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Abstract

We introduce Augmented Lagrangian methods for solving finite dimensional equilibrium
problems whose feasible sets are defined by convex inequalities, generalizing the proximal Aug-
mented Lagrangian method for constrained optimization. At each iteration, primal variables are
updated by solving an unconstrained equilibrium problem, and then dual variables are updated
through a closed formula. A full convergence analysis is provided, allowing for inexact solution
of the subproblems.

Keywords: Augmented Lagrangian method, Equilibrium problem, Inexact solutions, Proximal
point method.

1 Introduction

Let K be a non-empty, closed and convex subset of R*. Given f : K x K — R such that
P1l: f(z,z) =0for all z € K,
P2: f(z,-): K — R is convex and lower semicontinuous for all z € K,
P3: f(-,y) : K — R is upper semicontinuous for all y € K,

the equilibrium problem EP(f, K) consists of finding z* € K such that f(z*,y) > 0 for all y € K.
The set of solutions of EP(f, K) will be denoted by S(f, K).

The equilibrium problem encompasses, among its particular cases, convex minimization prob-
lems, fixed point problems, complementarity problems, Nash equilibrium problems, variational
inequality problems, and vector minimization problems (see, e.g., [4], [14]).
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The equilibrium problem has been rather widely studied, but most of the work on the issue
deals with conditions for the existence of solutions (see, e.g., [2], [3], [5], [7], [12], and [13]).

In terms of computational methods for equilibrium problems, only a few references can be found
in the literature. Among those of interest, we mention the algorithms introduced in [14], [15], [16],
and [20].

In the current paper we introduce exact and inexact versions of Augmented Lagrangian methods
for solving EP(f, K) in R", for the case in which the feasible set K is of the form

K={zeR":hi(z) <0 (1<i<m)},

where all the h;’s are convex. These methods generate a sequence {(z7, M)} C R* x R™ such that
at iteration j, z7 is the unique solution of an unconstrained equilibrium problem and then M is
obtained through a closed formula. We comment next on Augmented Lagrangian methods.

The augmented Lagrangian method for equality constrained optimization problems (non-convex,
in general) was introduced in [8] and [21]. Its extension to inequality constrained problems started
with [6] and was continued in [1], [17], [22], [23], and [24].

We describe next the Augmented Lagrangian method for convex optimization, which is the
departure point for the methods in this paper. Consider the problem

min ho(z) (1)

s.t. hi(z) <0 (1 <i<m), (2)

where h; : R" — R is convex (0 < i < m).
The Lagrangian for (1)—(2) is the function L : R® x R™ — R given by

m

Lz, A) = ho(z) + Y Aihi(x), (3)

i=1
and the dual problem associated to (1)—(2) is the convex minimization problem given by
min —1(y) s.t. y € RY, (4)
where 1 : R™ — RU{—o0} is defined as

YO\ = inf L(z, ). (5)

The Augmented Lagrangian associated to the problem given by (1)—(2) is the function L : R" x
R™ x Ry — R defined as

L(5,07) = ho(s Hz{( {o,m%j)}f—x%], ©)



where R, is the set of positive real numbers. The Augmented Lagrangian method requires an
exogenous sequence of regularization parameters {vy;} C Ri;. The method starts with some
X0 e R, and, given 2/ € R*" and M € R, the algorithm first determines /Tt € R as any
unconstrained minimizer of L(z, M,;) and then it updates A as

hi ($j+1)

MH = max {0, Moy
[ 1 2,-),]

} (1<i<m).

Assuming that both the primal problem (1)—(2) and the dual problem (4) have solutions, and that
the sequence {7} is well defined, in the sense that all the unconstrained minimization subproblems
are solvable, it has been proved that the sequence {)\} converges to a solution of the dual problem
(4) and that the cluster points of the sequence {7} (if any) solve the primal problem (1)-(2) (see,
e.g., [10] or [24]).

Another augmented Lagrangian method for the same problem, with better convergence prop-
erties, is the proximal Augmented Lagrangian method (see [24]; this method is called “doubly
Augmented Lagrangian” in [10]). In this case, L is replaced by L : R® x R™ x R, ; x R* — R,
defined as

2
[

_ B m b 2
L(w,x,%z)=L<x,A,v)+v||w—z||2=ho<m>+vz[(max{o,m P ERT R
=1

The method uses an exogenous sequence {;} C Ry as before, and it starts with z0 e R, X0 e RP.
Given z7, M, the next primal iterate z7*! is the unique unconstrained minimizer of L(z, M, Vi z7)
and the next dual iterate is

hi(z7 1)

MF = max {0, pyE
3 K 2,)/]

} (1<i<m).

In this case, the primal unconstrained subproblem always has a unique solution, due to the presence
of the quadratic term ||z — z||? in L, and assuming that both the primal and the dual problem are
solvable, the sequences {z/}, {\} converge to a primal and a dual solution respectively (see, e.g.,
[10] or [24]).

The main tool used in [24] for establishing the above mentioned convergence results is the
proximal point algorithm, whose origins can be traced back to [18] and [19]. It attained its basic
formulation in the work of Rockafellar [25], where it is presented as an algorithm for finding zeroes
of a maximal monotone point-to-set operator T : RP — P(RP), i.e, for finding z € RP such that
0€T(z).

Given an exogenous sequence of regularization parameters {v;} C Ry} and an initial 2° € R?,
the proximal point method generates a sequence {z/} C RP in the following way: given the j-th
iterate 27, the next iterate 2/*! is the unique zero of the operator T; : RP — P(RP) defined as
T;(z) = T(2) —vj(z — 2%). It has been proved in [24] that if T has zeroes then {2’} converges to a
zero of T'.



Inexact versions of the method are also available; instead of requiring v;(2/ — 2/71) € T(2911),
they compute an auxiliary vector z/ satisfying e’ + v;(2/ — #7) € T(#’), where ¢/ € RP is an
error vector, whose norm is small enough. The auxiliary vector 2/ defines a hyperplane H j which
separates 2/ from the set of zeroes of T. The next iterate 27! is then obtained by projecting
orthogonally 2/ onto Hj, or by taking a step from z/ in the direction of H; (see, e.g., [11], [26], and
[27]).

The connection between the Augmented Lagrangian method for convex optimization and the
proximal point method can be described as follows. Let {7}, {\} be the sequences generated by
the Augmented Lagrangian method. Consider the maximal monotone operator 7' : R™ — P(R™)
defined as T = 9(—1), with ¢ as in (5). The sequence {2/} generated by the proximal point for
finding zeroes of T coincides with {\’}, assuming that A\° = 2%, and that the same sequence {v,}
is used for both methods (see, e.g.,[10] or [24]). Hence, the convergence of {\} to some solution of
the dual problem (4) follows from the convergence of the sequence {27}, generated by the proximal
point method, to a zero of T'.

The convergence analysis of the proximal Augmented Lagrangian method proceeds in a similar
way. In this case, the proximal point method is used for finding zeroes of T :R'xR™ — P(R® xR™)
defined as R

T(2) = (0.1(2), ~OAL(2)) + Nuen (2),

with z = (z,A) € R* x R™, where L is as in (3) and Ngr is the normalizing operator of the non-
negative orthant of R™. In this case, the sequence {2’} generated by the proximal point method
coincides with the sequence {(z7,\/)} generated by the proximal Augmented Lagrangian method,
assuming again that 20 = (z°,\%), and that the same regularization sequence {v;} is used in both
algorithms (see, e.g., [10] or [24]).

The convergence analysis of the Augmented Lagrangian methods for equilibrium problems to
be introduced here invokes the proximal point method for equilibrium problems, presented in [15].
At iteration j of this method, given z7 € R, one solves EP(f;, K), where the regularized function
[fj is defined as

filz,y) = f(z,y) +vi{z — 2/,y — z). (7)

Two inexact versions of this method in Banach spaces have been recently proposed in [16].
In finite dimensional spaces, the first one can be described as follows: at iteration j, problem
EP( 5K ) is solved, where [5 is defined as:

f;(m,y):f(l‘,y)+’)’j<$—$j,y—l‘)—<6j,y—.’L‘>. (8)

Here, e/ € R is an error vector, whose norm is small, in a sense to be defined below. The solution
@’/ of EP(ff, K) makes it possible to construct a hyperplane separating z’ from S(f, K). A step is
then taken from z7 in the direction of the separating hyperplane, generating the next iterate z7t!.
In the second version, 271! is the orthogonal projection of 27 onto the separating hyperplane.
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It has been proved in [16] that the sequences {z’} generated by these methods converge to a
solution of EP(f, K) under appropriate assumptions on f, when EP(f, K) has solutions.

The outline of this paper is as follows. In Section 2 we introduce Algorithm TALEM (Inezact
Augmented Lagrangian-Eztragradient Method) for solving EP(f, K). In Section 3 we establish the
convergence properties of Algorithm TALEM through the construction of an appropriate proximal
point method for a certain equilibrium problem. In Section 4 we construct and analyze a vari-
ant of IALEM, called LIALEM (Linearized Inexact Augmented Lagrangian- Extragradient Method).
Section 5 contains some final remarks.

2 Augmented Lagrangian methods for equilibrium problems

We will assume that the function f can be extended to R® x R"™, while preserving P1-P3. In
addition, we assume that the closed convex set K in EP(f, K) is defined as

K={zeR":hi(z) <0 (1 <i<m)}, 9)
where h; : R" — R is convex (1 <4 < m). We will also assume that this set of constraints satisfies
any standard constraint qualification, for instance the following Slater’s condition.

CQ: If I is the (possibly empty) set of indices ¢ such that the function h; is affine, then there exists
w € R" such that h;(w) <0 for i € I, and h;(w) <0 for i ¢ I.

We define next our Lagrangian bifunction for EP(f, K), £: (R x R™) x (R* x R™) — R as
m m
L((z,X), (g, 1) = f(m,9) + D Xihi(y) = Y pihi(x). (10)
i=1 i=1

It is worthwhile to mention that when we consider the optimization problem (1)—(2) as a par-
ticular case of EP(f, K) by taking f(z,y) = ho(y) — ho(z), (10) reduces to

L((z,A), (Y, ) = ho(y) — ho(z) + Z Aihi(y) — thi(w) = L(y, A) — L(z, ),

where L is the usual Lagrangian for optimization problems, defined in (3). We introduce now the

proximal Augmented Lagrangian for EP(f, K).
Define s; : R" xR" xR xR 1 (1<i<m), L:R*" XxR*" xR™ xR* xRy - Ras

si(z,y, \,7y) = % [(max {0, A + @})2 - (max {0, A + h"ff) })2] , (11)

‘C(‘Taya)‘azaf}l) = f(zay) + 7<‘T — %Y — "I"> +7zsi(zaya)‘57)' (12)
i=1




Now we present Algorithm EALM (Ezact Augmented Lagrangian Method) for EP(f, K). Take
a bounded sequence {v;} C Ry ;. The algorithm is initialized with a pair (2%, A\?) € R™ x R,

At iteration j, z7t! is computed as the unique solution of the unconstrained regularized equi-
librium problem EP(L;, R*) with £; given by

m
Ej(xay) = ﬁ(ﬂ?,y, A],ﬁcjaf)lj) = f(xay) + ')IJ<‘/E - ‘,I"Jay - .77) + Z Si(ﬁ,y, )‘]a’Yj)' (13)
i=1
Then, the dual variables are updated as
. ) (gt
/\gJrl =max{0,>\£+M} (1<i<m) (14)
Vi

We introduce now our inexact Augmented Lagrangian method for solving EP(f, K).
Algorithm TALEM: Inexact Augmented Lagrangian-Extragradient Method for EP(f, K)

1. Take an exogenous bounded sequence {7;} C R, and a relative error tolerance o € (0,1).
Initialize the algorithm with (z°,A\%) € R* x R
2. Given (27, ), find a pair (#7,e/) € R" such that #/ solves EP(LS,R"), where LS is defined as

m
‘C;(-T’y) = f(xay) + ’7j<$ - xjay - .’E) + Zsi(x,y, >‘Ja’7j) - <€J7y - 3:)7 (15)
i=1
with s; as given by (11), and e’ satisfies
le’]] < o3 [|27 = a7]]. (16)
3. Define M1 as
j+ i, hi(@) :
X =max 0, + —— ¢ (1<i<m). (17)
Vi
4. If (7, M) = (&7, M+1), then stop. Otherwise,
1 i 1
T =30 — —él. (18)
Yi

We mention that EALM can be realized as a particular instance of IALEM by taking ¢/ = 0
for all j € N.



3 Convergence analysis of IALEM

We start this section by presenting an inexact proximal point-extragradient method for solving
EP(f,K), to be called IPPEM, introduced in [16]. We will use it as an auxiliary tool in the
convergence analysis of ITALEM.

Algorithm IPPEM: Inexact Proximal Point-Extragradient Method for EP(f, K)

1. Consider an exogenuous bounded sequence of regularization parameters {y;} C Ry; and a
relative error tolerance o € (0,1). Initialize the algorithm with z° € K.
2. Given 7/, find a pair (7,¢’) € R* x R" such that 7 solves EP(ff, K) with
f5(@,y) = fz,y) + (e — 7y —z) — (¢/,y — z), (19)
and
le’]] < o3 |27 - 7] (20)
3. If 27 = 27, then stop. Otherwise,
AR led. (21)

— 33 AT
Mh ’YJ

Some monotonicity properties of f are required in the convergence analysis of IPPEM. We recall
that f is said to be monotone if f(z,y) + f(y,z) < 0 for all z,y € R™. In the prototypical example
of an equilibrium problem, for which f(z,y) = (T'(z),y — z) for some continuous 7' : R* — R",
in which case EP(f, K) is equivalent to the variational inequality problem VIP(T, K), the above
property of f is equivalent to monotonicity of T', i.e., (T'(z) —T(y),z —y) > 0 for all z,y € R". We
follow the notation in [16] for naming these properties.

P4: f is f-undermonotone, i.e. there exists & > 0 such that
f@,y) + fy,z) <Oz —y|* V 2,y € R
P4”: For all z',...,77 € R* and all t1,...,t, € R, such that Y71 te =1, it holds that

q q
Ztgf (wé,Zthk> <0.
=1 k=1

Both P4 and P4” are weaker than monotonicity of f. Consider for instance, the function
f(z,y) = —alz|> + Bllyl* + (e — B){x,y), with 8 > o > 0. It is easy to check that

q q q 2 q
Ztgf (xz,Zthk) =« 'Zthk —ZtkakHQ <0.
=1 k=1 k=1 k=1




Also f(z,y) + f(y,2) = (@ — B)|lz —y|*. So f satisfies P4” and it is f-undermonotone with
0 = B — a, but it is not monotone, since § — a > 0. Note also that under P1, concavity of f(-,y)
for all y € R" is sufficient for P4” to hold. We state next the convergence theorem for IPPEM.

Theorem 3.1. Consider EP(f, K) satisfying P1-P/ and P}”. Take an ezogenous sequence {y;} C
(0,7] for some ¥ > 0, where 0 is the undermonotonicity constant in Pj. Let {7} be the sequence
generated by Algorithm TPPEM. If EP(f, K) has solutions, then {z7} converges to some solution

z* of EP(f, K).

Proof. See Theorem 5.8 of [16], and the comments following its proof, establishing that some techni-
cal hypotheses required for the validity of this theorem hold automatically in the finite dimensional
case, which is the one of interest here. O

We will apply IPPEM for solving problem EP(L,R" x R7*), with £ as in (10), for which we
must check that this equilibrium problem satisfies P1-P4 and P4”.

Proposition 3.2. Assume that f satisfies P1-PJ and P}” on R® x R", and that K is given by
(9). Then L, as defined in (10), satisfies P1-P4 and P4”on (R™ x RT) x (R* x RT7).

Proof. It follows easily from (10) that EP (L, R" x R") inherits P1-P3 from EP(f, K). Furthermore,
(10) implies that
L((2,2), (g ) + Ly, ), (2,2) = f(@,9) + f(y,2) <O lz —yll”,

using the fact that f satisfies P4 on R® x R®. We have shown that P4 holds for £ with the same
undermonotonicity constant 6 valid for f. We prove next that £ satisfies P4” on (R* X R7") x (R" x
RT). Take z',...,27 € R*, A},..., X9 € R and ty,...,%; > 0 such that > 7, ¢, = 1. Then

(m A9 (Zth Ztk)‘k»_ (me,éthk>+2/\h (Zm) izq:tk/\h

k=1 i=1 k=1

m g

<f <$£’zq:thk> + izq:)\ tkh ZZtkAk (22)

k=1 =1 k=1 =1 k=1

using the convexity of the h;’s in the inequality. Multiplying the leftmost and rightmost expressions
of (22) by ¢, and then summing with 1 </ < ¢, we get

q q q
> teL ((xf,V), (Z th’“,Ztk/\k» <
=1 k=1 k=1



q q g m q q q
> tef (mz,Zthk) YYD tatrAfhi( ZzztgtkA hi( (23)
=1 k=1 i=1k
The first term in the right hand site of (23) is non-positive because f satisfies P4” on the whole

space R" x R", and the sum of the remaining terms vanishes. Thus £ satisfies P4”. ]

Now we can apply Algorithm IPPEM for solving EP(£,R* x RT"). In view of (19), the regu-
larized function at iteration j is given by

L5((@, M), (s 1)) = L@, ), (y, 1) + 756 — a7,y — @) + 9500 = N, = N) = (el y —2) =

fla,y) + > Aiki(y) ZNZ o) + iz —ad,y—z) + A= M, p—X) = (d,y—z),  (24)

so that at iteration j we must find a pair (27,07), (e7,0) € R* x R™ such that (&7, ) solves the
problem EP(L$,R" x RY') with £ as defined in (24), and the iterative formulae (20)-(21) take the
form:

le,0)l| = lle’]| < o5 | (@7 = 7, 5 = X)),
oIt =37 fyj_lej, (25)
ARESYA (26)

Note that we do not use an error vector associated with the A and p arguments of £. This
is related to the fact that in Step 3 of Algorithm TALEM the A!’s are updated through a closed
formula, so that we can assume that such an updating is performed in an exact way.

We state next the convergence result for this particular instance of IPPEM.

Corollary 3.3. Consider EP(f, K) with K given by (9) and f satisfying P1-P4 and P4” on R x
R™. Take {v;} C (0,7] for some ¥ > 6, where 6 is the undermonotonicity constant of f. Let
{(27, M)} be the sequence generated by Algorithm IPPEM applied to EP(L,R* xRT). If the problem
EP(L,R" x RT) has solutions, then {(x/, )} converges to some pair (z*,\*) € S(L,R" x R}).

Proof. 1t follows from Theorem 3.1 and Proposition 3.2. U
For each z € R", we define F,, : R* — R as
Fy(y) == f(z,y). (27)

F, is convex for all xz by P2. We will use this function for establishing the relation between S(f, K)
and S(L,R" x RT"). We start with an elementary result.



Proposition 3.4. Consider EP(f, K). The following two statements are equivalent.
i) € S(f,K).
it) T* minimizes Fy« over K, with Fp- as in (27).
Proof. Assume that z* € S(f, K). By (27) and P1 we have that
Fy(y) = f(z",y) > 0= f(z",2") = Fy-(z")
for all y € K, establishing (ii). Now assume that (ii) is satisfied. Using again P1 and (27), we get
f(z*,y) = Fox(y) > Fp (2*) = f(z%,2%) =0
for all y € K, which gives the desired result. O
Now we introduce the concept of optimal pair for EP(f, K).

Definition 3.5. We say (z*,\*) € R* x R™ is an optimal pair for EP(f, K) if

0 € OF, (z) + i X1Oh;(z), (28)
i=1
XE>0(1<i<m), (29)
hi(z*) <0 (1 <i<m), (30)
Ahi(z®) =0 (1 <i<m). (31)

The sets 0Fy«(z*), Ohi(z*) denote the subdifferentials of the convex functions F,« and h;,
respectively, at the point z*. Note that (28)—(31) are the KKT conditions associated to the problem
of minimizing Fy«(z) subject to z € K. However, a KKT pair for this problem is not in general
an optimal pair for EP(f, K); the point z* must be a minimizer of F, over K precisely for x = z*.
On the other hand, if z* does minimize Fy« on K, then any vector A* of KK'T multipliers for this
problem will make, together with z*, an optimal pair for EP(f, K).

The next two propositions and corollary establish the relations between solutions of EP(f, K),
solutions of EP (L, R" x R7*) and optimal pairs for EP(f, K). We mention that the next proposition
does not require a constraint qualification for the feasible set K, while Proposition 3.7 does.

Proposition 3.6. Consider EP(f, K) and assume that f satisfies P1-P3 on R" x R". Then the
following two statements are equivalent.
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i) (z*,A\*) is an optimal pair for EP(f, K).

ii) (%, X*) € S(L,R" x R™).

Proof.

ii)= i) Define Fz« x+)(z,A) = L((z*,A*), (z,A)) and consider the problem

i)= ii)

min Fg« =) (T, A) (32)

s.t. (z,A) € R* x R, (33)

Since EP(L,R" x R") satisfies P1-P3 by Proposition 3.2, we conclude from Proposition 3.4
that the pair (z*, A*) solves (32)-(33). Since the constraints of this problem are affine, the
constraint qualification CQ of Section 2 holds for this problem and, invoking a classical result
(e.g. Theorem 2.3.2 in Chapter VII of [9], which deals with the non-smooth case), there exists
a vector of KKT multipliers n* € R such that

m
0 € OFp(z*) + Y AjOhi(z"), (34)
=1
hi(z*) +n; =0 (1 <4< m), (35)
A" >0, (36)
n* >0, (37)
A =0 (1<i<m). (38)

Note that (34) and (36) coincide with (28) and (29) respectively. Since n; = —h;(z*) by (35),
we get (30) and (31) from (37) and (38) respectively.

Now we assume that the pair (z*, \*) satisfies (28)—(31). Taking n; = —h;(z*), we get (34)—
(38). Since problem (32)-(33) is convex, the KKT conditions are sufficient for optimality,

so that the pair (z*, \*) solves this problem. In view of Proposition 3.4, this pair solves
EP(L,R" x RT).

O
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Proposition 3.7. Consider EP(f, K) and assume that f satisfies P1-P3 on R™ x R". If £* min-
imizes Fy« over K, with Fy+ as in (27), and the constraint qualification CQ in Section 2 holds
for the functions h; which define the feasible set K, then there exists \* € R such that (z*, \*)
is an optimal pair for EP(f, K). Conversely, if (z*,\*) is an optimal pair for EP(f, K) then x*
minimizes Fy« over K, with Fy« as in (27).

Proof. For the first statement, since CQ holds, we invoke again e.g. Theorem 2.3.2 in Chapter VII
of [9] to conclude that there exists a vector A* € R™ such that (28)—(31) hold (we mention that,
since we are assuming that both F,« and the h;’s are finite on the whole R", there is no difficulty
with the non-smooth Lagrangian condition (28)). It follows from Definition 3.5 that (z*, \*) is an
optimal pair for EP(f, K). Reciprocally, if (z*, \*) is an optimal pair for EP(f, K), then (28)—(31)
hold, but these are the KKT conditions for the problem of minimizing Fy«(z) subject to z € K,
which are sufficient by convexity of F» and K, and hence z* solves this problem. O

Corollary 3.8. Consider EP(f, K) and assume that f satisfies P1-P8 on R™ x R™. If (z*,\*) €
S(L,R* xRP), then z* € S(f,K). Conversely, if z* € S(f,K) and the constraint qualification CQ
in Section 2 holds, then there exists \* € R such that (z*,X*) € S(L,R* x RT").

Proof. 1t follows from Propositions 3.4, 3.6 and 3.7. U

Corollary 3.8 shows that solving EP(L, R" x R™) is enough for solving EP(f, K). Next we will
prove that the sequence generated by IPPEM for solving the latter problem coincides with the
sequence generated by IALEM for solving the former. We need first a technical result.

Proposition 3.9. Consider [ satisfying P1-P4. Fiz e,z € R" and v > 0, where 0 is the under-
monotonicity constant of f introduced in P4. If f : K x K — R is defined as

f@y) = flz,y) + (e — 2,y —2) — (e,y — z),
then EP(f, K) has a unique solution.
Proof. See Proposition 3.1 in [16]. O

P4 and the condition v > 6 are essential for the validity of Proposition 3.9, whose proof is based
upon an existence result for EP(f, K), established in [13] and extended in [12]. Now we prove the
equivalence between IALEM and IPPEM.

Theorem 3.10. Assume that EP(f, K) satisfies P1-P4 on R* x R". Fiz a sequence {v;} C Ry
and a relative error tolerance o € (0,1). Let {(,M)} be the sequence generated by Algorithm
IALEM applied to EP(f, K), with associated error vector e/ € R*, and {(27, M)} the sequence
generated by Algorithm IPPEM applied to EP(L,R* x RT), with associated error vector (e7,0) €
R" x R™  using the same v;’s and o. If (20, X%) = (20, X) then (27, N) = (27, M) for all .
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Proof. We proceed by induction on j. The result holds for j = 0 by assumption. Assume that
(z7, M) = (77, M). In view of Step 2 of algorithm IPPEM, we must solve EP(LS, R x RT), with

Ej as in (24), which has a unique solution by Proposition 3.9. Let (27, 7) be the solution of this

problem. By Proposition 3.6 (27, N ) solves the convex minimization problem defined as

s.t. (z,A) e R" xR}, (40)
with ]?(ij,j\j)(x, A) = E;((s?:j,j\j), (z,A)). The constraints of this problem are affine, so that CQ

holds and therefore there exists a KKT vector 7/ € R™ such that

m
WlE — i)+ el € OFy (7)) + Y Mohi(a), (41)
=1
—hi(@) + X M =n 1 <i<m), (42)
X >0, (43)
>0, (44)
Nnl =0 (1<i<m). (45)

Using (42) to eliminate 7/, (41)—(45) can be rewritten, after some elementary calculations, as

m
WlE — i) + e € OFy () + Y Mohi(i), (46)
=1
. <  hi(@7) .
A = max {0, N+ 17]' } (1<i<m). (47)

Replacing (47) in (46) we get

hi(d7)

Vi

m
vi[# — @9+ e € OF; (47) + Zmax {O, N+
=1

}ah,-(gej) (1<i<m). (48)
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Now we look at Step 2 of Algorithm IALEM, which demands the solution %/ of EP(E;,]R”).
Applying now Proposition 3.4 to this problem, we obtain that ¥ belongs to S (Z;, R™) if and only
if

) ) . ) m - hi(E) .
vile? — &)+ € € OF (37) + Z max {O, M+ —} Ohi(%7). (49)
— Vi
=1
Since zd =77, M = M by inductive hypothesis, we get from (48) that (49) holds with #7 substituting
for 7, and hence 27 also solves EP(L',;, R™). Since this problem has a unique solution by Proposition
3.9, we conclude that

il =3 (50)

Taking now into account on the one hand (18) in Step 3 of IALEM, and on the other hand (25) in
Step 3 of IPPEM we conclude, using again the inductive hypothesis and (50), that 27! = zJ+1,
Now we look at the updating of the dual variables. In view of (24), (26) and (47), for IPPEM we

have
_ . " . (4
,\g“ = A = max {0, N+ _h,(x ) } . (51)
Y

Comparing now (51) with (17) and taking into account (50) and the fact that M = M by
the inductive hypothesis, we conclude that M*! = M+t completing the inductive step and the
proof. O

Now we settle the issue of finite termination of Algorithm TALEM.

Proposition 3.11. Suppose that Algorithm IALEM stops at iteration j. Then the vector 3’ gen-
erated by the algorithm is a solution of EP(f, K).

Proof. 1f Algorithm IALEM stops at the j-th iteration, then, in view of Step 4, (7, N) = (&7, M),
Using (16) and the fact that 2/ = 7, we get e/ = 0. For € R”, define the function F, : R* — R
as

m
Fw(y) = f(xay) +7]<‘,I" - wjay - .CC) + Zsi(xaya >‘Ja’y]) = E;(J’.ay)a
i=1

where the second equality holds because e/ = 0. Since &/ = 7, we get

m

Fi‘](y) :f(j]ay)"i_zsz(jj,ya)‘Ja'YJ) (52)
=1
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By Proposition 3.4, &/ is an unconstrained minimizer of F‘ij. Thus, in view of (52),

o : . UG - (3 . . L .
0 € OF;i(77) = OF (37) + Zmax{o, )\g + M} Ohi(i?) = 0F3 (77) + ZAgahi(i‘]), (53)

i=1 Vi i=1

with F; as in (27), using (17) and the fact that MY = M*!, which also gives

) . R
XNFE =\ :max{O,Az—FM} (1<i<m). (54)
Vi
It follows easily from (54) that
M >0, MNh(@)=0, h(@)<0 (1<i<m). (55)

In view of (53) and (55), (27, ) is an optimal pair for EP(f, K) and we conclude from Corollary
3.8 that 7 € S(f, K). O

Now we use Theorem 3.10 for completing the convergence analysis of Algorithm IALEM.
Theorem 3.12. Consider EP(f, K). Assume that
i) f satisfies P1-P4 and P4” on R* x R",
it) K 1is given by (9),
iii) the constraint qualification CQ stated in Section 2 holds for K,
w) {v;} C (0,7] for some ¥ > 0, where 0 is the undermonotonicity constant of f in Pj.

Let {(z7, M)} be the sequence generated by Algorithm IALEM for solving EP(f, K). If EP(f,K)
has solutions then the sequence {(x7, M)} converges to some optimal pair (z*,\*) for EP(f, K),
and consequently z* € S(f, K).

Proof. By Theorem 3.10 the sequence {(z7, M)} coincides with the sequence generated by IPPEM
applied to EP(£,R" x R"). Since EP(f, K) has solutions and CQ holds, Corollary 3.8 implies that
EP(L,R" x RT) has solutions. By Theorem 3.1, the sequence {(z?,)\’)} converges to a solution
(z*,X*) of EP(L,R" x RT"). By Proposition 3.6, (z*,\*) is an optimal pair for EP(f, K). By
Corollary 3.8 again, z* belongs to S(f, K). O

We comment now on the real meaning of the error vector ¢/ appearing in Algorithms IALEM
and IPPEM. These algorithms define the vector 7 as the exact solution of an equilibrium problem
involving /. Though this is convenient for the sake of the presentation (and also frequent in the
analysis of inexact algorithms), in actual implementations one does not consider the vector e/ “a
priori”. Rather some auxiliary subroutine is used for solving the exact j-th subproblem (i.e. the
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subproblem with e/ = 0), generating approximate solutions #* (k = 1,2,...), which are offered
as “candidates” for the #/ of the method, each of which giving rise to an associated error vector
e/, which may pass or fail the test of (16). To fix ideas, consider the smooth case, i.e., assume that
both f and the h;’s are differentiable. If 27 is proposed by the subroutine as a solution of the j-th
subproblem, in view of (49) we have
m ~ ',k
el = V. (37%) + Zmax {O, )\g + hi(@7)

} Vhi(#5F) + ;[@0F — 29). (56)
i=1 7

If 77 were the exact solution of the j-th subproblem, then the right hand side of (56) would vanish.
If 7/ is just an approximation of this solution, then the right-hand side of (56) is non-zero, and
we call it e/. Then we perform the test in Step 2 of the algorithm. If e/ satisfies the inequality
in (16), with 2/ substituting for #7, then #/* is accepted as i/ and the algorithm proceeds to
Step 3. Otherwise, the proposed #’* is not good enough, and an additional step of the auxiliary
subroutine is needed, after which the test will be repeated with 2/**!, It is thus important to
give conditions under which any candidate vector x close enough to the exact solution of the j-th
subproblem will pass the test of (15)-(16), and thus will be accepted as #/. It happens to be the
case that smoothness of the data functions is enough, as we explain next.

Consider EP(f, K) and assume that f is continuously differentiable. We look at Algorithm
IPPEM as described in (19)-(21). Let i/ be the exact solution of the j-th subproblem, i.e. the
solution of EP(f7, K) with f7 as in (19) and e) = 0. It has been proved in Theorem 6.11 of [16]
that if #/ belongs to the interior of K then there exists § > 0 such that any vector z € B(#,0)
will be accepted as &/ by the algorithm, or, in other words, for all z € B(#/,6) there exists e € R”
such that (19) and (20) are satisfied with z, e substituting for 7, e/ respectively.

Observe now that the j-th IALEM subproblem, namely EP(L$,R"), is unconstrained, i.e.
K = R", so that the condition # € int(K) is automatically satisfied. Regarding the continuous
differentiability of L, it follows from (11) and (15) that if the h;’s are continuously differentiable,

and the same holds for f, then /3; is continuously differentiable (it is worthwhile to mention that

ljj is never twice continuously differentiable, due to the two maxima in the definition of s;; see
(11)). Thus the above result from [16] can be rephrased for the case of IALEM as follows.

Corollary 3.13. Consider EP(f,K). Assume that f satisfies P1-Pj and P4” on R* x R", f is
continuously differentiable and h; is differentiable (1 < i < m). Let {(27,M)} be the sequence
generated by Algorithm TALEM. Assume that 27 is not a solution of EP(f, K) and let %/ be the
unique solution of EP(LS,R"), as defined in (15), with ¢/ = 0. Then there ezists ; > 0 such that

any x € B(#7,8;) solves the subproblem (15)—(16).

In view of Corollary 3.13, if the subproblems of IALEM are solved with a procedure guaranteed
to converge to the exact solution, in the smooth case a finite number of iterations of this inner loop
will suffice for generating a pair (Z7, ¢’) satisfying the error criterium of TALEM.
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4 Linearized Augmented Lagrangian

An interesting feature of Algorithm ALEM is that its convergence properties are not altered if the
Lagrangian is replaced by its first order approximation as a function of the second argument. This
linearization gives rise to a variant of ALEM and IALEM which might be more suitable for actual
computation. In order to perform this linearization we assume that both f and all the h;’s are
continuously differentiable. We will use extensively the notation F(y) = f(z,y), and in particular
the gradient of F, denoted as VF, : R* — R”.

If we linearize the Lagrangian given by (10) as a function of y around y = z, we obtain the
function £ : (R* x R™) x (R® x R™) — R defined as

m m

L((w,N), (1)) = (VFs(@),y — 2) + > X(Vhi(x),y — 2) + > _ (N — pi) ha(®). (57)

i=1 =1

We will denote £ as the Linearized Lagrangian for EP(f, K). Note that there is no need to linearize
in the second variable of the second argument, namely u, because L is already affine as a function
of u.

Performing the same linearization on the Augmented Lagrangian given by (15) we obtain a
variant of TALEM, to be called LTALEM, which we describe next.

Algorithm LIALEM: Linearized Inexact Augmented Lagrangian-Extragradient Method for
EP(f, K)

1. Take an exogenous bounded sequence {7;} C R;; and a relative error tolerance o € (0,1).
Initialize the algorithm with (z°,\%) € R* x R

2. Given (27, V), define 5; : R* x R" x R? x R,y — R as

Si(z,y, A\, y) = max{O, i + } (Vhi(z),y —z) (1 <i<m), (58)

and find a pair (#/,e/) € R® x R" such that #/ solves EP(Z;,R"), where E;T R xR* -5 R is
defined as

L(z,y) = (VFp(z),y — z) +y5(z — 2,y — z) + 9 Y silz,y, M, ) — (e, y — 1), (59)
=1

with 5; as in (58), and e’ satisfies
el < oo - 7). (o)

3. Define M 11! as
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) . N3
/\gﬂzmax{(),/\g—k@} (1<i<m). (61)
j

4. If (27, M) = (7, M7+1), then stop. Otherwise,
1

=37 — —¢l. 62
v (62)

:L-J-H

Observe that the only difference difference between Algorithm IALEM and Algorithm LIALEM
appears in the bifunction defining the unconstrained equilibrium subproblem. In fact, in iteration
j of Algorithm LIALEM one solves EP(/:;’,]R”) with £ as in (59), while in the j-th iteration of
Algorithm TALEM one solves EP(Z;, R™) with Ej as in (15).

We show next that EP(L,R" x R) satisfies P1-P4 and P4”, so that, in view of Theorem 3.1,

the sequence generated by Algorithm IPPEM applied to EP(£, R" x R?) will converge to a solution
of EP(L,R" x RT).

Proposition 4.1. Consider EP(f,K). Assume that f satisfies P1-P/ and P4” on R" xR". Then,
L satisfies P1-P4 and P4” on (R* x RT) x (R* x RT), with L as given by (57).

Proof. The fact that EP(L, R" x R’") inherits P1-P3 from EP(f, K) is immediate. We prove next
that P4 holds. Using (57), we get

L((,X), (y, 1)) + L((y, 1), (2, X)) = (VFy(z),y — z) + (VFy(y),z — y)

+ 3 Ailhi(@) + (Vhi(2),y — 2) = hi(y)] + Y pilhi(y) + (Vhi(y), = — y) — hi(2)]
=1 =1
< fla,y) = f(@,2) + fly,2) — f(y,9) = f(z,9) + fy,2) <Oz -y, (63)

using (57) in the first equality, the convexity of F, and F), resulting from P2, and also of the h;’s,
in the first inequality, property P1 in the second equality, and the fact that f satisfies P4 in the
second inequality. We have shown that £ satisfies P4 with the same undermonotonicity constant
as f, namely 6.

In order to show that £ satisfies P4” on (R" x R™) x (R* x R?), take z',..., 29 € R*, AL, ... X1 €
RT and ¢1,...,t; > 0 such that > ]_; ¢, = 1. Then

(m A9 (Zth ZtkA’“» <VF$4 Zth —w>
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f(:cf,i:th’“) Em:i: teMehi(z f:zq:tm (64)
k=1 =1 k=1

using convexity of F; resulting from P2, and of the h;’s, in the first inequality, and convexity of
the h;’s and P1 in the second one. The fact that £ satisfies P4” can be obtained from (64) using
the same argument as in the proof of Proposition 3.2 after (22). O

It is easy to check that Propositions 3.4, 3.6, and 3.7 remain true with EP(L,R" x R™) substi-
tuting for EP(L,R™ x RT). The only difference is that due to the smoothness of F; and the h;’s,
the Lagrangian condition (28) takes the form

0= VFp(z Z X Vhi(z

It is a matter of routine to check that the proofs of Theorem 3.10, Theorem 3.12 and Corollary
3.13 also remain valid for LIALEM, resulting in the following convergence theorem.
Theorem 4.2. Consider EP(f, K). Assume that

i) [ satisfies P1-PJ and P}” on R® x R",

i) f is continuously differentiable,

ii1) h; is differentiable (1 <i <m),

i) the constraint qualification CQ of Section 2 holds for the feasible set K.

Take an ezogenous sequence {y;} C (0,7], for some 7 > 0, where 0 is the undermonotonicity con-
stant of f resulting from P4, and a relative error tolerance o € (0,1). Let {(z7, )} be the sequence
generated by Algorithm LIALEM applied to EP(f,K). If EP(f,K) has solutions then {(z7, )}
converges to an optimal pair (z*,\*) for EP(f, K), so that x* belongs to S(f, K). Additionally, if
27 is not a solution of EP(f, K) and &7 is the unique solution of EP(E_;?, R"™) with e/ = 0, then there
exists 6; > 0 such that any x € B(ij,éj) solves the j-th subproblem of Algorithm LIALEM.
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5 Final remarks

In the case of the Augmented Lagrangian methods for optimization, a constrained optimization
problem is replaced by a sequence of unconstrained ones. This procedure makes sense because a
wide variety of fast solvers (e.g. quasi-Newton methods) are available for unconstrained optimiza-
tion. The methods introduced in this paper (IALEM, LIALEM, etc), in a similar fashion, replace
a constrained equilibrium problem by a sequence of unconstrained ones. It is worthwhile to com-
ment on the advantages of such a substitution in the equilibrium context, namely on the available
options for solving the unconstrained subproblems. In order to avoid technicalities, we restrict our
comments to the smooth case.

One interesting possibility is the projection method for solving EP(f, K) proposed in [14]. At
iteration j, the method requires approximate maximization of f(-,47) on the intersection of K
with a ball centered at 0, followed by a projection onto a hyperplane, whose computational cost is
negligible. If this procedure is applied to the unconstrained subproblems of the methods discussed
here, the computationally heavy task reduces to maximization of a continuous function on a ball,
which is relatively easy, as compared to the same maximization with the additional constraints
hi(z) < 0, which would be the case if the same algorithm is applied to the original problem.

We remind also that our convergence analysis, allowing for inexact solution of the subproblems,
ensures that a finite number of steps of the projection method in [14] will be enough for satisfying
our error criteria, as discussed in Section 3.

Another option consists of solving the system of equations resulting from (49) in the case of
TALEM, namely

Ozfyj(w—xj)+VFx(m)+Zmax{0,)\g+%f)}vm(x). (65)
i=1

We observe that the right hand side of (65) is continuous but not differentiable, due to the pres-
ence of the maximum. However, there is a substantial choice of efficient methods for non-smooth
equations which can be used in this case.

We also mention that another inexact Proximal Point method for EP(f, K) was presented in
[16], where it is called Algorithm I. In this case, instead of Step 3 of IPPEM, the solution &7 of the
subproblem is used for constructing a hyperplane H; which separates 29 from S(f, K), and the next
iterate 71! is the so called Bregman projection of 7 onto H j- In our current finite dimensional
context, such a Bregman projection is just the orthogonal projection. The convergence analysis
of the algorithm can be found in Theorem 5.5 of [16]. Both an inexact Augmented Lagrangian
method for EP(f, K') and its linearized version can be developed from Algorithm I in [16]. We omit
the explicit development of these methods for the sake of conciseness.

The actual computational implementation of the methods introduced here is left for future
research. We expect to have some results in this direction within a short period.
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