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We present an explicit new tower of function fields (Fn)n≥0 over the finite
field with ` = q3 elements, where the limit of the ratios (number of rational
places of Fn)/(genus of Fn) is bigger or equal to 2(q2 − 1)/(q + 2). This
tower contains as a subtower the tower which was introduced by Bezerra–
Garcia–Stichtenoth (see [3]) and in the particular case q = 2 it coincides
with the tower of van der Geer-van der Vlugt (see [12]). Many features of
the new tower are very similar to those of the optimal wild tower in [8] over
the quadratic field Fq2 (whose modularity was shown in [6] by Elkies).

1 Introduction

Let F/F` be an algebraic function field of one variable whose full constant field is the
finite field F` of cardinality `. We denote by g(F ) the genus and by N(F ) the number
of rational places (i.e., places of degree one) of F/F`. The classical Hasse–Weil Theorem
states that N(F ) ≤ ` + 1 + 2g(F )

√
`.

Ihara [13] was the first to observe that this inequality can be improved substantially
if the genus of F is large with respect to `. He introduced the real number

A(`) := lim sup
g(F )→∞

N(F )

g(F )
,

where F runs over all function fields over F`. This number A(`) is of fundamental
importance to the theory of function fields over a finite field, since it gives information
about how many rational places a function field F/F` of large genus can have. While
the Hasse–Weil Theorem gives that A(`) ≤ 2

√
`, Ihara showed A(`) ≤

√
2` for any ` and

that A(`) ≥
√

` − 1 for ` a square. Later Drinfeld and Vladut [4] showed that

A(`) ≤
√

` − 1 for any `. (1)

Hence we have the equality (see also [5], [7], [16]) A(`) =
√

` − 1 for ` a square.
Much less is known if ` is not a square. One knows that for any ` (see [14])

A(`) ≥ c · log ` > 0, for some constant c.
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For ` = p3 (p a prime number), the best known lower bound for A(`) is due to Zink [17]:

A(p3) ≥ 2(p2 − 1)

p + 2
. (2)

Zink obtained this result using degenerations of Shimura modular surfaces. Zink’s bound
was generalized by Bezerra, Garcia and Stichtenoth [3] who showed that

A(q3) ≥ 2(q2 − 1)

q + 2
(3)

holds for all prime powers q. For more information and references concerning Ihara’s
quantity A(`) we refer to the recent survey article [11].

In order to obtain lower bounds for A(`), it is natural to study towers of function
fields; i.e., one considers sequences G = (G0, G1, G2, . . .) of function fields Gi over F`

with G0 ⊆ G1 ⊆ G2 ⊆ . . . such that g(Gi) → ∞. It is easy to see that the limit

λ(G) := lim
i→∞

N(Gi)

g(Gi)

always exists (see [8]) and it is clear that 0 ≤ λ(G) ≤ A(`).
A particularly interesting example of a tower H = (H0, H1, H2, . . .) over the field F`

with ` = q2 is defined recursively as follows (see [8]): H0 = F`(u0) is the rational function
field, and for all i ≥ 0 one considers the field Hi+1 = Hi(ui+1) with

uq
i+1 + ui+1 =

uq
i

uq−1
i + 1

. (4)

This tower over Fq2 has the limit λ(H) = q − 1 =
√

` − 1 and therefore attains the
Drinfel’d–Vlăduţ bound (1). Elkies [6] has shown that H is in fact a modular tower.

In [3] the following tower E = (E0, E1, E2, . . .) over a cubic field F` with ` = q3 is
considered: again E0 = F`(v0) is the rational function field, and for i ≥ 0 one considers
the field Ei+1 = Ei(vi+1) with

1 − vi+1

vq
i+1

=
vq
i + vi − 1

vi

. (5)

The limit λ(E) satisfies the inequality (thus proving Inequality (3)):

λ(E) ≥ 2(q2 − 1)

q + 2
. (6)

The tower H over the quadratic field F` with ` = q2 which is defined by Eqn. (4) has
some nice features which allow a rather simple proof of the equality λ(H) = q − 1, see
[9]. The most important one is that all extensions Hi+1/Hi are Galois of degree q, and
for all places Q|P with ramification index e = e(Q|P ) > 1 in Hi+1/Hi, the different
exponent is d(Q|P ) = 2(e − 1).
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In contrast, the tower E over the cubic field F` with ` = q3 which is defined by Eqn. (5)
is much more complicated. Here (for q 6= 2) the extensions Ei+1/Ei are not even Galois,
and there occurs tame and also wild ramification in Ei+1/Ei. The determination of the
genus of En in [3] requires long and rather technical calculations. In [1] these calculations
were replaced by a structural argument, thus obtaining a simpler proof of Inequality (6)
without the explicit determination of g(En).

In this paper we present a new tower F over the cubic field F` with ` = q3, whose
limit also satisfies the inequality λ(F) ≥ 2(q2−1)/(q+2) and which has nicer properties
than the tower given by the recursion in Eqn. (5). This new tower F = (F0, F1, F2, . . .)
over F` is defined as follows: F0 = F`(x0) is the rational function field over F`, and for
n ≥ 0 one sets Fn+1 = Fn(xn+1) with

(xq
n+1 − xn+1)

q−1 + 1 =
−x

q(q−1)
n

(xq−1
n − 1)q−1

. (7)

Our proof that the limit of this new tower satisfies the inequality λ(F) ≥ 2(q2−1)/(q+2)
is much easier, shorter and less computational than the proof in [3] for the tower E .

Moreover, since we show that E is a subtower of F we get also a proof here of Inequality
(6); in fact, it follows from [8] that λ(E) ≥ λ(F) when E is a subtower of F .
Another remark is that while for the two towers over Fq2 presented in [7] and [8] the
subtower (i.e., the tower H in [8]) was easier to handle (see [9]), for the two towers E
and F over Fq3 the supertower (i.e., the tower F) turns out to be much easier to handle.

Finally we note that the tower F coincides with the tower in [12] when q = 2 and also
that the towers F and H have surprising similarities (see Section 8).

This paper is organized as follows: In Sec. 2 we introduce the sequence of function
fields F0, F1, F2, . . . over a field K ⊇ Fq recursively given by Eqn. (7) and we show in
Theorem 2.2 that they define a tower F over K (i.e., F0 ( F1 ( F2 ( . . ., and K is
the full constant field of all fields Fn). We note that Lemma 2.7 gives a remarkable
property of the recursion in Eqn. (7). In Sec. 3 it is shown that for K = Fq3 there
exist q3 − q rational places of F0 which split completely in all extensions Fn/F0, thus
providing many rational places of the function fields Fn/Fq3 . In Sec. 4 and Sec. 5 we
study ramification in the first steps F0 ⊆ F1 ⊆ F2 of the tower. We note that the methods
in Sec. 4 and Sec. 5 involve just simple calculations about ramification in certain Galois
extensions k(x)/k(w) of rational function fields. Section 6 is the core of this paper. The
information from Sec. 4 and Sec. 5 is used in Sec. 6 to give an upper bound for the
genus of the n-th function field Fn of the tower (see Theorem 6.5). The main tool here
is Abhyankar’s Lemma and a version of it (see Lemma 6.2) dealing with ramification
in composites of certain wildly ramified extensions. Putting together these results we
obtain in Sec. 7 the inequality λ(F) ≥ 2(q2 − 1)/(q + 2) for K = Fq3 , which is the main
result of the paper. Finally, in Sec. 8 we point out some surprising analogies between
the tower F over Fq3 and the tower H over Fq2 which is defined by Eqn. (4). We also
show that the above-mentioned tower E is a subtower of F .

NOTATIONS : We consider function fields F/K where K is the full constant field of
F . In most cases K will be a finite field or the algebraic closure Fq of a finite field.

3



We denote by P(F ) the set of places of F/K. For P ∈ P(F ), we will denote by vP the
corresponding discrete valuation of F/K and by OP the valuation ring of P . For z ∈ OP

we denote by z(P ) the residue class of z in OP /P . We denote by deg(P ) the degree of
P . In particular, if P is a place of degree one, then z(P ) ∈ K.

For a finite separable extension E of F and a place Q ∈ P(E) we will denote by Q|F
the restriction of Q to F . We write Q|P if the place Q ∈ P(E) lies over the place
P ∈ P(F ). In this situation, we denote by e(Q|P ) and d(Q|P ) the ramification index
and the different exponent of Q|P , respectively. The place P ∈ P(F ) is said to be totally
ramified in E/F if there is a place Q ∈ P(E) above P with e(Q|P ) = [E : F ]. It is said
to be completely splitting in E/F if there are n = [E : F ] distinct places of E above P .

Let E/F be a Galois extension of function fields, let P ∈ P(F ) and Q ∈ P(E) above
the place P . We say that Q|P is weakly ramified if the second ramification group
G2(Q|P ) = 1; in other words, if e(Q|P ) = e0 ·e1 where (e0, p) = 1 and e1 = pj is a power
of the characteristic p of F , then d(Q|P ) = (e0e1 − 1) + (e1 − 1).

If F = K(x) is a rational function field, we will write (x = α) for the place of F which
is the zero of x − α (where α ∈ K), and (x = ∞) for the pole of x in K(x)/K.

2 The tower

Let K be a field of characteristic p > 0, let q be a power of p and assume that Fq ⊆ K.
We study the sequence F = (F0, F1, F2, . . .) of function fields Fi/K which is defined
recursively as follows: F0 = K(x0) is the rational function field, and for n ≥ 0 let
Fn+1 = Fn(xn+1) where xn+1 satisfies the equation over Fn below:

(xq
n+1 − xn+1)

q−1 + 1 =
−x

q(q−1)
n

(xq−1
n − 1)q−1

. (8)

Remark 2.1. We set
f(T ) := (T q − T )q−1 + 1 ∈ K[T ]. (9)

Then Eqn. (8) can be written as

f(xn+1) =
1

1 − f(1/xn)
. (10)

We also remark that f(T ) = (T q2 − T )/(T q − T ), hence the roots of f(T ) are exactly
the elements β ∈ Fq2\Fq. This property of the polynomial f(T ) will play an important
role in Sections 3 and 4.

Theorem 2.2. Let F be the sequence of function fields Fn over K which is defined by
Eqn. (8). Then F is a tower over K and more precisely the following hold:

(i) The extensions Fn+1/Fn are Galois for all n ≥ 0.

(ii) [F1 : F0] = q(q − 1) and [Fn+1 : Fn] = q for all n ≥ 1.

(iii) K is the full constant field of Fn, for all n ≥ 0.
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The proof of Thm. 2.2 is given in several steps.

Lemma 2.3. Fn+1/Fn is Galois and [Fn+1 : Fn] divides q(q − 1), for all n ≥ 0.

Proof. We set

un :=
−x

q(q−1)
n

(xq−1
n − 1)q−1

. (11)

Then xn+1 is a root of the polynomial fn(T ) := (T q −T )q−1 +1−un ∈ Fn[T ]. The other
roots of fn(T ) are the elements axn+1 + b with a ∈ F×

q and b ∈ Fq. Therefore Fn+1 is
the splitting field of fn(T ) over Fn and the extension Fn+1/Fn is Galois.

Let Gn+1 be the Galois group of Fn+1/Fn. Every element σ ∈ Gn+1 acts on the
function xn+1 as σ(xn+1) = aσxn+1 + bσ, and the map

σ 7→
(

aσ 0
bσ 1

)

is a monomorphism of Gn+1 into the group of invertible 2 × 2-matrices over Fq of the

form

(

a 0
b 1

)

. This group has order q(q−1), and hence ord(Gn+1) divides q(q−1).

Lemma 2.4. Let P0 = (x0 = ∞) be the pole of x0 in F0 and let Pn be a place of Fn

above P0. For i = 1, . . . , n we set Pi := Pn|Fi
and ei := e(Pi|Pi−1). Then the place Pi is

a pole of xi, vPi
(xi) divides (q − 1)i and ei ≡ 0 mod q, for 1 ≤ i ≤ n.

Proof. Let ui ∈ Fi be defined as in Eqn. (11). We prove the lemma by induction. For
the case i = 1, we have vP1

(u0) = e1 · vP0
(u0) = −e1 · (q − 1).

Since (xq
1 − x1)

q−1 + 1 = u0, it follows that vP1
(x1) < 0 and therefore

vP1

(

(xq
1 − x1)

q−1 + 1
)

= q · (q − 1) · vP1
(x1).

We then conclude that q · vP1
(x1) = −e1. We finish this case since e1 divides [F1 : F0]

and [F1 : F0] divides q(q − 1) by Lemma 2.3, it follows that vP1
(x1) divides (q − 1) and

that e1 ≡ 0 mod q.
Now we assume that vPi

(xi) < 0 and vPi
(xi) divides (q−1)i for some i ∈ {1, . . . , n−1}.

From Eqn. (11) we obtain vPi
(ui) = (q − 1) · vPi

(xi), hence

vPi+1
(ui) = ei+1 · (q − 1) · vPi

(xi) < 0.

Since (xq
i+1 − xi+1)

q−1 + 1 = ui, it follows that Pi+1 is a pole of xi+1 and

q(q − 1) · vPi+1
(xi+1) = ei+1 · (q − 1) · vPi

(xi).

Now we finish as in the case i = 1; one concludes that ei+1 ≡ 0 mod q and that
vPi+1

(xi+1) divides (q − 1)i+1.

Lemma 2.5. [Fn+1 : Fn] ≡ 0 mod q for all n ≥ 0.
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Proof. Follows directly from Lemmas 2.3 and 2.4.

Lemma 2.6. [F1 : F0] = q(q − 1), and K is the full constant field of F1.

Proof. By definition, F1 = K(x0, x1) with

(xq
1 − x1)

q−1 + 1 =
−x

q(q−1)
0

(xq−1
0 − 1)q−1

= u0. (12)

It follows that
[K(x0) : K(u0)] = [K(x1) : K(u0)] = q(q − 1). (13)

From Eqn. (12) it is obvious that the place (u0 = 0) of K(u0) is totally ramified in the
extension K(x0)/K(u0). The place of K(x0) above (u0 = 0) is the place (x0 = 0), and
we have e((x0 = 0)|(u0 = 0)) = q(q − 1).

However, in the extension K(x1)/K(u0) the place (u0 = 0) is unramified, since the
polynomial (xq

1−x1)
q−1+1 does not have multiple roots. Let Q be a place of K(x1) lying

above (u0 = 0) and let R be a place of K(x0, x1) above Q. It follows that e(R|Q) =
q(q − 1). Therefore [K(x0, x1) : K(x1)] = q(q − 1), and K is algebraically closed in
K(x0, x1) = F1 (as there is a place which is totally ramified in F1/K(x1)). The assertion
[F1 : F0] = q(q − 1) follows since [F1 : F0] = [F1 : K(x1)] by Eqn. (13).

The next lemma shows a striking property of the recursion in Eqn.(8) for n ≥ 1. It
gives a simple Artin-Schreier equation for the extension Fn+1/Fn of degree q.

Lemma 2.7. For each n ≥ 1 there is some µ ∈ F×
q such that

xq
n+1 − xn+1 = µ ·

xq
n−1

(xq−1
n−1 − 1) · (xq−1

n − 1)
.

Proof. By Eqn. (8) we have

(xq
n+1 − xn+1)

q−1 + 1 =
−x

q(q−1)
n

(xq−1
n − 1)q−1

and (xq
n − xn)q−1 + 1 =

−x
q(q−1)
n−1

(xq−1
n−1 − 1)q−1

. (14)

Hence we get

(xq
n+1 − xn+1)

q−1 =
−x

q(q−1)
n

(xq−1
n − 1)q−1

− 1 =
−

(

(xq
n − xn)q−1 + 1

)

(xq−1
n − 1)q−1

=
x

q(q−1)
n−1

(xq−1
n−1 − 1)q−1 · (xq−1

n − 1)q−1
=

(

xq
n−1

(xq−1
n−1 − 1) · (xq−1

n − 1)

)q−1

.

Proof of Theorem 2.2 . Putting together the results of the lemmas above, one gets the
assertions in Theorem 2.2.
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3 Splitting places in the tower over K = F` for ` = q3

In this section we consider the tower F = (F0, F1, F2, . . .) which was introduced in Sec. 2,
over the field K = F` with ` = q3. We will show that many rational places of the field
F0 = F`(x0) split completely in F ; i.e., they split completely in all extensions Fn/F0.
This means that the function fields Fn/F` have “many” rational places. As in Sec. 2, let

f(T ) = (T q − T )q−1 + 1 ∈ Fq[T ]. (15)

For q = 2 we have that f(T ) = c is separable for all elements c ∈ F2.

Lemma 3.1. Let c ∈ Fq be an element of the algebraic closure of Fq. Then

f(T ) = c is inseparable if and only if c = 1 and q 6= 2.

For an element β ∈ Fq we have that f(β) = 1 if and only if β belongs to Fq.

Proof. Just notice that the derivative of f(T ) satisfies f ′(T ) = (T q − T )q−2.

Lemma 3.2. For an element β ∈ Fq we have that f(β) = 0 if and only if β ∈ Fq2 \ Fq.

Proof. Just notice that we have (see Remark 2.1)

f(T ) = (T q2 − T )/(T q − T ). (16)

Now we consider the recursive equation for the tower F (see Equation (10)):

f(Y ) =
1

1 − f(1/X)
. (17)

We will show that if X = α belongs to Fq3 \Fq then all solutions Y = β ∈ Fq of Equation
(17) with X = α are such that β ∈ Fq3 \ Fq. The assertion that β /∈ Fq follows directly
from Equation (17) and the lemmas above.

Using Equation (16) we have:

1

1 − f(T )
=

T − T q

T q2 − T q
. (18)

Lemma 3.3. For an element β ∈ Fq we have that

f(β)q =
1

1 − f(β)
if and only if β ∈ Fq3 \ Fq.

Proof. Straightforward using Equations (16) and (18).
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Equation (17) can also be written as below:

f(
1

X
) = 1 − 1

f(Y )
. (19)

Consider now a solution (α, β) of Equation (17) with α ∈ Fq3 \Fq. Then 1/α ∈ Fq3 \Fq.
We have:

f(β) =
1

1 − f( 1
α
)

= f(
1

α
)q = 1 − 1

f(β)q
.

In the last two equalities above we have used Lemma 3.3 and Equation (19), respectively.
Hence we obtained that f(β)q = 1/1 − f(β); i.e., β ∈ Fq3 \ Fq.

We have then proved the main result of this section:

Theorem 3.4. Let F = (F0, F1, . . . ) be the tower over Fq3 given recursively by Equation
(17). Then the places (x0 = α) with α ∈ Fq3 \Fq split completely in all extensions Fn/F0.
In particular the number of Fq3-rational places satisfies:

N(Fn) ≥ (q3 − q) · [Fn : F0] for all n ∈ N.

4 The extensions K(x)/K(w) and K(x)/K(u)

Throughout this section, K is a field with Fq2 ⊆ K. Let K(x)/K be a rational function
field over K. We will consider certain subfields K(w) ⊆ K(x) and K(u) ⊆ K(x) which
are related to the recursive definition of the tower F . Detailed information about ram-
ification in K(x)/K(w) and in K(x)/K(u) will enable us to study in Sec. 5 and Sec. 6
the ramification behaviour in the tower F .

As in Sec. 2 we consider the polynomial f(T ) = (T q − T )q−1 + 1 ∈ K[T ], and we set

w := f(x) = (xq − x)q−1 + 1 ∈ K(x). (20)

Lemma 4.1. (i) The extension K(x)/K(w) is Galois of degree q(q − 1).

(ii) The place (w = ∞) of K(w) is totally ramified in K(x)/K(w); the place above it is
the place (x = ∞). We have d((x = ∞)|(w = ∞)) = q2−2; i.e., (x = ∞)|(w = ∞)
is weakly ramified.

(iii) Above the place (w = 1) there are the q places (x = θ) of K(x) with θ ∈ Fq, with
ramification index e((x = θ)|(w = 1)) = q − 1.

(iv) All other places of K(w) are unramified in K(x)/K(w).

(v) The places above (w = 0) are exactly the places (x = β) with β ∈ Fq2\Fq.

Proof. i) One checks easily that K(w) is the fixed field of the following group H of
automorphisms of K(x)/K:

H := {σ ∈ Aut(K(x)/K) | σ(x) = ax + b, a ∈ F×
q , b ∈ Fq}.
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Figure 1: Ramification in K(x)/K(w).

ii) It is clear from Eqn. (20) that (x = ∞) is the only place of K(x) lying above
(w = ∞), and that the ramification index is e((x = ∞)|(w = ∞)) = q(q − 1). Since
K(x)/K(w) is Galois, it follows from ramification theory (cf. [15, Sec. III.8]) that
d((x = ∞)|(w = ∞)) ≥ (q(q − 1) − 1) + (q − 1) = q2 − 2. We will show below that
equality holds; i.e., that (x = ∞)|(w = ∞) is weakly ramified.

iii) This assertion is obvious from the equation w − 1 = (xq − x)q−1.
iv) It follows from above that the degree of the different Diff(K(x)/K(w)) satisfies

deg Diff(K(x)/K(w)) ≥ d((x = ∞)|(w = ∞)) +
∑

θ∈Fq

d((x = θ)|(w = 1))

≥ (q2 − 2) + q(q − 2) = 2(q2 − q − 1).

On the other hand, by Hurwitz genus formula for K(x)/K(w) we have

deg Diff(K(x)/K(w)) = −2 + 2[K(x) : K(w)] = 2(q2 − q − 1).

Now the assertions iv) and ii) follows immediately.
v) Observing that (see Eqn.(16)) w = f(x) = xq2 − x/xq − x, we see that the places

above (w = 0) are exactly the places (x = β) with β ∈ Fq2\Fq.

Next we consider the subfield K(u) ⊆ K(x) where u is defined by

u :=
−xq(q−1)

(xq−1 − 1)q−1
. (21)

Lemma 4.2. (i) The extension K(x)/K(u) is Galois of degree q(q − 1).

(ii) The place (u = 0) of K(u) is totally ramified in K(x)/K(u); the place above it is
the place (x = 0). We have d((x = 0)|(u = 0)) = q2 − 2;; i.e., (x = 0)|(u = 0) is
weakly ramified.

(iii) Above the place (u = ∞) lie exactly q places P of K(x); namely the places (x = ∞)
and (x = α) with α ∈ F×

q . We have e(P |(u = ∞)) = q − 1.

(iv) No other place of K(u) is ramified in K(x).

(v) The places above (u = 1) are exactly the places (x = β) with β ∈ Fq2\Fq.
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Figure 2: Ramification in K(x)/K(u).

Proof. Note that u = 1/(1 − f(1/x)) by Rem. 2.1 and therefore f(1/x) = (u − 1)/u.
The result follows directly from Lemma 4.1 with the changes of variables

x 7→ 1/x and w 7→ (u − 1)/u.

5 The fields F1 and F2

In this section we assume again that Fq2 ⊆ K. We want to study ramification in the first
two steps of the tower F over K. So we consider the fields F0 = K(x0), F1 = K(x0, x1)
and F2 = K(x0, x1, x2) where

(xq
1 − x1)

q−1 + 1 =
−x

q(q−1)
0

(xq−1
0 − 1)q−1

and (xq
2 − x2)

q−1 + 1 =
−x

q(q−1)
1

(xq−1
1 − 1)q−1

. (22)

Lemma 5.1. The extensions F1/K(x0) and F1/K(x1) are both Galois of degree q(q−1).

Proof. We proved the assertion for F1/K(x0) in Thm. 2.2. As in Eqn.(11) we set

u0 :=
−x

q(q−1)
0

(xq−1
0 − 1)q−1

.

The field F1 is the compositum of K(x0) and K(x1) over K(u0) as in Figure 3. By
Lemma 4.2 the extension K(x0)/K(u0) is Galois, hence F1/K(x1) is Galois as well.

K(x0)

�����

??
??

?

F1 = K(x0, x1)

??
??

?

K(u0)

�����

K(x1)

Figure 3: The extension F1/K(u0)
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Lemma 5.2. Let Ω := Fq2 ∪ {∞}.

(i) For a place P ∈ P(F1) the following are equivalent:

a) P |K(x0) = (x0 = ω) for some ω ∈ Ω.

b) P |K(x1) = (x1 = ω′) for some ω′ ∈ Ω.

(ii) If a place Q ∈ P(F1) does not lie above a place (x0 = ω) with ω ∈ Ω then Q is
unramified over K(x0) and over K(x1).

(iii) The ramification indices of the places (x0 = ω) and (x1 = ω′) with ω, ω′ ∈ Ω in the
extensions F1/K(x0) and F1/K(x1) are as depicted in Figure 4. All places of F1

are weakly ramified over K(x0) and over K(x1).

• •

(x0 = 0)

e=1

������������������
(x1=β)

β∈F
q2\Fq

e=q(q−1)

?????????????????

(x0 = ∞)

e=q

������������������
(x1 = ∞)

e=1

??????????????????

• •

(x0=α)

α∈F
×

q

e=q

�����������������

(x1 = ∞)

e=1

??????????????????
(x0=β)

β∈F
q2\Fq

e=q−1

�����������������
(x1=θ)
θ∈Fq

e=1

?????????????????

Figure 4: Ramification in F1/K(x0) and in F1/K(x1).

Proof. According to the notations in Sec. 4 we write

u0 :=
−x

q(q−1)
0

(xq−1
0 − 1)q−1

and w1 := (xq
1 − x1)

q−1 + 1.

Hence u0 = w1 by Eqn. (22). We consider the diagram of fields in Figure 3 where
all extensions are Galois of degree q(q − 1). By Lemma 4.1 and Lemma 4.2 we know
that only the places (u0 = 0), (u0 = 1) and (u0 = ∞) are ramified in K(x0)/K(u0) or

11



in K(x1)/K(u0). We will consider here only the case (u0 = ∞); the other two cases
are similar (even easier). Denote by Q a place of F1 above (u0 = ∞). The situation is
depicted in Figure 5. It follows from Abhyankar’s Lemma (see [15, Prop. III.8.9]) that Q

(x0=∞) or

(x0=α),α∈F
×

q

�������

e=q−1 ??
??

?

Q

??
??

??
?

(u0 = ∞)

e=q(q−1)

��������

(x1 = ∞)

Figure 5: Ramification in F1/K(u0)

is unramified over K(x1) and that the ramification index of Q over K(x0) is e = q. Since
(x1 = ∞)|(u0 = ∞) is weakly ramified by Lemma 4.1 it follows from the transitivity of
different exponents in F1 ⊇ K(x0) ⊇ K(u0) that Q is weakly ramified over K(x0).

Lemma 5.3. The extensions F2/K(x0, x1) and F2/K(x1, x2) are Galois extensions of
degree q. All places that are ramified in F2/K(x0, x1) or in F2/K(x1, x2) are totally and
weakly ramified.

Proof. The field F2 is the compositum of K(x0, x1) and K(x1, x2) over K(x1). Since the
extensions K(x0, x1)/K(x1) and K(x1, x2)/K(x1) are Galois by Lemma 5.1, it is clear
that F2/K(x0, x1) and F2/K(x1, x2) are Galois. The assertion about the degrees follows
from Lemma 2.7. Now we consider a place Q ∈ P(F2) which is ramified in F2/K(x1, x2).
Then the place P := Q|K(x0,x1) is ramified over K(x1) and therefore Q|K(x1) = (x1 = β)
with some β ∈ Fq2 \ Fq, by Lemma 5.2. So we have the situation depicted in Figure 6,
where R denotes the restriction of Q to K(x1, x2)

K(x0, x1)

�����

??
??

?

K(x0, x1, x2)

??
??

?

K(x1)

�����

K(x1, x2) P

�������

e=q(q−1)
??

??
??

Q

??
??

??
?

(x1=β)
β∈F

q2\Fq

e=q−1

�����

R

Figure 6:

As in the proof of Lemma 5.2, use Abhyankar’s lemma to get that e(Q|R) = q and
the transitivity of different exponents to get that d(Q|R) = 2 · (q − 1).

Now if Q is a place of F2 which is ramified over F1, then one also concludes (and it is
simpler) that it is totally and weakly ramified over F1.
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6 The genus of Fn

In order to estimate the limit λ(F) of the tower F over Fq3 we need an upper bound
for the genus of the n-th function field Fn; therefore one has to study ramification in
the extension Fn/F0. Without changing the ramification behaviour (i.e., ramification
index and different exponent) and the genus, we can extend the constant field such that
it contains Fq2 . So we assume in this section that Fq2 ⊆ K and denote char(K) = p.

A place P ∈ P(F0) is said to be ramified in the tower F if P is ramified in Fm/F0 for
some m ≥ 1, and the ramification locus V (F/F0) is defined as

V (F/F0) := {P ∈ P(F0) | P is ramified in F}.

Lemma 6.1. The ramification locus of F over F0 satisfies

V (F/F0) ⊆ {(x0 = ω) | ω ∈ Fq2 or ω = ∞}.

Proof. Assume that a place Q ∈ P(Fn) is ramified in Fn+1/Fn. Then the restriction
Q|K(xn) ramifies in the extension K(xn, xn+1)/K(xn). We conclude from Lemma 5.2 ii)
that Q|K(xn) = (xn = ω′) with ω′ ∈ Fq2 ∪ {∞}. By induction it follows from Lemma 5.2
i) that Q|F0

= (x0 = ω) with ω ∈ Fq2 ∪ {∞}. This proves the lemma. We remark that
in fact V (F/F0) = {(x0 = ω) | ω ∈ Fq2 or ω = ∞} but we do not need this here.

In the proof of Lemma 6.3 below, the following result is essential

Lemma 6.2. Consider an extension E/F of function fields over K such that E = E1 ·E2

is the composite field of two intermediate fields F ⊆ E1, E2 ⊆ E and the extensions
E1/F and E2/F are Galois p-extensions. Let Q be a place of E, and let Qi := Q|Ei

and
P := Q|F be the restrictions of Q. Suppose that Q1|P and Q2|P are weakly ramified.
Then Q|Q1 and Q|Q2 are also weakly ramified.

Proof. See [10, Prop. 1.10] and also [9, Lemma 1].

A Galois extension E/F is weakly ramified if all places are weakly ramified in E/F .

Lemma 6.3. Let n ≥ 1. Then the extension Fn+1/Fn is weakly ramified.

Proof. For 0 ≤ i ≤ j ≤ n + 1 we define the subfield Ei,j ⊆ Fn+1 by

Ei,j := K(xi, xi+1, . . . , xj).

The extensions Ei,i+2/Ei,i+1 and Ei,i+2/Ei+1,i+2 are weakly ramified Galois p-extensions
by Lemma 5.3 (see Figure 7). By induction it follows for all j ≥ i+2 that Ei,j/Ei,j−1 and
Ei,j/Ei+1,j are weakly ramified Galois p-extensions (using Lemma 6.2). Since Fn = E0,n

and Fn+1 = E0,n+1, the assertion of Lemma 6.3 follows.
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Lemma 6.4. Let E1/F be a Galois extension of function fields over K and let E/E1 be
a finite and separable extension. Let Q be a place of the field E and denote by P1 and
P the restrictions of Q to E1 and F , respectively. Suppose that we have:

(i) e(Q|P1) is a power of p = char(K) and d(Q|P1) = 2 e(Q|P1) − 2.

(ii) The place P1 is weakly ramified over P .

Then the different exponent d(Q|P ) satisfies

d(Q|P ) = (e0e1 − 1) + (e1 − 1) < e(Q|P ) ·
(

1 +
1

e0

)

where e(Q|P ) = e0e1 with (p, e0) = 1 and e1 a p-power.

Proof. Straightforward, using transitivity of different exponents.

Theorem 6.5. The genus of the n-th function field of the tower F = (F0, F1, F2, . . .)
defined by Eqn.(8), satisfies

g(Fn) ≤ q2 + 2q

2
· [Fn : F0].

Proof. Let n ≥ 1. First we observe that for a place Q ∈ P(Fn) and the restriction
P1 := Q|F1

of Q to F1 we have that:

e(Q|P1) is a p-power and d(Q|P1) = 2e(Q|P1) − 2.

14



This follows from Lemma 6.3 and repeated applications of Lemma 6.4. In fact one takes
E = Fn, E1 = Fj and F = Fj−1 with j = n − 1, n − 2, . . . , 2.

Now we consider the places P ∈ P(F0) which are in the ramification locus V (F/F0).
According to item (iii) of Lemma 5.2 we distinguish 2 cases:

Case 1: P = (x0 = θ) with θ ∈ Fq or P = (x0 = ∞).

By Lemma 5.2 and Lemma 6.4 we obtain
∑

Q∈P(Fn)
Q|P

d(Q|P ) · deg Q <
∑

Q∈P(Fn)
Q|P

2e(Q|P ) · deg Q = 2[Fn : F0]. (23)

Case 2: P = (x0 = β) with β ∈ Fq2\Fq.

In this case, Lemma 5.2 and Lemma 6.4 yield

∑

Q∈P(Fn)
Q|P

d(Q|P ) ·deg Q <
∑

Q∈P(Fn)
Q|P

(

1+
1

q − 1

)

e(Q|P ) ·deg Q =
q

q − 1
[Fn : F0]. (24)

There are q + 1 places P ∈ P(F0) as in Case 1, and q2 − q places as in Case 2. By
Hurwitz genus formula for the extension Fn/F0 we obtain

2g(Fn) ≤ −2[Fn : F0] + (q + 1) · 2[Fn : F0] + (q2 − q) · q

q − 1
[Fn : F0]

= (q2 + 2q)[Fn : F0].

7 The limit of the tower over K = F` with ` = q3

Putting together the results of the previous sections we obtain our main result:

Theorem 7.1. Let K = F` with ` = q3, and let F = (F0, F1, F2, . . .) be the tower over
K which is recursively defined by F0 = K(x0) and Fn+1 = Fn(xn+1), where

(xq
n+1 − xn+1)

q−1 + 1 =
−x

q(q−1)
n

(xq−1
n − 1)q−1

for all n ≥ 0.

Then the limit λ(F) = limn→∞ N(Fn)/g(Fn) satisfies λ(F) ≥ 2(q2 − 1)/(q + 2).

Proof. By Thm. 3.4 and Thm. 6.5 we have

N(Fn) ≥ (q3 − q) · [Fn : F0] and g(Fn) ≤ q2 + 2q

2
· [Fn : F0].

Hence
N(Fn)

g(Fn)
≥ (q3 − q) · 2

q2 + 2q
=

2(q2 − 1)

q + 2
for all n ≥ 0.
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8 Remarks

We finish this paper with a few remarks.

Remark 8.1. Our tower F = (F0, F1, F2, . . .) over K = Fq3 bears remarkable analogy
to the tower H = (H0, H1, H2, . . .) over the quadratic field K = Fq2 which is defined
recursively by the equation

uq
i+1 + ui+1 =

uq
i

uq−1
i + 1

and which attains the Drinfel’d–Vlăduţ bound (1). The analogies between H and F
become even more evident if we substitute ui = ξyi with ξq−1 = −1; then the above
equation becomes yq

i+1 − yi+1 = −yq
i /(y

q−1
i − 1). We now compare some features of the

towers F over Fq3 and H over Fq2 :

1) The tower H = (H0, H1, H2, . . .) is defined recursively over the field K = Fq2 by
H0 = K(y0) and Hi+1 = Hi(yi+1), where

yq
i+1 − yi+1 =

−yq
i

yq−1
i − 1

for all i ≥ 0. (25)

2) Setting h(T ) := T q − T , Eqn. (25) can be written as

h(yi+1) =
1

h(1/yi)
. (26)

3) The extensions Hi+1/Hi (for i ≥ 0) are weakly ramified and Galois of degree q.

4) The ramification locus of H over H0 is

V (H/H0) = {(y0 = ω) | ω ∈ Fq ∪ {∞}}.

5) The places (y0 = α) with α ∈ Fq2\Fq are completely splitting in all the extensions
Hn/H0, for all n ≥ 0.

The analogous properties of the tower F are:

1∗) The tower F = (F0, F1, F2, . . .) is defined recursively over the field K = Fq3 by
F0 = K(x0) and Fi+1 = Fi(xi+1), where

(xq
i+1 − xi+1)

q−1 + 1 =
−x

q(q−1)
i

(xq−1
i − 1)q−1

for all i ≥ 0. (27)

2∗) Setting f(T ) := (T q − T )q−1 + 1, Eqn. (27) can be written as

f(xi+1) =
1

1 − f(1/xi)
. (28)
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3∗) The extensions Fi+1/Fi (for i ≥ 1) are weakly ramified and Galois of degree q.

4∗) The ramification locus of F over F0 is

V (F/F0) = {(x0 = ω) | ω ∈ Fq2 ∪ {∞}}.

5∗) The places (x0 = α) with α ∈ Fq3\Fq are completely splitting in all the extensions
Fn/F0, for all n ≥ 0.

We also note that the polynomials h(T ) and f(T ) in Eqns.(26) and (28) are defined
in a very similar manner:

6) The polynomial h(T ) ∈ Fq[T ] generates the fixed field of K(T ) under the group of
automorphisms

G = {σ : K(T ) → K(T )
∣

∣ σ(T ) = T + b with b ∈ Fq}.

6∗) The polynomial f(T ) ∈ Fq[T ] generates the fixed field of K(T ) under the group of
automorphisms

G∗ = {σ : K(T ) → K(T )
∣

∣ σ(T ) = aT + b with a ∈ F×
q and b ∈ Fq}.

Another interesting observation is that the generators xi of the tower F satisfy

xq
i+2 − xi+2 =

−xq
i

(xq−1
i − 1)(xq−1

i+1 − 1)
(29)

for all i ≥ 0 (with an appropriate choice of the roots xi+1, xi+2 of Eqn. (27), see
Lemma 2.7). Compare with Eqn. (25).

Remark 8.2. The first explicit tower over a field with cubic cardinality ` = q3 which
attains the Zink bound (Inequality (2)) was found by van der Geer–van der Vlugt [12].
It is a tower over the field Fp3 with p = 2, recursively defined by the equation

x2
i+1 + xi+1 = xi + 1 +

1

xi

. (30)

This is the special case q = 2 of Eqn. (27) (after the change of variables xi → xi + 1).

Remark 8.3. Again we consider the tower F = (F0, F1, F2, . . .) over K = Fq3 . We set

vi := − 1

xq−1
i − 1

for all i ≥ 0. (31)

It follows by straightforward calculation from Eqn. (27) that

1 − vi+1

vq
i+1

=
vq
i + vi − 1

vi

, for all i ≥ 0. (32)
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This means that F contains as a subtower the tower E = (E0, E1, E2, . . .) (see [3]) with
E0 = K(v0) and Ei+1 = Ei(vi+1), where vi+1 satisfies Eqn. (32) over Ei. Since the limit
of a subtower is at least as big as the limit of the tower itself (see [8]), we obtain that

λ(E) ≥ λ(F) ≥ 2(q2 − 1)

q + 2
.

This gives another (in fact, much simpler) proof of the main result of [3].

Here is another striking analogy between F and H; again we consider the tower
H = (H0, H1, H2, . . . ) over K = Fq2 given recursively by

uq
i+1 + ui+1 =

uq
i

uq−1
i + 1

. (33)

Performing the analogous change of variables as in Eqn.(31); i.e., setting

wi := − 1

uq−1
i + 1

for all i ≥ 0,

it follows by straightforward calculation from Eqn.(33) that

wi+1 + 1

wq
i+1

=
wq

i + 1

wi

, for all i ≥ 0. (34)

The subtower G of H given recursively by Eqn.(34) was studied in [2].

Remark 8.4. We end up this paper with a closer look on the relations between the
towers F and E given by Eqns. (27) and (32), respectively. One can show that F1/E1 is
a Galois extension of degree (q − 1)2 with group F×

q × F×
q ; in fact the automorphisms of

F1 = Fq3(x0, x1) over the subfield E1 = Fq3(v0, v1) are given by:

x0 7→ ax0 and x1 7→ bx1, with a, b ∈ F×
q .

Moreover the n-th field Fn of the tower F is the compositum with F1 of the n-th field
En of the tower E ; i.e., we have

Fn = En · F1, for all n ≥ 1.

The assertions above follow from Eqns. (31) and (29).
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