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1 Introduction

In this paper, a discontinuous Galerkin approximation of elliptic problems
with discontinuous coefficients is considered. The problem is considered in a
polygonal region Ω which is a union of disjoint polygonal subregions Ωi. The
discontinuities of the coefficients occur across ∂Ωi. The problem is approxi-
mated by a conforming finite element method (FEM) on matching triangu-
lation in each Ωi and nonmatching one across ∂Ωi. Composite discretizations
are motivated first of all by the regularity of the solution of the problem being
discussed. Discrete problems are formulated using DG methods, symmetric
and with interior penalty terms on the ∂Ωi; see [4,5,8]. A goal of this paper
is to design and analyze Balancing Domain Decomposition with Constraints
(BDDC) preconditioners for the resulting discrete problem; see [7,17,16] for
conforming finite elements. In the first step, the problem is reduced to the
Schur complement problem with respect to unknowns on ∂Ωi for i = 1, . . . , N .
For that, discrete harmonic functions defined in a special way are used. The
preconditioners are designed and analyzed using the general theory of ASMs;
see [18]. The local spaces are defined on Ωi and faces of ∂Ωj which are com-
mon to Ωi plus zero average values constraints on faces of Ωi or/and faces
of Ωj. The coarse basis functions follow from local orthogonality with respect
to the local spaces and from average constraints across those faces. A special
partitioning of unity with respect to the substructures Ωi is introduced and it
is based on master and slave sides of substructures. A side Fij = ∂Ωi ∩ ∂Ωj

is a master when ρi is larger than ρj, otherwise it is a slave, so if Fij ⊂ ∂Ωi

is a master side then Fji ⊂ ∂Ωj is a slave side. The hi- and hj- triangula-
tions on Fij and Fji, respectively, are built in a way that hi is coarser where
ρi is larger. Here hi and hj denote the parameters of these triangulations. It
is proved that the algorithm is almost optimal and its rate of convergence is
independent of hi and hj, the number of subdomains Ωi and the jumps of
coefficients. The algorithms are well suited for parallel computations and they
can be straightforwardly extended to the problems in the 3-D cases.

DG methods are becoming more and more popular for the approximation of
PDEs since they are well suited to dealing with regions with complex geome-
tries or discontinuous coefficients, and local or patch refinements; see [5,4] and
the literature therein. The class of DG methods we deal within this paper uses
symmetrized interior penalty terms on the boundaries ∂Ωi. A goal is to design
and analyze Balancing Domain Decomposition (BDDC) algorithms for the re-
sulting discrete problem; see [7] and also [17,16]. There are also several papers
devoted to algorithms for solving discrete DG problems. In particular in con-
nection with domain decomposition methods, we can mention [15,12,14,1–3]
where related discretizations to those discussed here are considered. In these
papers Neumann-Dirichlet methods and two-level overlapping and nonover-
lapping Schwarz are proposed and analyzed for DG discretization of elliptic
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problems with continuous coefficients. In [8] for the discontinuous coefficient
case, a non optimal multilevel ASM is designed and analyzed. In [6,13], two-
level overlapping and nonoverlapping ASMs are proposed and analyzed for DG
discretization of fourth order problems. In those works, the coarse problems
are based on polynomial coarse basis functions on a coarse triangulation. In
addition, ideas of iterative substructuring methods and notions of discrete har-
monic extensions are not explored. Condition number estimates of O(H

δ
) and

O(H
h
), and O(H3

δ3 ) and O(H3

h3 ) are obtained for second and fouth order prob-
lems, respectively, where δ is the overlap parameter. In addition, for the cases
where the distribution of the coefficients ρi is not quasimonotonic, see [10],
these methods when extended straightforwardly to 3-D problems have condi-
tion number estimates which might deteriorate as the jumps of the coefficients
get more severe. To the best of our knowledge, BDDC algorithms for DG dis-
cretizations of elliptic problems with continuous and discontinuous coefficients
have not been considered in the literature. We note that part of the analysis
presented here has previously appeared as a technical report for analyzing sev-
eral iterative substructuring DG preconditioners of Neumann-Neumann type;
see [11]. In [9] we have also successfully extended these preconditioners to the
Balancing Domain Decomposition (BDD) method.

The paper is organized as follows. In Section 2 the differential problem and its
DG discretization are formulated. In Section 3 the Schur complement problem
is derived using discrete harmonic functions in a special way. Some technical
tools are presented in Section 4. Sections 5 and 6 are devoted to designing a
BDDC algorithm while Section 7 and 8 are devoted to the proof of the main
result, Theorem 7.1. In Section 9 we introduce coarse spaces of dimension half
smaller than those defined in Section 6. Finally in Section 10 some numerical
experiments are presented which confirm the theoretical results. The enclosed
numerical results show that the introduced assumption on the coefficients and
the parameter steps are necessary and sufficient.

2 Differential and discrete problems

2.1 Differential problem

Consider the following problem: Find u∗ ∈ H1
0 (Ω) such that

a(u∗, v) = f(v) ∀v ∈ H1
0 (Ω) (1)
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where

a(u, v) :=
N∑

i=1

∫
Ωi

ρi∇u∗ · ∇vdx and f(v) :=
∫
Ω
fvdx.

We assume that Ω̄ = ∪N
i=1Ω̄i and the substructures Ωi are disjoint regular

polygonal subregions of diameter O(Hi) and form a geometrical conforming
partition of Ω, i.e., ∀i 6= j the intersection ∂Ωi ∩ ∂Ωj is empty, or is a com-
mon vertex or an edge of ∂Ωi and ∂Ωj. We assume that f ∈ L2(Ω) and, for
simplicity of presentation, let ρi be a positive constant.

2.2 Discrete problem

Let us introduce a shape-regular triangulation in each Ωi with triangular ele-
ments and hi as mesh parameter. The resulting triangulation on Ω is in general
nonmatching across ∂Ωi. Let Xi(Ωi) be the regular finite element (FE) space
of piecewise linear continuous functions in Ωi. Note that we do not assume
that functions in Xi(Ωi) vanish on ∂Ωi ∩ ∂Ω. Define

Xh(Ω) := X1(Ω1)× · · · ×XN(ΩN).

The discrete problem obtained by the DG method, see [5,8], is of the form:

Find u∗h ∈ Xh(Ω) such that

ah(u
∗
h, vh) = f(vh), ∀vh ∈ Xh(Ω) (2)

where

ah(u, v) =
N∑

i=1

âi(u, v) and f(v) =
N∑

i=1

∫
Ωi

fvidx, (3)

âi(u, v) := ai(u, v) + si(u, v) + pi(u, v), (4)

ai(u, v) :=
∫
Ωi

ρi∇ui∇vidx, (5)

si(u, v) :=
∑

Fij⊂∂Ωi

∫
Fij

ρij

lij

(
∂ui

∂n
(vj − vi) +

∂vi

∂n
(uj − ui)

)
ds,

pi(u, v) :=
∑

Fij⊂∂Ωi

∫
Fij

ρij

lij

δ

hij

(uj − ui)(vj − vi)ds, (6)

and u = {ui}N
i=1 ∈ Xh(Ω), v = {vi}N

i=1 ∈ Xh(Ω). We set lij = 2 when Fij =
∂Ωi∩∂Ωj is a common face (edge) of ∂Ωi and ∂Ωj, and define ρij := 2ρiρj/(ρi+
ρj) as the harmonic average of ρi and ρj, and hij := 2hihj/(hi + hj). In order
to simplify the notation we include the index j = ∂ and put li∂ := 1 when
Fi∂ := ∂Ωi∩∂Ω has a positive measure. We also set u∂ = 0, v∂ = 0 and define
ρi∂ := ρi and hi∂ := hi. The ∂

∂n
denotes the outward normal derivative on ∂Ωi,

and δ is a positive penalty parameter. We note that when ρij is given by the
harmonic average, it can be shown that min{ρi, ρj} ≤ ρij ≤ 2 min{ρi, ρj}.
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We also define
di(u, v) := ai(u, v) + pi(u, v), (7)

and

dh(u, v) :=
N∑

i=1

di(u, v). (8)

It is known that there exists a δ0 = O(1) > 0 such that for δ ≥ δ0, we obtain
|si(u, u)| < cdi(u, u) and

∑
i si(u, u) < cdh(u, u), where c < 1, and therefore,

the problem (2) is elliptic and has a unique solution. A priori error estimates
for the method are optimal for the continuous coefficients, see [4,5], and for
the discontinuous coefficients if ρi∂nu

∗ − ρj∂nu
∗ = 0 in L2(Fij), see [8]. Note

that this condition is satisfied if the solution u∗ of (2.1) restricted to the Ωi

and Ωj is in H3/2+ε(Ωi) and H3/2+ε(Ωj) with ε > 0.

We use the dh−norm, also called broken norm, in Xh(Ω) with weights given
by ρi and δ

lij

ρij

hij
. For u = {ui} ∈ Xh(Ω) we note that

dh(u, u) =
N∑

i=1

{ρi ‖ ∇ui ‖2
L2(Ωi)

+
∑

Fij⊂∂Ωi

δ

lij

ρij

hij

∫
Fij

(ui − uj)
2ds}. (9)

Lemma 2.1 There exists δ0 > 0 such that for δ ≥ δ0, for all u ∈ Xh(Ω) the
following inequalities hold:

γ0di(u, u) ≤ âi(u, u) ≤ γ1di(u, u), i = 1, . . . , N, (10)

and
γ0dh(u, u) ≤ ah(u, u) ≤ γ1dh(u, u), (11)

where γ0 and γ1 are positive constants independent of the ρi, hi and Hi.

The proof essentially follows from (37), see below, or refer to [8].

3 Schur complement problem

In this section we derive a Schur complement version for the problem (2). We
first introduce some auxiliary notations.

Let u = {ui} ∈ Xh(Ω) be given. We can represent ui as

ui = Hiui + Piui (12)

where Hiui is the discrete harmonic part of ui in the sense of ai(., .), see (5),
i.e.,

ai(Hiui, vi) = 0 ∀vi ∈
o

X i(Ωi) (13)
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Hiui = ui on ∂Ωi, (14)

while Piui is the projection of ui into
o

X i (Ωi) in the sense of ai(., .), i.e.

ai(Piui, vi) = ai(ui, vi) ∀vi ∈
o

X i(Ωi). (15)

Here
o

X i (Ωi) is a subspace of Xi(Ωi) of functions which vanish on ∂Ωi, and

Hiui is the classical discrete harmonic part of ui. Let us denote by
o

Xh (Ω)

the subspace of Xh(Ω) defined by
o

Xh (Ω) := {
o

X i(Ωi)}N
i=1 and consider the

global projections Hu := {Hiui}N
i=1 and Pu := {Piui}N

i=1 : Xh(Ω) →
o

Xh (Ω)
in the sense of

∑N
i=1 ai(., .). Hence, a function u ∈ Xh(Ω) can therefore be

decomposed as
u = Hu + Pu. (16)

The function u ∈ Xh(Ω) can also be represented as

u = Ĥu + P̂u (17)

where P̂u = {P̂iui}N
i=1 : Xh(Ω) →

o

Xh(Ω) is the projection in the sense of

ah(., .), the original bilinear form of (2), see (3). Since P̂iui ∈
o

X i(Ωi) and

vi ∈
o

X i(Ωi), we have
ai(P̂iu, vi) = ah(u, vi).

The discrete solution of (2) can be decomposed as u∗h = Ĥu∗h + P̂u∗h. To find
P̂u∗h we need to solve the following set of standard discrete Dirichlet problems:

Find P̂iu
∗
h ∈

o

X i(Ω) such that

ai(P̂iu
∗
h, vi) = f(vi) ∀vi ∈

o

X i(Ωi) (18)

for i = 1, · · · , N . Note that these problems are local and independent, so they
can be solved in parallel. This is a precomputational step.

We now formulate the problem for Ĥu∗h. Let Ĥiu be the discrete harmonic
part of u in the sense of âi(., .), see (4), where Ĥiu ∈ Xi(Ωi) is the solution of

âi(Ĥiu, vi) = 0 ∀vi ∈
o

X i(Ωi), (19)

ui on ∂Ωi and uj on Fji ⊂ ∂Ωj are given (20)

where uj are given on Fji = ∂Ωi ∩ ∂Ωj. We point out that for vi ∈
o

X i(Ωi) we
have

âi(ui, vi) = (ρi∇ui,∇vi)L2(Ωi) +
∑

Fij⊂∂Ωi

ρij

lij
(
∂vi

∂n
, uj − ui)L2(Fij). (21)
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Note that (19) - (20) has a unique solution. To see this, let us rewrite (19) in
the form

ρi(∇Ĥiu,∇ϕk
i )L2(Ωi) = −

∑
Fij⊂∂Ωi

ρij

lij
(
∂ϕk

i

∂n
, uj − ui)L2(Fij) (22)

where ϕk
i are nodal basis functions of

o

X i (Ωi) associated with interior nodal

points xk of the hi-triangulation of Ωi. Note that
∂ϕk

i

∂n
does not vanish on ∂Ωi

when xk is a node of an element touching ∂Ωi. We see that Ĥiu is a special
extension into Ωi where u is given on ∂Ωi and on all the Fji, and therefore, it
depends on the values of uj given on Fji = ∂Ωi ∩ ∂Ωj and on F∂i (we already

have assumed u∂ = 0 for j = ∂). Note that Ĥiu is discrete harmonic except at
nodal points close to ∂Ωi. We will sometimes call Ĥiu discrete harmonic in a
special sense, i.e., in the sense of âi(., .) or Ĥi. We let Ĥu = {Ĥiu}N

i=1 ∈ Xh(Ω).

Note that (19) is obtained from

ah(Ĥu, v) = 0 (23)

for u ∈ Xh(Ω) and when taking v = {vi}N
i=1 ∈

o

Xh(Ω). It is easy to see that
Ĥu = {Ĥiu}N

i=1 and P̂u = {P̂iui}N
i=1 are orthogonal in the sense of ah(., .), i.e.

ah(Ĥu, P̂v) = 0 u, v ∈ Xh(Ω). (24)

In addition,
HĤu = Hu, ĤHu = Ĥu (25)

since Ĥu and Hu do not change the values of u on any of the nodes on the
boundaries of the subdomains Ωi also denoted by

Γ := (∪i∂Ωihi
), (26)

where ∂Ωihi
is the set of nodal points of ∂Ωi. We note that the definition of Γ

includes the nodes on both sides of ∪i∂Ωi.

We are now in a position to derive a Schur complement problem for (2). Let
us apply the decomposition (17) in (2). We get

ah(Ĥu∗h + P̂u∗h, Ĥvh + P̂vh) = f(Ĥvh + P̂vh)

or

ah(Ĥu∗h, Ĥvh) + 2ah(Ĥu∗h, P̂vh) + ah(P̂u∗h, P̂vh) = f(Ĥvh) + f(P̂vh).

Using (18) and (23) we have

ah(Ĥu∗h, Ĥvh) = f(Ĥvh) ∀vh ∈ Xh(Ω). (27)
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This is the Schur complement problem for (2). We denote by Vh(Γ) or V ,
which we will use later, the set of all functions vh in Xh(Ω) such that P̂vh = 0,
i.e., the space of discrete harmonic functions in the sense of the Ĥi. We rewrite
the Schur complement problem as follows: .

Find u∗h ∈ Vh(Γ) such that

S(u∗h, vh) = g(vh) ∀vh ∈ Vh(Γ); (28)

here and below u∗h ≡ Ĥu∗h, and

S(uh, vh) = ah(Ĥuh, Ĥvh) g(vh) = f(Ĥvh). (29)

This problem has a unique solution.

4 Technical tools

Our main goal is to design and analyze a BDDC method for solving (28). This
will be done in the next section. We now introduce some notations and facts
to be used later. Let u = {ui}N

i=1 ∈ Xh(Ω) and v = {vi}N
i=1 ∈ Xh(Ω). Let

di(., .) and dh(., .) be the bilinear forms defined in (7) and (8).

Note that, for u, v ∈
o

Xh(Ω),

di(u, v) = ai(u, v) = ρi(∇ui,∇vi)L2(Ωi) (30)

and, for u ∈ Xh(Ω),

γ0dh(u, u) ≤ ah(u, u) ≤ γ1dh(u, u) (31)

in view of Lemma 2.1, where γ0 and γ1 are positive constants independent
of hi, Hi and ρi. The next lemma shows the equivalence between discrete
harmonic functions in the sense of H and in the sense of Ĥ, and therefore,
we can take advantage of all the discrete Sobolev norm results known for H
discrete harmonic extensions.

Lemma 4.1 For u ∈ Xh(Ω) we have

di(Hu,Hu) ≤ di(Ĥu, Ĥu) ≤ Cdi(Hu,Hu), i = 1, . . . , N, (32)

and
dh(Hu,Hu) ≤ dh(Ĥu, Ĥu) ≤ Cdh(Hu,Hu) (33)

where Hu = {Hiui}N
i=1 and Ĥu = {Ĥiu}N

i=1 are defined by (13) - (14) and
(19) - (20) respectively, and C is a positive constant independent of hi, u, ρi

and Hi.
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Proof. We note that P and H are projections in the sense of
∑

i ai(., .) while P̂
and Ĥ are projections in the sense of ah(., .). Therefore, the left-hand inequal-
ity of (33) follows from properties of minimum energy of discrete harmonic
extensions in the

∑
i ai(., .) sense. To prove the right-hand inequality of (33)

note that

dh(Ĥu, Ĥu) = dh(Ĥu,HĤu + PĤu) = dh(Ĥu,Hu)) + dh(Ĥu,PĤu) (34)

in view of (25). The first term is estimated as

dh(Ĥu,Hu) ≤ εdh(Ĥu, Ĥu) +
1

4ε
dh(Hu,Hu), (35)

with arbitrary ε > 0. To estimate the second term on the right-hand side of

(34) note that, for v := PĤu ∈
o

X(Ω) and using (22), we get

dh(Ĥu, v) =
N∑

i=1

ρi(∇Ĥiui,∇vi)L2(Ωi) (36)

= −
N∑

i=1

∑
Fij⊂∂Ωi

ρij

lij
(
∂vi

∂n
, uj − ui)L2(Fij).

The terms on the right-hand side of (36) are estimated as follows:

|ρij(
∂vi

∂n
, uj − ui)L2(Fij)| ≤ ρij ‖

∂vi

∂n
‖L2(Fij)‖ ui − uj ‖L2(Fij) (37)

≤ C
ρij

h
1/2
i

‖ ∇vi ‖L2(Ωi)‖ ui − uj ‖L2(Fij)

≤ C
ρij

h
1/2
ij

‖ ∇vi ‖L2(Ωi)‖ ui − uj ‖L2(Fij)

≤ C{ερij ‖ ∇vi ‖2
L2(Ωi)

+
ρij

4εhij

‖ ui − uj ‖2
L2(Fij)

}

≤ C{2ερi ‖ ∇vi ‖2
L2(Ωi)

+
ρij

4εhij

‖ ui − uj ‖2
L2(Fij)

},

where we have used that hij ≤ 2hi and ρij ≤ 2ρi. Substituting this into (36),
we get

dh(Ĥu, v) ≤ C
N∑

i=1

{2ερi ‖ ∇PiĤiui ‖2
L2(Ωi)

+
ρij

4hijε

∑
Fij⊂∂Ωi

‖ ui − uj ‖2
L2(Fij)

},

(38)
and using

‖ ∇PiĤiui ‖L2(Ωi)≤‖ ∇Ĥiui ‖L2(Ωi),

we obtain

dh(Ĥu, v) ≤ C{εdh(Ĥu, Ĥu) +
1

4ε
dh(Hu,Hu)}. (39)
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Substituting (39) and (35) into (34) we get

dh(Ĥu, Ĥu) ≤ C{εdh(Ĥu, Ĥu) +
1

4ε
dh(Hu,Hu)}.

Choosing a sufficiently small ε, the right-hand side of (33) follows.

5 Balancing domain decomposition with constraints method

We design and analyze BDDC methods for solving (28); see [7,17,16] for con-
forming elements. We use the general framework of ASMs as stated below
in Lemma 5.1; see [18]. For i = 0, . . . , N , let Vi be auxiliary spaces and Ii

prolongation operators from Vi to V , and define the operators T̃i : V → Vi as

bi(T̃iu, v) = ah(u, Iiv) ∀v ∈ Vi,

where bi(·, ·) is symmetric and positive definite on Vi × Vi, and set Ti = IiT̃i.
Then the ASMs, in particular the BDDC method, are defined as

T =
N∑

i=0

Ti. (40)

The bilinear form ah is defined in (3). The bilinear forms bi, the operators Ii,
and the spaces Vi, i = 0, . . . , N , are defined in the next subsections.

Lemma 5.1 Suppose the following three assumptions hold:

i) There exists a constant C0 such that, for all u ∈ V , there is a decomposition
u =

∑N
i=0 Iiu

(i) with u(i) ∈ Vi, i = 0, . . . , N , and

N∑
i=0

bi(u
(i), u(i)) ≤ C2

0ah(u, u).

ii) There exist constants εij, i, j = 1, . . . , N , such that for all u(i) ∈ Vi, u(j) ∈ Vj,

ah(Iiu
(i), Iju

(j)) ≤ εijah(Iiu
(i), Iiu

(i))1/2ah(Iju
(j), Iju

(j))1/2.

iii) There exists a constant ω such that

ah(Iiu, Iiu) ≤ ωbi(u, u) ∀u ∈ Vi, i = 0, . . . , N.

Then, T is invertible and

C2
0ah(u, u) ≤ ah(Tu, u) ≤ (ρ(ε) + 1)ωah(u, u), ∀u ∈ V.
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Here, ρ(ε) is the spectral radius of the matrix ε = {εij}N
i,j=1.

5.1 Notations and the interface condition

Let us denote by Γi the set of all nodes on ∂Ωi and on the neighboring faces
Fji ⊂ ∂Ωj. We note that the nodes of ∂Fji (which are vertices of Ωj) are in-
cluded in Γi. Define Wi as the vector space associated to the nodal values on
Γi and extended via Ĥi inside Ωi. We say that u(i) ∈ Wi if u(i) is represented
as u(i) := {u(i)

l }l∈#(i), where #(i) = {i and ∪ j : Fij ⊂ ∂Ωi}. Here u
(i)
i and

the u
(i)
j stand for the nodal values of u(i) on ∂Ωi and the F̄ji, respectively. We

write u = {ui} ∈ V to refer to a function defined on all of Γ with each ui

defined (only) on ∂Ωi. We point out that Fij and Fji are geometrically the
same even though the mesh on Fij is inherited from the Ωi mesh while the
mesh on Fji corresponds to the Ωj mesh.

Denote by Λi := {Fij : Fij ⊂ ∂Ωi} ∪ {Fji : Fji = Fij, Fji ⊂ ∂Ωj} the set of all
faces of Ωi and all faces of Ωj touching Ωi. Given u(i) ∈ Wi and F`k ∈ Λi we
use the notation

u
(i)
`k =

1

|F`k|

∫
F`k

u(i)ds.

Let us define the regular zero extension operator Ĩi : Wi → V as follows: Given
u(i) ∈ Wi, let Ĩiu

(i) be equal to u(i) on nodes Γi and zero on Γ\Γi.

A face across Ωi and Ωj has two sides, the side contained in ∂Ωi, denoted by
Fij, and the side contained in ∂Ωj, denoted by Fji. In addition, we assign to
each pair {Fij, Fji} a master and a slave side. If Fij is a slave side then Fji is
a master side and vice versa. If Fij is a slave side we will use the notation δij

(instead of Fij) to emphasize this fact while if Fij is a master side we will use
the notation γij. The choice of slave-master sides are such that the interface
condition, stated next, can be satisfied. In this case Theorem 7.1 below holds
with a constant C independent of the ρi, hi and Hi.

Assumption 1 (The interface condition) We say that the coefficients {ρi}
and the local mesh sizes {hi} satisfy the interface condition if there exist con-
stants C0 and C1, of order O(1), such that for any face Fij the following
conditions hold:

hi ≤ C0hj and ρi ≤ C1ρj if Fij is a slave side, or

hj ≤ C0hi and ρj ≤ C1ρi if Fij is a master side.
(41)
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We associate with each Ωi, i = 1, · · · , N , the weighting diagonal matrices
D(i) = {D(i)

l }l∈#(i) on Γi defined as follows:

• On ∂Ωi (l = i)

D
(i)
i (x) =


1 if x is a vertex of ∂Ωi,

1 if x is an interior node of a master face Fij,

0 if x is an interior node of a slave face Fij,

(42)

• On Fji (l = j)

D
(i)
j (x) =


0 if x is an end point of the face Fji,

1 if x is an interior node and Fji is a slave face,

0 if x is an interior node and Fji is a master face,

(43)

• For x ∈ Fi∂ we set D
(i)
i (x) = 1.

Remark 5.1 We note that two alternatives of weighting diagonal matrices
D(i) can also be considered while ensuring that Theorem 7.1 below holds: 1)
On faces Fij where hi and hj are of the same order, the values of (42) and

(43) at interior nodes x of the faces Fij and Fji can be replaced by
√

ρi√
ρi+

√
ρj

; 2)

Similarly, on faces Fij where ρi and ρj are of the same order, we can replace
(42) and (43) at interior nodes x of the faces Fij and Fji by hi

hi+hj
.

The prolongation operators Ii : Wi → V , i = 1, . . . , N , are defined as

Ii = ĨiD
(i), (44)

and they form a partition of unity on Γ described as

N∑
i=1

IiĨ
T
i = IΓ. (45)

6 Local and global spaces

The local spaces Vi = Vi(Γi), i = 1, . . . , N , are defined as the subspaces of Wi

of functions with zero face-average values on all faces Fij and Fij associated
to the subdomain Ωi, i.e., for all F`k ∈ Λi.

12



For u(i), v(i) ∈ Vi(Γi) we define the local bilinear form bi as

bi(u
(i), v(i)) := âi(u

(i), v(i)), (46)

where the bilinear form âi was defined in (4).

Now we define a BDDC coarse space. As in BDDC methods, here we define
the coarse space using local bases and imposing continuity conditions with
respect to the primal variables; see [7,17,16].

Recall that Λi := {Fij : Fij ⊂ Ωi} ∪ {Fji : Fji = Fij, Fji ⊂ Ωj} is the set of
all faces of Ωi and all faces of Ωj touching Ωi. For F`k ∈ Λi define the local

coarse basis function Φ
(i)
F`k

∈ Wi by

bi(Φ
(i)
F`k

, v) = 0 ∀v ∈ Vi(Γi) (47)

with
1

|F`k|

∫
F`k

Φ
(i)
F`k

= 1

and ∫
F`′k′

Φ
(i)
F`k

= 0, ∀F`′k′ 6= F`k with F`′k′ ∈ Λi.

Note that Φ
(i)
Fk`

6= Φ
(i)
F`k

.

Define V0i = V0i(Γi) := Span{Φ(i)
F`k

: F`k ∈ Λi} ⊂ Wi. Then (47) implies that Vi

is Ĥi−orthogonal to V0i, and Wi is a direct sum of V0i and Vi, i.e., V0i⊕Vi = Wi.

The global coarse space V0 is defined as the set of all u0 := {u(i)
0 } ∈

∏N
i=1 V0i(Γi)

such that, for i, j = 1, . . . , N , we have

u
(i)
0`k = u

(j)
0`k ∀F`k ∈ Λi ∩ Λj. (48)

The coarse prolongation operator I0 : V0 → V is defined as I0u0 =
∑N

i=1 Iiu
(i)
0

and the bilinear form b0 is of the form

b0(u0, v0) :=
N∑

i=1

bi(u
(i)
0 , v

(i)
0 ). (49)

13



7 Main result

In this section we state and prove our main result.

Theorem 7.1 Let the Assumption 1 be satisfied. Then, there exists a positive
constant C, independent of hi, Hi and the jumps of ρi, such that

ah(u, u) ≤ ah(Tu, u) ≤ C
(
1 + log

H

h

)2

ah(u, u) ∀u ∈ V, (50)

where T is defined in (40). Here log H
h

= maxi log Hi

hi
.

Proof. By the general theorem of ASMs we need to check the three key as-
sumptions of Lemma 5.1.

Assumption(i) We prove that for u = {ui}N
i=1 ∈ V there exists u0 ∈ V0 and

u(i) ∈ Vi such that

I0u0 +
N∑

i=1

Iiu
(i) = u (51)

and

b0(u0, u0) +
N∑

i=1

bi(u
(i), u(i)) = a(u, u). (52)

Let u = {ui}N
i=1 ∈ V (Γ). Define u

(i)
0 ∈ V0i(Γi) as

u
(i)
0 =

∑
F`k∈Λi

(
1

|F`k|

∫
F`k

u`ds
)
Φ

(i)
F`k

(53)

where functions Φ
(i)
Fik

were defined in (47). Note that u
(i)
0 and u have the same

face-average values on all faces F`k ∈ Λi, i.e.,



1

|F`k|

∫
F`k

u`ds =
1

|F`k|

∫
F`k

u
(i)
0 ds = u

(i)
0`k

1

|F`k|

∫
F`k

u`ds =
1

|F`k|

∫
F`k

u
(j)
0 ds = u

(j)
0`k,

(54)

and therefore, for all the faces F`k ∈ Λi ∩ Λj we have, see (48),

u
(i)
0`k = u

(j)
0`k. (55)
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Define u0 ∈ V0 by u0 = {u(i)
0 }N

i=1 and set w = u−I0u0, where I0u0 =
∑N

i=1 Iiu
(i).

Then we can write

w =
N∑

i=1

Ii(Ĩ
T
i u− u

(i)
0 ) =

N∑
i=1

Iiu
(i),

where we have defined u(i) = ĨT
i u−u

(i)
0 ∈ Vi. Since the prolongation operators

Ii form a partition of unity, (51) holds.

To check (52) observe that u(i) has zero face-average values on all faces F`k ∈
Λi, hence it is Ĥi−orthogonal to u

(i)
0 ; see (47). Then, from the definition of b0

we have

b0(u0, u0) +
N∑

i=1

bi(u
(i), u(i)) =

N∑
i=1

(
bi(u

(i)
0 , u

(i)
0 ) + bi(u

(i), u(i))
)

=
N∑

i=1

bi(u
(i)
0 + u(i), u

(i)
0 + u(i))

=
N∑

i=1

bi(Ĩ
T
i u, ĨT

i u) = ah(u, u).

This ends the proof of Assumption(i).

Assumption(ii) We need to prove that

ah(Iiu
(i), Iju

(j)) ≤ Cεija
1/2
h (Iiu

(i), Iiu
(i)) a

1/2
h (Iju

(j), Iju
(j)) (56)

for u(i) ∈ Vi and u(j) ∈ Vj, i, j = 1, · · · , N, and the spectral radius %(ε) of
ε = {εij}N

i,j=1 is bounded. In our case %(ε) ≤ C with constant independent of

hi and Hi. This follows from coloring arguments and the fact that u(i) and u(j)

are different from zero only on Ωi and Ωj and their neighboring substructures.

Assumption(iii). We need to prove that for i = 1, · · · , N,

ah(Iiu
(i), Iiu

(i)) ≤ ωbi(u
(i)u(i)), ∀u(i) ∈ Vi (57)

and

ah(I0u0, I0u0) ≤ ωb0(u0, u0) ∀u0 ∈ V0 (58)

with ω ≤ C(1 + log H
h
)2 where C is a positive constant independent of hi, Hi

and the jumps of ρi.
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For the proof of (57) see Lemma 8.1, and for the proof of (58) see Lemma 8.2
in the next section.

8 Auxiliary lemmas

In this section we complete the proof of Theorem 7.1 by proving two auxiliary
lemmas associated with (57) and (58).

Lemma 8.1 Assume that Assumption 1 holds. Then for u(i) ∈ Vi, i = 1, . . . , N ,
we have

ah(Iiu
(i), Iiu

(i)) ≤ C
(
1 + log

H

h

)2

bi(u
(i), u(i)), (59)

where C is independent of hi, Hi and the jumps of ρi.

Proof. In order to prove (59) we can replace ah(Ĥu, Ĥu) by dh(Hu,Hu) on the
left-hand side of (59) and on its right-hand side we can put di(HĨiu

(i),HĨiu
(i))

instead of bi(u
(i), u(i)); see Lemma 2.1 and Lemma 4.1.

In order to simplify the notation, all the functions are considered as har-
monic extensions in the H sense. Hence, we denote HIiu by Iiu and let
u = {u(i)

l }l∈#(i) ∈ Vi. Using (7), (8) and (44) we obtain

dh(Iiu
(i), Iiu

(i)) = di(ĨiD
(i)u(i), ĨiD

(i)u(i)) +
∑
j

dj(ĨiD
(i)u(i), ĨiD

(i)u(i)),

(60)
where the sum is taken over Ωj which have a common face with Ωi. The first
term on the right-hand side of (60) can be estimated as follows:

di ( ĨiD
(i)u(i), ĨiD

(i)u(i))

= ρi

∫
Ωi

|∇D
(i)
i u

(i)
i |2dx +

∑
Fij⊂∂Ωi

δ

lij

ρij

hij

∫
Fij

(D
(i)
i u

(i)
i −D

(i)
j u

(i)
j )2dx. (61)

To bound the first term of (61) we use

ρi ‖ ∇D
(i)
i u

(i)
i ‖2

L2(Ωi)
≤ 2ρi{‖ ∇(D

(i)
i u

(i)
i − u

(i)
i ) ‖2

L2(Ωi)
+ ‖ ∇u

(i)
i ‖2

L2(Ωi)
}

and therefore,

ρi ‖ ∇(D
(i)
i u

(i)
i − u

(i)
i ) ‖2

L2(Ωi)
≤ C

∑
δij⊂∂Ωi

ρi ‖ ũ
(i)
i ‖2

H
1/2
00 (δij)

.
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Here ũ
(i)
i = u

(i)
i at the interior nodal points of δij and ũ

(i)
i = 0 on ∂δij. Recall

that δij denotes Fij when Fij is a slave side. It can be proved, see for example
[18], that

ρi ‖ ũ
(i)
i ‖2

H
1/2
00 (δij)

≤ C
(
1 + log

Hi

hi

)2

ρi|u(i)
i |2H1(Ωi)

. (62)

Here we have used the fact that u
(i)
i has zero face-average values.

We now estimate the second term of (61) and (67), see below. Note that
for Fi∂, i.e. for faces on ∂Ω, the estimates of the terms corresponding to Fi∂

follow straightforwardly. On a slave face Fij of ∂Ωi, i.e. where hi ≤ C0hj and
ρi ≤ C1ρj, we have

‖ D
(i)
i u

(i)
i −D

(i)
j u

(i)
j ‖2

L2(Fij)
≤ Chi max

Fij

|u(i)
i |2 (63)

and

ρij

hij

‖ D
(i)
i u

(i)
i −D

(i)
j u

(i)
j ‖2

L2(Fij)
≤ Cρi max

Fij

|u(i)
i |2 ≤ C

(
1 + log

Hi

hi

)
ρi|u(i)

i |2H1(Ωi)
,

where we have used ρij ≤ 2ρi and hi ≤ Chij since hi < C0hj. We have
also used that u(i) has zero face-average value on any face of Λi, therefore, the
Poincaré inequality can be used to bound the H1(Ωi)−norm by the seminorm.

On a master side Fij of ∂Ωi, i.e. where hj ≤ C0hi and ρj ≤ C1ρi, we have

‖ D
(i)
i u

(i)
i −D

(i)
j u

(i)
j ‖L2(Fij)≤‖ u

(i)
i − u

(i)
j ‖L2(Fij) (64)

+ ‖
∑

xj
v∈∂Fij

u
(i)
j (xj

v)ϕ
j
v ‖L2(Fij),

and using a triangle inequality we obtain

‖ u
(i)
j (xj

v)ϕ
j
v ‖L2(Fij)

≤‖ u
(i)
i (xi

v)ϕ
i
v ‖L2(Fij) + ‖ u

(i)
i (xi

v)ϕ
i
v − u

(i)
j (xj

v)ϕ
j
v ‖L2(Fij), (65)

where ϕi
v and ϕj

v are the nodal basis functions corresponding to xi
v and xj

v,
respectively. The first term of (65) can be estimated as

‖ u
(i)
i ϕi

v ‖2
L2(Fij)

≤ C max
Fij

|u(i)
i |2hi ≤ Chi

(
1 + log

Hi

hi

)
|u(i)

i |2H1(Ωi)
,
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while the second term of (65) can be bounded as in (81), see below. Using
these estimates in (61) and Lemma 2.1 we get

di(Iiu
(i), Iiu

(i)) ≤ C
(
1 + log

Hi

hi

)2

bi(u
(i), u(i)). (66)

We now estimate the second term of (60) by bounding dj(ĨiD
(i)u(i), ĨiD

(i)u(i))

by bi(u
(i), u(i)). For u = {u(i)

l } ∈ Vi we have

dj ( ĨiD
(i)u(i), ĨiD

(i)u(i))

= ρj ‖ ∇D
(i)
j u

(i)
j ‖2

L2(Ωj)
+

δ

lij

ρij

hij

∫
Fij

(D
(i)
i u

(i)
i −D

(i)
j u

(i)
j )2dx. (67)

We need only to estimate the first term of (67) since the second term has been

already estimated; see (63), (64) and (65). If Fij is a slave side of ∂Ωi then D
(i)
j

vanishes, and so vanishes ‖ ∇D
(i)
j u

(i)
j ‖2

L2(Ωj)
. We now consider the case where

Fij is a master side of ∂Ωi and it is not equal to Fi∂. On Fji we decompose

u
(i)
j = w

(i)
j +

∑
xj

v∈∂Fji
u

(i)
j (xj

v)ϕ
j
v, where w

(i)
j = D

(i)
j u

(i)
j . We have

‖ ∇w
(i)
j ‖2

L2(Ωj)
≤C ‖ w

(i)
j ‖2

H
1/2
00 (Fji)

= C{|w(i)
j |2H1/2(Fji)

+
∫

Fji

(w
(i)
j )2

dist(s, ∂Fji)
ds}. (68)

We now estimate the first term of (68). Let Qj be the L2- projection on the
hj- triangulation of Fji. Then,

|w(i)
j |2H1/2(Fji)

≤ 2{|w(i)
j −Qju

(i)
i |2H1/2(Fij)

+ |Qju
(i)
i |2H1/2(Fij)

} (69)

≤C{ 1

hj

‖ w
(i)
j − u

(i)
i ‖2

L2(Fij)
+ ‖ ∇u

(i)
i ‖2

L2(Ωi)
}

and

‖w
(i)
j − u

(i)
i ‖2

L2(Fij)

≤ 2 ‖ u
(i)
j − u

(i)
i ‖2

L2(Fij)
+2 ‖

∑
xj

v∈∂Fij

u
(i)
j (xj

v)ϕ
j
v ‖2

L2(Fij)
(70)

where the second term of (70) can be bounded as before, see (64), (65) and
(81), and using that ρj ≤ C1ρi.
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It remains to estimate the second term of (68). In order to simplify the nota-
tion, we take Fij as the interval [0, H]. Note that

∫
Fji

(w
(i)
j )2

dist(s, ∂Fji)
ds ≤ C{

∫ H/2

0

(w
(i)
j )2

s
ds +

∫ H

H/2

(w
(i)
j )2

(H − s)
ds}. (71)

Let us estimate the first term on the right-hand side of (71). We have

∫ H/2

0

(w
(i)
j )2

s
ds =

∫ hj

0

(w
(i)
j )2

s
ds +

∫ H/2

hj

(u
(i)
j )2

s
ds

≤ C{
(
u

(i)
j (hj)

)2
+
∫ H/2

hj

(u
(i)
i )2 − (u

(i)
j )2

s
ds +

∫ H/2

hj

(u
(i)
i )2

s
ds}

≤ C{
(
u

(i)
j (hj)

)2
+

1

hj

‖ u
(i)
i − u

(i)
j ‖2

L2(Fji)
+

(
1 + log

Hj

hj

)
max
Fij

|u(i)
i |2}

≤ C{ 1

hj

‖ u
(i)
i − u

(i)
j ‖2

L2(Fij)
+
(
1 + log

Hi

hi

)(
1 + log

Hj

hj

)
‖ u

(i)
i ‖2)H1(Ωi)},

where u
(i)
j (hj)

2 has been estimated as in (81). The second term of (71) is

estimated similarly. Substituting these estimates into (71) and using that u
(i)
i

has zero face-average values we get

∫
Fji

(u
(i)
j )2

dist(s, ∂Fji)
ds≤C{

(
1 + log

H

h

)2

(‖ ∇u
(i)
i ‖2

L2(Ωi)
+ (72)

+
1

hj

‖ u
(i)
i − u

(i)
j ‖2

L2(Fij)
}.

In turn, substituting (69) and (72) into (68), and the resulting estimate into
(67), and using Lemma 2.1, we get

dj(ĨiD
(i)u(i), ĨiD

(i)u(i)) ≤ C
(
1 + log

H

h

)2

bi(u
(i), u(i)). (73)

Using (66) and (73) in (60), we get

dh(Iiu
(i), Iiu

(i)) ≤ C
(
1 + log

H

h

)2

bi(u
(i), u(i)).

Lemma 8.2 Suppose that Assumption 1 holds. Then, for u0 ∈ V0, V0 defined
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by (48), we have the following inequality

ah(I0u0, I0u0) ≤ C
(
1 + log

H

h

)2

b0(u0, u0) (74)

where C is independent of hi, Hi and the jumps of ρi.

Proof. By Lemma 2.1 and Lemma 4.1

ah(Ĥu, Ĥu) ≤ Cdh(Ĥu, Ĥu) ≤ Cdh(Hu,Hu), (75)

where dh(., .) is defined by (8). Hence, to prove the result (74) we can replace
ah(Ĥu, Ĥu) by dh(Hu,Hu) on the left-hand side of (74).

In order to simplify the notation we write u instead of u0 and put I0u0 =
I0u =

∑N
i=1 Iiu

(i), see (48) and thereafter. We have

d i(I0u, I0u) = ρi ‖ ∇{(Iiu
(i))i +

∑
Fij⊂∂Ωi

(Iju
(j))i} ‖2

L2(Ωi)
(76)

+
∑

Fij⊂∂Ωi

∫
Fij

ρij

lij

δ

hij

(
{(Iiu

(i))i + (Iju
(j))i} − {(Iiu

(i))j + (Iju
(j))j}

)2
ds.

To bound the second term on the right-hand side of (76) let us consider the
case where Fij is a master side. The proof for the case where Fij is a slave side
is similar; see also the arguments given in (63) and thereafter. Then using the
definition of Ii and D(i), we obtain

J =
∫

Fij

ρij

lij

δ

hij

(
{(Iiu

(i))i + (Iju
(j))i} − {(Iiu

(i))j + (Iju
(j))j

)2
ds (77)

=
∫

Fij

ρij

lij

δ

hij

(
{D(i)

i u
(i)
i −D

(i)
j u

(i)
j } − {D(j)

j u
(j)
j −D

(j)
i u

(j)
i }

)2
ds

=
∫

Fij

ρij

lij

δ

hij

(
{D(i)

i u
(i)
i −D

(i)
j u

(i)
j } − {D(j)

j u
(j)
j − 0}

)2
ds

=
∫

Fij

ρij

lij

δ

hij

(
{D(i)

i u
(i)
i − (D

(i)
j + D

(j)
j )u

(i)
j }+ D

(j)
j {u(i)

j − u
(j)
j }

)2
ds

=
∫

Fij

ρij

lij

δ

hij

{u(i)
i − u

(i)
j } −

∑
xj

v∈∂Fji

{u(i)
j (xj

v)− u
(j)
j (xj

v)}ϕj
v


2

ds

where ϕj
v is the nodal basis function corresponding to xj

v. Hence,

20



J ≤ C
∫

Fij

ρij

lij

δ

hij

{u(i)
i −u

(i)
j }2ds

+ Chj
ρij

lij

δ

hij

max
xv∈∂Fji

{u(i)
j (xj

v)− u
(j)
j (xj

v)}2. (78)

It remains to estimate the second term of (78). First note that u
(i)
ji = u

(j)
ji since

there are primal variables associated to the faces Fji ∈ Λi and Fji ∈ Λj; see
(48). Therefore,

|u(i)
j (xj

v)−u
(j)
j (xj

v)| ≤ |u(j)
j (xj

v)− u
(j)
ji |+ |u(i)

j (xj
v)− u

(i)
ji | (79)

≤C

(
1 + log

Hj

hj

) 1
2

‖ ∇u
(j)
j ‖L2(Ωi) +|u(i)

j (xj
v)− u

(i)
ji |.

To deduce the estimate on the first term on the right-hand side of (79) we have
used a Poincaré inequality and an L∞ bound for FEM functions, see [18]. The
second term of (79) is estimated as

|u(i)
j (xj

v)−u
(i)
ji | ≤ |u(i)

j (xj
v)− u

(i)
i (xi

v)|+ |u(i)
i (xi

v)− u
(i)
ij |+ |u(i)

ij − u
(i)
ji |

≤C{|u(i)
j (xj

v)− u
(i)
i (xi

v)|+
(
1 + log

Hi

hi

) 1
2

‖ ∇u
(i)
i ‖L2(Ωi) (80)

+h
− 1

2
j ‖ u

(i)
i − u

(i)
j ‖L2(Fij)},

where we have used a Poncaré inequality and an L∞ bound for FEM functions
to obtain the second term on the right-hand side of (80) and a Cauchy-Schwarz
inequality to obtain the third term of (80). To estimate the first term of (80),

let Qju
(i)
i be the L2−projection of u

(i)
i on the hj triangulation of Fji. We obtain

|u(i)
j (xj

v)− u
(i)
i (xi

v)| ≤ |u(i)
j (xj

v)−Qju
(i)
i (xi

v)|+ |Qju
(i)
i (xi

v)− u
(i)
i (xi

v)|

≤C{h−
1
2

j ‖ u
(i)
j − u

(i)
i ‖L2(Fij) +

(
1 + log

Hj

hj

) 1
2

‖ ∇u
(i)
i ‖L2(Ωi)}, (81)

where the first estimate was obtained from an inverse inequality and the sec-
ond from the approximation properties of the L2 projection and an L∞ bound
for FEM functions.

By Lemma 2.1 and Lemma 4.1 we can bound the term di(HĨiu
(i),HĨiu

(i)) by
bi(Ĥiu

(i), Ĥiu
(i)). Then we conclude that J of (77) can be estimated as

J ≤ C
(
1 + log

H

h

)
{bi(u

(i), u(i)) + bj(u
(j), u(j)}, (82)
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since ρij ≤ Cρi and hj ≤ Chij.

It remains to estimate the first term in (76). We have

‖ ∇{(Iiu
(i))i +

∑
Fij⊂∂Ωi

(Iju
(j))i} ‖2

L2(Ωi)

= ‖ ∇{(D(i)
i +

∑
Fij⊂∂Ωi

D
(j)
i )u

(i)
i +

∑
Fij⊂∂Ωi

D
(j)
i (u

(j)
i − u

(i)
i )} ‖2

L2(Ωi)

≤C{‖ ∇u
(i)
i ‖2

L2(Ωi)
+

∑
δij⊂∂Ωi

‖D(j)
i (u

(j)
i − u

(i)
i )‖2

H
1/2
00 (δij)

}, (83)

where the sum in (83) reduces to the slave sides Fij. From (48) we obtain

‖D(j)
i (u

(j)
i −u

(i)
i )‖2

H
1/2
00 (Fij)

≤ 2{‖D(j)
i (u

(j)
i − u

(j)
ij )‖2

H
1/2
00 (Fij)

+ ‖D(j)
i (u

(i)
i − u

(i)
ij )‖2

H
1/2
00 (Fij)

}(84)

and therefore, the first term of (84) is estimated as

ρi‖D(j)
i (u

(j)
i − u

(j))
ij )‖2

H
1/2
00 (Fij)

≤ 2ρi{‖D(j)
i (u

(j)
i − u

(j)
j )‖2

H
1/2
00 (Fij)

+ ‖D(j)
i (u

(j)
j − u

(j)
ji )‖2

H
1/2
00 (Fij)

+‖D(j)
i (u

(j)
ji − u

(j)
ij )‖2

H
1/2
00 (Fij)

}

≤Cρi{
1

hj

‖ u
(j)
i − u

(j)
j ‖2

L2(Fji)
+

(
1 + log

Hj

hj

)2

‖ ∇u
(j)
j ‖2

L2(Ωj)
}

≤C

(
1 + log

Hj

hj

)2

bj(u
(j), u(j)), (85)

since ρi ≤ C1ρj when Fij is a slave side, and in view of Lemma 2.1. The second
term on the right-hand side of (84) is bounded by

ρi‖D(j)
i (u

(i)
i − u

(i)
ij )‖2

H
1/2
00 (Fij)

≤Cρi

(
1 + log

Hi

hi

)2

‖ ∇u
(i)
i ‖L2(Ωi)

≤
(
1 + log

Hi

hi

)2

bi(u
(i), u(i)). (86)

Using (85) and (86) in (84) and the resulting inequality in (83) we see that
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ρi ‖ ∇{(Iiu
(i))i +

∑
Fij⊂∂Ωi

(Iju
(j))i} ‖2

L2(Ωi)
≤C

(
1 + log

H

h

)2

{bi(u
(i), u(i))

+ bj(u
(j), u(j))}.

This estimate and (82), see (76), imply that

di(I0u0, I0u0) ≤ C
(
1 + log

H

h

)2

{bi(u
(i), u(i)) + bj(u

(j), u(j))}.

Summing this over i and using Lemma 2.1 and Lemma 4.1 we get (74).

9 Smaller global spaces

In Section 6 we have defined the coarse space with a primal variable associated
to each face F`k ∈ Λi. In this case the number of constraints per subdomain is
twice the number of edges of ∂Ωi for floating subdomains Ωi. In this section
we discuss choices of subsets of Λi which imply smaller coarse problems and
still maintain the bound (50) of Theorem 7.1.

Recall that a face across Ωi and Ωj has two sides, the side contained in ∂Ωi,
denoted by Fij, and the side contained in ∂Ωj, denoted by Fji. Let Λ̃i, i =
1, . . . , N , be such that for all pairs of neighboring subdomains Ωi and Ωj the
subset Λ̃i ∩ Λ̃j contains one and only one face from each pair {Fij, Fji}, i.e.,
Fij or Fji. We denote the chosen face by λij = λji. For instance, we can choose
Λ̃i as the set of master faces λij associated to Ωi.

After choosing Λ̃i, the local spaces Vi = Vi(Γi), i = 1, . . . , N, are defined as the
subspaces of Wi of functions with zero face-average values on all faces λ`k ∈ Λ̃i

while the spaces V0i are defined as V0i = V0i(Γi) = Span{Φ(i)
λ`k

: λ`k ∈ Λ̃i} ⊂ Wi

where the functions Φ
(i)
λik

are defined as in Section 6 replacing Λi by Λ̃i in each
subdomain; see (47).

From now on we will use the notation

u
(i)
λ`k

=
1

|λ`k|

∫
λ`k

u(i)ds,

where u(i) ∈ Wi. The global coarse space V0 is now defined as the set of all
u0 = {u(i)

0 } ∈
∏N

i=1 V0i(Γi) such that for i = 1, . . . , N , we have

u
(i)
0λij

= u
(j)
0λij

∀λij ∈ Λ̃i. (87)
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Recall that u
(i)
0 is defined locally. Then we have the following possible cases of

continuity with respect to the primal variables:
Case 1 λij = λji = Fij. This case imposes continuity of the face-average val-

ues of u
(i)
0 and u

(j)
0 on Fij; see (87).

Case 2 λij = λji = Fji. This case imposes continuity of the face-average val-
ues on Fji.

Example 9.1 Consider the domain Ω = (0, 1)2 and divide it into N = M×M
squares subdomains Ωi which are unions of fine elements, with H = 1/M . We
note that for floating subdomains Ωi, Λi has eight coarse basis functions while
Λ̃i has only four coarse basis functions.

The bilinear forms ah, bi and the operators Ii, i = 1, . . . , N, and the operator
I0 are defined in Section 5 and Section 6.

We now show that with these new local and global spaces Theorem 7.1 still
holds. The proof is basically the same as the one given in Section 7 and Sec-
tion 8 with some minor modifications depending on which of the above cases
is considered and also on a modification of the Poincaré inequality.

Theorem 9.1 If Assumption 1 holds, then there exists a positive constant C
independent of hi, Hi and the jumps of ρi such that

ah(u, u) ≤ ah(Tu, u) ≤ C
(
1 + log

H

h

)2

ah(u, u) ∀u ∈ V, (88)

where T is defined in (40), the local spaces Vi, i = 1, . . . , N, are defined above
in this section and the global space V0 is defined using (87). Here log H

h
=

maxi log Hi

hi
.

Proof. We now mention the main modifications of the proof of the three key
assumptions of Lemma 5.1.

Assumption(i) Let u = {ui}N
i=1 ∈ V (Γ). Define u

(i)
0 ∈ V0i(Γi) by

u
(i)
0 =

∑
λ`k∈Λ̃i

(
1

|λ`k|

∫
λ`k

uds
)
Φ

(i)
λ`k

(89)

and proceed as in the proof of Theorem 7.1.

Assumption(ii) It is the same argument given to verify Assumption(ii) in the
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proof of Theorem 7.1.

Assumption(iii) We modify the proof of Lemma 8.2 and Lemma 8.1 as follows:

For the proof of Lemma 8.2 we consider the following cases to obtain a bound
for the left-hand side of (79),

Case 1 λij = λji = Fji. In this case we use the same argument as in the proof
of Lemma 8.2 to estimate the left-hand side of (79).

Case 2 λij = λji = Fij. In this case we estimate

|u(i)
j (xj

v)−u
(j)
j (xj

v)| ≤
|u(i)

j (xj
v)− u

(i)
Fji
|+ |u(j)

j (xj
v)− u

(j)
Fji
|+ |u(i)

Fji
− u

(j)
Fji
|. (90)

The first and second term of (90) can be bounded as in Case 1. The third term

of (90) is bounded as follows: since λij = λji = Fij we have that u
(i)
Fij

= u
(j)
Fij

;
see (87). Then

|u(i)
Fji
− u

(j)
Fji
| ≤ |u(i)

Fji
− u

(i)
Fij
|+ |u(j)

Fij
− u

(j)
Fji
| (91)

and we obtain

|u(i)
Fji
− u

(i)
Fij
| ≤ CH

− 1
2

j ‖ u
(i)
Fji
− u

(i)
Fij

‖L2(Fij)≤ Ch
− 1

2
j ‖ u

(i)
ji − u

(i)
ij ‖L2(Fij) .

An analogous bound holds also for the second term of (91); see (79).

For the proof of Lemma 8.1 we can apply Poincaré inequality only in the case
which λij = Fij ⊂ ∂Ωi. If this is not the case, i.e., if λij = Fji ⊂ Ωj, we can
still bound the H1(Ωi) norm by the seminorm using the following argument:
if u(i) ∈ Vi and λij = Fji then u(i) has zero face-average value on Fji and
therefore,

‖ ui ‖L2(Ωi)≤‖ ui − u
(i)
Fij

‖L2(Ωi) + ‖ u
(i)
Fij
− u

(i)
Fji

‖L2(Fij)

≤‖ ∇ui ‖L2(Ωi) +
1

H
1/2
i

‖ u
(i)
ij − u

(i)
ji ‖L2(Fij) .

Having modified the proof of Lemma 8.2 and Lemma 8.1, then Assumption(iii)
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follows.

10 Numerical experiments

In this section we present numerical results for the preconditioner introduced
in (40) and show that the bounds of Theorem 7.1 and Theorem 9.1 are reflected
in the numerical tests. In particular we show that the Assumption 1, see (41),
is necessary and sufficient.

We consider the domain Ω = (0, 1)2 and divide Ω into N = M × M square
subdomains Ωi which are unions of fine elements, with H = 1/M . Inside each
subdomain Ωi we generate a structured triangulation with ni subintervals in
each coordinate direction, and apply the discretization presented in Section 2
with δ = 4. This value δ = 4 was chosen because numerically it was observed
that the L2 approximation error seems to stabilize when δ becomes larger.
The minimum value of δ that gives a positive definite system is δmin = 1.565.
In the numerical experiments we use a red-black checkerboard type subdo-
main partition. On the black subdomains we let ni = 2 ∗ 2Lb and on the red
subdomains we let ni = 3 ∗ 2Lr , where Lb and Lr are integers denoting the
number of refinements inside each subdomain Ωi. Hence, the mesh sizes are
hb = 2−Lb

2M
and hr = 2−Lr

3M
, respectively. We solve the second order elliptic

problem −div(ρ(x)∇u∗(x)) = 1 in Ω with homogeneous Dirichlet boundary
conditions. In the numerical experiments, we run PCG until the l2-norm initial
residual is reduced by a factor of 106.

In the first test we consider the constant coefficient case ρ = 1. We consider
different values of M × M coarse partitions and different values of local re-
finements Lb = Lr, therefore, keeping constant the mesh ratio hb/hr = 3/2.
We place the masters on the black subdomains. We note that the interface
condition (41) is satisfied. Table 1 lists the number of PCG iterations and in
parenthesis the condition number estimate of the preconditioned system in
the case we choose eight coarse functions per subdomain. As expected from
the analysis, the condition numbers appear to be independent of the number
of subdomains and seem to grow by a logarithmic factor when the size of the
local problems increases. Note that in the case of continuous coefficients, the
Theorem 7.1 and Theorem 9.1 are valid without any assumptions on hb and
hr if the master sides are chosen on the larger meshes.
Table 2 is the same as before, however, now we have chosen Λ̃i as the set of
master faces of Ωi. In this case we have four coarse basis functions in each
subdomain. We note that even though the coarse problems are smaller, the
results are very similar to the ones presented in Table 1 where the coarse
problems are larger. As in the case of Table 2 the smallest eigenvalue of the

26



preconditioned operator is 1.

We now consider the discontinuous coefficient case where we set ρi = 1 on the
black subdomains and ρi = µ on the red subdomains. The subdomains are
kept fixed at 4× 4, i.e., 16 subdomains. Table 3 lists the results of computa-
tions for different values of µ and for different levels of refinement on the red
subdomains. On the black subdomains ni = 2 is kept fixed. The masters are
placed on the black subdomains. It is easy to see that the interface condition
(41) holds if, and only if, µ is not large, which seems to be in agreement with
the results in Table 3.
We repeat the same experiment as in Table 3 but this time with four coarse
local basis functions associated to the master sides of the subdomain. The
results are presented in Table 4.

M ↓ Lr → 0 1 2 3 4 5

2 12 (5.7) 14 (6.7) 15 (7.5) 18 (10.6) 19 (14.5) 19 (19.0)

4 14 (5.8) 18 (8.5) 21 (11.7) 24 (15.2) 27 (19.2) 29 (23.9)

8 15 (5.9) 20 (9.1) 24 (12.3) 27 (15.8) 31 (19.6) 34 (24.0)

16 15 (6.0) 20 (9.4) 25 (12.8) 28 (16.3) 31 (20.1) 35 (24.5)

32 15 (6.0) 20 (9.3) 25 (12.8) 28 (16.3) 32 (20.2) 35 (24.6)

Table 1
PCG/BDDC iteration counts and condition numbers for different sizes of coarse
and local problems and constant coefficients ρi with 8 coarse basis functions per
subdomain.

M ↓ Lr 0 1 2 3 4 5

2 13 (5.7) 15 (6.7) 16 (7.5) 18 (10.7) 19 (14.5) 19 (18.9)

4 15 (5.8) 19 (8.5) 22 (11.7) 24 (15.1) 27 (19.2) 29 (23.8)

8 17 (6.1) 21 (9.1) 25 (12.3) 28 (15.7) 31 (19.6) 34 (24.0)

16 18 (6.1) 23 (9.4) 27 (12.8) 30 (16.3) 32 (20.1) 35 (24.5)

32 18 (6.1) 24 (9.4) 27 (12.8) 30 (16.3) 32 (20.2) 35 (24.6)

Table 2
PCG/BDDC iteration counts and condition numbers for different sizes of coarse
and local problems and constant coefficients ρi with 4 coarse basis functions per
subdomain associated to its master faces.
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µ ↓ Lr → 0 1 2 3 4 5

1000 85(2099) 165(2822) 263(3746) 282(4758) 287(5922) 310(7168)

10 28(24.4) 37(32.9) 43(42.3) 47(52.8) 51(64.8) 53(77.7)

0.1 16(6.6) 17(6.8) 16(6.8) 17(6.8) 17(6.9) 17(6.9)

0.001 16(6.96) 16(7.12) 16(7.16) 16(7.25) 17(7.38) 18(7.50)

Table 3
PCG/BDDC iteration counts and condition numbers for different values of coeffi-
cients and the local mesh sizes on the red subdomains only. The coefficients and the
local mesh sizes on the black subdomains are kept fixed. The subdomains are also
kept fixed to 4× 4 and 8 coarse basis functions in each subdomain are used.

µ ↓ Lr → 0 1 2 3 4 5

1000 84(2127) 133(2905) 188(3827) 254(4838) 326(5980) 384(7205)

10 32(24.7) 40(33.4) 45(43.0) 49(53.5) 53(65.3) 54(78.0)

0.1 15(6.9) 16 (6.8) 16(6.8) 17 (6.8) 17 (6.9) 17 (7.0)

0.001 15 (7.4) 15 (7.3) 16 (7.2) 17 (7.3) 17 (7.42) 18 (7.52)

Table 4
PCG/BDDC iteration counts and condition numbers for different values of coeffi-
cients and the local mesh sizes on the red subdomains only. The coefficients and the
local mesh sizes on the black subdomains are kept fixed. The subdomains are also
kept fixed to 4× 4 and 4 coarse basis functions in each subdomain are used. Master
faces are chosen.

11 Conclusions and Extensions

In this paper several BDDC methods with different coarse spaces, for DG
discretization of second-order elliptic equations with discontinuous coefficients,
have been designed and analyzed. It has been proved that the methods are
almost optimal and very well suited for parallel computations. Their rates
of convergence are independent of the parameters of the triangulations, the
number of substructures and the jumps of the coefficients. The numerical tests
confirm the theoretical results.

In 2-D, the methods are based on choosing D
(i)
i to be equal to one at the

vertices of Ωi. The methods can be extended to 3-D by considering D
(i)
i to be

equal to one at nodal points of edges and vertices of the Ωi. In this case the
Theorem 7.1 and Theorem 9.1 hold. The methods also can be generalized to
the case where κi = maxxρi(x)

mixxρi(x)
is not large. In this case, define constants ρ̄i as

the integral average of the ρi(x) over the Ωi. The ρ̄i are used to determine
the mortar and slave sides, and can be used to define the weighting matrices
D(i) as well. For the bilinear forms bi(·, ·) we exact solvers where ρi(x) are
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considered rather than ρ̄i. In this case, the Theorem 7.1 and Theorem 9.1
are valid, with lower bound equal to one, and upper bound now involving
a constant C depending linearly on κi. The case where the ρi(x) have large
variations inside the Ωi will be discussed elsewhere. Finally, we remark that the
condition number of the preconditioned systems deteriorates as we increase
the penalty parameters δ to large values.
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