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1. INTRODUCTION

Projective spaces and hyperquadrics are the simplest projectiveaityedrieties, and they can be char-
acterized in many ways. The aim of this paper is to provide a new charatienof them in terms of
positivity properties of the tangent bundle (Theorem 1.1).

The first result in this direction was Mori’s proof of the Hartshorne cotnjee in [Mor79] (see also Siu
and Yau [SY80]), that characterizes projective spaces as the onljatarhaving ample tangent bundle.
Then, in [Wah83], Wahl characterized projective spaces as the omiijotds whose tangent bundles contain
ample invertible subsheaves. Interpolating Mori’'s and Wahl's resultsreftih and Waniewski gave the
following characterization:

Theorem [AWO01]. Let X be a smooth complex projectivedimensional variety. Assume that the tangent
bundleTx contains an ample locally free subshe@bf rankr. ThenX ~ P" and either§ ~ Opn (1)"
orr=nand& = Tpn.

We note that earlier, in [CP98], Campana and Peternell obtained the ssutidaer > n — 2.

Let & be an ample locally free subsheafiaf. of rankp < n. By taking its determinant, we obtain a non-
zero section it % (P, APTpn ® Opn (—p)). On the other hand, most sectiongifi (P", AP Tpn @ Opn (—p))
do not come from ample locally free subsheavegief.

This motivates the following characterization of projective spaces andrypdrics, which was con-
jectured by Beauville in [Bea00]. Hei®, denotes a smooth quadric hypersurfac@ir®, and Oq, (1)
denotes the restriction @fpp+1(1) to Q,. Whenp = 1, (Q1, Og, (1)) is just(Pt, Op1(2)).

Theorem 1.1. Let X be a smooth complex projectiwedimensional variety and?Z an ample line bundle
onX. If HO(X, A\PTx @ £~P) # 0 for some positive integer, then either(X,.Z) ~ (P", Opn (1)), Or
p=mnand(X,.Z) ~ (Qp, ﬁQp(l)).

The statement of this theorem can be interpreted in the following way.XLbe a smooth complex
projectiven-dimensional variety and’ an ample line bundle oX . Consider the sheaf'y: = Tx @ £~ L.
Then Wahl's theorem [Wah83] says thatfif’ (X, 7¢) # 0 thenX ~ P". Theorem 1.1 generalizes this
statement to the case when one only assumesihak’, AP.7) # 0 for some0 < p < n.

In order to prove Theorem 1.1, first notice tiais uniruled by [Miy87, Corollary 8.6]. Next observe that
if the Picard number oK is 1, then itis necessarily a Fano variety. If the Picard number is largerthihen
we fix a minimal covering family of rational curves orX, and follow the strategy in [AWO01] of looking
at theH -rationally connected quotient: X° — Y° of X (see Section 2 for definitions). We show that any
non-zero section € H(X, APTx ®.%F) restricts to a non-zero sectioh € H*(X°, APTxo jyo®.ZF),
except in the very special case whes 2 andX ~ @Q,. This is achieved in Section 5. Afterwards we need
to deal with two cases: the case wh&nis a Fano manifold with Picard numbg&y and the case in which
the H-rationally connected quotient : X° — Y° is either a projective space bundle or a quadric bundle,
andH%(X°, A\PTyo jyo @ £ 7F) # 0.

When X is a Fano manifold with Picard numbgef.X') = 1, the result follows from the following.
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Theorem 1.2(=Theorem 6.3).Let X be a smoot-dimensional complex projective variety wighX ) =
1, £ an ample line bundle orX, andp a positive integer. IfH%(X, Tfffp ® ZL7P) # 0, then either
(X, Z) ~ (P, 0pn(1)),0rp=n>3and(X,.Z) ~ (Qy, ﬁQP(l)).

The paper is organized as follows. In Section 2 we gather old and neltsrebout minimal covering
families of rational curves and their rationally connected quotients. In $e8tive show that the relative
anticanonical bundle of a generically smooth surjective morphism fronrraalgrojectiveQ-Gorenstein
variety onto a smooth curve is never ample. This will be used to treat the da=e thve H-rationally
connected quotient : X° — Y° is a quadric bundle. In Section 4, we show tpaderivations can be
lifted to the normalization. This technical result will be used in the following sactidich is the technical
core of the paper. In Section 5, we study the behavior of non-zeragéatations of bundles of the form
NPTx ® .4 with respect to fibration& — Y. We also prove some general vanishing results, such as the
following.

Theorem 1.3(=Corollary 5.5). Let X be a smooth complex projective variety a#flan ample line bundle
on X. If HO(X,APTx @ £~P~1=F) £ 0 for integersp > 1 andk > 0, thenk = 0 and (X,.%) ~
(PP, Opr(1)).

Finally, in Section 6 we prove Theorem 1.2 and put things together to proserém 1.1.

Notation and definitionsThroughout the present article we work over the field of complex numbrdess
otherwise noted. By a vector bundle we mean a locally free sheaf and by lauirdle an invertible sheaf.
If X is avariety and: € X, thenx(z) denotes the residue fiel@x,x/mx’m. Given a varietyX, we denote
by p(X) the Picard number oX. If & is a vector bundle over a variefy, we denote by’* its dual vector
bundle, and byP(&’) the Grothendieck projectivizatidbroj y (Sym(&’)). For a morphisny : X — T, the
fiber of f overt € T is denoted byX;,.
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2. MINIMAL RATIONAL CURVES ON UNIRULED VARIETIES

In this section we gather some properties of minimal covering families of rattomeés and their corre-
sponding rationally connected quotients. For more details see [Kol9&pOT}eor [AKO3].

Let X be a smooth complex projective uniruled variety &hdn irreducible component ®atCurves™ (X).
Recall that only general points i are in 1:1-correpondence with the associated curves.in

We say that is acovering family of rational curves oA if the corresponding universal family domi-
natesX. A covering familyH of rational curves oiX is calledunsplitif it is proper. It is calledminimalif,
for a general point € X, the subfamily ofH parametrizing curves throughis proper. AsX is uniruled,
a minimal covering family of rational curves ok always exists. One can take, for instance, among all
covering families of rational curves oXi one whose members have minimal degree with respect to a fixed
ample line bundle.

Fix a minimal covering familyH of rational curves orX. Let C be a rational curve corresponding to a
general point in/, with normalization morphisnf : P! — C ¢ X. We denote byC] or [f] the point in
H corresponding t@”. We denote b)f*T;g the subbundle of *T'x defined by

f*T—i- = im [HO(Pl,f*TX(—l)) ® ﬁpl(l) — f*Tx] — f*Tx.

By [Kol96, IV.2.9], if [f] is a general member df, thenf*Tx ~ Op1(2) ® Op1 (1)¥? @ ﬁ[ﬁ("_d_l), where
d=deg(f*Tx)—2>0.

Given a pointz € X, we denote by, the normalization of the subschememfparametrizing rational
curves passing through By [Kol96, 11.1.7, 11.2.16], if x € X is a general point, thef/, is a smooth
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projective variety of dimensiod = deg(f*Tx) — 2. We remark that a rational curve that is smooth &
parametrized by at most one elementhyf.

Let Hy, ..., H;, be minimal covering families of rational curves a&h For each, let H; denote the clo-
sure ofH; in Chow(X). We define the following equivalence relation &n which we call(H1, ..., Hy)-
equivalence. Two points,y € X are(H,,..., Hy)-equivalent if they can be connected by a chain of
1-cycles fromH, U - - - U H},. By [Cam92] (see also [Kol96, 1V.4.16]), there exists a proper suvjectior-
phismz° : X° — Y° from a dense open subsetXfonto a normal variety whose fibers d#1, . . ., Hy)-
equivalence classes. We call this map th&, . . . , Hy)-rationally connected quotient of. WhenY® is a
point we say thak is (H, ..., Hy)-rationally connected.

Remark 2.1. By [Kol96, IV.4.16], there is a universal constantdepending only on the dimension &f,
with the following property. IfHy,..., H; are minimal covering families of rational curves ofy and
x,y € X are general points on a genefal,, . . ., H;)-equivalence class, thenandy can be connected by
a chain of at most rational cycles fromd; U --- U Hy,.

The next two results are special features of the, . . ., Hy)-rationally connected quotient of when
the familiesHy, ..., H; are unsplit. The first one says that can be extended in codimensiarto an
equidimensional proper morphism with integral fibers, but possibly allowingular fibers. The second
one describes the general fiber of tHerationally connected quotient af when H is unsplit andH,, is
irreducible for generat € X.

Lemma 2.2. Let X be a smooth complex projective variety aHd, . .., H; unsplit covering families of
rational curves onX. Then there is an open subs€t of X, with codimx (X \ X°) > 2, a smooth variety
Y°, and a proper surjective equidimensional morphism with irreducible addiced fiberg® : X° — Y°
which is the( Hy, . . ., Hy)-rationally connected quotient of.

Proof. The fact that thé H, ..., Hy)-rationally connected quotient df can be extended in codimension
1 to an equidimensional proper morphism follows from the proof of [BCORYGposition 1]. This holds
even in the more general context of quasi-unsplit covering familie@-dactorial varieties. In [BCDQ7,
Proposition 1] this is established for a single quasi-unsplit family, but the saowod works for finitely
many quasi-unsplit families. For convenience we review the constructittrabéxtension.

Let7° : X° — Y° be the(Hy,..., Hy)-rationally connected quotient of. By shrinkingY® if nec-
essary, we may assume thatis smooth. Lef” — Chow(X) be the normalization of the closure of the
image ofY° in Chow(X), and let/ C Y x X be the restriction of the universal family 6. Denote by
p:U — Y andqg : Y — X the induced natural morphisms. Notice that/ — X is birational.

Let0 € Y and setdy = p—1(0). Thenq(Uy) is contained in aifHy, . .., Hy)-equivalence class. This

follows from taking limits of chains of rational curves from the familigs, ..., H; (see Remark 2.1),
observing the assumption that thg’s are unsplit, and the fact that the image of a general fibprinfX is
an(H, ..., H)-equivalence class.

Let £ be the exceptional locus @f Since X is smooth,E has pure codimensiohin ¢{. SetS =
q(F) C X. This is a set of codimension at leasin X. We shall show thaf is closed with respect to
(Hu, ..., Hg)-equivalence. From that it will follow that the morphisiy, g : U \ E — Y \ p(E) is proper
and induces a proper equidimensional morphsm S — Y \ p(F) extendingr®. Let L be an effective
ample divisor onY’. Then there exists an effectiveexceptional divisorF' on i/ and an effective divisor
D on X such thatp*L + F = ¢*D. First we claim thakupp F' = E. Indeed, letC’ C F be any curve
contracted by;. ThenC' is not contracted by sincel/ C Y x X. HenceF -C =¢*D-C —p*L - C <0,
and soC' C supp F. This proves the claim. Notice that the general fibep dbes not meek. Therefore,
for any curveC C U contained in a general fiber of we haveq*D - C' = 0. This shows in particular
thatD - ¢ = 0 for any curvel from any of the families,, ..., Hy. If £ C U is mapped ontd by ¢, then
F-0=q¢*D-{—p*L -l < 0. Hence eithef is contained inE = supp F or it is disjoint from it. Therefore,
if 2 is a curve from any of the familie#, ..., H, then eitheW c S or¢/ NS = (. In other words,S is
closed with respect toH1, . . . , Hy)-equivalence.

ReplaceX° with X \ S andY° with Y\ p(E), obtaining a proper equidimensional morphisfn: X° —
Y with codim(X \ X°) > 2. SinceY is normal, we may also repladé® with its smooth locus and we
still have the conditiorodim (X \ X°) > 2.
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The locusB of Y° over whichz7® has multiple fibers has codimension at leash Y°. To see this,
compactifyY ° to a smooth projective variefy and take a resolution : X — Y of the indeterminacies of
X --» Y with X smooth and projective. L&t C Y be a smooth projective curve obtained by intersecting
dim Y — 1 general very ample divisors dn. Let7 : X — C be the corresponding morphism. Th&p,
is smooth projective and the general fibetras rationally connected. Heneg: has a section by [GHSO03],
and thus it cannot contain multiple fibers. Now, repl&Cewith Y°\ B to obtain an equidimensional proper
morphism with no multiple fibers.

Let F' be a general fiber af°. For eachi, denote byH/, 1 < j < n,, the unsplit covering families of
rational curves orf’ whose general members correspond to rational curves nmom the family H;. Let
[H7] denote the class of a member®f in Ni(F) andH := {[H]] |i=1,...,kj=1,...,n;}. Then
by [Kol96, IV.3.13.3], N, (F') is generated b§.

Finally we shall show that the locu8’ of Y ° over which the fibers of° are not integral has codimension
atleast2 in Y°. LetC' C Y° be a smooth curve obtained by intersectitign Y° — 1 general very ample
divisors onY®. Letwc : X¢ — C be the corresponding morphism. Th&i is smooth. We denote the
image of the classel#?|'s in V1 (X¢) and their collectior{ by the same symbols. By taking limits of
chains of rational curves from the familiég,, . . ., H, and applying [Kol96, 1V.3.13.3] (see Remark 2.1),
we see that any curve contained in any fiberref is numerically proportional inV;(X¢) to a linear
combination of thgH?!]'s. HenceN; (X/C) is generated b§1. Therefore, all fibers of - are irreducible.
Indeed, ifF} is an irreducible component of a reducible fitféy, then F{| is a Cartier divisor onX, and
Fj - [H]] = 0 for everyHJ On the other hand, there is a cutve F| such thatf{) - ¢ > 0, contradicting
the fact thatV; (X¢/C) is generated b§{. Since there are no multiple fibers, the fibers are also reduced.
Finally, we replac& ° with Y° \ B’ and obtain a morphism with the required properties. O

Proposition 2.3. Let X be a smooth complex projective variety aicin unsplit covering family of rational
curves onX. Assume that, is irreducible for generalk € X. Let7n° : X° — Y° be theH-rationally
connected quotient of . Then the general fiber af° is a Fano manifold with Picard numbér

Proof. Let X; be a general fiber of°, and suppose(X;) # 1. Denote by H] the class of the members
of H in N1(X). By [Kol96, IV.3.13.3], every proper curve ol; is numerically proportional toH] in
Ni1(X). There exists an irreducible compondiit of Hx, = {[C] € H | C C X;} which is an unsplit
covering family of rational curves oX;. SinceH,, is irreducible for general € X, such a componerfi,
is unique. Sincey(X,;) # 1, X is not H;-rationally connected by [Kol96, IV.3.13.3]. Let : X — Z7
be the (nontrivial)H;-rationally connected quotient of;. Notice that for every € Z; there is a curve
C, C X; numerically proportional to¢H] in N1(X), meeting the fiber of, over z, but not contained in
it. Since H, is unique, there is a dense open subebf X and a fibrationr : X’ — Z’ whose fibers are
fibers ofo, for somet € Y°. Moreover, there is a curv@ C X numerically proportional toH] in N1 (X),
meetingX’, and not contracted by. But this is impossible. Indeed, I be an effective divisor ox’
meeting but not containing the image ©fby 0. Let L be the closure of~!(L’) in X. ThenL - C > 0
while L - ¢ = 0 for any curveZ parametrized by lying on a fiber ofo. O

Remark 2.4. The statement of Propositich3 does not hold in general if we do not assume ftiatis
irreducible for generak € X. Indeed, one may take® : X° — Y° to be a suitable family of quadric
surfaces ifP? and H to be the family of lines on the fibers af.

Definition 2.5. Let X be a smooth complex projective variety, alich minimal covering family of rational
curves onX. Letx € X be a general point. Define the tangent map H, --» P(7,X*) by sending a
curve that is smooth at to its tangent direction at. DefineC, to be the image of,, in P(7,,X™*). This is
called thevariety of minimal rational tangentst = associated to the minimal famillf.

The mapr, : H, — C, is in fact the normalization morphism by [Keb02] and [HMO4]. 7if is an
immersion at every point off, then all curves parametrized 5, are smooth at by [Kol96, V.3.6] and
[Ara06, Proposition 2.7], and, as a consequence, there is a omeetoearesponcence between pointgigf
and the associated curves &n The varietyC, comes with a natural projective embedding i@, X *).
This embedding encodes important geometric propertiés.cdfhe following result was proved in [Ara06]
and gives a structure theorem for varieties whose variety of minimal rateamgents is linear.
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Theorem 2.6[Ara06]. Let X be a smooth complex projective variefy, a minimal covering family of
rational curves onX, andC, C P(7,X™*) the corresponding variety of minimal rational tangentsat X.
Suppose that for a generale X, C, is ad-dimensional linear subspace B{7, X ™).

Then there exists an open subd&t ¢ X and aP¢*!-bundley® : X° — T° over a smooth base with
the property that every rational curve parametrized Byand meetingX® is a line on a fiber ofy°. In
particular, ¢° : X° — T° is the H-rationally connected quotient of . If H is unsplit, then we may take
X° such thatodim(X \ X°) > 2.

Proposition 2.7. Let X be a smooth complex projective variefy,a minimal covering family of rational
curves onX, andr® : X° — Y° the H-rationally connected quotient &f . Suppose that the tangent bundle
Tx contains a subshed? such thatf* 2 is an ample vector bundle for a general mempérc H. Thenr®

is a projective space bundle and the inclusi@fi. — T'y- factors through aninclusio?|x- — Txo ye.

Proof. Let C, C P(7,X™) be the variety of minimal rational tangents associated/tat a general point
x € X. By [Ara06, Proposition 4.1}, is a union of linear subspaces®fl’, X *) containingP(Z* @ x(x)).
In [Ara06, Proposition 4.1 is assumed to be ample, but the proof only uses the facftifais a subsheaf
of f*T for generalf] € H.

We shall prove that, is irreducible, and thu, is a linear subspace &7, X*).

For a generat € X, denote byH;, 1 < i < k, the irreducible components &f,., and bijc the image
of 7| ;. Recall that, is smooth and hence thé’ are disjoint. Furthermore, eacl is ad-dimensional
linear subspace d# (7, .X*) containingP(Z* ® k(zx)). Thusr, is an immersion at every point éf,, hence
all curves parametrized i/, are smooth at, and there is a one-to-one corresponcence between points of
H, and the associated curves &n We shall produce a cundghroughz: such that, forevery € {1,...,k},
there exists an element fid’. parametrizind. Since there is a one-to-one corresponcence between points of
H, and the associated curves &0 there exists a unique point ifi,, parametrizing, yielding thatH, is
irreducible.

Foreach € {1,...,k}, setY; = locus(H%), and lety; : Y; — Y; be the normalization morphism. Since
f*2 is ample for generd|f| € H, one has an injectio|y- — Ty- over the smooth locug;” of ;. By
[Ara06, Lemma 3.3]Y; ~ P41, Under this isomorphism, the rational curvesjrparametrized by .
come from the lines of*?t! passing through a fixed poirt € Y;. By [Ara06, Lemma 4.5], the restricted
mapZ|y, — Tx|y, induces an injection of sheavés := 1} 7|y, — Tpa+1. FurthermoreZ;|; is ample for
a general liné c P4+!, This implies that there is a ling ¢ P4+! throughz; and an injectiory;, — %/;,.

If 9, is not ample, the existence of sugHollows from [OSS80, Theorem 3.2.1]. #; is ample, it follows
by the same argument as in [Ara06, Section 4, pages 946-947].

Fix ip € {1,...,k}. Letl;, C P! be a line through:;, with 1, — %o\lio an injection of sheaves.
Setl = n;,(l;,). Thenl is smooth at: and over its smooth locu$ one has an injectiofij. — 2|;-. Hence
I C Y; for everyi, and thus, for every € {1,...,k}, [ is the image of a line through; in Y; ~ P%+!, and
hence there exists an elementHil parametrizing. This shows thati,. is irreducible as we noted above.

Now we apply Theorem 2.6 to conclude thet is a projective space bundle. Moreover, for a general
pointz € X°, the stalkZ, is contained iNT’x- vy ). Since the cokernel df’x. ;yo < Txo is torsion
free, we conclude that there is an inclusi@iye — T'y. /vy factoring?|x. — Txeo. O

3. THE RELATIVE ANTICANONICAL BUNDLE OF A FIBRATION

In this section we prove that the relative anticanonical bundle of a gatigrstnooth surjective morphism
from a normal projectivé)-Gorenstein variety onto a smooth curve cannot be ample. In fact, we tgrev
following more general result. Note that a similar theorem was proved in [MiyA8orem 2].

Theorem 3.1. Let X be a normal projective varietyf : X — C a surjective morphism onto a smooth
curve, andA C X a Weil divisor such that X, A) is log canonical over the generic point 6f. Then
—(Kx/c + A) is not ample.

Proof. Let X % C % C be the Stein factorization of. ThenK; = 0"K¢c + R, whereR, is the
ramification divisor ofc and so—(KX/é +A) = —(Kx;c + A) + g*R,. Notice thatR, is effective and
hence if— (K x/c + A) is ample, then so is(KX/@ + A).
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Thus, in order to prove the statement, we may assumefthas connected fibers. Let us now assume to
the contrary that-(Kx,c + A) is ample. Letr : X — X be a log resolution of singularities 6K, A), A
an ample divisor o, andm > 0 such thatD = —m(Kx,c + A) — f*Ais very ample. Then

Ki+m A~ (Kx +A)+ Ey — E_,
where £, and F_ are effectiver-exceptional divisors with no common components and such that the
support ofr; 'A 4+ E, 4+ E_ is an snc divisor. By the log canonical assumptibn,can be decomposed as
E_ = FE + F where[E] is reduced andv_ agrees withE' over the generic point af'. Setf = f o 7w and

let D € |x*D| be a general member. Settidg= 7, 'A+ L D + E, we obtain that X, A) is log canonical
and that

- - 1 -
(3.1.1) Kz +A+F g ['Ko+EBe— — A

Furthermore, sincd”, is m-exceptional,r,. 0y (1E,) is an ideal sheaf iy for anyl € Z (see for
instance [Deb01, Lemma 7.11]). Then for dny N sufficiently divisible,

FeO3(Im(Kg )0+ A)) = fOg(Im(Kg o+ A+ F)) ~
~ f.Ox(I(mE; — f*A)) ~ fL05(ImE;) @ Oc(—1A) C Oc(—1A).
Finally, observe that
o f. Ox(Im(Kg o+ A + F)) is nonzero by (3.1.1) and becauge is effective,
o f ﬁX(lm(KX/C + A)) is semi-positive by [Cam04, Thm. 4.13], and
e . is an isomorphism over a nonempty open subsét.of

Therefore,f,ﬁ)~<(lm(KX/C + A)) is a non-zero semi-positive sheaf containedin(—1A), but that con-
tradicts the fact thatl is ample. 0

4. LIFTING p-DERIVATIONS TO THE NORMALIZATION

In this section we show thatderivations (see definitian 4.4 below) can be lifted to the normalization.
This is a generalization of Seidenberg’s theorem in [Sei66]. The pindfss section follow closely the
proof of Theorem 2.1.1 in [KIO6] and we also use the following result fromdK6].

Lemma 4.1[K&l06, Lemma 2.1.2]Let (A, m, k) be a local Noetherian domain ar@la derivation ofA.
Let v be a discrete valuation on the fraction field(A) with center inA. Then there exists a € Z such

thatv (@) > cforanyz € K(A)\ {0}.
Definition 4.2. Let R be a ring,A an R-algebra and/ an A-module. Denote b¥2,,r the module of
relative differentials ofA over R. Given a positive integes, we denote b)ﬂi/R the p-th wedge power of

Qa/r- A p-derivation of A over R with values in)M is an A-linear mapd : QZ/R — M. Such a ma@
induces a skew symmetric map(A)®? — M 4 K(A), whereK (A) denotes the fraction field of. We
use the same symbdlto denote this induced map. Whéih = A andR is clear from the context, we call

0 simply ap-derivation ofA.

Lemma 4.3. Let (A, m, k) be a local Noetherian domaim, a positive integer, and a p-derivation of A.
Letv be a discrete valuation on the fraction field( A) with center inA. Then there exists € Z such that

v (%) > cforanyz, ...z, € K(A)\ {0}.
Proof. We use induction op. If p = 1, this is Lemma 4.1. Suppose now that 2 and let(A4, m, k) be a
local Noetherian domair@) a p-derivation of A, andv a discrete valuation on the fraction field(A) with
center inA. Letmy, ..., m, be generators of the maximal ideal

Using the formula

3(961,1331,27 e 7xp,1l‘p,2) B Z 8(361,2‘1, e 71’p,z‘p)
L1,121,2 " Tp,1Tp,2 Tl * Tpip

9
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we get
u (8(33171.%172, ooy xpjlxp72)> 2 min {V (8(1’1@-1, e ,xp,ip)> }
L1,121,2 " Lp,1Lp,2 Tliy " Tp,ip
forxi1,z192,...,2p1,2p2 € A\ {0}. Further observe that
-1
Owy w9, xp)  Ox1,...,7p)
1-1_1332..1'p 1‘1"'33[)

Also, if a € A, thena may be written as a sum of produets, - - - m;, v with u € A \ m. Therefore we
only have to check that the required inequality holdsfor. . ., x, € {m1,...,m,} U (A \ m).
If 1,...,2, € A\ mthen

” (M> = v(8(x1,...,2,)) > 0.

:L‘l DY :Cp
Suppose now that at least one of thés is in m. For simplicity we assume that,...,z; € A\ m and
Tty Tp € {my,...,my}, 0 <1 < p. We may viewd(-,--- ,-,zj4+1,...,2p) as an-derivation ofA.
The result then follows by induction. O

Definition 4.4. Let S be a schemeX a scheme ovef, and.¢ a line bundle onX. Denote by2y,s the
sheaf of relative differentials oX over.S, and byQ’)’(/s its p-th wedge power fop € N. A p-derivation of
X over S with values inZ is a morphism of sheavées: Qﬁc/s — Z. When§s is the spectrum of a field

and.Z is clear from the context, we drdpand.Z from the notation and cadl simply ap-derivation onX.

Proposition 4.5. Let X be a Noetherian integral scheme over a fielof characteristic zeroang : X — X
its normalization. Let?” be aline bundle otX,, p a positive integer, an@ a p-derivation with values inZ’.
Theno extends to a uniqug-derivationd on X with values in*.%.

Proof. The uniqueness d is clear since? is torsion free and is birational. The existence of the lifting
can be established locally. So we may assume ¥hds$ the spectrum of an integralalgebraA, .Z is
trivial, ando is ap-derivation ofA. Let A’ denote the integral closure dfin its fraction field K (A). There
exists a unique extension ofto ap-derivation of K(A), which we also denote by. We must prove that
a(A,... A C A.

First we reduce the problem to the case whkis a1-dimensional local ring and’ is a DVR. SinceA’
is integrally closed inK'(A), A’ is the intersection of its localizations at primes of height one [Mat80, 2.
Theorem 38]. Lep’ be a prime of height one of’, and sep = p'N A. Notice thad(4,, ..., A,) C A,, and
the result follows if we prove tha(4,,,..., 4;,) C Aj,. Hence we may assume thatis al-dimensional
local ring andA’ is a DVR. Denote byn andm’ the maximal ideals ofi and A’ respectively.

Next we further reduce the problem to the case wheand A’ are complete local rings. Lek be
the completion ofd” with respect to then’-adic topology. LetA be the completion ofd with respect to
the m-adic topology. Sinced is 1-dimensional, there is an inclusion of local ringsC R. Letv be a
discrete valuation of(A’) whose valuation ring ist’. By Lemma 4.3 is a continuoug-derivation of
R with values inK (A’). Hence it has a unique extension to a continuewggrivationd of K(R). Notice
that the conditiond(4,...,A) C A implies thatd(A,...,A) C A by the Artin-Rees Lemma. Since
K(A)N R = A’, the result then follows if we prove th&tR, ..., R) C R. Therefore we may assume that
A and A’ are completd -dimensional local rings.

Now we use induction op. If p = 1, this is Seidenberg’s theorem [Sei66], SO we may assume thal.
Let k4 be a coefficient field iM, andk 4. a coefficient field inA’ containingk 4 [Eis95, Theorem 7.8]. The
extensionk 4/ |k 4 is finite. Lett € m’ be a uniformizing parameter. It suffices to show thét,, ..., z,) €
Alforay, ..., xp € kg U {t}. Sinced is skew symmetric ang > 2, we haved(t, ...,t) = 0. So we may
assume that; € k4. Sincek |k is finite and separable, there exigt$X) = > a; X’ € k4[X] such
that P(z1) = 0 andP’(z1) # 0. Thus

0=0(P(z1),22,...,xp) = P(x1)0(z1,...,2p) + Z Oai, g, ..., 1p)7h.

Finally, 9(a;, -, ..., -) may be viewed as a— 1 derivation ofA and sa)(x1, . .., x,) € A’ by the induction
hypothesis. O
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5. SECTIONS OFAPT Y ® A

The following lemma will be used several times in this section.

Lemma5.1. LetY be a smooth variety; : X — Y a smooth morphismy a line bundle onX, andp > 2
an integer. Suppose that for a general fibEy,of 7, HO(F,\N'Tr ® #|r) = 0for0 < i < p — 2. Then
there exists an exact sequence:

0 - HYX NTx)y @ M) — HY X, NTx @ M) — H'(X,N"'Tx)y @ n*Ty ®@ M).
Proof. The short exact sequence
0—Txyy = Tx —» 7Ty —0
yields afiltration\PTx @ A4 = Fo 2 F1 2 Fo D --- 2 F, 2 Fpp1 = 0 such that
Fi| Fiv1 ~ /\iTX/Y QT NTTy @ M
for eachi. In particular, one has the short exact sequence,

(5.1.1) 0— NPTy @ M — Fpy — N 'Tx)y @7 Ty @ M — 0.

The assumption that/*(F, A\'Tr ® .#|r) = 0 for 0 < i < p — 2 for a general fiber ofr implies that
HY(X, %/ Fit1)=0for0 <i<p-—2,thusH" (X, \PTx @ #) = H(X, %) = --- = H(X, Zp_1)
and the result follows from (5.1.1). O

The condition that/’(F, N'Tr®.# |r) = 0for 0 < i < p—2andF a general fiber of is easily verified
whenr is a projective space bundle and | - is sufficiently negative. In this case we get the following.

Lemma 5.2. Let Y be a smooth projective variety of dimensienl, & an ample vector bundle of rank
r+ 1 > 2 and.# a nef line bundle orY’. Consider the projective bundle : X = P(&) — Y with
tautological line bundle&dp(«)(1). Letp, ¢ € N and assume that > 2. Then

(5.2.1) HY(X, N'Tx )y @ Opgy(—p —q) @ w* A4 ") = 0.

Proof. First observe, that ib > r then the statement is trivially true, so we will assume that r. Let
i € N, i < p. After twisting by Op o) (—p — ¢) ® 7*.4~1, the short exact sequence

0— /\p_i_lTX/y — NPT (*E* (1)) — /\p_iTX/y —0

yields the exact sequence

(522) - — H'(X,NH ") (—~i— Q@7 N ) = H(X,N""Tx)y(-p—q)@n* N ") —
— H™(X, /\p_i_lTX/y(—p —q@r A/ — ..

Sincei < p <r andemﬁ]p(g)(l) = 0for0 < j < r and for anyl € Z, the Leray spectral sequence
implies that

H(X, N (1" (=i —q) @m* N = H(Y, NPT * @ /1o T Op(g)(—i — q))-
The sheatr, Ops)(—i — q) is zero unless = ¢ = 0, in which case it is isomorphic t¢y. Furthemore,
HO(Y,\P&* @ A ~1) = 0 since& is ample and4” is nef, and hence
HY(X,NP"H1*E*)(~i —q) @m* N/ 1) =0

for 0 < i < p — 1. Therefore, by (5.2.2), one has a series of injections,

HY(X, N Txpy (—p—q) @ 7" N 1) = H (X, N Ty (—p—q) @ " N 1) — .

o HY (X, NP Ty (—p—q) @m* A ™) o oo o HP(X, Opioy(—p —q) @ 7° A4 7).
By the Kodaira vanishing theoreft” ( X, ﬁp(g)(—p—q)é@w*,/i/*l) = 0, and the statement follows.(]

Corollary 5.3. LetY be a smooth projective variety of dimensianl and & an ample vector bundle of
rankr + 1 > 2 onY. Consider the projective bundte: X = P(&) — Y with tautological line bundle
Op()(1). Suppose thall® (X, APT'x ® Op(g)(—p — q) @ m*.4~1) # 0 for some integerp > 2, ¢ > 0,
and some nef line bundlg” onY. ThenY ~ P!, & ~ Op1(1) © Op1 (1), p =2, ¢ =0, and. V" ~ Op.
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Proof. Let I' ~ P" denote a general fiber af and set# = Op(s)(—p — q) ® 7* 41, Then by Bott's
formula HO(F, \iTr ® .#|r) = 0 for every0 < i < p — 2. Then Lemma 5/1 and Lemma 5.2 imply that
HY (X, NPTy jy @ (Ty @ A 1) @ Opgey(—p—q)) # 0. By Bott's formula againt®(F, AP~ Tp(—p—

q)) # 0 implies that; = 0 andr = p — 1. Therefore we have

0# H' (X, N Tx)y @ (Ty @ N ) ® Opgy (-1 — 1)) =
HY(X,7* (Ty @ det & @ A 1)) = HY(Y, mor* (Ty @ det £ @ N 1)) ~
HO(Y, T .
(, y®(d€t(§®ﬂ) )

ample

Now Wahl's theorem [Wah83] yields that ~ P™ for somem > 0. Then we immediately obtain that
deg(det & ® 4") < 2. Sinced’ is ample on a projective space,

2<r+1=rké& <deg& <deg(det& ® A) —deg. AV <2—deg N <2.

Therefore all of these inequalities must be equalities and we have that=p = 2, ¢ = 0 and.4 ~ Oy.
Furthermore, this implies that therpm (2) ~ det & — Tp= and hencen = 1. O

Proposition 5.4. Let X be a smooth projective varietif C RatCurves™(X) a minimal covering family of
rational curves onX, . an ample line bundle o, and.# a nef line bundle oX such that; (.#)-C > 0
for every[C] € H. Suppose thati®(X,A\PTx @ £ P @ .#~') # 0 for some integep > 1. Then
(X,g, %) ~ (]P)p’ ﬁ]}m(l), ﬁpp(l)).

Proof. Let[f] € H be a general member and wrif€l'x ~ Op1(2) @ ﬁpl(l)@d@ﬁﬂ?i"*dfl. The condition
that both f*.# and f*.# are ample and thati®( X, \’Tx @ 7P @ .#~') # 0 implies thatf*.¥ ~
Op1(1) =~ f*., and thusH is unsplit. A non-zero section € HY(X,\PTx ® 7P ® .#~"') and the
contraction

Co  NTxRLPRMT - N Ty L Pou
induced by a differential ford € Qx, gives rise to a non-zero map

Qx > NP Ty L Peoa!

0 — (59(8),
the dual of which is the non-zero map
(5.4.1) p: O @ P oM — Ty

The shea]‘f*(Qf)”;1 ®.ZLP.#)is ample. Thus, by Proposition 2.7 and Theorem 2.6, there is an opern subse
X° C X, with codimyx (X \ X°) > 2, a smooth variety™®, and aP?*t1l-pundler® : X° — Y?° such that
any rational curve frontf meetingX° is a line on a fiber ofr°. Moreover, the restriction of to X° lies in
HY(X°, ANPTxo yo @ L) @ A | +), and its restriction to a general fibryields a non-zero section in
HO(F,\PTr @ Z|2P @ #|). On the other hand, by Bott's formul&® (P!, APTpai1 (—p — 1)) = 0
unlessp = d + 1.

Supposelim(Y°) > 0. Sincecodimx (X \ X°) > 2, Y° contains a complete curve through a general
point. Letg : B — Y° be the normalization of a complete curve passing through a general paiiit &et
Xp = X° xyo B, and denote by?x, and.Zx,, the pullbacks ofZ and.# to X g respectively. Then
Xp — BisaPP-bundle, and the sectiarinduces a non-zero sectiontf (X5, A\PTx, /5 ®$§g®//l)};).

But this is impossible by Corollary 5.3. Thdém(Y°) = 0 and X ~ PP. O

Corollary 5.5. Let X be a smooth projective variety ace an ample line bundle oX. If HO(X, APTy ®
L~p=1=k) £ 0 for integersp > 1 andk > 0, thenk = 0 and (X,.%) ~ (PP, Op»(1)).

Proof. Note thatX is uniruled by [Miy87]. The result follows easily from Proposition|5.4. O

Here is how we are going to apply these results under the assumptionsakfhé.1l. Suppose that
HO(X, NPTy @ £~P) # 0 for some ample line bundl¢” on X and integep > 2. ThenX is uniruled
by [Miy87] and we fix a minimal covering familyd of rational curves onX. Let7 : X° — Y° be
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the H-rational quotient ofX. By shrinkingY® if necessary, we may assume thé&t and« are smooth.
Corollary 5.5 provides the vanishing required to apply Lemma 541 ° — Y°, yielding the following.
Lemma 5.6. LetY be a smooth varietyy : X — Y a smooth morphism with connected fibers, &ida
line bundle onX. Let F' be a general fiber of. Suppose thak’ is projective and that the restrictia®’| »
is ample. IfHY(X, A\PTy ® .£~P) # 0 for some integep > 2, then either(F, Z|r) ~ (PP~!, Opp-1(1))
and HO(X, \P~'Tx )y @ 7Ty @ £ 7P) # 0, or dim(F) > pand H(X, NPTy @ £ F) # 0.

Proof. Corollary 5.5 implies thatH®(F, \'Tr @ .Z|F) = 0for0 < i < p — 2. So we may apply
Lemma 5.1 with#Z = £ ~* to conclude that eithell (X, A\P~ 1Ty )y @ m*Ty ® £ 77) # 0, ordim F > p
andH° (X, \PTx ;y © £ ~P) # 0. In the first case we havd® (F, AP~ 'Tr ®@.Z| ;") # 0, and Corollary 5.5
implies that(F, Z|r) ~ (PP~!, &p,-1(1)) and so the desired statement follows. O

Let X, H, andrw : X° — Y° be as in the above discussion. If we are under the first case of Lemma 5.6,
then Theorem 2|6 implies that tf&—'-bundler : X° — Y° can be extended in codimensipnNext we
show that in this case we must ha¥e~ ().

Lemma 5.7. Let X be a smooth projective variety aoef an ample line bundle oX. Let X° C X be an
open subset whose complement has codimension alléast. Letw : X° — Y° be a smooth projective
morphism with connected fibers onto a smooth quasi-projective varig#y. (1K °, /\p—lTXo/yo Qm*Tyo ®
LI %) # 0 for some integep > 2, thenp = 2, X° = X ~ Q,, andY° ~ PL.

Proof. Suppose that for some> 2 there is a non-zero section
s € HO(XO, /\p_lTXo/yo ® 1 Tyo ®$|;(€) # 0.

By Corollary 5.5, the fibers of are isomorphic t®”~!, and the restriction af# to each fiber is isomorphic
to Opy-1(1). Sincer has relative dimension— 1, there exists an inclusimn?’—lTXo/yo Qn*Tys C APTxo,
and thuss, as in [(5.4.1), yields a map : Q@;l ® L. — Txo of rankp at the generic point. Since
codimy (X \ X°) > 2, s extends to a sectiohe H°(X, APTy ® .£~P). Denote by

Q: Q];(_l ® L7 — Tx
the associated map, which has rankt the generic point.

Let & = m..%. By [Fuj75, Corollary 5.4],X° ~ P(&) overY° and then/\fp—lTXo/Yo ® LP ~
7*(det £*), ands is the pullback of a global sectiony. € H°(Y°, Tyo ® det &*). This implies that the
distributionZ defined bys is integrable. Moreover, its leaves are the pullbacks of the leaves ofltatdo
Z° defined by the maget & — Ty. associated t@y-.

Sincecodimy (X \ X°) > 2, we can find complete curves sweeping out a dense open sulisét bét
C be a general complete curve Bi. CompactifyY° to a smooth variety’, and let# be an invertible sub-
sheaf ofTy- extending#°. Then.Z|c = det &|¢ is ample. By [BMO1, Theorem 0.1] (see also [KSCTO07,
Theorem 1]), the leaf of the foliatios through any point of” is rational. We conclude that the leaves of
¢ are (possibly noncomplete) rational curves. Thus the closures of thesleithe distributior? defined
by ¢ are algebraic. N

Let /' C X be the closure of a leaf o that meetsX° and lety : F — F be its normalization.
Then there exists a morphisf — B onto a smooth rational curve. The general fiber of this morphism is
isomorphic taP?—! and the restriction ofZ to the general fiber is isomorphic .1 (1). The fibers are
thus generically reduced and finally reduced since fibers satisfy'Seoradition S;. By [Fuj75, Corollary
5.4], F — Bis aPP~!-bundle and, in particulaﬁ? is smooth.

The sectiors € H(X, A\PTx ® .#~P) defines a non-zero mdp;,, — .#~P. SinceF is the closure of a

leaf of 7 and.Z|r is torsion free, the restriction of this map fofactors through a maft}. — Z|.”. By
Lemma 4.5, this map extends to a rrfaP — n*Z|". Corollary 5.3 then implies that= 2 andF ~ Q.
Moreovery* Z|r ~ Oq,(1). In particular,r : X° — Y° is aP!-bundle. Denote by the unsplit covering
family of rational onX whose general member corresponds to a fiber. of

We claim that the general leaf of° is a complete rational curve. From this it follows that the general
leaf of 7 is compact, and contained i°. Let /' denote the normalization of the closure of a general leaf of
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2. SinceF ~ @ andn*Z|r ~ 0g,(1), X admits an unsplit covering familif’ of rational curves whose
general member corresponds to a ruIingEbE Q)2 that is not contracted by. Sincecodim(X \ X°) > 2,
the general member dii’ corresponds to a complete rational curve contained in Its image inY is a
complete leaf of#7°. As we noted above, this implies thAt= F' ~ ()». Notice that the sectiohdoes not
vanish anywhere on a general ldaf~ (), of .%°.

Lety : X' — Z' be the(H, H')-rationally connected quotient of. Then the general fiber @f is a
leaf F' ~ Q- of #°. By Lemma 2.2, we may assume thatlimx (X \ X’) > 2, Z’ is smooth, and is a
proper surjective equidimensional morphism with irreducible and rediiloes. Therefore : X' — Z'is
a quadric bundle by [Fuj75, Corollary 5.5]. Since the famillésand H' are distincty is in fact a smooth
guadric bundle.

We claim that in factX = F and Z’ is a point. Suppose otherwise, and fet C — Z’ be the
normalization of a complete curve passing through a general poidt. dbet X = X’ x5 C, denote by
vc : Xc — C the corresponding (smooth) quadric bundle, and wiftg., for the pullback ofZ to Xc.

The sectiors induces a non-zero section MO(XC,wXé/C ® ,,2”)202) that does not vanish anywhere on a
general fiber ofr¢. Thus%}lc/c is ample, contradicting Proposition 3.1. O

6. PROOF OFTHEOREM[1.1

In order to prove the main theorem, we shall reduce it to the case Wheas Picard number(X) = 1.
To treat that case, we will recall some facts about slopes of vectoldmititht will be used later.
Definition 6.1. Let X be ann-dimensional projective variety ang” an ample line bundle oX. Let &

wo\n—1
be a torsion free sheaf oki. We define the slope ef with respect to’# to bey . (&) = %
We say that a vector bundl& on X is ;1 -semistabléf for any torsion free subsheaf of .7 we have
1, (&) <, (F). Given avector bundlg” on X, there exists a filtration of# by torsion free subsheaves
0=6&CEHC...C 6 =F,

with ., -semistable quotient9; = &;/&;—1, and such that,, (Q1) > 11, (Q2) > ... > ., (Qx). Thisis
called theHarder-Narasimhan filtratiorof .7 (see [MR82], [HN75, 1.3.9]).
Lemma 6.2. Let X be a projective variety and?’ an ample line bundle oX'. Let.# be a vector bundle
on X, p a positive integer, and/” an invertible subsheaf o 7. ThenZ contains a torsion free subsheaf
& such thay,, (&) > !,

Proof. Consider the Harder-Narasimhan filtration %t
0=6CHC...C 6 =7,
with Q; = &;/&;_1, pu,,-semistable fol < i < r,andu,,(Q1) > p,,(Q2) > ... > u,(Qx). For each
1 < ¢ < r there exists a filtration
ER=G0C GG Sy =T,

with quotients?, ; /% ;1 ~ &%%7 © Q7. From the filtrations described above, we see that the inclusion
N — Z®Pinduces an inclusiont — QY © ... ® Q;'*, for suitable non-negative integeirss such

thaty i; = p. Since eachQ; is i, -semistable, so is the tensor prod@f” @ ... ® Q7" (see [HL97,
Theorem 3.1.4]). Hence

Mif(‘/V) < /‘yf(Q?il ®...® Q?k) = Zij/’bif(Qj) = p“;ﬁ(91)7
andé = & = Q; is the required subsheaf &F. ]

Now we can prove our main theorems.
Theorem 6.3. Let X be a smoothm-dimensional projective variety with( X)) = 1, . an ample line bundle
on X, andp a positive integer. Suppose that (X, Tj?p@.,%*f") # 0. Then eithe( X, .Z) ~ (P", Opn (1)),
orp=n>3and(X,.Z) ~ (Qp, Og,(1)).
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Proof. First notice thatX is uniruled by [Miy87], and hence a Fano manifold wjthX') = 1. The result is
clear ifdim X = 1, so we assume that > 2. Fix a minimal covering familyH of rational curves ornX.

By Lemma 6.2'x contains a torsion free subshe@asuch thap., (&) > % = u,(Z). Thisimplies
that¥8L2% > deg f*.& for a general membéy] € H. If r = tk(&) = 1, thené is ample and we are done

by Wahl's theorem. Otherwise, #¢& is a subsheaf of *T'x ~ Op1(2) ® Op: (1)¥¢ @ ﬁ[fﬁ("*dfl), we must
havedeg f*.# = 1 and eitherf*& is ample, orf*& ~ Op1(2) @ Op1(1)¥"~2 @ Op: for ageneralf] € H.
If f*& is ample, thenX ~ P™ by Proposition 2.7, using the fact thatX) = 1. If f*& is not ample, then
Op1(2) C f*& for generalf] € H, and saC, C P(&* @ k(x)) for a generalr € X. Thus by [Ara06, 2.6]
(f*T¥)o C (f*&), for a generab € P* and a generdlf] € H. Sincef*T% is a subbundle of *Tx, we
have an inclusion of sheavgdTy — f*&, and thuslet(f*&) = f*wy'. Sincep(X) = 1, this implies
thatdet &** = w;(l, and thus) # h°(X,A"Tx ® wy) = h" (X, Ox). The latter is zero unless = r
sinceX is a Fano manifold. Ifi = r, then we must hawa;(1 ~ %" HenceX ~ Q, by [KO73]. O

Proof of Theorem 1/1Let X be a smooth projective variety aod an ample line bundle oX such that
HY(X,APTx @ £7P) # 0. By Theorem 6.3, we may assume thaf) > 2. We may also assume that
p > 2 as the casp = 1 is just Wahl's theorem. We shall proceed by inductiomon
Notice thatX is uniruled by [Miy87]. LetH C RatCurves™(X) be a minimal covering family of
rational curves onX, and[f] € H a general member. By analyzing the degree of the vector bundle
f*(NPTx ® Z7P), we conclude thaf*.¥ ~ Opi(1), and thusH is unsplit. Letr® : X° — Y*° be the
H-rational quotient ofX'. By shrinkingY ° if necessary, we may assume thatis smooth. Since(X) > 2,
we must havelim Y° > 1 by [Kol96, IV.3.13.3].
Let I be a general fiber of° and setc = dim F'. By Lemma 5.6, either
o k=p—1,(F,Z|p) ~ (PP, Opp-1(1)), andH(X°, AP~ Tyo jyo @ m*Tyo @ L 7P) # 0, OF
o k>pandH(X°, APTxo, yo @ L7P) # 0.

In the first caser : X° — Y° is alPP~!-bundle and we may assume thatlimx (X \ X°) > 2 by
Theorem 2.6. Then we apply Lemma 5.7 and concludexhat Q.

In the second case, the induction hypothesis implies that €ifhe?’|r) ~ (P, Opi (1)), ork = p and
(F,Z|r) ~ (Qp, Og,(1)). If F ~P*, again by Theorem 2.6; : X° — Y° is aP*-bundle, and we may
assume thatodimy (X \ X°) > 2. As in the end of the proof of Proposition 5.4, we reach a contradiction
by applying Corollary 5.3 toX° xyo B — B, whereB — Y?° is the normalization of a complete curve
passing through a general pointiéf.

Suppose now thaf’ ~ @,. Then, by Lemma 2/2 and [Fuj75, Corollary 5.5, can be extended to a
quadric bundler : X’ — Y with irreducible and reduced fibers, whekg is an open subset of with
codimyx (X \ X’) > 2, andY” is smooth. Denote byx” the open subset of’ wherer is smooth. Notice
thatcodim x/(X’\ X”) > 2. Anon-zero global section @f’T'x ®.Z P restricts to a non-zero global section
of NPT'xn )y @ X];(?,, which, in turn, extends to a non-zero global section HO(X’,w;(,l/Y, ® 3&{”)
sinceX’ is smooth. The sectiondoes not vanish anywhere on a general fiber.of

Letg : C — Y’ be the normalization of a complete curve passing through a general pdifit et
Xc = X' xys C, denote byrc : X¢o — C the corresponding quadric bundle, and writg, for the
pullback of.Z to X. The general fiber af - is smooth. Now notice that - is a local complete intersection
variety, and nonsingular in codimension one, since the fibersaoé reduced. In particulakX - is a normal

Gorenstein variety, and the morphism is generically smooth. The secticrinduces a non-zero section in
-1

HO(XC,'W.)_(lc/C ® ,Z);g) that does not vanish anywhere on the general fibe@ﬂhUSwXC/C is ample,
contradicting Proposition 3.1. O
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