h(z)| < oy for all z € R™, then there exists a
function vie o) € € such that vie o) — e o) € Ege) and

n—2 4
/n ((dv(g@p dip)g + Hn—1) e ¥ - n(n = 2) e |2 v, 1/1) =0
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for all test functions ¢ € E¢ o). Moreover, we have the estimate

lve,e) — weelle
n—2 nt2

n—2

<C HAgu(gyg) ~ 1 Rgue oy +n(n—2) Ul o)

(n—1)

where C' is a constant that depends only on n.

2n_ )
L7n+2 (Rn)

We next define a function F, : R" x (0,00) — R by
n—2 on
Fg(&e) = /Rn <|dv(§,€)|52] NPT Ry vl ) — (n—2)? |U(§,s)|"*2)

(n
—2(n—2)(

Y (S™) )%
dn(n—1)/ °
If we choose a1 small enough, then we obtain the following result:

Proposition 3. The function Fg4 is continuously differentiable. Moreover,
if (&,€) is a critical point of the function Fg4, then the function Vg iS @
non-negative weak solution of the equation

Ayoes — 22 Ryue 2) v ? =
gv(f’g)_ll(n—l) gv(§75—)+n(n— )U(ﬁ_,g) = 0.

3. AN ESTIMATE FOR THE ENERGY OF A “BUBBLE”

Throughout this paper, we fix a multi-linear form W : R*xR"xR"xR" —
R. We assume that W;;y; satisfy all the algebraic properties of the Weyl
tensor. Moreover, we assume that some components of W are non-zero, so
that

n
Z (Wz‘jkl + Wilkj)Q > 0.
i,5,k,1=1
For abbreviation, we put

n
Hig(z) = Z Wipkq Tp Tq
pg=1
and
Hip(x) = f(|2f*) Hix (),
where f(s) is a polynomial of degree m. We have that H;i(z) is trace-free,
Yo ai Hyg(z) =0, and > | 9;Hi(x) = 0 for all |z| < 1.

Let T;i(z) be a symmetric matrix of smooth functions so that Tj,(x) is
trace-free, Y i, x; Ti(x) = 0, and >, 8;Tix(x) = 0 for all z € R". We
will also assume

n

(1T(@)| + 2l 0Tir ()] + 2210 Ton(a)]) < B Jo’
i,k=1

for some integer ¢, 0 < 5 < 1, and all |z| < 1.
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Throughout the rest of the paper we will suppose
-2
2m + 2 < min{t, ”T}. (4)

We consider a Riemannian metric of the form g(x) = exp(h(z)), where
h(z) is a trace-free symmetric two-tensor on R" satisfying h(z) = 0 for
[ > 1,

()] + |0h(x)| + |0%h(z)| <
for all x € R™, and
hik(z) = pX°™ fF(A2 |2?) Hig(x) + Ti(w)

for |z| < p. We assume that the parameters A, p, and p are chosen such that
p<1and X <p <1. Note that > | x; hjr(z) =0 and > 7" | Ojhix(x) =0
for |z| < p.

Given any pair (§,¢) € R" x (0, 00), there exists a unique function w .y €
E(¢,e) such that

4
/n ((dw(&s), dib) — n(n + 2) u(’g;) We e) Ib)

_ /IR SN PO 2f?) Hig(2) Bi0gtu(e ) ¥

ik=1

for all test functions ¢ € £ ). Moreover, by Proposition 2, there exists a
unique function v(¢ oy such that v o) — v ) € ¢ ) and

n—2

4
/n <<dv(§,s)7 dlp)g + m Ry V(ge) Y —n(n—2) ‘W{,E)‘ni2 V(g,e) w> =0

for all test functions ¢ € E¢ ).
For abbreviation, let

Q:{(g,e)eRan:|£|<1,;<6<2}.

If (§,€) € AQ, then the function w(¢ ) satisfies the estimates

n=2 A
|w(§’5)(x)’ S C\z ,U:(A—}— ’1")2 +4
n—2 Y
|Owe oy (2)| S CA 2 p(A+ |z])2m+3
n=2 9
|82w(£,€)($)| <CXNz p(\+ |z|)?mt?

for all z € R™ (see [5]).
The following result is proved in the Appendix A of [5]. A similar formula
is derived in [2]. We use repeated indices to indicate summation.

Proposition 4. Consider a Riemannian metric on R™ of the form g(x) =
exp(h(z)), where h(x) is a trace-free symmetric two-tensor on R™ satisfying
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|h(x)] <1 for all z € R™. Let Ry be the scalar curvature of g. There exists
a constant C', depending only on n, such that

1 1
Ry — 0;0khi, + 0i(hi Oxhi) — B Oihiy Orhig + 1 O1hig Orhig
< C'|n|?|0h| + C || |0n|?.

In what follows 6, = 1 if k = ”T_Q, and 0, = 0 otherwise.

Proposition 5. Assume that (,¢) € AQ). Then we have

n—2 nt?
HAgu(&E) — 74@ Y R, Uee) T n(n —2) Ufe o) Ln%( "
< ONMF2 ) OB (1 +1lo (”))n;"zet +C (A)QZ
S Y g b\ P
and
n— 2 nt2
HAQU(&E) — 74(n ) R, U e) T n(n —2) u(g’;)
2m —2 112\ 17, ‘
+ ';JM JOT7 |2]7) Hig () 0i0kue o L8 (g
(2mﬁ;2_)(n+2) 9 . i nt2g, i n-2
SO 2+ 0B <1+log()\)> +C<p) .

Proof. Note that Y ;" | 9ihiy(z) = 0 for |z| < p. Hence, it follows from
Proposition 4 that

[Ry(x)| < C[h(x)[?[0%h(x)] + C |oh(z)[?
< OpP A+ |22+ O 6% (A + |2])* 2

for |z| < p. This implies

— n+2
n—2 n

4(n—1) 2

+
)Agu(&g) — Rgug ey +n(n—2) Ufe o

> 0™ = du) Ohuces)] — in—1) Ry g e
ik=1

<SONT A+ 2?2 4 CBAT (A + |z
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and
n—2 iz O
ik=1
S ik n—2
= ’ D 0i[(g™ = Gk + har) Ohuee)] — =1 Ry ue,e)
ik=1

+ ‘ Z Tik 8i8ku(575)
1,k=1

< ONT 2+ )™ L CBAT (A )t
for |z| < p. From this the assertion follows.

Corollary 6. The function v ) — u) satisfies the estimate

2m+2 ¢ P\ 2n O R
Ivee) ~ el 22y gy < CN™2 0 +C B (l—l-log()\)) +C (p)
whenever (&,e) € AQ.

Proof. It follows from Proposition 2 that

Ioee) — el 2oy gy

n—2 n42
<C HAQU(&E) — 74(71 Y Rgue e + n(n —2) g

£ 2n 9

L7+2 (Rn)

where C' is a constant that depends only on n. Hence, the assertion follows
from Proposition 5.

Corollary 7. The function v o) — ) — We o) Satisfies the estimate
o) = tee) = wieoll 2 gy
< ONTEET RS Lo (1+ log(§)> & A2
whenever (&,e) € AQ.

Proof. Consider the functions

= i n—2
Bi= Y 0[(g" — bix) Opwie o] — =1 Ry wie,e)
ik=1

and
n

By =Y pA fONT? o) Hip() Didhue )
ik=1
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By definition of w(¢ ), we have
n 4

—9
/Rn (<dw(§,s)7 d)g + =1 Rygwigeyth —n(n+2)ufy wee) ¢>
= —/H(B1 + Ba) ¢

for all functions ¢ € £ ). Since we o) € ¢ o), it follows that
Wiee) = ~Gee) (Br + Ba).
Moreover, we have
Vige) ~ Uge) = Gleo) (Bs +n(n —2) Ba),
where
Bs = Aguqee) —

and

4
B4 = |U(£7€)|n—2 ’U(&E) — u( 76) — n—o9 ’LL(&E) (U(ﬁ,s) - U( ,E))‘
Thus, we conclude that
Uge) — Uee) — Wee) = Giee)(Br+ Ba+ By +n(n — 2) By).
Note that

(2m+2)(n+2) nTH62m+2+t

< e aa T 2mA4-2+t P\ 2n
IBill, 2, gy S ON 0 24 X2 (14 10g(5) e

n—2

+C’(2>2

and

(2m+2)(nt2) 20 N 52
1Bo+Bsl 2, ) SCON 72 u2+CﬂAt<1+log(§)) "o (2)
by Proposition 5. Moreover, we have

n+2

<
2 (Rn) Clives) = weal 27”(&")

(n+2)2
(2m+2)(n+2)  nt2 o0t nt2
n—2 #n2+0)\n2 (1+1g(A)>2( 2) ﬁn72
n+2

ro()"

by Corollary 6. Hence, it follows from Proposition 1 that

loee) = uee) = wieall 22y

< C||Bi+ By + Bz +n(n — 2) B

Ln

)E o)

@2m+2)(n+2) n42

2 e 4 C’)\t<1 + log(

y\b ﬂ?
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This completes the proof.

Proposition 8. We have

2 2 n—2 2 2
‘ /R i (|dv(f,a>!g — ldugeq)lg + =1 Ry (vie,0) — “(ae)))
4 4
+ / n(n = 2) (Juee ™ = Ule o) Ue ) Vigse)
2n_ 27"2
- /R n(n—2) (o) 72 — ull?)

_ /R Z I )\Qm f()\_Q ‘$|2) sz(x) 8@6[(&(575) W(ge)

i,k=1
(2m+2)2n  2n by n—2 %0
SON R ON2y (;) SO /\Zt(l +log(§)) t
nizg A\ n—2
+Cﬁx\t+2m+2,u(1+log(§)) : t+c(;> .

whenever (£,e) € AQ.

Proof. By definition of v ), we have

n—2
/ (ldvigal} — (duea), dvige)s + T —1) RV (Vee) — ues))

n

_4
a / (= 2)[ueo) |77 V) (Vige) — Uee) = 0-
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Using Proposition 5 and Corollary 6, we obtain

n—2
/n ({duge.c)s dvie.y g — Iduge |2 + 2= 1) Fotiee) (Veo) ues))

+
- / n(n = 2) uf 5 (Ve = Uge)

/’ §j;wvm 2 2f2) Hip(2) 0:0hte.0) (0. — Ue))

n—2 2
< HAgu(s,E) T An—1) Rgugge) +nn = 2) ug 5
+ > uA O (o) Hig(w) Oidguceo) || 25 )
i,k=1
v = H L2 (R
(2m+2)2n Lﬁet

<ON u3+C>\2m+2u() —i—Cﬂz)\zt(l—i-log(g)) "
—|—C’)\H2m+2<1+log(§)>Jr uﬁ+C<2)n_2.

Moreover, we have

D AT T ) Hir(2) ik (viee) — Uiee) — w(s@)‘

< C (N2 1) o o) — uge.c) — Wie o) 17 gy

n—2

(2m+2)2n n A\ 5
S C>\ n—2 ,uln272 + C)\2m+2 I (;> 2

n+2 et

+ CH/B)\t+2m+2 (1 + 10g(§)) 2n

by Corollary 7. Putting these facts together, the assertion follows.

Proposition 9. We have

|wgw2—u ") u =2 [ (17— uicy)
(g,e)) W(Ee) V() an (&) )

n+2

(2m—+2)2n

w2 s 4 O AR 2(1+log(A))M0t5’%+C(2)n

whenever (€,e) € AQL.
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Proof. We have the pointwise estimate

2n

4 = -3
’(‘W{,E)‘niz - u(gﬁ)) Uge) V(ge) — (‘U (&¢) ‘ - u(gé))

on
< Cluge) = ugee) ™2,

where C' is a constant that depends only on n. This implies

2n

2
‘/ (Il = ))%s)v(ss)_/ (o™ — uie3)

<C — an
Hvﬁs Ue, E)H L7 ()

3

(2m+2)2n nt2g

<CA T O (1 +1og(§))m W= (2)"

Proposition 10. We have
2 n—2 2 s
’ /Rn el + ﬁ Ryl = nln =2 uic3)
/ Z hit bt Oiue o) Ok e e)

i,k,l=1
+/ n=2 i (Oyhix)? w2
R 16(n — 1) &= 2 6

(2m+2)2n

n A\ n—2
<O\ u3+0A%53+c(;)

whenever (§,€) € AQ.

Proof. Note that

9" (@) = Gip + hax(w —*thz ) hya (2 ‘

< Clh(@)P < Cp® (A + IxD @m+2) 4 0 B% (A + |z])*

for |z| < p. This implies

’ /R (dugeqlg = lduee?) + /R ) Z hik Oite.e) O )
/ Z hzl hkl 0; U(g €) akU(g €)

zkl 1

(2m+2)2n

n n—2
<ON e u3+0A%ﬁ3+c(5) .
P
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At this point, we use the formula

Since hj; is trace-free, we obtain

n —

thau§s)8kU(5€) (n—l thé)ﬁk( (55))
i,k=1 i,k=1

hence

. n —
/ D hikOiue) ey = / m Z Oidhit e -
ik=1

i,k=1

Since Y7, O;hip(x) = 0 for |z| < p, it follows that

/ Z hir O; iU(ge) 8}{&(575) < Cp </\)7Z—2.

i,k=1

By Proposition 4, the scalar curvature of g satisfies the estimate

Rg(iﬁ)JrZ Z (Orhir())?

ik,l=1
< Clh(x)? |0*h(z)] + C |h(x)] |0h(z)|?
< Cp® A+ [z + C B (A + [z))* 2

ie+3 32 e’

for |z| < p. This implies

R,u / 0lhzk u? R
/n 9t Rn4kz (&)

(2m+2)2n

n—2
<CXN n2 u3+0)\n—2ﬁ3+(}p2(2) .

Putting these facts together, the assertion follows.

Therefore we have proved
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Corollary 11. The function F4(§,€) satisfies the estimate

1 n
fg(f,s)—/RHQ Z hit byt Qi e o) Ore e
ik, l=1

n

n—2 22
+/Rn 16(n— 1) 2 (Orhi)* u

ik, =1

- /R D u N AT |2?) Hig(@) 0i0kuqe,e) wie,e)

(2m+2)2n

SCOXN w4 Ny (;) +C (1 + log(g)) e g

n+2g A

+C’)\t+2m+2uﬁ<1+log(§)) 2 ‘+c(p)"_2.

whenever (&,e) € AQ.

We define a function F' : R™ x (0,00) — R as follows: given any pair
(&,e) € R™ x (0,00), we define

U —
Feo) = [ 5 3 Hale) (o) due ) e )
ik,l=1

_ /Rn 16?(171__21) > (O Hik(2)) ue o (@)

ik,l=1

+ /R D Hip(z) 00kt o) (x) 2(¢ ) (),
"ik=1
where z(¢ o) € E(¢ ) satisfies the relation

| (st @) =m0+ 2wy (0072 2 )

= / > Hip, 0i0kue o) v
R™ k=1

for all test functions ¢ € & ).

The next Proposition follows from Corollary 11.
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Proposition 12. The function F4(&, €) satisfies the estimate

MﬁanAe»—#?V“m+”fwas>

(2m+2)2n

S CM7L272 )\ n—2 + Cu)\2m+2 <7) 2
1%

t+2m+2 P 242t NG A\n—2
FCufA <1+log()\)>+Cﬁ)\ (1+log()\)> +c(2)
whenever (§,¢) € Q.

4. FINDING A CRITICAL POINT OF AN AUXILIARY FUNCTION

In this section we will prove that for all 30 < n < 51 there exists a
polynomial f of degree 2 such that the corresponding F'(§, €) has a strict local
minimum at (0,1) with F'(0,1) < 0. It has been proved that in dimensions
n > 52 (see [5]) one can choose a polynomial of degree 1, while in dimensions
25 <n <51 (see [7]) there exists a polynomial of degree 3.

Proposition 13. The function F(,¢) satisfies F(€,e) = F(—=¢&,¢) for all
2

(&,e) € R" x (0,00). Consequently %F(O,E) =0 and &L%F(O,E) =0 for

alle >0 andp=1,...,n.

Proof. This follows immediately from the relation H;;,(—x) = H;i(z).

The following Proposition was proved in [7].
Proposition 14. We have
- no2 Bl i (Wijkt + Wikz)*
16n(n — 1)(n + 2) . " e
i,9,k,0=1
[e.e]
. / €n72 (52 + T2)27n TnJrl
0

[ +2) 1622 +402 163 £67) + 200 022 i

F(0,¢e) =

For the rest of this section we will choose

3
f(s)=7+5s— 152,

where 7 is a real parameter.

Proposition 15. The function F(0,e) can be written in the form

n

Bl Z (Wijkt + Wis)®
i g kl=1

. I(€2) / (1 + 7,2)27n Tn+7 d?’,
0

n—2

FO.8) = oD+ 2
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where
n—12n—10 n—12
I(s) = —8)72s% +10 —10)7 s
(s) 16 n+4(n )TE ST+ n+6(n )T s
(n—12) 3(n—12) \ , 15(n+12) .
25(n + 8 - ) _ o+l
+( (48756 5 )° 5 °
n+8 9(n+18)86
n—14 16 ’

Proof. It is straightforward to check that
(n+2) f(5)* +4s f(s) ['(s) + 257 ['(s)?
= (n+2)7° 4+ 10(n +4)7 5 + (25(n +8) —

15(n+12) 5 9(n+18) 4
5 s° 4+ 16 s”.

3(n2—|— 6) 7_) 2

This implies
[+ 2) 02+ 482 167) 162) + 2 ()2 dr
= (n+2)r?et /000(1 + )2t gy
+10(n + 4)7&° /000(1 4 72)2n 3 gy

+ (25<n + 8) _ MT) 58/ (1 + r2)27n 7qn+5 dr
0

2
— M 510 /00(1 4 r2)2—n Tn+7 dr

2 0
9 18 o0
+ (n;(—j ) 512/ (1+ 7“2)2_" 9 dr,
0

Using the identity

o 1 o
/0 (1+r2)2 P2 g = 2n6——; — /0 (1+r2)2 P dr,

we obtain
/OO 5n—2 (52 + T2)2—n ,r,n+1
0
: [(n +2) fF(r)2 + 472 f(r?) f1(r?) + 24 f’(rz)Q] dr

=1I(e?) / (1+r?)> "™ dr.
0
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This completes the proof.

In the next result, proved in [7], we compute the Hessian of F' at (0,¢).

Proposition 16. The second order partial derivatives of the function F(, )
are given by

82

F
7€, ¢, (0,¢)

n

1S Z (Wipkt + Witkp) Wigkr + Witkg)
i1

. /OO 5n_2 (52 —|—7"2)_n Tn+5 [2 f(?“2) f,(’I“Q) —|—7“2 f/(T2)2:| dr
0

(n —2)?
C 2n(n+2)(n +4)

B 2(n — 2)?
T n(n+2)(n+4)

1™ Wikt + Wakg)? Opg
4,9,k 0=1
/ 6n—2 (62 +T2)—n ,r_n+5 [2 f(?“2) f/(,r,Z) +T2 f’(r2)2} dr
0

n

)!5”_1! > Wikt + Wang)? 6pq
ik, l=1

(n—2)°
An(n —1)(n + 2

(o]
/ €n72 (52 + T2)17n rn+5 f/(’f'2)2 dr.
0
We now compute:

Proposition 17. We have

/OO 6n—2 (62 + ,r2)—n Tn+5 2f(T2) f/(T’2) + 7,,2 f,(’l“2)2 dr
0

= J(?) / (1+ 73 ar,
0

where
n—10n—38 n — 10
J(s) =10 2 75 — 37) 83
() nisnie S taas ! 7)$
2 2n—12
Proof. Note that
2 f(s) f'(s) + 5 f'(s)°

:107+(75—37)3—§s2+§s3.
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This implies
/ 6n—2 (52 +T2)—n ,r,n+5 |:2 f(?"2) f/(T‘2) +T2 f/(T2)2 dr
0
=107 ¢ / (1+ 735 gr
0

+ (75— 371) €8 / (1+7r2)" "t gy
0

75

oo
+ g gl0 / (1+ 7’2)_” gy
0

oo
/ (14 r2) "9 gy
0

Hence, the assertion follows from the identity

o 1 o
/0 (1+7r2)" B2 gr = 2nﬂ——; — /0 (1+ 72" B dr.

Proposition 18. Assume that 30 < n < 51. Then we can choose T € R
such that I'(1) =0, I"(1) < 0, and J(1) <O0.

Proof. The condition I'(1) = 0 is equivalent to
an T2+ by T+ =0,

where

n—12n—10

—q-—° —
n n+6 n+4 (n=8)
n—12
by = 60—~ (n —10) — 12(n ~ 12)
n—12 27 n+8
= 200 8) — 75 12 — 18).
Cn ——y- (n+8) (n+12) + 1 n_14(n+ )

By inspection, one verifies that % an — % bn + ¢, < 0 for 30 < n < 51.
Since a,, is positive, there exists a unique real number 7 < —% such that
an 72 + b, T + ¢, = 0. Moreover, we have

I"(1) = TI'(1) = a7+ Bn
and

J(1) =y, 7+ dp,
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where
n—12
n =30 —10) —12(n — 12
an =307 (n = 10) ~ 12 (n — 12)
n—12 225 27 n+8
L, = 2 - — 12 — 1
3 00n+6(n+8) 5 (n+ )+2n_14(n+ 8)

n_10_|_1 (n—10) n—38
n+8 n+8 n+6
n—10 75 9n+4+10

n+8 _?+§n712'

By inspection, one verifies that 15«,, > 28, > 0 and 157, > 26, > 0 for
30 < n < 51. This implies I”(1) = a7 + By < —L2an + B, < 0 and
J) =y 7+, < —%’yn + 8, < 0. This completes the proof.

o= —3

Op =175

Corollary 19. Assume that T is chosen such that I'(1) = 0, I"(1) < 0, and
J(1) < 0. Then the function F(&,¢) has a strict local minimum at (0,1),
and F(0,1) < 0.

Proof. It follows from Proposition 14 that F'(0,1) < 0.
Since I'(1) = 0, we have %F(O, 1) = 0. Therefore, (0,1) is a critical point
of the function F'(,¢). Since J(1) < 0, we have

/oo(l n T2)—n Tn+5 2]0(7,2) f/(T‘Q) + 7,,2 f/(,r2)2} dr < 0
0

by Proposition 17. Hence, it follows from Proposition 16 that the matrix

%QB&ZF (0,1) is positive definite. Finally, the inequality I"”(0) < 0 implies

that g—;F(O, 1) > 0. Consequently, the function F'(£,¢) has a strict local

minimum at (0, 1).

5. PROOF OF THE MAIN THEOREM
In this section we will use the notation of Section 3.

Proposition 20. Let g be a smooth metric on R™ of the form g(x) =
exp(h(x)), where h(x) is a trace-free symmetric two-tensor on R™ such that
|h(z)| + |0h(z)] + |0*h(z)| < a < aq for all z € R™, h(z) = 0 for |z| > 1,
and
hig(x) = p X2 f(AN72 [2|?) Hig(2) + 8 Tig(x)

for |z| < p. Suppose f is such that the function F(§,e) has a strict lo-
cal minimum at (0,1) with F(0,1) < 0. If o, p> =2 An=2722m+2) gpng
\E—(2m+2) <1 +log(§)) pu~ L are sufficiently small, then there exists a positive

function v such that

Ap— — =
g n
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and sup|, <y v(z) > AT Here, ¢ is a positive constant that depends only
on n.

Proof. Since the function F(,¢) has a strict local minimum at (0,1)
with F(0,1) < 0, we can find an open set ' C Q such that (0,1) € Q' and

F(0,1) < inf F(¢€) <0,
(0,1) e (&)

Using Proposition 12, we obtain
[Fg (A€, Ae) = AT W2 B (g e

(2m+42)2n  2n )\ n=2
SONTE T oN (2

+ o2 (1 tog(2))us + 08N (1 +108(5)) 4 0 (p)H

for all (§,¢e) € Q. This implies
W2 By (A, Ae) = F( )]

(2m+2)4 4 2—n

<CAN 2z izt Cpa M—l /\"T’Z—(2m+2) + sz—n 'u—z \—2-2(2m+2)

2
+ C)\tf(2m+2) (1 + log(g)) ,Ulil ﬁ + C,U/72 52 )\2t72(2m+2) (1 + 10g(§))

for all (&) € Q. If p> =2 An—2-22m+2) and At_(2m+2)<1 + log(§)> put
are sufficiently small, then we have

Fy(0,0) < inf  F (A Ae) < 0.
(0, 1) (gal)nec‘mf (A€, Ae)

Consequently, there exists a point (£,2) € Q' such that
Fy(AENE) = inf  Fy(AE, Ae) < 0.
(&e)eqY

By Proposition 3, the function v = V(aé,\e) 18 @ non-negative weak solution
of the partial differential equation

n+2

z Ryv+mn(n—2)vn=—2 =0.

-2
4(n—1)
Using a result of N. Trudinger, we conclude that v is smooth (see [21],
Theorem 3 on p. 271). Moreover, we have

2(n — 2) / vz = 2(n — 2) (Jisj)l))
<2(n—-2) (zmy(q(fj)l))

Agv —

N3

+ Fg()\g, )\5)

NE
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Finally, it follows from Proposition 2 that [[v—u¢ 5z HL%(Rn) < Ca. This
implies

n—2
Bx(0)| 2n sup v(z) > ||v|| 2= > |Juing e n —Ca.
BN sup ) 2 0], 2y, ) 2 P00, 25,
Hence, if « is sufficiently small, then we obtain AT SUp|g|<) v(T) > ¢

The Theorem 1.1 will follow from the next result.

Proposition 21. Let n,l € N satisfy one of the following three conditions:
(1) n>52 and | > 3;
(2) 30 <n <51 andl > 5;
(3) 25<n<29andl>T1.
Then there exists a smooth metric g on R™ with the following properties:
(i) gin(x) = i for |z| > %
(ii) There exists a sequence of non-negative smooth functions v, (v € N)

such that
n—2 nt2
Agv, — =) Ryv, +n(n—2)v; 2 =0
for allv € N,
= Y(5") \2
/nvy < <4n(n—1)>
for allv € N

(iii) 0 € R™ is a blow-up point of v,
(iv) V§We(0) =0 for all 0 < j <1, but VL W,(0) # 0.
Proof. It follows from [5], [7], and Section 4 of the present paper that,
for every n > 25, there exists a polynomial f with
1 if n > 52,
deg(f)=1< 2 if 30<n <51,
3 if 25 <n <29,
and such that the function F(¢,¢) has a strict local minimum at (0, 1) with
F(0,1) <O0.
Let W : R® x R® x R® x R® — R be a multi-linear form with all the
algebraic properties of the Weyl tensor such that

n

Z (W'ka:q + Wiqkp)Q > 0.
t,k,p,q=1

We will further assume that
Wlpkq =0 forall 1<k,p,g<n
if [ is even, and

Wlpkq = ngkq =0 forall 1<k, p,g<n
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if [ is odd.
We define

n
Tix(x) = |xl|l Z WipkgTpy
P,q=2

if [ is even, and

n
Ti(z) = $2|x,‘l_1 Z Wipkql'pxq
P,q=3
if [ is odd, where
' = (za,..., 7).

It is not difficult to check that Tjx(z) = Tki(z), > iy xiTik(xz) = 0,
> i1 Tii(@) = 0, 325, 0iTik(x) = 0, and

j—%k(x17 1',) = T:Lk‘(oa :E/)v

for all x = (z1,2') € R™.

Here t =1+ 2.

Choose a smooth cutoff function n : R — R such that n(s) =1 for s <1
and 7(s) =0 for s > 2. We define a trace-free symmetric two-tensor on R"
by

o

1
hig() = Y n(AN? [z —yn|) 27N 2N |z — yn ) Hip(z — yw)
N=No

+ B n(4fx]) Tir(x),

where yy = (#,0,...,0) € R It is straightforward to verify that h(z) is
C™ smooth.

Moreover, if Ny is sufficiently large and 3 is sufficiently small, then we
have h(z) = 0 for [z| > 1 and |h(2)|+ |0h(z)| +|0?h(z)| < « for all z € R™.
(Here, « is the constant that appears in Proposition 20.)

We now define a Riemannian metric g by g(x) = exp(h(z)). Since
Tix(z) = Tip(x — yn) and | > 2deg(f), the metric

g™ (2) = g(z + yn)

satisfies the hypotheses of Proposition 20 with py = ﬁ, UN = 27%,

and A\y = 2-%. The assertion follows from Proposition 20 and the Taylor
expansion

gin(x) = 8, + B Tir(2) + O(Ja| 1)

at the origin. We are using that, in conformal normal coordinates, the Weyl
tensor and the Riemann curvature tensor have the same order of vanishing
at a point (see [11]).
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