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Estrada Dona Castorina 110, 22460-320 Rio de Janeiro, Brazil

1. Introduction

1.1. (Our main result and its application) Let X ∪P Y be the union of
two general connected, smooth, nonrational curves X and Y intersecting
transversally at a point P . Assume that P is a general point of X or of Y .
Our main result is Theorem 5.1, which, in a simplified version, says:

Let Q ∈ X. Then Q is the limit of special Weierstrass points on a family
of smooth curves degenerating to X ∪P Y if and only if Q 6= P and either of
the following conditions hold: Q is a special ramification point of the linear
system |KX + (gY + 1)P |, or Q is a ramification point of the linear system
|KX + (gY + 1 + j)P | for j = ±1 and P is a Weierstrass point of Y .

Above, gY stands for the genus of Y and KX for a canonical divisor of X.
As an application, we use Theorem 5.1 to recover, in a unified and con-

ceptually simpler way, computations made by Diaz and Cukierman of the
divisor classes of curves with special Weierstrass points in the moduli spaces
of stable curves; see Theorem 9.2.

1.2. (Motivation) In order to understand how the above result fits in the
literature on the subject, we must recall that in the last two decades several
papers on limits of Weierstrass points and linear series on stable curves
appeared, from the pioneering [7], [8] and [18] to the more recent [10], [12]
and [25]. The investigations about these topics were initially aimed to prove
existence theorems (about, e.g., distinguished linear series on smooth curves)
or to do enumerative geometry, in the sense of [23], on the moduli space of
genus-g stable curves, Mg. For instance, in the beginning of the eighties,
Harris and Mumford [18] proved that the moduli space Mg is of general type
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for g odd and g ≥ 23, doing computations on Picfun(Mg), the Picard group
of the moduli functor of genus-g stable curves.

The same techniques were successfully used by Diaz [6], for g ≥ 3, to
compute the class Eg,−1 (there named Dg−1) of the closure of the locus of
smooth curves having an exceptional (here called special) Weierstrass point
of type g − 1; see Subsection 8.1 for the precise definition of Eg,−1. A
Weierstrass point Q on a smooth curve of genus g is said to be of type g− 1
if dim |(g− 1)Q| ≥ 1, and of type g+1 if dim |(g+1)Q| ≥ 2. Diaz computed
the class Eg,−1 by intersecting it with certain test curves entirely contained
in the boundary of Mg. This way he got relations among the coefficients of
the expression of Eg,−1 in terms of the basis for Picfun(Mg) formed by the
tautological class λ and the boundary classes δ0, . . . , δ[g/2]. These test curves
were induced by one-parameter families Fi → Xi of curves given as follows:
start with a general smooth curve Xi of genus g− i, for each i = 1, . . . , g−1,
and a general smooth pointed curve (Yi, Bi) of genus i; then the fiber (Fi)P
over P ∈ Xi is Xi ∪P Yi, the point Bi ∈ Yi being identified with P ∈ Xi.
This can be seen as a curve in Mg via a nonconstant map γi : Xi →Mg.

The crux of Diaz’s method was to evaluate
∫
Xi
γ∗i Eg,−1, which amounts

to knowing, with multiplicities, for how many pairs (P,Q) with P ∈ Xi and
Q ∈ Xi ∪P Yi there is a family of smooth curves degenerating to Xi ∪P Yi
with Weierstrass points of type g − 1 converging to Q. This was done in
[6] by using the theory of admissible coverings introduced and developed in
[18]. So half of our Theorem 5.1 is in [6].

After Diaz’s work, it was natural to ask what the limits of special Weier-
strass points of type g + 1 are, the other half of Theorem 5.1. In fact, soon
afterwards, Cukierman [3] computed the class Eg,1 of the closure of the locus
of smooth curves having a Weierstrass point of type g+1; again, see Subsec-
tion 8.1 for a precise definition. However, his method was not based on test
curves, but on a Hurwitz formula with singularities. (He used Diaz’s result
as well.) Also, the theory of admissible coverings could not be effectively
used, as the condition defining Eg,1 is not about the existence of a pencil,
but of a net. Of course, once we have an expression for Eg,1 in terms of the
generators of Picfun(Mg), we can evaluate it along the γi. But we cannot
infer what the limits of Weierstrass points of type g+1 on Xi ∪P Yi are just
from their number.

Our Theorem 5.1 fills this gap. To show the “only if” part of it is not
hard. To show the “if” part we use limit linear series on two-parameter
families of curves, instead of admissible coverings.

1.3. (Application) Our Theorem 5.1 can be used to compute the classes
Eg,−1 and Eg,1 in a unified and conceptually simpler way. Also, there occur
no multiplicity issues, an usual nuisance of the method of test curves.

In brief, here is how. First of all, we consider another divisor class on Mg,
the class SW g of the closure of the locus of smooth curves having a special
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Weierstrass point, either of type g − 1 or of type g + 1; see Subsection 8.1
for a more precise definition. It turns out that SW g is much easier to com-
pute. An expression for it, in terms of the basis for Picfun(Mg) mentioned
above, appeared already in [15], but multiplicity issues exist there, due to
the method of test curves.

Here we compute SW g directly, in Theorem 8.4, by intersecting SW g with
a general curve in Mg. No multiplicity issues arise. Of crucial importance
in this computation is Theorem 6.1, which, in a way, describes the limits of
Weierstrass points on a general irreducible uninodal curve. This description
is much finer than that found in [6], Thm. A2.1, p. 60, for instance. For the
proof of Theorem 6.1 we use the theory of limit linear series for curves that
are not of compact type, developed in [10].

Then we show that SW g = Eg,−1 +Eg,1. This follows from our Proposi-
tion 9.1. This is something to be expected, from a purely set-theoretic point
of view, but nevertheless, because of multiplicity issues, is not immediate
and had to be proven.

Now we use the test curves given by the γi. Having the expression for
SW g allows us to compute

∫
Xi
γ∗i SW g, which gives us the sum∫

Xi

γ∗i Eg,−1 +
∫
Xi

γ∗i Eg,1

for each i = 1, . . . , [g/2]. For each j = −1, 1, let ej,i denote the number of
pairs (P,Q) with P ∈ Xi and Q ∈ Xi ∪P Yi such that there is a family of
smooth curves degenerating to Xi ∪P Yi with special Weierstrass points of
type g+ j converging to Q. Theorem 5.1 tells us what these pairs are. Their
number, ej,i, is computed in [4], Thm. 5.6. And

(1)
∫
Xi

γ∗i Eg,j ≥ ej,i.

In principle, the inequality may be strict because of multiplicity issues. How-
ever, it turns out that ∫

Xi

γ∗i SW g = e−1,i + e1,i.

Thus equality holds in (1). From this equality, for each j = −1, 1 and each
i = 1, . . . , [g/2], the classes Eg,−1 and Eg,1 may be computed, as in [6]; see
Theorem 9.2 for more details.

1.4. (Layout) In Section 2, we present a few preliminaries on ramification
schemes, deformations of curves and limit linear series. In Section 3, we
introduce twists; understanding them is important for studying limit linear
series on families whose total space is not regular. In Section 4, we present a
few needed results on smoothings of nodal curves and linear series on general
smooth curves. In Section 5, we prove our main theorem, Theorem 5.1. In
Section 6, we describe the Weierstrass divisors and limit Weierstrass points
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associated to smoothings of general singular stable curves. In Section 7,
we recall some facts about the construction of Mg and about its associated
Picard groups, and introduce the tautological class λ and the boundary
classes δi in Picfun(Mg). In Section 8, we define SW g, Eg,−1 and Eg,1, and
find the expression for SW g in terms of λ and the δi. Finally, in Section 9,
we apply Theorem 5.1 to find the expressions for Eg,−1 and Eg,1 in terms
of λ and the δi; see Theorem 9.2.

1.5. (Notation) Given a Noetherian scheme X, a coherent sheaf F on X,
and a Cartier divisor D of X, let F(D) := F ⊗ OX(D). If D is effective,
there is a natural map F → F(D), which is injective if D does not contain
any associated point of F ; in this case, we will view F as a subsheaf of F(D)
via the map.

1.6. (Acknowledgments) We wish to thank Nivaldo Medeiros for discussions
on related topics and the Referee, who led us to important corrections and a
thorough revision of our first version for this article. Also, we acknowledge
the use of CoCoA[2] for some of the computations.

2. Preliminaries

2.1. (Ramification points) A (nodal) curve is a connected, reduced, projec-
tive scheme of dimension 1 over C whose only singularities are nodes, i.e.
ordinary double points. The canonical sheaf, or dualizing sheaf of a curve C
will be denoted !C . By the hypothesis on the singularities of C, the sheaf
!C is a line bundle. The (arithmetic) genus of C, i.e. h0(C,!C), will be
denoted gC .

Let C be a smooth curve, and V a linear system of dimension r + 1 of
sections of a line bundle L on C, for an integer r ≥ 0. We say that r is the
rank of V . For each P ∈ C and each nonnegative integer a, let V (−aP ) ⊆ V
be the linear subsystem of sections of V vanishing at P with multiplicity
at least a. We call P a ramification point of V if dimV (−(r + 1)P ) ≥ 1;
otherwise we call P an ordinary point of V . A ramification point P of V
is said to be special of type r if dimV (−rP ) ≥ 2, and special of type r + 2
if dimV (−(r + 2)P ) ≥ 1. A special ramification point of V is a special
ramification point of type r or r+ 2. A nonspecial ramification point is also
called a simple ramification point.

The orders of vanishing at P of the sections of L in V can be ordered
increasingly. We call this increasing sequence the order sequence of V at P .
The order sequence is 0, 1, . . . , r if and only if P is an ordinary point of V .
The point P is a special ramification point of type r + 2 if and only if the
largest order is at least r + 2, and of type r if and only if the largest two
orders are at least r.

We say that P ∈ C is ordinary (resp. a Weierstrass point) if P is an
ordinary point (resp. a ramification point) of the canonical system, i.e. the
complete system of sections of !C .
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2.2. (Ramification schemes) Let p : C → S be a smooth, projective map of
schemes whose fibers are curves. For each integer i ≥ 0, and each invert-
ible sheaf L on C, let J ip(L) denote the relative sheaf of jets, or principal
parts, of order i of L. The sheaf J ip(L) is locally free of rank i + 1. Also,
there is a natural evaluation map, ei : p∗p∗L → J ip(L), which locally, after
trivializations are taken, is represented by a Wronskian matrix of functions
and their derivatives up to order i. The map ei is functorial on L, that is, a
map ψ : L′ → L between invertible sheaves L′ and L on C induces a natural
commutative diagram of maps of the form:

p∗p∗L′
ei−−−−→ J ip(L′)

p∗p∗ψ

y ψi
p

y
p∗p∗L

ei−−−−→ J ip(L).

There is a natural identification J0
p (L) = L. Furthermore, for each integer

i > 0 there is a natural exact sequence of the form:

(2) 0→ !⊗i
p ⊗ L −−−−→ J ip(L) ri−−−−→ J i−1

p (L)→ 0,

where !p is the relative dualizing sheaf of p. The truncation maps ri are
compatible with the evaluation maps, that is, ei−1 = ri ◦ ei for each i > 0.
Also, the truncation sequence (2) is functorial on L, that is, a map ψ : L′ → L
between invertible sheaves L′ and L on C induces a natural commutative
diagram of exact sequences of the form:

0 −−−−→ !
⊗i
p ⊗ L′ −−−−→ J ip(L′)

ri−−−−→ J i−1
p (L′) −−−−→ 0

id⊗ψ
y ψi

p

y ψi−1
p

y
0 −−−−→ !

⊗i
p ⊗ L −−−−→ J ip(L) ri−−−−→ J i−1

p (L) −−−−→ 0.

Sheaves satisfying the same properties as the J ip(L) above can be con-
structed if p is only a flat, projective map whose fibers are (nodal) curves.
In addition, they coincide on the smooth locus of p with the corresponding
sheaves of jets. Those sheaves appeared in [9], [14], [19] and [20]. We will
use the same notation, J ip(L), for those sheaves.

So, more generally, let p : C → S be a flat, projective map whose fibers
are curves of genus g. We call p a family of curves. Let L be an invertible
sheaf on C, and ν : V → p∗L any map from a locally free sheaf V of constant
positive rank, say r + 1 for a certain integer r ≥ 0. For each integer i ≥ 0,
consider the natural evaluation map,

ui : p∗V p∗ν−−−−→ p∗p∗L −−−−→ J ip(L).

We call the degeneracy scheme of ur+j , for j = −1, 1, the special ramification
scheme of type r + 1 + j of (V,L), and denote it by V Ej(V,L). We call the
degeneracy scheme of ur the ramification scheme of (V,L), and denote it by
W (V,L).
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If S := Spec(C), the curve C is smooth, and ν is injective, then the support
of the scheme W (V,L) is the set of ramification points of the linear system
H0(S, ν(V)) ⊆ H0(C,L) of sections of L. Also, the support of V Ej(V,L)
is the set of special ramification points of type r + 1 + j of the same linear
system, for j = −1, 1.

The map ur is a map of locally free sheaves of the same rank r+1. Taking
determinants, ur induces a Wronskian section wp of the invertible sheaf

W :=
r+1∧

Jrp (L)⊗
( r+1∧

p∗V
)∨
.

Using the truncation sequences (2), we get

W ∼= !
⊗(r+1

2 )
p ⊗ L⊗r+1 ⊗

( r+1∧
p∗V

)∨
.

Locally, after trivializations are taken, wp corresponds to a Wronskian deter-
minant of a sequence of r + 1 functions. Its zero scheme is the ramification
scheme of (V,L).

The formation of the ramification scheme is functorial in the following
sense: Suppose there are an invertible sheaf L′ on C, a locally free sheaf V ′
of rank r + 1 on S, a map ψ : L′ → L, and a commutative diagram of maps
of the form:

V ′ ν′−−−−→ p∗L′

µ

y p∗ψ

y
V ν−−−−→ p∗L.

Due to the functorial nature of the evaluation maps of jets, the above dia-
gram induces another commutative diagram of maps, where all the sheaves
are locally free of rank r + 1:

p∗V ′ ur−−−−→ Jrp (L′)

p∗µ

y ψr
p

y
p∗V ur−−−−→ Jrp (L).

We may take determinants above, using the truncation sequences (2) and
their functoriality for i = 1, . . . , r. Let V ⊆ S be the degeneration scheme
of µ, and Y ⊆ C that of ψ. (So Im(ψ) = IY/C ⊗ L.) Then

(3) IW ′/CIr+1
Y/C = Ip−1(V )/CIW/C ,

where W := W (V,L) and W ′ := W (V ′,L′).
By differentiation, the section wp induces a global section w′p of the rank-2

locally free sheaf J1
p (W). We will call the zero scheme of this section the

special ramification scheme of (V,L), and denote it by V SW (V,L). Notice
that the irreducible components of the ramification scheme have codimen-
sion at most 1 in C, while those of the special ramification schemes have
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codimension at most 2. Also, a local analysis of the matrices representing
the maps ui shows that, set-theoretically,

V SW (V,L) = V E−1(V,L)
⋃

V E1(V,L).

Let T be an S-scheme, and let pT : CT → T denote the induced family by
base extension. For each coherent sheaf F on S (resp. C), let FT denote its
pullback to T (resp. CT .) Then ν induces a map

νT : VT → (p∗L)T → pT∗LT ,
and the (special) ramification scheme(s) of (V,L) pull back to the (special)
ramification scheme(s) of (VT ,LT ). Furthermore, if Y ⊆ CT is a T -flat
closed subscheme whose fibers over T are subcurves of the fibers of p, then
the (special) ramification scheme(s) of (V,L) coincide on Y − (Y ∩ CT − Y)
with the corresponding (special) ramification scheme(s) of (VT ,LT |Y).

In case L is the relative dualizing sheaf of p, and V = p∗L, the ramification
schemes and special ramification schemes are called Weierstrass schemes and
special Weierstrass schemes. In addition, we set

W (p) := W (V,L), V SW (p) := V SW (V,L),

and V Ej(p) := V Ej(V,L) for j = −1, 1.

2.3. (Smoothings) Let C be a curve. A smoothing of C consists of two data:
a flat, projective map p : C → S to S := Spec(C[[t]]) with smooth generic
fiber, and an isomorphism between the special fiber and C. We will usually
identify the special fiber of p with C, “forgetting” the isomorphism. The
smoothing is called regular if the total space C is a regular scheme.

Let p : C → S be a smoothing of C. Since the general fiber is smooth,
for each node P of C, there are a nonnegative integer k and a C[[t]]-algebra
isomorphism

(4) ÔC,P ∼=
C[[t, x, y]]

(xy − tk+1)
.

We call k the singularity type of P in C, and set k(P ) := k. Notice that
k(P ) = 0 if and only if C is regular at P .

If E ⊆ C is a subcurve, then E is not necessarily a Cartier divisor of
C. However, let mE be the least common multiple of the k(P ) + 1 for all
P ∈ E ∩C − E. Then there is a natural effective Cartier divisor on C whose
associated 1-cycle is mE [E]; denote this divisor by Ep.

The divisor Ep is constructed as the schematic closure of the Cartier
divisor with local equations 1 on C − E and tmE on C − C − E. We need
to check that Ep is indeed a divisor at a node P ∈ E ∩ C − E. Fix an
isomorphism of the form (4). Suppose E is defined by the ideal (t, x) in
ÔC,P . Let I ⊂ ÔC,P be the ideal defining Ep at P . ¿From the construction
of Ep, we have Iy = tmE (ÔC,P )y. On the other hand, the unique associated
prime of I is (x, t). So I = Iy ∩ ÔC,P . Now, if g ∈ Iy ∩ ÔC,P then there are
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an integer ` > 0 and h ∈ ÔC,P such that y`g = tmEh. Set n := mE/(k + 1).
We may choose ` > n. So y`−ng = xnh. But x, y form a regular sequence in
ÔC,P . So g ∈ (xn). Conversely, xn = tmE/yn. Thus I = (xn), showing that
Ep is indeed a divisor at P , for each P ∈ E ∩ C − E, and hence a divisor
everywhere.

Notice that E itself is a Cartier divisor of C if and only if mE = 1.

2.4. (Smoothings of semistable curves) Let C be a curve and p : C → S a
smoothing of C.

For each integer d > 0, let S → S be the map defined by taking t to td,
and let pd : Cd → S be the smoothing induced by base change. The special
fiber of pd is equal to that of p. But, for a node P ∈ C, if k is the singularity
type of P in C, then (k + 1)d− 1 is the singularity type of P in Cd.

Suppose C has genus at least 2. Suppose as well that C is semistable,
that is, each smooth rational component E of C intersects C − E in at least
two points. Those E that intersect C − E in exactly two points are called
exceptional. Let Cs be the nodal curve obtained by collapsing to a point
each and every exceptional component of C. We call Cs the stable model of
C. The fibers of the map C → Cs are either points or maximal chains of
exceptional components. A chain of exceptional components is a connected
union of exceptional components. It is possible to order the exceptional
components E1, . . . , Er of a chain in such a way that

#E1 ∩ E2 = #E2 ∩ E3 = · · · = #Er−1 ∩ Er = 1,

whence the name “chain.” There is just another way of doing so, the reverse
ordering Er, . . . , E1. The nodes P0, . . . , Pr of C in the chain can also be
ordered in a compatible, sequential way, with P0 ∈ E1 and Pr ∈ Er, and
Pi ∈ Ei ∩ Ei+1 for i = 1, . . . , r − 1.

There are a smoothing ps : Cs → S of Cs and an S-map b : C → Cs that
blows down (collapses) all exceptional components of C. In fact, just let

Cs := Proj
(⊕
i≥0

H0(C,!⊗i
p )
)
,

where !p is the relative dualizing sheaf of p. However, the singularity types
of Cs are bigger than those of C: if P ∈ Cs is a node such that b−1(P ) is
a chain of r exceptional components, and k0, k1, . . . , kr are the singularity
types in C of the nodes of C on that chain, then the singularity type of P in
Cs is k0 + k1 + · · ·+ kr + r.

In certain circumstances, it might be interesting to avoid blowing down
some of the exceptional components of C in a construction as above. This
is possible after base change. With a base change we may produce sections
Σi ⊂ C of p through its smooth locus intersecting the components we do not
want to blow down. Then just do the above construction with !p replaced
by !p(

∑
Σi).
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So, given a node P of C, and positive integers m0, . . . ,mn, it is possible,
with base changes, blowups and blowdowns, to find an integer d > 0, a
smoothing p̃ : C̃ → S of a semistable curve C̃, and an S-map b : C̃ → Cd such
that p̃ = b ◦ pd and:

(1) b is an isomorphism off P .
(2) b−1(P ) is a chain of n exceptional components of the special fiber C̃

of p̃.
(3) The singularity types in C̃ of the nodes P0, . . . , Pn of C̃ on the chain

b−1(P ), ordered in a sequential way, are `m0 − 1, . . . , `mn − 1 for a
certain integer ` > 0. (In fact,

`(m0 + · · ·+mn) = (k + 1)d,

where k is the singularity type of P in C.)

2.5. (Limit linear series) Let C be a curve, and p : C → S a smoothing of
C. Denote by C∗ the general fiber of p.

Let L be an invertible sheaf on C. Since p is flat, H0(C,L) is a torsion-free
C[[t]]-module, whence free. Let V ⊆ H0(C,L) be a C[[t]]-submodule. Then
also V is free, say of rank r + 1, for a certain integer r ≥ 0. Assume V
is saturated, i.e. V : (t) = V . Letting V∗ be the subspace of H0(C∗,L|C∗)
generated by V , we have that V is saturated if and only if V = V∗∩H0(C,L).
In our applications we will actually have V = H0(C,L), so saturated.

Let R ⊂ C be the ramification scheme of (V ⊗ OS ,L), as defined in
Subsection 2.2. Since C∗ is smooth, R is indeed a divisor. But R may
not intersect C properly, as R may contain in its support a component of
C. Nevertheless, let R := R ∩ C∗. Then R intersects C properly. The
intersection, ∂R := R ∩ C, is called the limit ramification scheme.

In [10] it is shown how to compute the 0-cycle [∂R] associated to ∂R when
p is regular. We review this below.

Let C1, . . . , Cn be the irreducible components of C. Since C is connected,
for each i = 1, . . . , n there is an invertible sheaf Li on C of the form

Li = L ⊗OC(
∑
m ai,mC

p
m), ai,m ∈ Z,

such that the restriction map

(5) H0(C,Li) −→ H0(Ci,Li|Ci)

has kernel tH0(C,Li). (The divisors Cpm are as explained in Subsection 2.3.)
There is a natural identification Li|C∗ = L|C∗ . Using it, set

Vi := H0(C,Li) ∩ V∗ ⊆ H0(C∗,L|C∗).

Then also Vi is saturated and free of rank r + 1. (In fact, Vi∗ = V∗.) Let
V i ⊆ H0(Ci,Li|Ci

) be the image of Vi under (5). Since Vi is saturated, and
(5) has kernel tH0(C,Li), the dimension of V i is r + 1. We call (V i,Li|Ci

)
a limit linear system on Ci.
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Let Ri ⊆ Ci be the ramification scheme of (V i,Li|Ci
), as defined in Sub-

section 2.2. Put R′i := Ri −Ri ∩ C − Ci. Then

(6) [∂R]− [R′1]− · · · − [R′n] is effective and supported on the nodes of C.

Furthermore, if p is regular, then

(7) [∂R] =
n∑
i=1

[Ri] +
∑
i<j

∑
P∈Ci∩Cj

(r + 1)(r − `i,j)[P ],

where `i,j := ai,j + aj,i − ai,i − aj,j for each distinct i, j = 1, . . . , n.
When L = !p, the relative dualizing sheaf of p, and V = H0(C,!p),

the limit ramification scheme is called the limit Weierstrass scheme, and
denoted ∂Wp; also, a limit linear system is called a limit canonical system.

Let P be a nonsingular point of C, and Γ ⊂ C a section of p intersecting
C at P . Say, P ∈ Ci. Let P∗ be the rational point of C∗ cut out by Γ. Then
the behavior of (V∗,L|C∗) at P∗ is partially captured by that of (V i,Li|Ci

)
at P . For instance, we have semicontinuity:

dimC V i(−aP ) ≥ dimC((t)) V∗(−aP∗) for each a = 0, 1, . . . .

In fact, let m := dimC((t)) V∗(−aP∗). Since V∗ = Vi∗, we may choose a
C[[t]]-basis σ1, . . . , σm of Vi∩V∗(−aP∗). The images σi in V i vanish at P with
multiplicity at least a as well. If there is a nonzerom-tuple (c1, . . . , cm) ∈ Cm
such that c1σ1 + · · ·+ cmσm = 0, then

(8) c1σ1 + · · ·+ cmσm = tσ

for some σ ∈ Vi, because (5) has kernel tH0(C,Li) and Vi is saturated.
Because of (8), also σ ∈ Vi ∩ V∗(−aP∗), and hence σ = b1σ1 + · · · + bmσm
for certain bi ∈ C[[t]]. Plugging this expression in (8), we get a nontrivial
relation for the sections σi, an absurd.

In particular, if P∗ is a special ramification point of type r + j of V∗,
for j = −1 or j = 1, then so is P with respect to V i. When L = ! and
V = H0(C,!) we say that P is the limit of a special Weierstrass point of
type g + j along p.

3. Twists

3.1. (Twists) Let C be a curve, and p : C → S a smoothing of C. Let Y ⊂ C
be a nonempty, proper subcurve of C. Set I(0)

Y := OC , and for each positive
integer i, define

I(i)
Y := ker

(
I(i−1)
Y −→

I(i−1)
Y |Y

(torsion)

)
.

We call I(i)
Y the i-th twist by Y of p. Clearly, I(1)

Y is simply the sheaf of
ideals IY/C of Y in C. Also, by construction, I(i)

Y ⊇ I
(i−1)
Y IY/C .

Let ∆Y := Y ∩ C − Y . The subcurve Y may fail to be a Cartier divisor
of C only at ∆Y ; in fact, only at the singular points of C in ∆Y . Away
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from ∆Y , we have that I(i)
Y is the sheaf of ideals of a Cartier divisor. More

precisely, I(i)
Y = IiY/C away from ∆Y . Indeed, this is true for i = 1, and, by

induction, if I(i−1)
Y = Ii−1

Y/C away from ∆Y , then I(i−1)
Y |Y has no torsion on

Y −∆Y , and hence I(i)
Y = I(i−1)

Y IY/C = IiY/C away from ∆Y .

Proposition 3.2. Let C be a curve, and p : C → S a smoothing of C. Let
Y ⊂ C be a nonempty proper subcurve. Let Y c := C − Y and ∆Y := Y ∩Y c.
Let i be a nonnegative integer. Let I(i)

Y and I(i+1)
Y denote the i-th twist and

the (i+ 1)-th twist by Y of p. Then the defining exact sequence,

0 −→ I(i+1)
Y −→ I(i)

Y −→
I(i)
Y |Y

(torsion)
−→ 0,

induces, upon restriction to C, a natural exact sequence

(9) 0 −→
I(i+1)
Y |Y c

(torsion)
−→ I(i)

Y |C −→
I(i)
Y |Y

(torsion)
−→ 0.

Furthermore, for each P ∈ ∆Y , let kP be its singularity type in C, and qP
the quotient of the Euclidean division of i by kP + 1. Then

I(i+1)
Y |Y c

(torsion)
∼= OY c

(
−
∑
P∈∆Y

(qP + 1)P
)

and
I(i)
Y |Y

(torsion)
∼= OY

( ∑
P∈∆Y

qPP
)
.

Proof. Let P ∈ ∆Y , and let k be its singularity type in C. Recall that we
have an isomorphism (4). Under this isomorphism, ÎY/C,P can be seen as
the ideal (y, t). We claim that Î(i)

Y,P is the ideal (yq+1, yqtr) where q and r
are the quotient and the remainder of the Euclidean division of i by k + 1.

Indeed, this description of Î(i)
Y,P holds for i = 1. Suppose by induction

that it holds for a certain i > 0. To describe Î(i+1)
Y,P , we need to describe the

torsion of

M :=
(yq+1, yqtr)

(yq+2, yq+1tr, yq+1t, yqtr+1)
.

Since r ≤ k, we have xyq+1 = tk−ryqtr+1. Thus the class of yq+1 is torsion
in M . So the torsion submodule of M contains at least the classes of yq+1

and yqtr+1. Notice that, when r = k,

(yq+1, yqtr+1) = (yq+1) = (yq+2, yq+1t0).

So we need only prove now that

(yq+1, yqtr)
(yq+1, yqtr+1)

is torsion-free. Indeed, the above module is generated by the class of yqtr.
Suppose by contradiction that x`yqtr ∈ (yq+1, yqtr+1) for a certain integer
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` > 0. Since ÔC,P is a domain, x`tr ∈ (y, tr+1), and hence, since r ≤ k, we
have x`tk ∈ (y). But

ÔC,P
(y)

∼=
C[[x, t]]
(tk+1)

,

and thus x`tk 6∈ (y), a contradiction.
Now, the inclusion I(i)

Y → OC is an isomorphism away from Y , and hence
its restriction to Y c, the homomorphism I(i)

Y |Y c → OY c , is injective away
from ∆Y . Its image is then isomorphic to I(i)

Y |Y c modulo torsion. It is the
sheaf of ideals of a subscheme of Y c supported on ∆Y . At our chosen P ,
using our description for Î(i)

Y,P , we see that this subscheme has multiplicity
q if r = 0, and q + 1 otherwise.

An analogous description holds for I(i+1)
Y |Y c modulo torsion. From it we

get the first isomorphism,

I(i+1)
Y |Y c

(torsion)
∼= OY c

(
−
∑
P∈∆Y

(qP + 1)P
)
.

Let us prove now the existence of the exact sequence (9). Using the
defining sequence of I(i+1)

Y , it is enough to show that the induced map
I(i+1)
Y |C → I(i)

Y |C factors through an injection as in (9). This is easily seen
away from ∆Y . At P ∈ ∆Y , using our description for the modules Î(j)

Y,P , we
need only observe that

(10) Im

(
(yq+1, yqtr+1)
(yq+1t, yqtr+2)

−→ (yq+1, yqtr)
(yq+1t, yqtr+1)

)
=

(yq+1, yqtr+1)
(yq+1t, yqtr+1)

,

and prove that the right-hand side is the quotient of

N :=
(yq+1, yqtr+1)

(xyq+1, xyqtr+1, yq+1t, yqtr+2)

modulo torsion. But, since yyqtr+1 = tryq+1t, the class of yqtr+1 is in the
torsion submodule of N . Also, xyq+1 = tk−ryqtr+1. Taking the quotient of
N modulo yqtr+1, we get the module on the right-hand side of (10). We
need only show now that this module is torsion-free. This is clearly true,
because if y` ∈ (yq+1t, yqtr+1) for some integer ` > 0, then y` ≡ 0 mod t,
which does not hold.

It remains to identify the sheaf to the right in (9). For each P ∈ ∆Y ,
let rP denote the remainder of the Euclidean division of i by kP + 1. Set
h := l.c.m.(kP + 1 |P ∈ ∆Y ). Let m be an integer positive enough that
j := mh− i be nonnegative. We claim that

(11) tiI(j)
Y c = Im(Y c)p/CI

(i)
Y

as subsheaves of OC , where (Y c)p is the Cartier divisor of C associated to
Y c; see Subsection 2.3.
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Indeed, (11) holds away from ∆Y because there (Y c)p = hY c. To check
the equality at each P ∈ ∆Y , we use our description of Î(i)

Y,P and the analo-

gous description of Î(j)
Y c,P .

If i = q(k + 1) + r, for 0 ≤ r ≤ k, where k is the singularity type of P in
C, then j = (mh′ − q)(k + 1)− r, where h′ = h/(k + 1). Also, the equation
for (Y c)p at P is xh

′
; see Subsection 2.3.

There are two cases to consider. If r = 0, then (11) holds at P because

tixmh
′−q = tq(k+1)xmh

′−q = (xy)qxmh
′−q = xmh

′
yq.

On the other hand, if r > 0, then mh′− q− 1 and k+ 1− r are the quotient
and the remainder of the Euclidean division of j by k + 1. And

ti(xmh
′−q, xmh

′−q−1tk+1−r) =(xy)qtr(xmh
′−q, xmh

′−q−1tk+1−r)

=(xmh
′
yqtr, xmh

′−1yqtk+1)

=(xmh
′
yqtr, xmh

′−1yqxy)

=xmh
′
(yqtr, yq+1),

showing that (11) holds at P .
Now that the claim (11) is established, we may use that (Y c)p is a Cartier

divisor of C intersecting Y at each P ∈ ∆Y with multiplicity h/(kP + 1), to
get

I(i)
Y |Y

(torsion)
∼=
I(j)
Y c |Y

(torsion)
⊗OY

( ∑
P∈∆Y

mh

kP + 1
P
)
.

Using the description of I(j)
Y c |Y modulo torsion, analogous to that of I(i)

Y |Y c

modulo torsion, we have

I(j)
Y c |Y

(torsion)
= OY

(
−
∑
P∈∆Y

(
mh

kP + 1
− qP )P

)
.

Thus
I(i)
Y |Y

(torsion)
∼= OY

( ∑
P∈∆Y

qPP
)
.

�

Lemma 3.3. Let C be a curve. Let Y ⊂ C be a proper subcurve and set
Z := C − Y . Let k be a nonnegative integer, and p : C → S a smoothing of
C whose singularity type at each P ∈ Y ∩Z is k. Let L be an invertible sheaf
on C such that both restriction maps below are surjective:

H0(C,L) −→ H0(C,L|C) −→ H0(Y,L|Y )

Set
m := h0(Y,L|Y ) and n := h0(Z,L|Z(−

∑
P∈Y ∩Z

P )).
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Then the inclusion map H0(C,L(−Y p))→ H0(C,L) is a homomorphism of
free C[[t]]-modules of rank m+n whose determinant vanishes at 0 with order
m(k + 1). Furthermore, let

W := W (p∗L,L) and W ′ := W
(
p∗
(
L(−Y p)

)
,L(−Y p)

)
.

Then W and W ′ are Cartier divisors and, as such,

W +mZp = W ′ + nY p.

Proof. That W and W ′ are indeed Cartier divisors was seen in Subsec-
tion 2.5. Now, let

OC(−Y p) = I(k+1)
Y ⊂ I(k)

Y ⊂ · · · ⊂ I(1)
Y ⊂ I(0)

Y = OC
be the filtration defined in Subsection 3.1. Tensoring it with L we obtain a
filtration

L(−Y p) = Lk+1 ⊂ Lk ⊂ · · · ⊂ L1 ⊂ L0 = L
of L. For each i = 0, . . . , k, consider the inclusion νi : Li+1 → Li. It follows
from Proposition 3.2 that

Im(νi|C) ∼= L|Z(−
∑

P∈Y ∩Z
P ) and Coker(νi|C) ∼= L|Y .

So, considering global sections, we have an inequality,

(12) h0(C,Li|C) ≤ h0(Y,L|Y ) + h0(Z,L|Z(−
∑

P∈Y ∩Z
P )) = m+ n,

which is an equality if and only if the induced map

(13) H0(C,Li|C)→ H0(C,Coker(νi|C))

is surjective.
Now, (13) is simply the restriction mapH0(C,L|C)→ H0(Y,L|Y ) if i = 0.

Thus, by hypothesis, equality holds in (12) for i = 0. Or, in other words,

h0(C,L|C) = m+ n.

Moreover, since the restriction map H0(C,L) → H0(C,L|C) is also surjec-
tive,

h0(C∗,L|C∗) = h0(C,L|C) = m+ n,

where C∗ is the generic fiber of p. This shows that all of the H0(C,Li), for
i = 0, . . . , k + 1, have rank m+ n.

Now, by semicontinuity,

h0(C,Li|C) ≥ h0(C∗,Li|C∗) = h0(C∗,L|C∗) = m+ n

for each i = 0, . . . , k. Coupling this with (12), we see that equality holds.
And so (13) is surjective for each i = 0, . . . , k.

As a corollary, the map of C[[t]]-modules

H0(C,Li+1) −→ H0(C,Li)
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has determinant vanishing at 0 with order h0(Y,L|Y ) for each i = 0, . . . , k.
So the inclusion

H0(C,L(−Y p)) −→ H0(C,L)

has determinant vanishing at 0 with order m(k+ 1), proving the first state-
ment of the lemma.

As for the second statement, by the functoriality of the ramification
scheme, Formula (3) in Subsection 2.2, we have that

W ′ + (m+ n)Y p = W +m(k + 1)C.

Now, use that (k + 1)C = Y p + Zp to get the stated equality. �

Lemma 3.4. Let C be a curve and p : C → S a smoothing of C. If E and F
are subcurves of C with finite intersection, and W1 and W2 are subschemes
of C such that

(14) IEp/CIW1/C = IFp/CIW2/C ,

then there is a subscheme W ⊂W1 ∩W2 such that

IW2/C = IW/CIEp/C and IW1/C = IW/CIFp/C .

Proof. Indeed, since Ep is Cartier, it is enough to find W ⊂ W1 satisfying
the first formula, as then the second formula and the fact that W ⊂ W2

follow. And it is enough to show that IW2/C ⊆ IEp/C . This is a local
statement, that holds away from F by (14), and away from E for obvious
reasons. So we need only prove it at a point P ∈ E ∩F . At such a point we
have an isomorphism of the form (4), where (x, t) and (y, t) define E and F ,
respectively. The local equations for Ep and F p are xr and ys, respectively,
for certain positive integers r and s, as we saw in Subsection 2.3. So, we
need only prove that, if J1 and J2 are ideals of ÔC,P such that xrJ1 = ysJ2,
then J2 ⊆ (xr). But this holds, as x, y form a regular sequence in ÔC,P . �

4. Preliminaries on general curves

Proposition 4.1. Let X and Y be two smooth nonrational curves. Let
A ∈ X and B ∈ Y , and let C be the uninodal curve union of X and Y with
A identified with B. Let p : C → S be a smoothing of C. Then the following
statements hold:

(i) If B is at most a simple Weierstrass point of Y , then there is a vec-
tor subspace V ⊆ H0(X,!X((gY + 2)A)) of codimension 1 containing
H0(X,!X(gYA)) such that (V,!X((gY + 2)A)) is a limit canonical
system on X. If B is an ordinary point of Y , then A is a base point
of this system, i.e. V = H0(X,!X((gY + 1)A)). On the other hand,
if B is a simple Weierstrass point of Y , and if A is an ordinary point
of X and p is regular, then V 6= H0(X,!X((gY + 1)A)).
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(ii) If A and B are at most simple Weierstrass points of X and Y , with
at least one of them ordinary, then either the limit Weierstrass scheme
does not contain the node of C, or contains it with multiplicity 1 and
p is nonregular.

Proof. Assume B is at most a simple Weierstrass point of Y . Let ` be a
positive integer, and set L := !p(`Y p), where !p is the relative dualizing
sheaf of p. Then

(15) L|X ∼= !X((`+ 1)A) and L|Y ∼= !Y ((1− `)B).

In addition, the following natural sequences are exact:

(16) 0→ L|X(−A)→ L|C → L|Y → 0,

(17) 0→ L|Y (−B)→ L|C → L|X → 0.

By Riemann–Roch, h0(X,L|X) ≥ g if and only if ` ≥ gY . On the other
hand, by the hypothesis on B, we have h0(Y,L|Y ) = max(0, gY + 1− `) for
` 6= gY + 1, whereas for ` = gY + 1 either h0(Y,L|Y ) = 0 if B is an ordinary
point of Y , or else h0(Y,L|Y ) = 1.

Set M := !p(gY Y p) and N := !p((gY + 1)Y p). From (15) for ` := gY ,
and Riemann–Roch, since gY > 0 we have H1(X,M|X(−A)) = 0. So, the
exactness of (16) for L :=M implies

h0(C,M|C) = h0(X,M|X(−A)) + h0(Y,M|Y ) = (g − 1) + 1 = g.

Thus the restriction H0(C,M)→ H0(C,M|C) is surjective.
Consider now the restriction map

α : H0(C,M|C) −→ H0(X,!X((gY + 1)A)).

The exactness of (16) for L :=M implies that α contains H0(X,!X(gYA))
in its image. And the exactness of (17) for L :=M implies that the kernel of
α is isomorphic to H0(Y,!Y (−gYB)). Thus α is injective, hence bijective,
if and only if B is an ordinary point of Y . In this case, the complete linear
system of sections of !X((gY + 1)A) is a limit canonical system on X. On
the other hand, if B is a (simple) Weierstrass point of Y , the image of α is
the subspace H0(X,!X(gYA)).

Applying (15) for ` := gY + 1, as B is at most a simple Weierstrass point
of Y , we get H0(Y,N|Y (−B)) = 0. So, the natural map

β : H0(C,N|C)→ H0(X,!X((gY + 2)A))

is injective. The maps α and β fit in a commutative diagram of the form

H0(C,M) −−−−→ H0(C,M|C) α−−−−→ H0(X,!X((gY + 1)A))y y y
H0(C,N ) −−−−→ H0(C,N|C)

β−−−−→ H0(X,!X((gY + 2)A)),
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where the horizontal maps are induced by restriction, and the vertical maps
are induced from the inclusionM→N . Since β is injective, the image V of
the bottom composition has codimension 1 in H0(X,!X((gY + 2)A)), and
(V,!X((gY + 2)A)) is a limit canonical system on X. From the diagram, V
contains the image of the top composition, which is H0(X,!X((gY + 1)A))
if B is an ordinary point of Y , and is H0(X,!X(gYA)) otherwise. In the
former case, by dimension considerations, V = H0(X,!X((gY +1)A)). This
finishes the proof of the first two statements of (i).

We will prove the last statement of (i) and (ii) at the same time. Suppose
A is an ordinary point of X. (The proof of (ii) in the case that B is an
ordinary point of Y is analogous.) Then, from Plücker formula, the rami-
fication divisor of the complete linear system of sections of !X((gY + 1)A)
has degree

(18) (2gX + gY − 1)g + (gX − 1)g(g − 1)− gX
on X −A. On the other hand, since B is at most a simple Weierstrass point
of Y , also by Plücker formula, the ramification divisor of the complete linear
system of sections of !Y ((gX + 1)B) has degree

(19) (2gY + gX − 1)g + (gY − 1)g(g − 1)− wB
on Y −B, where wB = gY if B is an ordinary point, or else wB = gY + 1.

Suppose first that B is an ordinary point of Y . Then, by the already
proved second statement of (i), the limit Weierstrass scheme ∂Wp has degree
away from the node equal to the sum of (18) and (19), with wB = gY . But
this sum is g3 − g. So the node of C is not contained in ∂Wp.

Finally, suppose that B is a (simple) Weierstrass point of Y . Then, by the
first statement of (i), there is a vector subspace V ⊂ H0(X,!X((gY +2)A))
of dimension g containing H0(X,!X(gYA)) such that (V,!X((gY +2)A)) is
a limit canonical system. Since A is an ordinary point of X, Plücker formula
yields that the ramification divisor of (V,!X((gY + 2)A)) has degree

(20) (2gX + gY )g + (gX − 1)g(g − 1)− wA
on X − A, where wA = 2gX + gY − 1 if V 6= H0(X,!X((gY + 1)A)), and
wA = 2gX + gY otherwise. At any rate, using wB = gY + 1, the sum of (19)
and (20) is at least g3 − g − 1, with equality if and only if wA = 2gY + gX .
So, either ∂Wp does not contain the node of C, and then wA = 2gX +gY −1
and V 6= H0(X,!X((gY + 1)A)), or ∂Wp contains it with multiplicity 1.

Now, suppose p is regular. To finish the proof, we need only show that
∂Wp does not contain the node of C. Recall that ∂Wp is the intersection
of C and an S-flat closed subscheme Wp ⊂ C intersecting the general fiber
of p at its Weierstrass points; see Subsection 2.5. Since p is regular, Wp

is a Cartier divisor, and the multiplicity of ∂Wp at the node of C is the
intersection multiplicity of Wp and C at the node. Since C = X+Y , and X
and Y contain the node, this multiplicity is either 0 or greater than 1. As it
cannot be greater than 1, it follows that ∂Wp does not contain the node. �
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Lemma 4.2. Let X be a general smooth curve, P ∈ X a general point, and
n a positive integer. Let Q ∈ X − P . Then the following statements are
equivalent, for each j = −1, 1:

(i) The point Q is a ramification point of the complete system of sections
of !X((n+ 1 + j)P ).

(ii) There is a unique subspace V ⊆ H0(X,!X((n+ 2)P )) of codimension
1 containing H0(X,!X(nP )) but different from H0(X,!X((n+1)P ))
such that Q is a special ramification point of (V,!X((n+2)P )) of type
gX + n+ j.

Proof. Set g := gX + n. Also, set

(21) V ′ := H0(!X(nP ))+H0(!X((n+2)P − gQ)) ⊆ H0(!X((n+2)P )).

Since (X,P ) is general, by Prop. 3.1 of [4], all the ramification points but
P of the complete linear systems of sections of !X(nP ), of !X((n + 1)P )
and of !X((n+ 2)P ) are simple. Then

(22) h0(X,!X((n+ 2)P − gQ)) = 1 and h0(X,!X(nP − gQ)) = 0.

Thus the sum in (21) is direct, and V ′ has dimension g. In addition,

(23) V ′(−iQ) = H0(X,!X(nP − iQ))⊕H0(X,!X((n+ 2)P − gQ))

for each i = 0, 1, . . . , g, and thus

(24) dimV ′(−iQ) = h0(X,!X(nP − iQ)) + 1 for each i = 0, 1, . . . , g.

Suppose first that (i) holds. Then either

(25) h0(X,!X(nP − (g − 1)Q)) ≥ 1,

in which case (24) implies that dimV ′(−(g − 1)Q) ≥ 2, and hence Q is a
special ramification point of type g − 1 of (V ′,!X((n+ 2)P )); or

(26) h0(X,!X((n+ 2)P − (g + 1)Q)) ≥ 1,

in which case (21) implies that V ′(−(g+ 1)Q) 6= 0, and hence Q is a special
ramification point of type g+1 of (V ′,!X((n+2)P )). Notice that, in either
case, V ′ cannot beH0(X,!X((n+1)P )), because the complete linear system
of sections of !X((n+ 1)P ) has no special ramification points but P .

For the uniqueness, just observe that, if Q is a ramification point of
(V,!X((n + 2)P )), for a subspace V as described in (ii), then (22) implies
that V ⊇ H0(X,!X((n+2)P − gQ)), and hence V ⊇ V ′. Since both V and
V ′ have dimension g, we have V = V ′.

Finally, suppose (ii) holds. As we saw above, necessarily V = V ′. So,
Q is a special ramification point of (V,!X((n + 2)P )) of type g + j if and
only if dimV ′(−(g − 1)Q) ≥ 2 if j = −1 or dimV ′(−(g + 1)Q) ≥ 1 if
j = 1. Using (24) with i = g − 1, we see that the former inequality occurs
if and only if (25) holds, i.e., if and only if Q is a ramification point of the
complete linear system of sections of !X(nP ). On the other hand, since
H0(X,!X(nP − gQ)) = 0, the latter inequality occurs if and only if (26)
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holds, i.e., if and only if Q is a ramification point of the complete linear
system of sections of !X((n+ 2)P ). �

Proposition 4.3. Let Y be a smooth nonrational curve, ∆ ⊂ Y × Y the
diagonal, and p1 and p2 the projection maps from Y × Y onto the indicated
factors. Set L := (p∗2!Y )(−(gY − 1)∆) and E := p1∗L. Assume Y contains
no Weierstrass point of type gY −1. Then E is invertible, and the degeneracy
scheme of the evaluation map p∗1E → L intersects ∆ transversally along the
set of points (P, P ) for P a Weierstrass points of Y .

Proof. By hypothesis, h0(Y,!Y (−(gY −1)P )) = 1 for each P ∈ Y , and hence
E is invertible. Let Z denote the degeneracy scheme of the evaluation map
p∗1E → L. For each P ∈ Y , the intersection Z ∩ p−1

1 (P ) is the ramification
scheme of the complete linear system of sections of !Y (−(gY − 1)P ), after
the natural identification p−1

1 (P ) = Y . Thus Z∩p−1
1 (P ) is finite and contains

(P, P ) if and only if P is a Weierstrass point of Y . We need only show now
that Z intersects ∆ transversally, what will follow from showing that the
intersection number Z ·∆ is g3

Y − gY .
Let δ : Y → Y × Y be the diagonal map. We have δ∗OY×Y (−∆) = !Y .

Thus
Z ·∆ = deg δ∗Z = deg(c1(!

⊗gY

Y )− c1(E)).
Now, since Y has no Weierstrass point of type gY − 1, the natural sequence

0→ p1∗p
∗
2!Y (−(i+ 1)∆)→ p1∗p

∗
2!Y (−i∆)→ !Y ⊗ δ∗OY×Y (−i∆)→ 0

is exact for i = 0, . . . , gY −2. As c1(p1∗p
∗
2!Y ) = 0 and δ∗OY×Y (−∆) = !Y ,

we get
c1(E) = −

(
c1(!Y ) + c1(!⊗2

Y ) + · · ·+ c1(!
⊗gY −1
Y )

)
.

Thus

Z ·∆ =
gY∑
i=1

ideg(c1(!Y )) =
(
gY + 1

2

)
(2gY − 2) = g3

Y − gY .

�

Proposition 4.4. Let a and b be positive integers. Let X be a general
smooth curve, and P and Q general points on X. Then the complete linear
system of sections of !X(aP + bQ) has only simple ramification points, and
P and Q are not among them.

Proof. Set g := gX . If g = 0, all complete linear systems on X have no
ramification points. If g = 1, the curve X can be any curve, as long as
P −Q is neither a-torsion nor b-torsion in its Jacobian variety.

Assume g > 1. Let i be any positive integer less than g, and put j := g−i.
Let Y and Z be two general smooth curves, Y of genus i, and Z of genus
j, and let A and M be general points of Y , and B and N general points
of Z. By induction on the genus, we may assume the statement of the
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proposition holds for (Y,A,M) and !Y (aA + (b + j)M), and for (Z,B,N)
and !Z(bB + (a+ i)N).

Let X0 be the nodal curve of genus g given as the union of Y and Z, with
M identified with N . Since X0 is nodal, and A and B are nonsingular points
of X0, there are a regular smoothing p : C → S of X0, and sections Γ, ∆ ⊂ C
such that, identifying the closed fiber of p with X0, we have Γ ∩X0 = {A}
and ∆ ∩X0 = {B}.

Let C∗ denote the general fiber of p. Let P and Q be the points of
intersection of Γ and ∆ with C∗. The 2-pointed curve (C∗, P,Q) is defined
over a finitely generated field extension of Q, and hence can be viewed as a
2-pointed complex curve. We claim the statement of the proposition holds
for this 2-pointed curve (and hence for a general 2-pointed curve).

To prove our claim, let !p be the relative dualizing sheaf of p. Let
W∗ ⊂ C∗ be the ramification divisor of the complete linear system of sections
of !p(aΓ + b∆)|C∗ . We need only show that W∗ is reduced, and does not
contain P or Q in its support. For this, it is enough to show that the
limit ramification scheme ∂W is reduced and does not contain A or B in its
support.

Since C is regular, Y and Z are Cartier divisors. Set

L1 := !p(aΓ + b∆ + (b+ j − 1)Z),
L2 := !p(aΓ + b∆ + (a+ i− 1)Y ).

Then

L1|Y = !Y (aA+ (b+ j)M), L1|Z = !Z(bB + (2− b− j)N),
L2|Z = !Z(bB + (a+ i)N), L2|Y = !Y (aA+ (2− a− i)M).

Due to the generality of M and N , we have

h0(Y,L2|Y (−M)) = h0(Z,L1|Z(−N)) = 0,

and hence the natural maps

H0(C,L1)
tH0(C,L1)

−→ H0(Y,L1|Y ) and
H0(C,L2)
tH0(C,L2)

−→ H0(Y,L2|Z)

are injective. They are actually isomorphisms, since H0(C,Li) is free of rank
g + a+ b− 1, and

h0(Y,L1|Y ) = h0(Z,L2|Z) = g + a+ b− 1,

by the Riemann–Roch theorem.
Since

L2
∼= L1((g + a+ b− 2)Y ),

it follows from Formula (7) that [∂W ] = [R1] + [R2], where the divisor R1,
resp. R2, is the ramification divisor of the complete linear system of sections
of !Y (aA + (b + j)M), resp. !Z(bB + (a + i)N); see Subsection 2.5. By
induction, R1 and R2 are reduced and, viewed as subschemes of X0, disjoint.
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So ∂W is reduced. In addition, A and B are not in the supports of R1 and
R2, and thus are not in support of ∂W either. �

5. Special Weierstrass points on reducible curves

Theorem 5.1. Let X and Y be two general smooth nonrational curves. Let
A ∈ X and B ∈ Y , and let C be the uninodal curve union of X and Y with
A identified with B. Set g := gC . Suppose that either A is a general point
of X or B is a general point of Y . Let Q ∈ C lying on X. Then, for each
j = −1, 1, the point Q is the limit of a special Weierstrass point of type g+ j
along a smoothing of C if and only if Q is not the node of C, and either of
the following two situations occur:

(i) Q is a special ramification point of type g + j of the complete linear
system of sections of !X((gY + 1)A) or

(ii) Q is a ramification point of the complete linear system of sections of
!X((gY + 1 + j)A) and B is a Weierstrass point of Y .

Proof. We prove the “only if” part of the statement first. Let p : C → S be
a smoothing of C, as indicated in Figure 1 below, such that Q is the limit
of a Weierstrass point of type g + j along p. In particular, Q appears with
multiplicity at least 2 in the limit Weierstrass scheme ∂Wp.

Figure 1. The smoothing.

Since X and Y are general, their Weierstrass points are simple. Also,
since either A or B is general, either A or B is ordinary. Thus, it follows
from Proposition 4.1, item (ii), that Q is not the node of C.

Suppose first that B is an ordinary point of Y . Then, by Proposition 4.1,
item (i), the system of sections of !X((gY + 2)A) vanishing at A is a limit
canonical system, and hence (i) holds.

On the other hand, suppose that B is a Weierstrass point of Y . By Propo-
sition 4.1, item (i), there is a vector subspace V ⊂ H0(X,!X((gY +2)A)) of
codimension 1 containing H0(X,!X(gYA)) such that (V,!X((gY +2)A)) is
a limit canonical system, and hence admits Q as a special ramification point
of type g + j. If V = H0(X,!X((gY + 1)A)), we have (i). Otherwise, (ii)
follows from Lemma 4.2.
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For the “if” part of the proof, we will construct smoothings as convenient
slices of certain 2-parameter families.

Suppose Q is not the node of C. Suppose first that (i) holds. Then
gX ≥ 2. Also, it follows from Prop. 3.1 in [4] that A is not a general point of
X. So, by hypothesis, B is a general point of Y , whence an ordinary point.

We will first deform C by letting A vary to a general point. More precisely,
let ∆ ⊆ X × X be the diagonal, and consider the union U of X × X with
Y × X with ∆ naturally identified with {B} × X. Let q : U → X be the
projection onto the second factor. Since X is nonsingular, we may identify
the complete local ring of X at A with C[[t]], and let q̃ : Ũ → S be the family
induced over S := Spec(C[[t]]) by base change.

Let V := C[[t1, t2, . . . , tN ]] be the base of the universal deformation space
of C, where t1 = 0 corresponds to equisingular deformations. The map q̃
corresponds to a local homomorphism h : V → C[[t]] such that h(t1) = 0.
Since gX ≥ 2, the map q̃ is not, even infinitesimally, a constant family.
So there is j ≥ 2 such that h(tj) generates tC[[t]]. We may assume that
j = 2 and, after a harmless reparametrization, that h(t2) = t. Letting
pi(t) := h(ti) for each i ≥ 3, we have h(ti − pi(t2)) = 0 for each i ≥ 3.
Consider the two-parameter subfamily of the universal deformation of C
given precisely by the equations ti−pi(t2) = 0 for i = 3, . . . , N . Identify the
base of this family with S2 := Spec(C[[t1, t2]]), and let u : T → S2 denote
the map giving the family, which is depicted in Figure 2 below.

Figure 2. The first family.

Notice that T is a regular threefold. Let E ⊂ S2 be the Cartier divisor
given by t1 = 0. The slice uE : u−1(E) → E is precisely q̃, under the
identification t2 = t. Hence, the pullback u∗E is the sum of two effective
Cartier divisors, XE and YE , the first isomorphic to X × E, the second to
Y × E, whose intersection on Y × E is B × E, and on X × E is the graph
Σ of a nonconstant map E → X, sending the special point o ∈ E to A, and
the general point e ∈ E to the general point of X.
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LetM := !u(gY YE), where !u is the relative dualizing sheaf of u. Then

(27) M|XE
∼= !XE/E((gY + 1)Σ).

A fiberwise check, as done in the proof of Proposition 4.1, shows that u∗M
is locally free of rank g, with formation commuting with base change. In
addition, since B is an ordinary point of Y , the natural map

γ : (u∗M)|E −→ uE∗(M|XE
)

is an isomorphism.
Form the special ramification scheme Z ⊆ T of type g+j of (u∗M,M), as

explained in Subsection 2.2. Since γ is an isomorphism, Z agrees on XE−Σ
with the special ramification scheme of type g + j of (uE∗(M|XE

),M|XE
).

Because of (27), the fact that Σ ∩ u−1(o) = {A}, and the hypothesis (i),
we have that Q is an isolated point of Z ∩ u−1(o). Furthermore, since the
general point of Σ is the general point of X × {e}, Prop. 3.1 in [4] yields
Z ∩ u−1(e) ⊆ Y × {e}.

Since Z is defined locally by two regular functions, there is an irreducible
subscheme N ⊆ Z of dimension 1 containing Q. Since Q is an isolated point
of Z ∩u−1(o), and Z ∩u−1(e) ⊆ Y ×{e}, the general point of N must lie on
a smooth fiber of u, and hence be a special Weierstrass point of type g + j
of that fiber. So Q is the limit of a special Weierstrass point of type g + j.

Suppose now that (ii) holds. In particular, B is a Weierstrass point of
Y , and hence gY ≥ 2. Letting B vary, we may construct a two-parameter
family similar to the one constructed in the first case. Thus we get a family
of curves u : T → S2 over S2 = Spec(C[[t1, t2]]) such that T is a regular
threefold, and the pullback u∗E of the Cartier divisor E ⊂ S2 given by
t1 = 0 is the sum of two effective Cartier divisors, XE and YE , the first
isomorphic to X ×E, the second to Y ×E, whose intersection on X ×E is
A×E, and on Y ×E is the graph Σ of a nonconstant map E → Y , sending
the special point o ∈ E to B, and the general point e ∈ E to the general
point of Y .

Let S̃2 → S2 be the blowup map of S2 at o, and denote by F ⊂ S̃2 the
exceptional divisor. Abusing notation, we denote the strict transform of E
by E as well, and let o denote the point of intersection of E and F . The
fibered product T ×S2 S̃2 is singular only at the node of the fiber over o of
the second projection T ×S2 S̃2 → S̃2.

Let T̃ be the blowup of T×S2 S̃2 along the subscheme YE×S2E ⊂ T×S2 S̃2.
A local analysis shows that T̃ is smooth. Denote by X̃E and ỸE the strict
transforms in T̃ of XE ×S2 E and YE ×S2 E. Let also X̃F and ỸF denote the
strict transforms of X × F and Y × F . Let ũ : T̃ → S̃2 be the induced map.
The fiber T̃o := ũ−1(o) consists of three components: two of them disjoint
and naturally identified with X and Y , and the remaining, say R, isomorphic
to a line and meeting X and Y transversally at A and B. A local analysis
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shows that X̃E ∩ T̃o = X and ỸE ∩ T̃o = Y ∪R, while X̃F ∩ T̃o = X ∪R and
ỸF ∩ T̃o = Y . Figure 3 below describes the family given by ũ.

Figure 3. The second family.

For each z ∈ E ∪F , let Xz and Yz denote the components of ũ−1(z) that
are base extensions of X and Y .

Let !ũ be the relative dualizing sheaf of ũ. Let

M := !ũ(gY (ỸE + ỸF )), N :=M(ỸF ), and P := N (ỸE).

Clearly,M⊂ N ⊂ P. The restriction P|X̃F
is the pullback of!X((gY +2)A)

under the composition X̃F → X × F → X. Thus

ũ∗(P|X̃F
) = H0(X,!X((gY + 2)A)⊗OF ,

and in particular ũ∗(P|X̃F
) is a locally free OF -module of rank g + 1.

We claim that the natural composition

δ : (ũ∗N )|F −→ (ũ∗P)|F −→ ũ∗(P|X̃F
)

is injective with invertible cokernel, and that, as f ranges in F − o, the
image Vf of δ(f) ranges through all subspaces of H0(X,!X((gY + 2)A)) of
dimension g containing H0(X,!X(gYA)) but for H0(X,!X((gY + 1)A)).
In particular, (ũ∗N )|F is locally free of rank g.

Once the claim is established, we proceed as in the first case. Indeed, a
fiberwise analysis shows that ũ∗N is locally free of rank g on S̃2−F . Thus,
from the claim, ũ∗N is locally free of rank g everywhere. Form the special
ramification scheme Z of type g + j of (ũ∗N ,N ). For each f ∈ F − o, since
δ(f) is injective, Z agrees on Xf − A with the special ramification scheme
of type g + j of (Vf ,!X((gY + 2)A)).
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Now, by Lemma 4.2, there is a subspace V ⊆ H0(X,!X((gY + 2)A)) of
codimension 1 with V ⊃ H0(X,!X(gYA)) but V 6= H0(X,!X((gY +1)A))
such that Q is a special ramification point of (V,!X((gY + 2)A)) of type
g + j. From the claim there is f ∈ F − o such that V = Vf . So, viewing Q
as a point of Xf , we have Q ∈ Z.

Since all irreducible components of Z have codimension at most 2 in T̃ ,
there is an irreducible curve N ⊆ Z passing through Q ∈ Xf . Now, only
finitely many points of X − A can be special ramification points of type
g + j of a linear system like V , namely, by Lemma 4.2, the ramification
points of the complete linear system of sections !X((gY + 1 + j)A). But,
again by Lemma 4.2, each of these points is a special ramification point of
a unique V . Thus, for all but finitely many f ∈ F − o, the linear system
(Vf ,!X((gY + 2)A)) has no special ramification points of type g + j on
X−A. Hence N intersects X̃F − (X̃F ∩ ỸF ) in only finitely many fibers over
F . So the general point of N must be on a smooth fiber of ũ, and hence be
a special Weierstrass point of type g + j of that fiber. So Q is the limit of a
special Weierstrass point of type g + j.

Now, let us establish the claim. First, a fiberwise analysis shows that
ũ∗M is locally free of rank g, and that R1ũ∗M is invertible, both with
formation commuting with base change. Consider the long exact sequence
in higher direct images:

0→ ũ∗M→ ũ∗N → ũ∗(N|ỸF
)→ R1ũ∗M→ R1ũ∗N → R1ũ∗(N|ỸF

)→ 0.

Since R1ũ∗M is invertible, and ũ∗(N|ỸF
) is supported on F , the middle map

above is zero, breaking up the long sequence in two short exact sequences,

0→ ũ∗M→ ũ∗N → ũ∗(N|ỸF
)→ 0,

0→ R1ũ∗M→ R1ũ∗N → R1ũ∗(N|ỸF
)→ 0.

The exactness of the first sequence shows the surjectivity of the natural map
(ũ∗N )|F → ũ∗(N|ỸF

). Now, a fiberwise analysis, using that B is a simple
Weierstrass point of Y , shows that R1ũ∗(N|ỸF

) is a locally free OF -module
of rank 2. So, since R1ũ∗M is also locally free, the exactness of the second
sequence above implies that, for each Cartier divisor G ⊂ S̃2 intersecting F
properly, the natural multiplication-by-G map (R1ũ∗N )(−G) → R1ũ∗N is
injective, and hence the natural map

δG : ũ∗N|G −→ ũ∗(N|ũ−1(G))

is an isomorphism. This isomorphism allows us to work with slices of the
family ũ that intersect F properly.

In particular, for each f ∈ F −{o}, let G ⊂ S̃2 be a smooth curve passing
through f , and whose general point lies on S̃2 − (E ∪ F ). So we have a
smoothing ũG : ũ−1(G) → G of the fiber C, and we can also choose G such
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that ũG is regular. Then, by Proposition 4.1, (i), the natural map

δG,f : (ũG∗(N|ũ−1(G)))(f)→ H0(Xf ,N|Xf
)

is injective and, under the isomorphism N|Xf
∼= !X((gY + 2)A), its im-

age is a g-dimensional subspace of H0(X,!X((gY + 2)A)) that contains
H0(X,!X(gYA)) but is different from H0(X,!X((gY + 1)A)). Now, since
δ(f) = δG,f ◦δG(f), and δG is an isomorphism, δ(f) has the same properties.

To understand what happens at o, consider the slice of ũ over E. We
claim the natural map

η : ũ∗(N|ũ−1(E)) −→ ũ∗(N|X̃E
)

is an isomorphism. Indeed, let ΣE := X̃E ∩ ỸE . Since δE is an isomor-
phism, applying the long exact sequence in higher direct images to the exact
sequence

0→ N|X̃E
(−ΣE)→ N|ũ−1(E) → N|ỸE

→ 0

we get that the natural map (ũ∗N )|E → ũ∗(N|ỸE
) is surjective, and that

the image of η contains ũ∗(N|X̃E
(−ΣE)). Thus, to show our last claim we

need only show that the natural map

ε : ũ∗(N|ỸE
) −→ ũ∗(N|ΣE

)

is an isomorphism.
Since the map ΣE → E is an isomorphism, ũ∗(N|ΣE

) is locally free of
rank 1. Also ũ∗(N|ỸE

) is locally free of rank 1, because it is so over the
generic point e ∈ E. Since the point in the intersection ΣE ∩ ũ−1(e) is not
a Weierstrass point of Ye, the map ε(e) is an isomorphism.

To show that also ε(o) is an isomorphism, it amounts to show that the
point in Σo := ΣE ∩ ũ−1(o) of intersection of Xo and R is not a limit
ramification point of (ũ∗N|ỸE

,N|ỸE
). This is indeed the case, since ỸE is

the blowup of Y × E at (B, o), and ΣE is the strict transform of the graph
of the map E → Y obtained by considering the identity map of Y locally
analytically at B. So, the transversality stated in Proposition 4.3 shows that
Σo is not a limit ramification point.

Finally, since η and δE are isomorphisms, it follows that δ(o), which is
the composition of the isomorphism η(o) ◦ δE(o) with the inclusion

H0(X,!X((gY + 1)A))→ H0(X,!X(gY + 2)A),

is injective of rank g. So, δ(f) is injective of rank g for every f ∈ F ,
and hence δ is injective with invertible cokernel. Moreover, as the image
of δ(o) is different from that of δ(f) for f ∈ F − o, then, as f varies in
F − o, the image Vf of δ(f) varies through all the codimension-1 subspaces
of H0(X,!X((gY + 2)A)) containing H0(X,!X(gYA)), with the exception
of H0(X,!X((gY + 1)A)). The proof of our claim on δ is complete. �
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6. Weierstrass schemes of smoothings

Theorem 6.1. Let C be the semistable curve of genus g ≥ 2 that is union
of a smooth curve X of genus g − 1 and a chain E of g − 1 exceptional
components E1, . . . , Eg−1 ordered in the usual way. Let A ∈ X ∩ E1 and
B ∈ X ∩ Eg−1 be the unique points of intersection. Suppose X is general,
and A and B are general points of X. Let p : C → S be a smoothing of C
and W (p) its Weierstrass scheme. Suppose that the singularity types of C at
the nodes of C are equal. Then W (p) is a Cartier divisor, and the difference

(28) W (p)−
g−1∑
i=1

i(g − i)g
2

Epi

is effective and intersects each fiber of p transversally. In particular, the
limit Weierstrass scheme of p is reduced and contains no node of C in its
support.

Proof. Figure 4 below describes the curve C.

Figure 4. The nodal curve.

Identify the closed fiber of p with C. We will prove the second statement
first. Let !p be the relative dualizing sheaf of p. By adjunction, !p restricts
to the trivial sheaf on each Ei and to !X(A + B) on X. So, each global
section of !p that vanishes on X vanishes on the whole fiber C, and hence
the restriction map

H0(C,!p) −→ H0(X,!X(A+B))

has image of dimension g. Since h0(X,!X(A + B)) = g by the Riemann–
Roch theorem, the restriction map is surjective. So the complete linear
system of sections of !X(A+B) is a limit canonical system on X.

By Proposition 4.4, the ramification points of H0(X,!X(A + B)) are
simple. So, by (6), the limit Weierstrass scheme ∂Wp of p is reduced on X
away from A and B. Also, since neither A nor B is a ramification point of
H0(X,!X(A+B)), again by Proposition 4.4, the Plücker formula yields

(29) deg(∂Wp ∩X − {A,B}) = g3 − g2.
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Now, for each i = 1, . . . , g − 1, set

(30) Li := !p
(
− i(g − i)Epi −

i−1∑
m=1

m(g − i)Epm −
g−1∑

m=i+1

(g −m)iEpm
)
.

Notice that Li has degree g on Ei and zero on each Em for m 6= i. Also,

Li|X ∼= !X
(
− (g − i− 1)A− (i− 1)B

)
.

Since A and B are general points of X, we have h0(X,Li|X) = 1 and

(31) h0
(
X,Li|X(−A)

)
= h0

(
X,Li|X(−B)

)
= h0

(
X,Li|X(−A−B)

)
= 0.

Let Vi be the image of

H0(C,Li) −→ H0(Ei,Li|Ei
)

Since h0(X,Li|X(−A − B)) = 0, and degLi|Em
= 0 for m 6= i, each global

section of Li that vanishes on Ei vanishes on the whole C. Thus (Vi,Li|Ei)
is a limit canonical system on Ei.

Let P and Q be the nodes of C in Ei. A section in Vi that vanishes at
P (or Q) is the restriction of a global section of Li that vanishes at P (or
Q). Since degLi|Em

= 0 for m 6= i, it follows from (31) that this global
section vanishes on all components of C but possibly Ei. In particular, its
restriction in Vi vanishes at P and Q. In other words,

(32) Vi(−P ) = Vi(−Q) = Vi(−P −Q) = H0(Ei,Li|Ei
(−P −Q)),

where the last equality follows from dimension considerations.
By (32), the system (Vi,Li|Ei

) contains a complete subsystem of codi-
mension 1, namely H0(Ei,Li|Ei

(−P −Q)). Since complete systems on the
projective line have no ramification points, the order sequence of (Vi,Li|Ei

)
at each point of Ei starts with 0, . . . , g− 2. The last order can only be g− 1
or g, since Li|Ei has degree g. Thus all ramification points of (Vi,Li|Ei)
are simple. In addition, since P and Q are not ramification points of
H0(Ei,Li|Ei

(−P − Q)), it follows from (32) that they are not ramification
points of (Vi,Li|Ei

) either.
Thus, by (6), the scheme ∂Wp is reduced on Ei − {P,Q}. Also, since

neither P nor Q is a ramification point of (Vi,Li|Ei), Plücker formula yields

(33) deg(∂Wp ∩ Ei − {P,Q}) = g.

Finally, since there are g − 1 rational components in C, we get

g3 − g = deg(∂Wp ∩ C) ≥ g3 − g2 + (g − 1)g = g3 − g,
where the inequality follows from combining (29) and (33) for i = 1, . . . , g−1.
The inequality is thus an equality, showing that we accounted for all points
in the support of ∂Wp, and hence that all of them appear with multiplicity
1. The second statement is proved.

To prove the first statement, we will consider a filtration Li,j of subsheaves
of !p containing Li, defined below.
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For each i = 1, . . . , g − 1 and each j = 0, 1, . . . , i(g − i)− 1, let k, k′, `, `′

be integers such that

(34) j = ki+ ` = k′(g − i) + `′, 0 ≤ k, `′ ≤ g − i− 1, 0 ≤ k′, ` ≤ i− 1,

and put

ci,j,m := km+ max(0, `− i+m+ 1), m = 1, . . . , i,(35)
c′i,j,m := k′(g −m) + max(0, `′ + i−m+ 1), m = i, . . . , g − 1.(36)

Notice that ci,j,i = c′i,j,i = j + 1. Finally, set

(37) Di,j :=
i∑

m=1

ci,j,mE
p
m +

g−1∑
m=i+1

c′i,j,mE
p
m,

and put Li,j := !p(−Di,j). Notice that

Li = Li,i(g−i)−1.

For each i = 1, . . . , g − 1 set Di,−1 := 0 and Li,−1 := !p. And for each
j = 0, 1, . . . , i(g− i)−1 set Fi,j := Di,j−Di,j−1. Then Li,j = Li,j−1(−Fi,j).
It follows from (34), (35) and (36) that

(38) Fi,j = Epi−` + Epi−`+1 + · · ·+ Epi + Epi+1 + · · ·+ Epi+`′ .

Using this, it can also be shown, by induction on j, that

Li,j |X ∼=


!X((1− k)A+ (1− k′)B) if ` 6= i− 1 and `′ 6= g − i− 1,
!X(−kA+ (1− k′)B) if ` = i− 1 and `′ 6= g − i− 1,
!X((1− k)A− k′B) if ` 6= i− 1 and `′ = g − i− 1,
!X(−kA− k′B) if ` = i− 1 and `′ = g − i− 1.

and

degLi,j |Em
=


k + k′ + 2 if m = i,

−1 if m = i− `− 1 or m = i+ `′ + 1,
0 otherwise.

Let F ri,j ⊂ C be the reduced subscheme with same support as Fi,j . It
follows that

(39) h0(F ri,j ,Li,j−1|F r
i,j

) = k + k′ + 1,

and, setting F̂ ri,j := C − F ri,j , that

h0
(
F̂ ri,j ,Li,j |F̂ r

i,j

)
= h0

(
X,!X(−kA− k′B)

)
.

Since A and B are general points of X, and k + k′ ≤ g − 2, it follows that

(40) h0(F̂ ri,j ,Li,j |F̂ r
i,j

) = g − 1− k − k′.
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Notice that
Li,j |F̂ r

i,j

∼= Li,j−1|F̂ r
i,j

(−
∑

P∈F r
i,j∩F̂ r

i,j

P ).

Thus we have the following short exact sequence:

(41) 0→ Li,j |F̂ r
i,j
→ Li,j−1|C → Li,j−1|F r

i,j
→ 0.

Putting together (39) and (40), we get

h0(C,Li,j−1|C) ≤ h0(F ri,j ,Li,j−1|F r
i,j

) + h0(F̂i,j ,Li,j |F̂ r
i,j

) = g.

By semicontinuity, since Li,j−1 restricts to the canonical sheaf on the generic
fiber of p, and this sheaf has g linearly independent sections, equality holds
above. It follows that each of the restriction maps in the composition below
is surjective:

(42) H0(C,Li,j−1) −→ H0(C,Li,j−1|C) −→ H0(F ri,j ,Li,j−1|F r
i,j

).

We may now apply Lemma 3.3. Let u be the common singularity type of
C at the nodes of C. Because of (39), we get that the inclusion map

(43) H0(C,Li,j) −→ H0(C,Li,j−1)

is a map of free C[[t]]-modules of the same rank g and determinant vanishing
at 0 with order (u + 1)(k + k′ + 1). Summing these orders for each integer
j = 0, 1, . . . , i(g − i)− 1, we get that the determinant of the inclusion

H0(C,Li) −→ H0(C,!p)
has order (u+ 1)i(g − i)g/2.

Now, using (30), and using the functoriality of the ramification scheme,
Formula (3) in Subsection 2.2, we get

t(u+1)i(g−i)g/2IW (p)/C = Ii(g−i)g
Ep

i /C
INi/CIWi/C ,

where Wi := W (p∗Li,Li) and Ni is an effective Cartier divisor of C not
containing Ei in its support. Since all global sections of Li that vanish on
Ei vanish as well on the whole C, it follows that Wi does not contain Ei.

Observe that div(tu+1) = Xp + Ep1 + · · ·+ Epg−1. Then

(IXp/C
∏
j 6=i

IEp
j /C)

i(g−i)g/2IW (p)/C = Ii(g−i)g/2
Ep

i /C
INi/CIWi/C .

Using Lemma 3.4 repeatedly, we get that

IW (p)/C = Ii(g−i)g/2
Ep

i /C
IZi/C

where Zi is a Cartier divisor contained in Wi +Ni, and thus not containing
Ei in its support. Putting these together for i = 1, . . . , g − 1, and using
Lemma 3.4 repeatedly, we get that

IW (p)/C = IZ/C
g−1∏
i=1

Ii(g−i)g/2
Ep

i /C
,
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where Z is a Cartier divisor contained in all the Zi, and thus not containing
any of the Ei in its support. Since X is not in the support of W (p), it is
not in that of Z either. So Z intersects C properly, and hence is flat over
S. That the intersection is transversal follows from the fact that the limit
Weierstrass scheme is reduced. �

Theorem 6.2. Let g be a positive integer. Let X be a general smooth curve
of genus g − 1, and A and B general points of X. Let C be the nodal curve
of genus g obtained from X by identifying A and B. Then no point of C is a
limit of special Weierstrass points on a family of smooth curves degenerating
to C.

Proof. The statement is true if g = 1, because an elliptic curve has no
Weierstrass points. Suppose g > 1 now. Let p : C → S be a smoothing of C.
We claim that the geometric general fiber has no special Weierstrass point.
It is enough to show, after base changes, blowups and blowdowns with center
in the special fiber, that the limit Weierstrass divisor is reduced.

So, as observed in Subsection 2.4, we may replace p by a smoothing p̃ : C̃ →
S whose special fiber is the curve C described in Theorem 6.1, and whose
nodes have equal singularity types in C̃. Then, by Theorem 6.1, the limit
Weierstrass divisor of p̃ is reduced. �

Proposition 6.3. Let i and g be integers with 0 < i < g. Let Y and Z be
two general smooth curves of genera i and g − i, respectively. Let A ∈ Y
and B ∈ Z be general points. Let C be the stable curve union of Y and Z
with A and B identified. Let p : C → S be a smoothing of C, and W (p) its
Weierstrass scheme. Then W (p) is a Cartier divisor, and the difference

(44) W (p)−
(
g − i+ 1

2

)
Y p −

(
i+ 1

2

)
Zp

is effective and intersects each fiber of p transversally. In particular, the
limit Weierstrass scheme of p is reduced and does not contain the node of C
in its support.

(Cukierman showed in [3], Prop. 2.0.8, p. 325, that the difference (44) is
effective and intersects properly each fiber of p, when C is regular. His proof
can be easily adapted to show our proposition. We give the proof below just
for the sake of completeness.)

Proof. Identify the closed fiber of p with C. Let !p be the relative dualizing
sheaf of p, and set Lj := !p(−jY p) for j = 0, . . . , g − i + 1. We have
Lj |Y ∼= !Y ((j + 1)A) and Lj |Z ∼= !Z((1− j)B). So

(45)

{
h0(Y,Lj |Y ) = i+ j,

h0(Z,Lj |Z) = g − i+ 1− j,
for each j = 0, . . . , g − i+ 1,
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where in the second equality we used that B is a general point of Z. From
the natural exact sequence

0→ Lj |Z(−B)→ Lj |C → Lj |Y → 0

it follows that

h0(C,Lj |C) ≤ h0(Y,Lj |Y ) + h0(Z,Lj+1|Z) = (i+ j) + (g − i− j) = g

for j = 0, . . . , g − i. By semicontinuity, the equality holds, and it follows
that both restriction maps below are surjective, for each j = 0, . . . , g − i:
(46) H0(C,Lj) −→ H0(C,Lj |C) −→ H0(Y,Lj |Y ).

Since h0(Lg−i|Z(−B)) = 0, because B is general, the surjection

H0(C,Lg−i)→ H0(Y,Lg−i|Y )

has kernel tH0(C,Lg−i). So, the complete linear system of sections of
!Y ((1 + g − i)A) is a limit canonical system. Let R be its ramification
scheme. By [4], Prop. 3.1, the intersection R ∩ (Y − A) is reduced, and R
contains A with multiplicity i.

Let ∂W be the limit Weierstrass scheme of p. Then, it follows from (6)
that ∂W ∩ (C − Z) is reduced and, by Plücker Formula applied to R,

#∂W ∩ (C − Z) = degR− i = g(g − 1)(i− 1) + g(g + i− 1)− i.
Analogously, ∂W ∩ (C − Y ) is reduced and

#∂W ∩ (C − Y ) = g(g − 1)(g − i− 1) + g(g + (g − i)− 1)− (g − i).
Summing up, we see that, excluding the node of C, there are g3 − g points
in ∂W . Since deg ∂W = g3 − g, it follows that ∂W is reduced, and does not
contain the node in its support. This proves the second statement of the
proposition.

Now, let us prove the first statement. Since the restriction maps in (46)
are surjective, we may apply Lemma 3.3. Using (45), we get that the deter-
minant of the map of C[[t]]-modules

H0(C,Lj+1) −→ H0(C,Lj)
vanishes at 0 with order (u+ 1)(i+ j) for each j = 0, . . . , g − i− 1, where u
is the singularity type of C at the node of C. Summing up, the determinant
of the map of C[[t]]-modules

H0(C,Lg−i) −→ H0(C,!p)
vanishes at 0 with order

(u+ 1)
(
i(g − i) +

(
g − i

2

))
=

(u+ 1)(g − i)(g + i− 1)
2

.

Let W ′ := W (p∗Lg−i,Lg−i). By the functoriality of the ramification
scheme, Formula (3) in Subsection 2.2,

W (p) +
(u+ 1)(g − i)(g + i− 1)

2
C = (g(g − i))Y p +W ′.
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Observing that (u+ 1)C = Y p + Zp, we get that

W (p) +
(g − i)(g + i− 1)

2
Zp = W ′ +

(
g − i+ 1

2

)
Y p.

Since (p∗Lg−i,Lg−i) restricts to a nondegenerate linear system on Y , we
have that W ′ does not contain Y . Using Lemma 3.4, we get that

W (p) =
(
g − i+ 1

2

)
Y p +D,

where D is a Cartier divisor contained in W ′, and thus not containing Y .
Analogously,

W (p) =
(
i+ 1

2

)
Zp +D′,

where D′ is a Cartier divisor not containing Z. Applying Lemma 3.4 again,
we get that

W (p) =
(
g − i+ 1

2

)
Y p +

(
i+ 1

2

)
Zp +D′′,

where D′′ is a Cartier divisor intersecting C properly. That the intersection
is actually transversal follows from the fact that the limit Weierstrass scheme
is reduced. �

7. The moduli space of stable curves and its Picard groups

7.1. (A versal family of stable curves) Let g be an integer at least 2, and
let Mg denote the coarse moduli space of stable curves. As this will be
important for us, we will recall how Mg is constructed; see [16]. Given a
Deligne–Mumford stable curve X, its dualizing sheaf !X is ample; in fact
!
⊗n
X is very ample for each n ≥ 3. Also, by Riemann-Roch,

h0(X,!⊗n
X ) = (2n− 1)(g − 1) for each n ≥ 2.

Fix an integer n ≥ 3. Let N := (2n − 1)(g − 1) − 1. Choosing a basis for
H0(X,!⊗n

X ), we may view X as a closed subscheme of degree 2n(g − 1) of
PN . The subscheme depends on the choice of the basis only, so any other
choice would yield a projectively equivalent subscheme. We say that all these
subschemes are n-canonically embedded.

More generally, a stable curve X of genus g in PN is said to be n-
canonically embedded if !⊗n

X
∼= OX(1).

Let H be the Hilbert scheme parametrizing closed subschemes of PN with
Hilbert polynomial 2n(g−1)T +1−g, and U ⊆ PN ×H the universal closed
subscheme. Then there is a (locally closed) subscheme K ⊆ H parametrizing
n-canonically embedded stable curves of genus g. In fact, let H ′ ⊂ H be the
open subscheme parametrizing (connected, reduced, nodal) curves X in PN .
The induced subfamily UH′ ⊆ H ′ × PN admits a Picard scheme over H ′,



34 CUMINO, ESTEVES AND GATTO

actually an algebraic space, PicUH′/H′ . The sheaves !⊗n
UH′/H′ and OUH′ (1)

induce a map

H ′ −→ PicUH′/H′ ×H′ PicUH′/H′ .

The scheme K is simply the inverse image of the diagonal under this map.
Notice that PicUH′/H′ may not be separated over H ′, so the diagonal is

only a locally closed subscheme of PicUH′/H′ ×H′ PicUH′/H′ , and hence so is
K inside H ′. Also, compare the definition of K with that of K̃ on p. 102 of
[17]; they should be the same subschemes, but K̃ is not correctly defined.

Let V := UK ⊂ PN × K be the induced subscheme and v : V → K the
family induced by the second projection PN ×K → K. First, K is smooth.
The proof of this fact uses the infinitesimal criterion of smoothness, and is
essentially the proof given to [17], Lemma 3.35, p. 103.

Second, the family v : V → K is versal. Indeed, let p : C → S be any
family of stable curves of genus g, and denote by !p its dualizing sheaf.
The pushforward p∗(!⊗n

p ) is locally free of rank N + 1. So, for each point
s ∈ S there is an open neighborhood Ss ⊆ S of s such that p∗(!⊗n

p )|Ss
is

free. Choose an isomorphism O⊕N+1
Ss

→ p∗(!⊗n
p )|Ss

. Since !⊗n
p is globally

generated, we get a map ρ : Cs → PN × Ss, where Cs := p−1(Ss). Since the
fibers of p are stable, and n ≥ 3, the map ρ is an embedding. The images of
the fibers of p over Ss are n-canonically embedded curves, by construction,
so we get a map Ss → K. By the universal property of the Hilbert scheme,
we get a Cartesian diagram,

Cs −−−−→ V

p

y v

y
Ss −−−−→ K,

thus showing that v is indeed versal.
Finally, the group of automorphisms PGL(N) of PN acts in a natural

way on H, and hence there is an induced action σ : PGL(N) ×K → K on
K. Gieseker [16] constructs Mg as a geometric GIT quotient of K under
this action for any n sufficiently large. The quotient map, Φ: K → Mg, is
also the map induced by the family v : V → K.

7.2. (The Picard groups of Mg) Let g ≥ 2. The moduli space Mg is neither
fine nor smooth. There are actually two Picard groups associated to it, both
important. Keep the notation of Subsection 7.1. Assume n is sufficiently
large, so that Mg is the GIT quotient of K. The first Picard group we define
is the so-called Picard group of the moduli functor: Picfun(Mg). Roughly
speaking, an element ξ of Picfun(Mg) consists of the equivalence class of the
assignment of an invertible sheaf ξp on the base S of each family of genus-
g stable curves p : C → S and of an isomorphism tα : f∗ξp → ξq for each
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Cartesian diagram

(47) α :

Y −−−−→ C

q

y p

y
T

f−−−−→ S.
where p and q are families of genus-g stable curves. The isomorphisms must
satisfy natural compatibility requirements, when two Cartesian diagrams
as above are juxtaposed. Two assignments (ξp, tα)p,α and (ξ′p, t

′
α)p,α are

called equivalent if there are isomorphisms up : ξp → ξ′p for all p such that
uqtα = t′αf

∗up for all α.
According to [18], p. 50, there is an isomorphism

(48) Picfun(Mg) −→ Pic(K)PGL(N),

where the target is the group of isomorphism classes of invertible sheaves on
K invariant under the action of PGL(N). (Recall that an invertible sheaf
L on K is said to be invariant under PGL(N) if there is an isomorphism
σ∗L → p∗2L satisfying the cocycle condition (see (*) on p. 30 of [24]), where
p2 : PGL(N)×K → K is the second projection.)

It is not difficult to understand how (48) works: It carries an element ξ
of Picfun(Mg) to the isomorphism class of ξv. That there is an isomorphism
σ∗ξv → p∗2ξv follows from the Cartesian diagrams below:

(49)

V ←−−−− V2
h−−−−→ V1 −−−−→ V

v

y v2

y v1

y v

y
K

p2←−−−− PGL(N)×K id−−−−→ PGL(N)×K σ−−−−→ K

where V1 := (idPN , σ)−1(V) and V2 := (idPN , p2)−1(V) in PN×PGL(N)×K,
and h is the restriction of the automorphism of PN ×PGL(N)×K induced
by the natural action of PGL(N) on PN . (The automorphism h composed
with the third projection to K is simply the third projection.) The fact that
the isomorphism σ∗ξv → p∗2ξv satisfies the cocycle condition follows from the
compatibility requirements that ξ must satisfy.

Roughly, the inverse to (48) is defined as follows: Let L be a PGL(N)-
invariant invertible sheaf on K. Let p : C → S be any family of stable
sheaves, and !p its dualizing sheaf. As we saw in Subsection 7.1, there is
an open covering S =

⋃
Si such that p∗(!⊗n

p )|Si
is free for each i, and,

from the choice of an isomorphism O⊕N+1
Si

→ p∗(!⊗n
p )|Si

, we get an in-
duced map ui : Si → K. For each i, let Mi := u∗iL. The maps ui|Si∩Sj

and uj |Si∩Sj
may not be equal, but since they differ because of the choice

of a trivialization for p∗(!⊗n
p )|Si∩Sj

, they differ by the action of a map
Si ∩ Sj → PGL(N). Since there is an isomorphism σ∗L → p∗2L, we get
an isomorphism ϕi,j : Mi|Si∩Sj

→ Mj |Si∩Sj
. Using that the isomorphism

σ∗L → p∗2L satisfies the cocycle condition, we can show that also the ϕi,j
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satisfy the cocycle condition, and thus give rise to an invertible sheaf ξp
on S such that ξp|Si

∼= Mi for each i. The isomorphisms tα for Cartesian
diagrams α may be constructed locally, in a similar fashion. And the com-
patibility requirements, for juxtapositions of Cartesian diagrams, may be
checked locally.

The second Picard group of interest is Pic(Mg). According to [22],
Lemma 5.8, p. 100, there is an injection

(50) Pic(Mg) −→ Picfun(Mg)

whose cokernel is torsion. Thus we get an isomorphism

(51) Pic(Mg)⊗Q −→ Picfun(Mg)⊗Q

Again, it is not difficult to understand how (50) works: Given an invertible
sheaf L on Mg and a family of stable curves p : C → S, let up : S → Mg be
the induced map and define ξp := u∗pL. Given a Cartesian diagram α as in
(47), we just observe that uq = upf to get an isomorphism tα : f∗ξp → ξq.
The compatibility of the isomorphisms tα with juxtapositions of Cartesian
diagrams is immediate.

To understand the inverse of (51), first observe that, since Mg has only
finite quotient singularities, every codimension-1 subvariety Y of Mg is Q-
Cartier, i.e. there is a Cartier divisor D of Mg such that [D] = n[Y ] for
some integer n > 0. So the natural injection Pic(Mg) → A1(Mg) from the
Picard group of Mg to the Chow group of codimension-1 cycle classes of
Mg, taking the isomorphism class of an invertible sheaf L to c1(L) · [Mg],
becomes an isomorphism,

(52) Pic(Mg)⊗Q −→ A1(Mg)⊗Q,

upon tensoring with Q.
Now, by a result of Looijenga’s [21], and Pikaart’s and de Jong’s [26], there

is a family of stable curves b : Y → B of genus g over a smooth, projective
scheme B such that the induced map ub : B → Mg is finite and surjective.
(The fibers parametrize the so-called “non-Abelian level structures.”)

So, given ξ ∈ Picfun(Mg), let L be the assigned invertible sheaf on B.
Define

ζ := (1/d)ub∗(c1(L) · [B]) in A1(Mg)⊗Q,

where d is the degree of ub. And let ρ ∈ Pic(Mg) ⊗ Q be the element
corresponding to ξ under the isomorphism (51). We claim that ρ corresponds
to ζ under the isomorphism (52). Indeed, there is an integer m such that mρ
arises from an invertible sheaf M on Mg. Since ρ corresponds to ξ under
(51), we have that L⊗m = u∗bM. Now, it follows from the projection formula
that

mζ = (1/d)ub∗(c1(u∗bM) · [B]) = (1/d)dc1(M) · [Mg] = c1(M) · [Mg].

So mζ corresponds toM, or mρ, under (52), and hence ζ corresponds to ρ.
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7.3. (Tautological and boundary classes) Keep the notation used in Subsec-
tions 7.1 and 7.2. There is a natural element λ in Picfun(Mg): For each
family p : C → S of genus-g stable curves, let λp := det p∗!p, where !p is
the dualizing sheaf of p. Since the formation of !p and p∗!p commutes
with base change, it follows that λ is well-defined. The element λ is called a
tautological class.

There are boundary classes as well. First, some terminology is useful.
Given a connected nodal curve X, we say that a node P of X is disconnecting
if X − P is not connected. (In this case, X − P has exactly two connected
components.) Otherwise, we say that P is connecting.

For each i = 0, . . . , [g/2], define subsets ∆′
i ⊂ K, where ∆′

0 is the set of
points s ∈ K such that the fiber Vs has a connecting node, and ∆′

i, for i > 0,
is the set of points s ∈ K such that Vs has a disconnecting node P , and the
closure in Vs of one of the connected components of Vs−P has (arithmetic)
genus i. These are closed subsets of K of codimension 1. Give them their
reduced induced scheme structures. Then they are Cartier divisors, because
K is smooth. If s belongs to ∆′

i for a certain i, so does t, for any t ∈ K such
that Vs and Vt are projectively equivalent. So the ∆′

i are invariant under
the action of PGL(N), and hence so are their associated invertible sheaves.
Let δ0, . . . , δ[g/2] denote the corresponding elements of Picfun(Mg). We call
these elements boundary classes. By construction, δi,v is the invertible sheaf
associated to ∆′

i for each i = 0, . . . , [g/2].
We will also view λ and the δi as elements of Pic(Mg) ⊗ Q under the

natural isomorphism (51).
The group Picfun(Mg) is generated by λ and the δi, and these elements

form a basis if g ≥ 3; see [1], Thm. 1, p. 154. If g = 2, Mumford showed
that δ0 and δ1 form a basis for Pic(Mg) ⊗ Q; see [23], Thm. 10.1, p. 320.
Furthermore, λ is expressed in terms of δ0 and δ1 by Mumford’s relation
(Eq. (8.4) on p. 317 of loc. cit.):

(53) 10λ− δ0 − 2δ1 = 0.

8. Special Weierstrass classes

8.1. (Special Weierstrass classes) Fix an integer g ≥ 2. Let p : C → S be a
family of genus-g stable curves over a smooth, connected, quasi-projective
scheme S. Assume that the general fiber of p is smooth and has no special
Weierstrass points. Let S′ ⊆ S be the open subscheme over which p is
smooth, and set C′ := p−1(C) and p′ := p|C′ : C′ → S′. Set

SW (p′) := p′∗[V SW (p′)] and Ej(p′) := p′∗[V Ej(p
′)]

for j = −1, 1. Since the general fiber of p′ has no special Weierstrass points,
and any smooth curve has only finitely many Weierstrass points, the schemes
V SW (p′) and the V Ej(p′) are pure of codimension 2 in C′. Thus SW (p′)
and the Ej(p′) are cycles of pure codimension 1 in S′. Let SW (p) and Ej(p),
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for j = −1, 1, denote the closures in S of SW (p′) and Ej(p′), for j = −1, 1.
Notice that, since S is smooth, we may and will view SW (p′), SW (p) and
the Ej(p′) and Ej(p) as Cartier divisors.

Recall now the notation in Section 7. LetK be the scheme of n-canonically
embedded genus-g stable curves, for n sufficiently large, v : V → K the versal
family, and Φ: K →Mg the induced map. Since v is versal, Φ is surjective.
The fibers of Φ are PGL(N)-orbits of points with finite stabilizers, so they
are irreducible of the same dimension. Since Mg is irreducible, so is K.

Now, a general smooth curve has no special Weierstrass points; see [4],
Cor. 3.3. So the general fiber of v is smooth and has no special Weierstrass
points. We may thus consider the Cartier divisors SW (v) and Ej(v), for
j = −1, 1, of K. We claim that their associated invertible sheaves are
PGL(N)-invariant.

Indeed, recall diagram (49). Since p2 and σ are smooth, and since the
formation of V SW (v′) commutes with base change, it follows from [13],
Lemma 1.7.1 and Prop. 1.7, p. 18, that

[p−1
2 (SW (v′))] = v′2∗[V SW (v′2)] and [σ−1(SW (v′))] = v′1∗[V SW (v′1)],

and hence p−1
2 (SW (v)) = SW (v2) and σ−1(SW (v)) = SW (v1). Now,

h(V SW (v′2)) = V SW (v′1), and thus SW (v2) = SW (v1). It follows that

p−1
2 (SW (v)) = σ−1(SW (v)),

and hence the invertible sheaf associated to SW (v) is PGL(N)-invariant.
An analogous reasoning works for the Ej(v) instead of SW (v).

Now, using the isomorphism (48), the invertible sheaves associated to
SW (v), E−1(v) and E1(v) define elements of Picfun(Mg), which we denote
by SW g, Eg,−1 and Eg,1, respectively. We call these the special Weierstrass
classes of Mg. We will also view them as elements in Pic(Mg) ⊗ Q, under
the identification given by (51).

Lemma 8.2. Let
Y h−−−−→ C

q

y p

y
T

f−−−−→ S
be a Cartesian diagram of maps, where p and q are families of smooth curves,
and T and S are smooth, connected, quasi-projective schemes. Assume that
the general fiber of q has no special Weierstrass points. Then the general
fiber of p has no special Weierstrass points either, and

(54) f−1(SW (p)) = SW (q) and f−1(Ej(p)) = Ej(q) for j = −1, 1.

Proof. The first statement holds because having no special Weierstrass points
is an open property.

As for (54), we will only show that f−1(SW (p)) = SW (q), as the proofs of
the remaining equalities are analogous. To ease notation, let V := V SW (p)
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and W := V SW (q). Since p and q are smooth, and so are S and T , we need
to show that

(55) f∗p∗[V ] = q∗[W ],

where we view p∗[V ] and q∗[W ] as Cartier divisors, and f∗ as the pullback
map on Cartier divisors.

Let D := p(V ), scheme-theoretically, and put E := p−1(D). Since the
general fiber of p has no special Weierstrass points, V has pure codimension 2
in C, and D has pure codimension 1 in S. Since S is smooth, D is an effective
Cartier divisor. So is E := f−1(D), because the general fiber of q has
no special Weierstrass points. Consider the induced sequence of Cartesian
diagrams:

W
f2−−−−→ V

q1

y p1

y
E

f1−−−−→ Dy y
T

f−−−−→ S,

where p1 := p|V and q1 := q|W , where the bottom vertical maps are inclu-
sions, and where f1 := f |E and f2 := h|W .

Now, f is the composition of a regular embedding, its graph, followed
by a smooth map, the projection T × S → S. So f is a local complete
intersection (l.c.i.) map, in the sense of Fulton [13], p. 112. So there are
well-defined Gysin maps f ! : A0(V ) → A0(W ) and f ! : A0(D) → A0(E),
denoted the same by Fulton. According to [13], Prop. 6.6, p. 113, the maps
f ! satisfy all the properties asserted in loc. cit., Thm. 6.2, p. 98, including
the compatibility with pushforwards. Thus

(56) f !p1∗[V ] = q1∗f
![V ]

as classes in A0(E).
The subscheme V of C is determinantal, and has pure codimension 2,

which is the expected codimension. As C is smooth, V is Cohen–Macaulay;
see [13], Thm. 14.4, p. 254. Analogously, W is a Cohen–Macaulay sub-
scheme of Y of pure codimension 2. Thus, since the above diagram is Carte-
sian, f2 is l.c.i. of the same codimension as f . Analogously, since D and
E are Cartier divisors of S and T , respectively, also f1 is l.c.i. of the same
codimension as f .

By [13], Prop. 6.6, p. 113 and Thm. 6.2, p. 98,

f ![V ] = f !
2[V ] and f !p1∗[V ] = f !

1p1∗[V ].

Now, f !
2[V ] = [W ]; see [13], Lemma 1.7.1, p. 18 and Ex. 6.1.7, p. 97.

Analogously, writing p1∗[V ] =
∑
i ni[Di], where the Di are the irreducible
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components of D, we get

f !
1p1∗[V ] =

∑
i

nif
!
1[Di] =

∑
i

ni[f−1(Di)].

So, from (56), it follows that

q1∗[W ] =
∑
i

ni[f−1(Di)]

as classes in A0(E). But both sides above are cycles of codimension 0 in E.
Thus equality holds as cycles. Or, as codimension-1 cycles of T ,

q∗[W ] =
∑
i

ni[f−1(Di)].

It is now enough to observe that the right-hand side is simply the cycle
associated to the Cartier divisor f∗p∗[V ]. �

Lemma 8.3. Let Y be a smooth, connected, projective variety of dimension
at least 1. Let Z1, Z2 ⊂ Y be closed subschemes of codimension 1 and 2,
respectively. Let L be an invertible sheaf on Y . Then there is a smooth
subcurve C ⊆ Y such that #C ∩ Z1 < ∞ and C ∩ Z2 = ∅, and such that
L|C ∼= OC if and only if L ∼= OY .

Proof. If Y has dimension 1, set C := Y . Suppose dimY > 1, and let
us argue by induction on dimY . Since Y is smooth and projective, and
dimY > 1, Serre Duality can be applied to deduce thatH1(Y,L(−n)) = 0 for
a certain integer n. Also, by Bertini Theorem, a general section of OY (n) has
smooth, connected zero scheme. Call H this zero scheme. By its generality,
Z1 ∩H and Z2 ∩H have codimension 1 and 2, respectively, in H.

Since H1(Y,L(−H)) = 0, the restriction map H0(Y,L)→ H0(H,L|H) is
surjective. Suppose there is an isomorphism L|H ∼= OH . This isomorphism
yields a section of L|H , and hence lifts to a section s of L that is nonzero
along H. So the zero scheme Z of s is contained in Y −H, and since H is
ample, Z must be finite. However, if nonempty, Z would have codimension
1 in Y , and hence would be infinite. So Z = ∅, and thus s induces an
isomorphism L ∼= OY .

By induction, there is a smooth subcurve C ⊆ H such that #C ∩Z1 <∞
and C ∩ Z2 = ∅, and such that L|C ∼= OC if and only if L|H ∼= OH . But, as
we saw, L|H ∼= OH if and only if L ∼= OY . �

Theorem 8.4. Let g ≥ 2. The following formula holds in Pic(Mg)⊗Q:

SW g = (3g4 + 4g3 + 9g2 + 6g + 2)λ− g(g + 1)(2g2 + g + 3)
6

δ0

−(g3 + 3g2 + 2g + 2)
[g/2]∑
i=1

i(g − i)δi.
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Proof. The above formula was shown in [15], Thm. 5.1, p. 44, using the
method of test curves. Here we will show how to obtain it directly.

To show the formula is equivalent to showing that a power of a certain
invertible sheaf N on Mg is trivial. As mentioned in Subsection 7.2, there is
a family b : Y → B of genus-g stable curves over a smooth, projective variety
B such that the induced map ub : B → Mg is finite and surjective. By the
projection formula, to show that a power of N is trivial is equivalent to show
that a power of the pullback u∗bN is trivial. Now, using Lemma 8.3, there is
a smooth subcurve S ⊂ B such that a power of N is trivial if and only if a
power of u∗bN|S is trivial.

Let p : C → S be the base change of the family b : Y → B under the
inclusion S → B. Since S may be chosen “general,” intersecting properly
certain subschemes of B, and since the map B → Mg is finite, we may
assume that p has finitely many singular fibers, all of them uninodal. Also,
we may assume the general fiber of p is a general curve of genus g, and
in particular has no special Weierstrass points, and each of the singular
fibers of p is general, among singular curves. In particular, it follows from
Theorem 5.1 and Theorem 6.2 that no singular fiber of p has a point that is a
limit of special Weierstrass points on a family of smooth curves degenerating
to the fiber.

Let ν := ub|S . We claim that ν∗SW g = SW (p); see the notation intro-
duced in Subsection 8.1. Indeed, letK be the scheme of n-canonically embed-
ded stable curves of genus g, for n sufficiently large, and let v : V → K be the
versal family; see Subsection 7.1. Then there are an open covering S =

⋃
Si

and maps ui : Si → K for each i such that pi := p|p−1(Si) : p
−1(Si) → Si is

obtained from v by base change under ui, for every i. From the construc-
tion of SW g, it is enough to show that SW (pi) = u−1

i (SW (v)) for each
i. Since none of the singular fibers of p has limits of special Weierstrass
points, it remains to show that SW (p′i) = u−1

i (SW (v′)). But this follows
from Lemma 8.2.

For each s ∈ S such that Cs := p−1(s) is singular, let Ps denote the
unique node of Cs, and let ks be the singularity type of Ps in C. Let S0 be
the set of s ∈ S such that Cs is singular and irreducible. In addition, for
each i = 1, . . . , [g/2], let

Si := {s ∈ S | Cs contains a component of genus i}.

Let λ′ := c1(p∗!p), where !p is the relative dualizing sheaf of p, and set

(57) δ′i :=
∑
s∈Si

(ks + 1)[s]

for i = 0, 1, . . . , [g/2]. Then λ′ = ν∗λ and δ′i = ν∗δi for i = 0, 1, . . . , [g/2];
see [17], Section 3D, especially p. 146. Since also ν∗SW g = SW (p), to show
the statement of the theorem we need only show that in Pic(S)⊗Q the class
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of SW (p) satisfies an equation similar to that of SW g, but with λ and the
δi replaced by λ′ and the δ′i.

To show the formula for SW (p) we may replace S by any finite covering
T → S, as the induced pullback map Pic(S)⊗Q→ Pic(T )⊗Q is injective.
The new formula to be shown is completely analogous. So, up to replacing
S by a finite covering, we may assume that ks + 1 is divisible by g for each
s ∈ S0. (The finite covering can be any of degree g that is totally ramified
at the points of S0.)

By considering blowups and blowdowns, we may find a map of schemes
β : C̃ → C such that

(1) β is an isomorphism away from the points Ps for s ∈ S0;
(2) for each s ∈ S0, the fiber C̃s := (p ◦ β)−1(s) is the nodal curve that

is the union of the normalization of Cs and a chain of g − 1 rational
curves connecting the branches over Ps, and β : C̃s → Cs is the map
collapsing the chain to Ps;

(3) the singularity type in C̃ of each of the nodes of C̃s is (ks + 1)/g − 1
for each s ∈ S0.

Let p̃ := p ◦ β. For each s ∈ S0, let

(58) k̃s :=
ks + 1
g
− 1,

let C̃ns ⊂ C̃s be the normalization of Cs, and let Es = Es,1∪· · ·∪Es,g−1 be the
chain of rational components of C̃s, where the Es,i are ordered sequentially.
Also, for each i ≥ 1 and each s ∈ Si, let Ys denote the component of the
fiber C̃s of genus i and Zs that of genus g − i. Notice that Y p̃s and Z p̃s are
Cartier divisors of C̃ such that Y p̃s + Z p̃s = (ks + 1)p̃∗(s) and Y p̃s · Zs = 1.
Thus

(59) Y p̃s · Z p̃s = ks + 1 = −Y p̃s · Y p̃s = −Z p̃s · Z p̃s .

Similarly, for s ∈ S0, we have that (C̃ns )p̃ and the Ep̃s,i are Cartier divisors of
C̃ such that

(C̃ns )p̃ +
g−1∑
i=1

Ep̃s,i = (k̃s + 1)p̃∗(s),

and, for all i, j = 1, . . . , g − 1,

(60) Ep̃s,i · E
p̃
s,j =


k̃s + 1 if |i− j| = 1,
0 if |i− j| > 1,
−2(k̃s + 1) if i = j.
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Consider the Weierstrass divisor Wp̃ of p̃. Let

(61)

W := Wp̃−
[g/2]∑
i=1

∑
s∈Si

((
g − i+ 1

2

)
Y p̃s +

(
i+ 1

2

)
Z p̃s

)

−
∑
s∈S0

g−1∑
i=1

i(g − i)g
2

Ep̃s,i.

We claim that W is effective and intersects transversally each singular fiber
of p̃.

Indeed, the claim can be checked formally around each s ∈ S for which
p̃−1(s) is singular. So, it is possible to treat the fibers over S0 and over the
Si for i > 0 independently. Now, our Theorem 6.1 shows that W is effective
on a neighborhood of the fiber over any s ∈ S0, and intersects that fiber
transversally. Furthermore, our Proposition 6.3 shows that W is effective on
a neighborhood of the fiber over any s ∈ S1 ∪ · · · ∪S[g/2], and intersects that
fiber transversally as well. The claimed is proved.

Since W intersects transversally each singular fiber of p̃, its branch locus
over S is simply V SW (p′), where p′ is the restriction of p to its smooth
locus, under the identification given by β. Since V SW (p′) has codimension
2 in C̃, we have that, in Pic(C̃):

(62) [V SW (p′)] = c2(J1
p̃ (OC̃(W ))) = c1(W )

(
c1(W ) + c1(!p̃)

)
.

In addition, c1(W ) can be computed from the definition of W , since, by
Plücker formula,

(63) c1(Wp̃) =
(
g + 1

2

)
c1(!p̃)− p̃∗λ′.

We used above that β∗!p̃ = !p, where !p̃ is the relative dualizing sheaf of
p̃.

Since SW (p) = p̃∗[V SW (p′)], to compute SW (p) we use (61) and (63)
in (62), and expand the product. To simplify the resulting expression for
SW (p), let us first identify terms that vanish. First, observe that Cartier
divisors supported on different fibers have zero product. So, for instance,
Y p̃s Z

p̃
s′ = 0 if s 6= s′. Also, (p̃∗λ′)2 = p̃∗((λ′)2) = 0 by reason of dimension,

and

p̃∗(c1(Y p̃s )p̃∗λ′) = p̃∗(c1(Z p̃s )p̃
∗λ′) = p̃∗(c1(E

p̃
s′,j)p̃

∗λ′) = 0

for each s ∈ S1 ∪ . . . S[g/2], each s′ ∈ S0 and each j = 1, . . . , g − 1, by the
projection formula, since the Y p̃s , Z p̃s and Ep̃s′,j are collapsed to points under
p̃. Taking these vanishings in consideration, we have

(64) SW (p) = u− a+ b+ c− (g2 + g + 1)(d+ e),
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where

u :=
(
g + 1

2

)(
g2 + g + 2

2

)
p̃∗(c1(!p̃)2),

a :=(g2 + g + 1)p̃∗(c1(!p̃)p̃∗λ′),

b :=p̃∗

(
[g/2]∑
i=1

∑
s∈Si

((
g − i+ 1

2

)
c1(Y p̃s ) +

(
i+ 1

2

)
c1(Z p̃s )

)2)
,

c :=p̃∗

( ∑
s∈S0

( g−1∑
i=1

i(g − i)g
2

c1(E
p̃
s,i)
)2
)
,

d :=
[g/2]∑
i=1

∑
s∈Si

p̃∗

(
c1(!p̃)

((
g − i+ 1

2

)
c1(Y p̃s ) +

(
i+ 1

2

)
c1(Z p̃s )

))
,

e :=
∑
s∈S0

g−1∑
i=1

p̃∗

(
c1(!p̃)

( i(g − i)g
2

c1(E
p̃
s,i)
))

First, to compute u, we use a formula derived from the Grothendieck–
Riemann–Roch formula (see [17], Formula 3.110, p. 158):

p̃∗(c1(!p̃)2) = 12λ′ − δ′0 − δ′1 − · · · − δ′[g/2].

Second, by the projection formula, p̃∗(c1(!p̃)p̃∗λ′) = (2g − 2)λ′. So

a = 2(g2 + g + 1)(g − 1)λ′.

Third, from (59) we get

p̃∗(c1(Y p̃s )c1(Z p̃s )) = (ks + 1)[s] = −p̃∗(c1(Y p̃s )c1(Y p̃s )) = −p̃∗(c1(Z p̃s )c1(Z p̃s ))

for each i = 1, . . . , [g/2] and s ∈ Si. Thus

b =
[g/2]∑
i=1

∑
s∈Si

(ks + 1)

(
2
(
g − i+ 1

2

)(
i+ 1

2

)
−
(
g − i+ 1

2

)2

−
(
i+ 1

2

)2
)

[s]

=−
[g/2]∑
i=1

((
g − i+ 1

2

)
−
(
i+ 1

2

))2

δ′i = −
[g/2]∑
i=1

(g + 1)2(g − 2i)2

4
δ′i.

Fourth, from (60), for each s ∈ S0 and all i, j = 1, . . . , g − 1,

p̃∗(E
p̃
s,i · E

p̃
s,j) =


(k̃s + 1)[s] if |i− j| = 1,
0 if |i− j| > 1,
−2(k̃s + 1)[s] if i = j.
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Recalling (58), we have

c =
g2

2

(
g−1∑
i=1

(i(g − i)(i+ 1)(g − i− 1)− i2(g − i)2)

) ∑
s∈S0

(k̃s + 1)[s]

=
g

2

(
g−1∑
i=1

i(g − i)(g − 2i− 1)

)
δ′0

=
g

2

(
g(g − 1)

g−1∑
i=1

i− (3g − 1)
g−1∑
i=1

i2 + 2
g−1∑
i=1

i3

)
δ′0

=
g

2

(
g2(g − 1)2

2
− (3g − 1)(g − 1)g(2g − 1)

6
+

(g − 1)2g2

2

)
δ′0

=− g4 − g2

12
δ′0.

Fifth, since !p̃|Ys
= !Ys

(Ps) and !p̃|Zs
= !Zs

(Ps) for each s ∈ Si with
i = 1, . . . , [g/2], we have

p̃∗(c1(!p̃)c1(Y p̃s )) =(2i− 1)(ks + 1)[s],

p̃∗(c1(!p̃)c1(Z p̃s )) =(2(g − i)− 1)(ks + 1)[s].

So

d =
[g/2]∑
i=1

((
g − i+ 1

2

)
(2i− 1) +

(
i+ 1

2

)
(2(g − i)− 1)

)
δ′i

=
[g/2]∑
i=1

(
i(g − i)(g + 3)−

(
g + 1

2

))
δ′i.

Sixth, since !p̃|Es,j
is trivial for each s ∈ S0 and each j = 1, . . . , g − 1,

we have that e = 0.
Now, put together the expressions for u, a, b, c, d and e in (64) to get

SW (p) =
(
3g(g + 1)(g2 + g + 2)− 2(g2 + g + 1)(g − 1)

)
λ′

−
(
g4 − g2

12
+
g(g + 1)(g2 + g + 2)

4

)
δ′0

−
[g/2]∑
i=1

(g + 1)2(g − 2i)2

4
δ′i

−
[g/2]∑
i=1

(g2 + g + 1)
(
i(g − i)(g + 3)−

(
g + 1

2

))
δ′i

−
[g/2]∑
i=1

g(g + 1)(g2 + g + 2)
4

δ′i.
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It is now easy to check that the coefficients of λ, δ0 and the δi in the expres-
sion for SW g in the statement of the theorem match the coefficients of λ′,
δ′0 and the δ′i in the above expression for SW (p). �

Remark 8.5. For g ≥ 3, since λ, δ0, . . . , δ[g/2] form a Z-basis of Picfun(Mg),
and SW g ∈ Picfun(Mg), the formula in Theorem 8.4 holds in Picfun(Mg).
On the other hand, smooth curves of genus 2 have no special Weierstrass
points. Thus SW g = 0, and the formula in Theorem 8.4 simply says that

130λ− 13δ0 − 26δ1 = 0,

which is a multiple of Mumford’s relation, (53). For yet another way to
obtain this relation, and a generalization, see [11].

9. The special ramification loci of type g + j

Proposition 9.1. Let g ≥ 2. Then

SW g = Eg,−1 + Eg,1 in Picfun(Mg).

Proof. LetK be the scheme of n-canonically embedded stable curves of genus
g, for n sufficiently large, v : V → K the versal family, and Φ: K →Mg the
induced map; see Subsection 7.1. Let K ′ ⊂ K be the open locus over which
v is smooth, and set V ′ := v−1(V) and v′ := v|V′ : V ′ → K ′. From the
constructions of SW g, Eg,−1 and Eg,1 in Subsection 8.1, it suffices to show
that

(65) [V SW (v′)] = [V E−1(v′)] + [V E1(v′)],

as codimension-2 cycles in V ′. This is a local statement, that can be checked
on a neighborhood of a point P ∈ V ′. Let C := v−1(v(P )).

Locally around P , the scheme V E1(v′) is given by all maximal minors of
a (Wronskian) matrix of regular functions of the form

M =

Ac
d

 ,
where A is a matrix with g columns and g − 1 rows, and c and d are row
vectors of size g. Furthermore, V E−1(v′) is given by all maximal minors
of the matrix A, and V SW (v′) is given by the determinants of the square
submatrices

M1 :=
[
A
c

]
and M2 :=

[
A
d

]
.

The equality (65) will follow now from Lemma 5.3 in [4], if we show that
M1 has rank at least g− 1 at P , when P is a general point of an irreducible
component of V SW (v′). Equivalently, we claim that h0(C,!C(−gP )) ≤ 1
for such P . Now, let Mg (resp. Mg,1) be the moduli space of smooth
curves (resp. pointed smooth curves) of genus g. By [5], Thm. 4.13,
p. 918, and Claim 3 on p. 920, the subset Z ⊆ Mg,1 parametrizing pointed
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curves (X,Q) such that h0(X,!X(−gQ)) ≥ 2 has codimension at least 3.
So the subset of Mg parametrizing curves X having a point Q such that
h0(X,!X(−gQ)) ≥ 2 has codimension at least 2. On the other hand, since
the irreducible components of V SW (v′) have codimension 2 in V ′, they
dominate codimension-1 subvarieties of K ′ under v. Our claim follows by
comparing codimensions, using that Φ has irreducible fibers of the same
dimension; see Subsection 8.1. �

Theorem 9.2. Let g ≥ 3. Let

(66) a−1 =
g2(g − 1)(3g − 1)

2
and a1 =

(g + 1)(g + 2)(3g2 + 3g + 2)
2

,

(67) b−1,0 =
g(g − 1)2(g + 1)

6
and b1,0 =

g(g + 1)2(g + 2)
6

,

and

(68) bj,i =
1
2
i(g − i)

(
(g + j)2(g + 3) + 2(g + j)− (g + 1)

)
for each j = −1, 1 and i = 1, . . . , [g/2]. Then

Eg,j = ajλ− bj,0δ0 − bj,1δ1 − · · · − bj,[g/2]δ[g/2] in Picfun(Mg)

for j = −1, 1.

Proof. Since Picfun(Mg) is freely generated by λ and the classes δi, by [1],
Thm. 1, p. 154, we may write

Eg,j = ajλ− bj,0δ0 − bj,1δ1 − · · · − bj,[g/2]δ[g/2] in Picfun(Mg)

for j = −1, 1, where the coefficients aj and bj,` are integers. It remains to
determine these integers, and verify that (66), (67) and (68) hold.

The coefficients a−1 and a1 were determined by Diaz using Porteous for-
mula on a general one-parameter family of smooth curves in [6], Thm. 4.33,
p. 21 and Thm. A1.4, p. 59. We recall Diaz’s reasoning here, applied to a
different family.

Let K be the scheme of n-canonically embedded stable curves of genus
g, for n sufficiently large, and v : V → K the universal family of embedded
curves; see Subsection 7.1. Let K ′ ⊆ K be the open locus over which v
is smooth, and set V ′ := v−1(V) and u := v|V′ : V ′ → K ′. Let !u be the
relative dualizing sheaf of u.

Now, V Ej(u) is the degeneration scheme of the natural evaluation map
of vector bundles:

er : u∗u∗!u −→ Jru(!u),
where r := g − 1 + j; see Subsection 2.2. The expected codimension of
the degeneration scheme, which is 2, is achieved because a general smooth
curve has no special Weierstrass points; see [4], Cor. 3.3. Thus, by Porteous
formula,

[V E−1(u)] = c2(E − F ) and [V E1(u)] = c1(E − F )2 − c2(E − F ),
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where E := u∗u∗!u and F := Jru(!u). Expanding,

[V E−1(u)] =c1(F )2 − c2(F ) + c2(E)− c1(E)c1(F ),

[V E1(u)] =c2(F )− c1(E)c1(F ) + c1(E)2 − c2(E).

Clearly, c1(E) = u∗λu, where λu is the tautological class of u defined
in Subsection 7.3. On the other hand, using (2) for p := u and L := !u,
repeatedly for i = 1, . . . , r, and using Whitney formula, we get

c1(F ) =
(
r + 2

2

)
c1(!u),

c2(F ) =
r∑
`=1

(`+ 1)
(
`+ 1

2

)
c1(!u)2.

Computing,

c2(F ) =
r(r + 1)(r + 2)(3r + 5)

24
c1(!u)2,

c1(F )2 − c2(F ) =
(r + 1)(r + 2)(r + 3)(3r + 4)

24
c1(!u)2.

Now, use that u∗(c1(!u)u∗λu) = (2g − 2)λu by the projection formula,
while u∗(c1(!u)2) = 12λu, from the Grothendieck–Riemann–Roch formula,
as stated in [13], Thm. 15.2, p. 286. Also, by the projection formula and
dimensional reasons, u∗c2(E) = u∗(c1(E)2) = 0, as both c2(E) and c1(E)
are pullbacks of classes from K ′. Thus

u∗[V E−1(u)] =
(r + 1)(r + 2)

2

(
(r + 3)(3r + 4)− 2(g − 1)

)
λu,

u∗[V E1(u)] =
(r + 1)(r + 2)

2

(
r(3r + 5)− 2(g − 1)

)
λu,

where r = g − 2 in the first formula and r = g in the second one. Replacing
r and computing, we get

u∗[V E−1(u)] =
g2(g − 1)(3g − 1)

2
λu,

u∗[V E1(u)] =
(g + 1)(g + 2)(3g2 + 3g + 2)

2
λu.

Recall from Subsection 8.1 that Ej(v) is the closure of u∗[V Ej(u)], and
is, by definition, the invertible sheaf on K corresponding to Eg,j . So

ajλv|K′ = Ej(v)|K′ = u∗[V Ej(u)]

for j = −1, 1, and thus

a−1λv|K′ =
g2(g − 1)(3g − 1)

2
λv|K′ ,

a1λv|K′ =
(g + 1)(g + 2)(3g2 + 3g + 2)

2
λv|K′ .
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Since λ is not a linear combination of the boundary classes, λv|K′ 6= 0, and
hence the formulas in (66) follow.

To compute the remaining numbers, we use test families. Our first family,
p0 : C0 → P1, is constructed by fixing a general curve of genus g − 1 and
identifying a fixed general point of that curve with a base point of a general
pencil of plane cubics; see [17], Ex. 3.140, p. 173. For this family, p0∗!p0
is free, where !p0 is its relative dualizing sheaf, and hence there is a map
h0 : P1 → K such that p0 is the base extension of v under h0. It follows from
Theorem 5.1 and [4], Prop. 3.1, that for a nonsingular member of the pencil,
the resulting stable curve does not contain any limit of special Weierstrass
points. Thus

∫
P1 h∗0SW (v) ≥ 0, with strict inequality if and only if there is

a fiber of p0 containing limits of special Weierstrass points.
On the other hand,∫

P1
h∗0λv = 1,

∫
P1
h∗0δ0,v = 12,

∫
P1
h∗0δ1,v = −1

and
∫
P1 h∗0δi,v = 0 for each i ≥ 2. Indeed, the first formula holds because of

the linearity of the pencil; the second because there are exactly 12 singular
members in the pencil, each an irreducible nodal cubic; the third because the
total space of the pencil of cubics is the blowup of P2 at the 9 base points,
resulting in 9 exceptional divisors, each with self-intersection −1; and the
fourth because none of the fibers of p0 are represented in the subset ∆′

i ⊂ K
for any i ≥ 2; see [17], pp. 146–147 for more details.

Now, we may use the formulas for
∫
P1 h∗0λv and the

∫
P1 h∗0δi,v, and the

formula for SW g in Theorem 8.4 to compute

(69)
∫
P1
h∗0SW (v) = 0.

So no fiber of p0 contains limits of special Weierstrass points, and hence also∫
P1
h∗0Ej(v) = 0 for j = −1, 1.

Using again the formulas for
∫
P1 h∗0λv and the

∫
P1 h∗0δi,v, we get

(70) aj − 12bj,0 + bj,1 = 0 for j = −1, 1.

Thus the formulas for the bj,0 may be derived from those for the aj and the
bj,i for j = −1, 1 and i ≥ 1.

(The relations (70) were obtained directly by Diaz [6], Lemma 7.2, p. 40,
for j = −1, and by Gatto [15], p. 67, for j = 1, and from them Gatto
concluded (69). Here we proceeded in the opposite way.)

To compute the bj,i for each i = 1, . . . , [g/2] we do the following. For each
i = 1, . . . , [g/2], let X be a general smooth curve of genus g− i, and let Y be
a general smooth curve of genus i, and B ∈ Y a general point. Identifying
the diagonal ∆ ⊂ X × X with {B} × X ⊂ Y × X in the natural way, we
get a flat, projective map pi : Fi → X whose fiber over each P ∈ X is the
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uninodal stable curve union of X and Y with P and B identified; denote by
X ∪P Y this fiber. Again for this family, pi∗!pi

is free, where !pi
is the

dualizing sheaf of pi, because the normalization of Fi is a constant family
over X. So there are maps hi : X → K and h′i : Fi → V making the diagram
below Cartesian:

Fi
h′i−−−−→ V

pi

y v

y
X

hi−−−−→ K.
Now, observe that Ej(v) = v∗[V Ej(v)], where V Ej(v) is the schematic

closure of V Ej(u). Since V Ej(u) is of codimension 2 in V ′, so is V Ej(v) in
V. Now, X and K are smooth, so h0 is a l.c.i. map. By [13], Prop. 6.6,
p. 113,

h∗iEj(v) = h∗i v∗[V Ej(v)] = pi∗h
!
i[V Ej(v)],

where h!
i : A

2(V)→ A2(Fi) is the Gysin map. So

(71)
∫
X

h∗iEj(v) =
∫
X

pi∗h
!
i[V Ej(v)] =

∫
Fi

h!
i[V Ej(v)].

Now, (h′i)
−1(V Ej(v)) is the set of points Q ∈ X∪P Y for all P ∈ X which

are limits of special Weierstrass points along smooth curves degenerating to
X ∪P Y . By Theorem 5.1, the set (h′i)

−1(V Ej(v)) intersects X ∪P Y at Q
if and only if one of the following four situations occur:

(1) Q ∈ X − P , and Q is a special ramification point of type g + j of
the complete linear system of sections of !X((i+ 1)P );

(2) B is a Weierstrass point of Y , and Q is a ramification point different
from P of the complete linear system of sections of !X((i+1+j)P );

(3) Q ∈ Y −B, and Q is a special ramification point of type g+ j of the
complete linear system of sections of !Y ((g − i+ 1)B);

(4) P is a Weierstrass point of X, and Q is a ramification point of the
complete linear system of sections of !Y ((g − i+ 1 + j)B) different
from B .

However, B is general, whence an ordinary point of Y . Moreover, by [4],
Prop. 3.1, the complete linear system of sections of !Y ((g − i + 1)B) has
no special ramification points other than B. So neither (2) nor (4) occurs.
In addition, by [4], Thm. 5.6, the number of points (P,Q) ∈ X × X off
the diagonal such that Q is a special ramification point of type g + j of the
complete linear system of sections of !X((i+ 1)P ) is finite, and equal to

dj,i := (g − i)(g − i− 1)
(
(g + j)2(i+ 1)2 − (g − i+ j)2

)
.

Finally, since X is general, X has no special Weierstrass points by [4],
Cor. 3.3, and hence the number of Weierstrass points of X is finite, and
equal to

d′′ := (g − i− 1)(g − i)(g − i+ 1),
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by the Plücker formula. Furthermore, since Y and B are general, by [4],
Prop. 3.1, all the ramification points of the complete linear system of sections
of !Y ((g − i+ 1 + j)B) are simple, except from B, which has weight i. So,
by the Plücker formula, the number of ramification points different from B
of this linear system is finite, and equal to

d′j,i := (g + j)(g + i+ j − 1) + (i− 1)(g + j)(g + j − 1)− i = i(g + j)2 − i.

So the number of points in (h′i)
−1(V Ej(v)) is finite, and equal to

ej,i := dj,i + d′′d′j,i.

In particular, h!
i[V Ej(v)] is represented by an effective 0-cycle with support

(h′i)
−1(V Ej(v)) and, using (71),

(72)
∫
X

h∗iEj(v) ≥ ej,i.

Computing,

(73) ej,i = i(g − i)(g − i− 1)
(
(g + j)2(g + 3) + 2(g + j)− (g + 1)

)
.

On the other hand, we claim that

(74)
∫
X

h∗iSW (v) = e−1,i + e1,i.

Indeed, h∗i δj,v = 0 for every j 6= i, since none of the fibers of pi are repre-
sented in ∆′

j ⊂ K. Also, h∗i λv = 0 because pi∗!pi
is free, and∫

X

h∗i δi,v = 2(1− g + i),

because X has genus g − i, and thus the self-intersection of the diagonal
in X × X is 2(1 − g + i). (Again, see [17], pp. 146–147 for more details.)
So, using the formula for SW g in Theorem 8.4, a simple computation yields
(74).

Using Proposition 9.1, and using (72) for j = −1, 1 and (74), we get

e−1,i + e1,i =
∫
X

h∗iSW (v) =
∫
X

h∗iE−1(v) +
∫
X

h∗iE1(v) ≥ e−1,i + e1,i.

Thus
∫
X
h∗iEj(v) = ej,i for j = −1, 1. Using the formulas for

∫
X
h∗i λv and

the
∫
X
h∗i δj,v, and the expression (73), we obtain the formula (68) for bj,i.

Finally, using (66), (68) and the relations (70), we get the formulas in (67)
for b−1,0 and b1,0. �
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