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Abstract. We are interested in solving systems of balance equations under the approxi-
mation of local thermodynamical equilibrium except at very localized locations. This equi-
librium occurs for states on a stratified variety called the “thermodynamical equilibrium
variety”, which is obtained as the domain of the zero-order approximation of an asymptotic
expansion for these balance laws. Waves far from thermodynamical equilibrium occur in
thin regions of physical space and they form shocks connecting sheets of the stratified va-
riety. In this scenario, we develop the general theory for fundamental solutions of a large
class of systems of balance equations. We study all bifurcation loci, such as coincidence and
inflection locus and develop a systematic approach to solve problems described by similar
equations.

For concreteness, we exhibit the bifurcation theory for a representative system with four
equations. This class of equations models thermal flow with mass interchange between
phases in porous media appearing in oil recovery. We find the complete solution of the
Riemann problem for two-phase thermal flow in porous media with two chemical species;
to simplify the physics, the liquid phase consists of a single chemical species. We give an
example of steam and nitrogen injection into a porous medium initially saturated with water,
with applications to geothermal energy recovery.

1. Introduction

We are interested in systems of balance equations modeling flows in porous media with
total mass conservation. For such flows the source terms represent mass transfer of chemical
species between phases with no net gain or loss of chemical species mass; these models are
called compositional models in petroleum science, see [10, 19, 24]; there is also an equation
representing conservation of energy. In these systems the total volume is not conserved, so
there exists an independent unknown u representing volumetric flow rate, which appears in
a particular way within the flux terms and is not constant, generically. The systems can be
written in the following form for j = 1, · · · , l and i = l + 1, · · · ,m + 1 :

∂

∂t
Gj(V) +

∂

∂x
uFj(V) = q̂j(V)/ε, (1.1)

∂

∂t
Gi(V) +

∂

∂x
uFi(V) = 0. (1.2)

The dependent variables in (1.1)-(1.2) are V ∈ Ω ⊂ Rm and u ∈ R. This is a multi-scale
problem, because ε is very small; this quantity is the time scale of physical phase changes
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that are active in non-equilibrium regions. The source terms q̂j(V)/ε represent rates of mass
transfer of chemical species between different phases.

The implicit equations (q̂1, q̂2, · · · , q̂l, 0, · · · , 0) = 0 in the system (1.1)-(1.2) represent
equilibrium states, which form a stratified variety. On each smooth sheet of this variety,
the system reduces to a simpler system of conservation laws with fewer variables, which
are called the “primary variables” of this sheet. In the language of statistical physics each
sheet is called a phase; we cannot adopt this nomenclature because this word has a different
meaning in the context of flows in porous media. We call each sheet (together with its
simpler evolution system) a “physical configuration”. This equilibrium variety is continuous
and piecewise smooth; it is very important because it represents the locus of states under
local thermodynamical equilibrium. In this work we will solve (1.1)-(1.2) on this locus.

In (1.1)-(1.2), generically, we have saturation variables, thermodynamical variables and
the speed u. In our class of models, we assume that pressure variations are so small that they
do not affect gas volume, which varies due to temperature or composition changes; this is a
realistic assumption for many flows in porous media, see [19]. So the pressure is fixed and the
fluid phases main thermodynamical variables are the temperature T and the compositions of
each phase. We assume that the pores in the rock are fully filled with fluids (one of the fluids
is gaseous). Different fluid phases do not mix microscopically. Each saturation variable in
the system is the fraction of the total volume of a fluid phase relatively to the total volume
of the fluid phases. If we denote the saturations by s1, s2, · · · , sf , where f is the number
of immiscible phases, e.g., water, oil or gas, we know that, see [19]:

s1 + s2 + · · ·+ sf = 1. (1.3)

Depending on its nature, a chemical species may exist in a single phase or it can coexist in
several phases. The quantity of each chemical species that exists in each phase is described
by concentration variables, which are denoted by cij, i.e., chemical species i in the phase
j. In (1.1)-(1.2) there is an equation for each cij. The total concentration ci of a chemical
species is related to the concentrations per volume of this species in the phases in which it
may exist by the following expression [19]:

ci = ci1s1 + ci2 + · · · cifsf . (1.4)

For example the chemical species H2O can exist in two physical phases: gas (as steam in
the gaseous water) and liquid water. Thus there is a equation for the steam mass balance
and another equation for the liquid water balance, both in the form (1.1); the concentration
of total water is given by:

cw = cwlsw + cwgsg.

In our notation, the number of balance equations that represents mass transfer is l. Equa-
tions in (1.1) represent the balance of each chemical species in different phases. Equations
in (1.2) represent the conservation of chemical species existing in a single phase; there is
also an equation representing the conservation of total energy. The remaining m − l + 1
equations represent the conservation of chemical species existing in a single phase, where
there is no mass transfer, as well as one equation of the total conservation of energy. The
remaining variables in the system are temperature T , which is the main unknown in the
energy conservation equation, and the Darcy speed u.
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We are interested in the Riemann-Goursat problem with initial and boundary data of the
form: {

(V , u)L, if x = 0, t ≥ 0,
(V , ·)R, if x > 0, t = 0.

(1.5)

The injection point is x = 0. If the characteristic speeds are positive, we may expect that this
problem can be regarded as a Riemann problem with initial data (V , u)L for x < 0 defined
by the injection boundary data at x = 0, because the shock trajectories and rarefactions
fans in the solution have positive slopes in the (x, t) plane. However, for certain balance
laws, such as systems modeling combustion problems, there are backward moving reaction
waves, but this type of models are not considered here, see [26]. We prove that it suffices to
provide only one Darcy speed as boundary data. Here we choose to specify uL, however, it
is also possible to give uR instead of uL.

It is well known that conservation laws with Riemann data exhibit solutions that are
constant along lines with constant slope x/t, i.e., the solutions are self-similar. In the plane
(x, t), the rarefactions are continuous solutions, while the shocks are the discontinuous ones.
Physical considerations indicate that in our model rarefaction waves occur typically within
each physical configuration, where Eqs. (1.1)-(1.2) reduce to a corresponding system of
conservation laws. We assume that there is very fast mass transfer in the infinitesimally
thin space between regions in distinct physical configurations, so we propose shocks linking
such configurations. Therefore, we still seek self-similar solutions for (1.1)-(1.2), (1.5); such
self-similarity is established in Section 4.2.

An innovative feature of our model deals with phase transitions. In [7], Colombo et. al.
studied a problem with phase transitions in 2×2 systems of conservation laws. Their physical
domain was formed by two disjoint sub-domains, which Colombo called phases. The sub-
domains are physical configurations in the present work. The phase transition is the jump
in the solution with left and right states belonging to different sub-domains. Our model
is physically more adequate because it includes also infinitesimally small phase transitions,
because the sub-domains may be adjoining, as they often are in realistic models.

Isaacson, Marchesin, Plohr and Temple developed a very general bifurcation theory to ob-
tain the Riemann solution for conservation laws in [11, 12, 13]. In our work, we generalize that
theory for the zero-order approximation of balance equations under local thermodynamical
equilibrium, with variable velocity u.

In Proposition 4.2 we summarize the theory on the solution structure and show that the
Riemann solution can be completely obtained utilizing the spaces of primary variables, i.e.,
in the sheets of the equilibrium variety. Once the rarefaction and shock waves are found
in the spaces of primary variables, he secondary variable u can be recovered in terms of
the primary variables. In [22], Mota et. al. examined the internal structure of a single
combustion wave in a model where the Darcy speed u changes; in the theory presented here
u varies in all waves in the flow. Moreover, we prove that if a sequence of waves and states
solves the Riemann problem in the primary variables for a given uL > 0, then this sequence
when properly scaled provides the solution in the (x, t) plane for any other uL > 0.

In Section 2, by using singular perturbation techniques on the model equation we obtain
the formal zero-order approximation solution; this is the asymptotic expansion that motivates
our approach. In Section 3, we present a concrete example for the flow of nitrogen, steam
and liquid water in a porous medium. This is a representative and interesting example of our
theory because it exhibits a non-trivial stratified variety, as well as a new type of wave. In
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Section 4, we prove generalizations of the Triple Shock Rule [11] and of the Bethe-Wendroff
theorem. These results are important to compare the speed of shocks of different families
and obtain Riemann solutions for general data on the local thermodynamical equilibrium
variety. As an example, we introduce the theory for the Riemann problem for a 4x4 system
with two chemical species and one mass transfer term, related to either evaporation or
condensation. However, this theory is clearly valid for more general systems of equations
with more chemical species or more physical configurations. This theory generalizes the
classical work of Buckley-Leverett designed for incompressible isothermal two-phase flow in
porous media.

In Section 4.2 we define the shocks connecting different configurations. In Section 5, we
present the fundamental theorems for the bifurcation theory. In Section 6, we obtain the ele-
mentary waves in each physical configuration: shocks, rarefactions or contact discontinuities.
A new fact is the presence of a rarefaction wave associated to evaporation in the two-phase
configuration. We believe that the solution of the system of balance laws (1.1)-(1.2) tends
to the solution on the stratified variety for large times.

In Section 7, we present the Riemann solution for the problem of geothermal energy
recovery at moderate temperature. Injecting water and nitrogen at moderate temperature
into a hot porous rock, the water in the mixture evaporates and rock thermal energy can be
recovered. A new feature of this recovery method is that it can be used also for rock below
the water boiling temperature (i.e., even if the rock is not very hot). In Section 8, we draw
the conclusions. In Appendix A, we present the appropriate thermodynamic laws used in
the model used as example, which provide constraints between thermodynamic variables.

2. The models

Systems of type (1.1)-(1.2) model thermal compositional flows in porous media. In such
systems the pair W = (V , u) in Ω ⊂ Rm+1 is called state variable. G and F are the vector-
valued functions G = (G1,G2, · · · ,Gm+1)

T : Ω −→ Rm+1 and F = (F1,F2, · · · ,Fm+1)
T :

Ω −→ Rm+1, where uFi is the flux for the conserved quantity Gi and ∂Gi/∂t is the cor-
responding accumulation term, for i = 1, 2, · · ·m + 1. On the right hand side the first l
components of the source term vector (q̂1, q̂2, · · · , q̂l, 0, · · · , 0)/ε : Ω −→ Rm+1 represent
mass transfer between phases of each chemical species, while the l+1 to m vanishing entries
of source vector indicate the conservation of chemical species that remain in a single phase.
Finally, the last component (m + 1) indicates conservation of total energy. The conserved
quantities, fluxes and source terms are C2 in the whole domain Ω. Physics dictates that the
source terms are defined to vanish precisely for states W in local thermodynamic equilibrium
described by equations of states and thermodynamical constraints.

Generically, in the system (1.1)-(1.2), each equation in (1.1) represents the mass balance
of a chemical species in each phase while each but the last equation in (1.2) represents the
mass conservation of a chemical species that appears in a single phase. It is useful to rewrite
the system (1.1)-(1.2) into equations for total conservation of each chemical species in all
phases. For j = 1, 2, · · · ,m−n and i = m−n+1,m−n+2, · · · ,m+1 this new system can
be written from (1.1)-(1.2) in a minimal form. This procedure is used in Petroleum Science,
see [19], in order to minimize the number of balance equations in (1.1) and maximize the
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number of conservation laws in (1.2); see Appendix B for more details. Thus we obtain:

∂

∂t
Gj(V) +

∂

∂x
uFj(V) = qj/ε, (2.1)

∂

∂t
Gk(V) +

∂

∂x
uFk(V) = 0, (2.2)

with
Gj = (SG)j , Fj = (SF)j , Gk = (EG)k and Fk = (EF)k , (2.3)

where G = (G1, · · · ,Gl,Gl+1, · · · ,Gm+1)
T and F = (F1, · · · ,Fl,Fl+1, · · · ,Fm+1)

T . The com-
plementary matrices S and E are described in Appendix B.

For problems with important applications, local thermodynamical equilibrium is obtained
quickly, so the ε scale is very small (10−5 or less) and the source terms are large compared
to the prevailing scale; thus it is useful to apply singular perturbation theory to the system
(2.1)-(2.2). We assume that V and u can be expanded as:

V = V0 + εV1 + ε2V2 + · · · . (2.4)

u = u0 + εu1 + ε2u2 + · · · . (2.5)

Substituting (2.4) in (2.1)-(2.2) we have:

∂

∂t
Gj(V0 + εV1 + · · · ) +

∂

∂x

(
u0 + εu1 + · · · ) Fj(V0 + εV1 + · · · ) = qj(V0 + εV1 + · · · )/ε,

(2.6)

∂

∂t
Gk(V0 + εV1 + ε2V2 + · · · ) +

∂

∂x

(
u0 + εu1 + · · · ) Fk(V0 + εV1 + ε2V2 + · · · ) = 0. (2.7)

Multiplying (2.6) by ε and setting ε = 0 we obtain the lowest order approximation for
j = 1, 2, · · · ,m− n and i = m− n + 1,m− n + 2, · · · ,m + 1 :

qj(V0) = 0, (2.8)

∂

∂t
Gi(V0) +

∂

∂t
uFi(V0) = 0. (2.9)

Typically, the thermodynamical relationships and equations of state play a central role in
multiphase models (2.1)-(2.2), which are represented here implicitly by qj(V0) = 0. Each
physical configuration, or actually a physical configuration under local thermodynamical equi-
librium or quasi-equilibrium, is a sheet of the equilibrium variety. This equilibrium variety
is q(V0) =

(
q1, q2, · · · , qn−m

)
= 0. It is continuous and smooth by parts, i.e., it is a stratified

variety, where the local thermodynamical equilibrium is enforced by relationships among the
quantities V0. We denote these variables as V and the respective state W = (V, u). Note
that V has a different meaning in each sheet.

There are three groups of variables in each sheet of the variety, the basic variables V , or
“primary variables” that are unknowns of (2.10). Notice that the system is “elliptic” in the
variable u in the sense that perturbations in u propagate instantaneously; it turns out that
u can be found from the primary variables, so we call u a “secondary variable”; and the
“trivial variables” are constant or they can be recovered from other variables in a simple
way by relationships expressing local thermodynamical equilibrium in each of the C2 parts
of the variety; they complement the variables in V . Since in this paper we are interested
only in the problems with states at local thermodynamical equilibrium, which is formally
the zero-order approximation, we drop the superscript zero from now on.



6 LAMBERT AND MARCHESIN

Now the variables V lie in the equilibrium variety, so, by abuse of notation, we indicate
the dependence of the accumulation and the flux functions only on the primary variables V ,
i.e., we use G(V ) and F (V ) representing G(V) and F (V) for a sheet, so the system (2.9) can
be rewritten in each sheet of this variety in the unknowns W = (V, u) as:

∂

∂t
Gi(V ) +

∂

∂t
uFi(V ) = 0. (2.10)

Notice that G and F are C2 in each sheet, but they are only continuous on the variety.
Splitting of thermodynamical from hydrodynamical variables in systems of conservation

laws modeling certain isothermal flows in a porous medium appeared in [25].

3. Configurations in a specific model

Multiphase models (2.1)-(2.2) can be used to model steam injection in a reservoir, which
is widely studied in Petroleum Engineering, see [3]. In [15], we study the steam and water
injection in several proportions into a porous medium containing steam (gaseous H2O), water
(liquid H2O) or a mixture. In [17], we solve a model for groundwater remediation. As an
example of the theory developed in this paper, we use it in another application, the recovery
of geothermal energy. We consider the injection of steam and nitrogen in a one-dimensional
horizontal porous rock, where we disregard gravity effects and heat conductivity. The rock
has constant porosity ϕ and absolute permeability k (see Appendix A). We assume that the
fluids are incompressible. This is a good approximation for liquid water; for the gaseous
mixture of steam and nitrogen we assume that the gas density does not change due to
pressure, but it is expansible and the density is a function of the temperature only; in other
words, we assume that the pressure variations along the core are so small compared to the
total pressure that they do not affect the physical properties of the gas phase.

3.1. The model for our example. Darcy’s law for multiphase flows relates the pressure
gradient in each fluid phase with its seepage speed:

uw = −kkrw

µw

∂p

∂x
, ug = −kkrg

µg

∂p

∂x
. (3.1)

The water and gas relative permeability functions krw(sw) and krg(sg) are considered to be
functions of their respective saturations (see Appendix A); µw and µg are the viscosities of
liquid and gaseous phases. Since we are interested in large scale problems, with flow rate
far from zero we have disregarded capillarity and diffusive effects. The “fractional flow” for
water and steam are saturation dependent functions defined by:

fw =
krw/µw

krw/µw + krg/µg

, fg =
krg/µg

krw/µw + krg/µg

. (3.2)

The saturations sw and sg add to 1. By (3.2) the same is true for fw and fg. Using Darcy’s
law (3.1) and (3.2) yield:

uw = ufw, ug = ufg, where u = uw + ug is the total or Darcy velocity. (3.3)
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We write the equations of mass balance for water (liquid H2O), steam (gaseous H2O) and
nitrogen (gaseous N2) as:

∂

∂t
ϕρW sw +

∂

∂x
ufwρW = +qg−→a,w, (3.4)

∂

∂t
ϕρgwsg +

∂

∂x
ufgρgw = −qg−→a,w, (3.5)

∂

∂t
ϕρgnsg +

∂

∂x
ufgρgn = 0, (3.6)

where qg−→a,w is the liquid water mass source term (i.e., the condensation rate of steam
from the gaseous to the water phase); here ρW is the water density, which is assumed to be
constant, ρgw (ρgn) denote the concentration of steam (nitrogen) in the gaseous phase (mass
per unit gas volume).

Globally there are 4 unknowns (T , sg, ψgw and u) and 3 equations; it is necessary to specify
another equation, representing energy conservation; we formulate it in basis of enthapies,
see [1, 2], as we ignore adiabatic compression and decompression effects. We neglect heat
conduction and heat losses to the surrounding rock. Thus the energy conservation is given
by:

∂

∂t
ϕ

(
Ĥr + Hwsw + Hgsg

)
+

∂

∂x
u
(
Hwfw + Hgfg

)
= 0, (3.7)

here Ĥr = Hr/ϕ and Hr, HW and Hg are the rock, the liquid water and the gas enthalpies
per unit volume; their expressions can be found in Appendix A.

Notice that the system (3.4)-(3.5) is of form (2.1)-(2.2). We can rewrite equations (3.4)-
(3.5) using (3.4) and the conservation of total mass of water by adding (3.4) and (3.5):

∂

∂t
ϕ (ρW sw + ρgwsg) +

∂

∂x
u (fwρW + ρgwfg) = 0. (3.8)

So the system of equations reduces to (3.4), (3.6)-(3.8); this is an example of the reduction
from the form (1.1)-(1.2) to (2.1)-(2.2).

3.2. Physical configurations in the example. There are three main different physical
configurations: a single-phase liquid configuration, spl, with water; a single-phase gaseous
configuration, spg, with steam and nitrogen; and a two-phase configuration, tp, with a
mixture of liquid water, gaseous nitrogen and steam at boiling temperature. The latter is
specified by the concentration of nitrogen in the gas. We assume that each configuration is
in local thermodynamical equilibrium, so we can use Gibbs’ phase rule, fG = c−p+2 where
fG represents the Gibb’s number of thermodynamical degrees of freedom, c and p are the
number of chemical species and phases. Since in our thermodynamical model the pressure
is fixed, the remaining number of degrees of freedom is f = fG − 1.

3.2.1. Single-phase gaseous configuration - spg. There are two chemical species (N2 and
H2O) and one gaseous phase, i.e., c = 2 and p = 1, so the number of degree of freedom is
f = 2: temperature and gas composition. This fact allows to define the steam and nitrogen
gas compositions ψgw and ψgn as follows, see [3, 17]:

ψgw = ρgw/ρgW (T ) and ψgn = ρgn/ρgN(T ), so ψgw + ψgn = 1. (3.9)

These gas fractions are related to compositions cij (Eq. (1.4)); we assume that in the nitrogen
and steam there are no effects due to mixing so that the volumes of components are additive.
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We rewrite equations (3.4), (3.6)-(3.8) using Eqs. (3.9.a) and (3.9.b). Since sw = 0, using
Eq. (3.2.a) and (A.9.a), we have fw = 0 and fg = 1, so the left hand side of Eq. (3.4)
disappears and qg−→a,w vanishes. The system (3.5)-(3.7) becomes:

∂

∂t
ϕρgW ψgw +

∂

∂x
uρgW ψgwT = 0, (3.10)

∂

∂t
ϕρgNψgn +

∂

∂x
uρgNψgn = 0, (3.11)

∂

∂t
ϕ

(
Ĥr + ψgwHgW + ψgnHgN

)
+

∂

∂x
u
(
ψgwHgW + ψgnHgN

)
= 0; (3.12)

where we have defined HgW (T ) and HgN(T ):

HgW (T ) =
MW pathgW

RT
and HgN(T ) =

MNpathgN

RT
, (3.13)

where MN , MW are the constant molar masses of nitrogen and water; R is the universal
gas constant; pat is the atmospheric pressure; hgW and hgN are functions of T given in
(A.1)-(A.2).

Since sw = 0, Eq. (3.4) is trivially satisfied, so the system (3.10)-(3.12) is exact rather
than only the zero-order approximation of the system (3.4), (3.6)-(3.8).

Remark 3.1. The spg configuration consists of a 2-Dimensional (2-D) set of triplets (sw =
0, T, ψgw) on a sheet of a stratified variety. The states should satisfies ψgw ≤ Γ(T ) ≡
ρgw(T )/ρgW (T ), with ρgw and ρgW given by (A.7.a) and (A.8.a), see Figure 3.1 and [3, 17].
Here, V = (T, ψgw) are the primary variables, u is the secondary variable of the system
(3.10)-(3.12) and sw = 1 and ρgn = 1− ρgw are the trivial variables.

Physical region

G

Single-phase liquid configuration

Single-phase gaseous configuration

Two-phase configuration

G

T/K

Figure 3.1. a) left: The physical region for the spg configuration of steam
and nitrogen is formed by the pairs (T, ψgw) satisfying ψgw ≤ Γ(T ). The con-
tinuous graph represents the composition of a mixture of nitrogen and steam in
equilibrium with liquid water. b) right: Phase space for V = (sW , ψgw, T ) and
physical configurations sheets: single phase liquid (spl), single phase gaseous
(spg), and the two-phase (tp) configurations. The union of the sheets for spl,
spg and tp sheets is the stratified variety.
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3.2.2. Single-phase liquid configuration - spl. There is one chemical species (H2O) and one
phase, so there is only f = 1 thermodynamical degree of freedom, which is the temperature.
Since sw = 1 and sg = 0, using (3.2) and (A.9) we have fw = 1 and fg = 0. From (3.5),
qg−→a,w vanishes. The liquid is incompressible and composition changes have no volumetric
effects, so that the total Darcy velocity u is independent of position. As we assume that
rock and water enthalpies depend linearly on temperature, Eqs. (3.4), (3.6) and (3.8) are
satisfied trivially and (3.7) reduces to:

∂

∂t
T + λW

T

∂T

∂x
= 0, where λW

T =
uW

ϕ

CW

CW + Ĉr

, (3.14)

where we use uW to indicate that the velocity u is spatially constant in the spl water
configuration; here CW is the water heat capacity and Ĉr is the rock heat capacity Cr

divided by ϕ. All quantities are given in Appendix A.
Notice here that Eq. (3.14) is exact rather than only the zero-order approximation of the

system (3.4), (3.6)-(3.8).

Remark 3.2. The spl configuration consists of a 1-D set of triplets (sw = 1, T, ψgw(T )),
Figure 3.1. Here, V = T is the primary variable, u is the secondary variable, sw = 0 and
ψgw = Γ(T ) are the trivial variables. Actually ψgw is unnecessary, however we specify it as
in tp configuration to ensure continuity of the equilibrium variety.

3.2.3. Two-phase configuration - tp. There are two chemical species (N2 and H2O), c = 2,
and two-phases (liquid water and gas), p = 2; so f = 1 and the thermodynamical free
variable is the temperature. The composition in Eqs. (3.9.a) and (3.9.b) are prescribed by
the temperature: ψgw(T ) = Γ(T ).

Here we disregard equation (3.4) and the expression qg−→a,w = 0 enforces that ψgw = Γ(T ).
The resulting system (3.6)-(3.8) is the zero-order approximation of the system (3.4), (3.6)-
(3.8). The solution of this system satisfies (3.4) only asymptotically.

Remark 3.3. The tp configuration consists of a 2-D set of triplets (sw, T, ψgw(T )), on
a sheet of stratified variety, because of thermodynamic constraints, see Figure 3.1. Here,
V = (sw, T ) are the primary variables, u is the secondary variable of the system (3.6)-(3.8)
and ψgw = Γ(T ) is the trivial variable.

Fig. 3.1.b shows the three physical configurations in the variables V = (T, ψgw, sw), i.e.,
in the equilibrium variety. As basic variable, we arbitrarily choose sw instead of sg. In Table
1, we summarize the primary, secondary and trivial variables.

Physical configuration \ Variable types Primary V Secondary Trivial
Single-phase gaseous configuration T , ψgw u sg = 1

Two-phase configuration sg, T u ψgw(T )
Single-phase liquid configuration T u sg = 0, ψgw

Table 1: Classification according to configuration.

4. General theory of Riemann Solutions

We are interested in the Riemann problem associated to (2.1)-(2.2), with initial data (1.5).
The speed uL > 0 is specified at the injection point. In the next sections we show that uR

can be obtained in terms of uL and the primary variables.



10 LAMBERT AND MARCHESIN

The general solution of the Riemann problem associated to Eq. (2.10) consists of a se-
quence of elementary waves, rarefactions and shocks [27]; they are studied now. The rar-
efaction waves are calculated on the each sheet of the equilibrium variety.

4.1. Characteristic speeds. In each physical configuration, systems of conservation laws
in appropriate form must be used to find the characteristic speeds. If we assume that the
solution is sufficiently smooth, we differentiate all equations in (2.10) with respect to their
variables, obtaining a system of the form:

B
∂

∂t

(
V
u

)
+ A

∂

∂x

(
V
u

)
= 0, (4.1)

where the matrices B(V ) and A(V ) are the derivatives of G(V ) and uF (V ) with respect to
the variables V and u. Since G(V ) does not depend on u, the last column in the matrix B is
zero. For the pair of primary and secondary variables W = (V, u), the characteristic values
λi := λi(W ) and vectors ~ri := ~ri(W ), (where i is the label of each eigenvector or family) for
the following system are the characteristic speeds and vectors:

A~ri = λiB~ri where λi is obtained by solving det(A− λiB) = 0. (4.2)

Similarly the left eigenvectors ~̀i = (`i
1, `

i
2, `

i
3) satisfy:

~̀iA = λi~̀iB, for the same λi. (4.3)

Remark 4.1. Notice that in the left and right eigenvectors we represent only the components
for the primary and secondary variables, because we assume that the trivial variables are
obtained from these variables.

Remark 4.2. Here we derive the formulae for a general 3 × 3 system because it is the
smallest non-trivial system of type (2.10), it will be used in the tp configuration. For such a
system, generically the right and left eigenvectors have three components, corresponding to
the two primary variables and to the secondary variable. (However, in the spl configuration
we do not need this formalism because the system (2.10) reduces to a single equation).

Hereafter, the word “eigenvectors” means “right eigenvectors”. For brevity, we will write

the right and left eigenvectors without the arrow, i.e., we replace ~r and ~̀ by r and `.
The following lemma is important to characterize the eigenpairs, see [16]; for another

derivation see [6].

Lemma 4.1. Assume that u 6= 0 and that the flux vector F (V ) never vanishes for all V .
The eigenvalue, right and left eigenvectors for the system (4.1) have the form:

λ = uϑ(V ), r = (g1(V ), g2(V ), ug3(V ))T and ` = (`1(V ), `2(V ), `3(V )), (4.4)

where ϑ, gi and `i (for all i ∈ C) are functions of V only. Moreover, there are at most 2
eigenvalues and eigenvectors associated to this system of 3 equations.

For any ϑ ∈ R, let us define the following 3× 2 matrix:

C(V ; ϑ) =
∂F

∂V
(V )− ϑ

∂G

∂V
(V ); (4.5)

We also define the following 3× 3 matrix, where F (V ) is the flux column vector:

A− λB =
(
uC(V ; λ/u)

∣∣∣ F (V )
)

. (4.6)
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Proof: The eigenvalues λ of (4.1) are the roots of det(A− λB) = 0. Since u 6= 0, we divide
the first 2 columns of (4.1) by u and set ϑ = λ/u, obtaining the characteristic equation:

det
(
C(V ; ϑ)

∣∣∣ F (V )
)

= 0. (4.7)

Since Eq (4.7) depends on V only, the eigenvalues ϑ are functions of V , i.e., ϑ = ϑ(V ),
they do not depend on u. Using λ = uϑ, the eigenvalues have the form (4.4.a).

The eigenvectors are solutions of (A− λB)r = 0, or
(
uC(V ; ϑ)

∣∣∣ F (V )
)

r = 0, for each V

there exists an index k ∈ {1, 2, 3} and an open neighborhood BV of V in which Fk 6= 0, so
we can write r3 as:

r3 = u
1

Fk(V )

2∑

l=1

C(V ; ϑ)rl, (4.8)

where Ck(V ; ϑ) is the k-th row of C(V ; ϑ) and r = (r1, r2, r3)
T . By suitable compactness

arguments we can extend the result (4.8) for all V ∈ Ω.
Substituting r3 given by Eq. (4.8) into (A − λB)r = 0, we obtain a linear system in the

unknowns rj for j = 1, 2. We can cancel u in this system, showing that the rl for l = 1, 2
depend on V only. So (4.4.b) follows from (4.8).

For ` = (`1, `2, `3), we solve ` ·
(
uC(V ; ϑ)

∣∣∣ F (V )
)

= 0, so that ` is solution of the following

system:

uC1(V ; ϑ)`1 + uC2(V ; ϑ)`2 + uC3(V ; ϑ)`3 = 0 for l = 1, 2, (4.9)

F1`1 + F2`2 + F3`3 = 0. (4.10)

We divide Eqs. (4.9) by u and we obtain a system with coefficients that depend only on the
variables V , leading to (4.4.c). ¤

Definition 4.1. For each i, the integral curves in the W = (V, u) plane are solutions of
(

dV

dξ
,
du

dξ

)
= r, i.e,

dV1

dξ
= r1(V ),

dV2

dξ
= r2(V ) and

du

dξ
= r3(V ). (4.11)

When ξ satisfies:

ξ = λ(W (ξ)), (4.12)

and the the variable ξ increases the integral curve defines a rarefaction curve.
A rarefaction wave in the (x, t) plane is defined by W (ξ), with ξ = x/t, given a rarefaction

curve W (ξ).

Proposition 4.1. Assume that locally the eigenvector r associated to a certain family forms
a vector field. Then we calculate the primary variables V on the rarefaction curve in the
(x, t) plane independently of u, i.e., first we obtain the primary variables in the classical way
by solving (4.11.b)-(4.11.c), and then we calculate the secondary variable u in terms of the
primary variables from:

u = u−exp(γ(ξ)), with γ(ξ) =

∫ ξ

ξ−
g3(V (η))dη, (4.13)

ξ− = λ(W−) and u− is the “leftmost” value of u on the rarefaction wave, i.e., u = u− for
ξ = ξ−.
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Proof: Using (4.11) and (4.12) with gi(V ) = ri for i = 1, 2 we obtain V independently of
u by solving the system of differential equations:

dV

dξ
=

(
dV1

dξ
,
dV2

dξ

)
= (g1, g2), with ξ− = λ(W−).

After obtaining V (ξ), we use the expression for the last component of r in (4.4.b) to solve
du/dξ = ug3, yielding (4.13). Lemma 4.1 asserts that λ has the form uϑ(V ), so using Eqs.
(4.12) and (4.13), we obtain ξ implicitly as:

ξ = u−ϑ(V (ξ))exp(γ(ξ)). (4.14)

Since ξ depends only on u− and V on the integral curves, the result follows. ¤
Definition 4.2. Since only the first 2 coordinates of the eigenvectors are pertinent to define
the integral curves in the space of primary variables V , it is useful for proving the generalized
Bethe-Wendroff theorem in Section 5 to define for any i-family the following quantities that
do not depend on u:

r̃i = (ri
1, r

i
2),

˜̀i = (`i
1, `

i
2), λ̃i,−(V ) := λi(W )/u− and λ̃i,+(V ) := λi(W )/u+. (4.15)

Corollary 4.1. Assume that u− 6= 0, so we perform the change of variables:

ξ = x/t −→ ξ̃ = x/
(
u−t

)
. (4.16)

The system (2.10) can be written in the space of variables (x, τ), where τ = u−t, i.e., in
these space-time coordinates the rarefaction wave projected on the space of primary variable
is independent of u.

Proof: In V space, we have shown that the eigenvalues have the form λ−(V ), with r given

in Eq. (4.4.a). From Eqs. (4.12) and (4.14), it follows that ξ̃− and ξ̃ satisfy:

ξ̃− = λ̃− = ϑ(V −) and ξ̃ = λ̃(V (ξ̃)) = ϑ(V (ξ̃))exp(γ(ξ̃)). (4.17)

Thus in the (x, τ) plane, the variables V and ξ̃ do not depend on u, so the rarefaction curve
does not depend on u. The speed keeps the form (4.13). ¤
Remark 4.3. A rarefaction wave connecting adjoining sheets of the stratified variety occurs
occasionally; such a connection can happen only when there is equality between characteristic
speeds of the rarefaction curves at the left and right sheets. The rarefaction curve should be
continuous, however generically its derivative is discontinuous at the boundary between the
sheets.

4.2. Shock waves. When there is a source term, it acts in the infinitesimal space between
regions in different physical configurations, so we are led to propose the existence of shocks
linking these configurations. We assume that there are no shocks linking non-adjacent sheets
in the variety.

Shocks are special type of discontinuities in the solution of the PDE’s. To obtain the
discontinuities we define the function H = H(W−; W+) as:

H := v
(
G+ −G−)− u+F+ + u−F−, (4.18)

where W− = (V −, u−) and W+ = (V +, u+) are the states on the left and the right side
of the discontinuity; v = v(W−,W+) is the discontinuity speed; G− = G−(V −), (G+ =
G+(V +)) and F− = F−(V −), (F+ = F+(V +)) are the accumulation and fluxes at the left
(right) of the discontinuity. When the states (−) and (+) lie in the same configuration,
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the conserved quantities, accumulations and and fluxes arise from a system of conservation
laws in a single sheet; while if these states (−) and (+) lie in different configurations, the
conserved quantities, accumulations and fluxes arise from different systems of conservation
laws, defined in two sheets. For shocks contained in a single sheet, the velocity u usually
varies and the formulae in the theory has the same form as if they were contained in different
sheets.

For a fixed W− = (V −, u−) the Rankine-Hugoniot Locus (RH locus) parametrizes the
discontinuous solutions of Eq. (3.4)-(3.7), ie., it consists of the W+ = (V +, u+) that satisfy
H(W−; W+) := 0. We specify the state (V −, u−) on the left hand side, but at the right u+

cannot be specified, and we will see that it is obtained from the condition H(W−; W+) = 0.
In this work we assume an extension of hyperbolicity, i.e., except on the coincidence curve

between the eigenvalues, the system is hyperbolic in the primary variables, i.e., there exists
a basis of characteristic vectors for each state V , see [16]. Thus only connected branches
of the RH locus are considered (i.e., that contain the (−) state), see [16], thus we use the
following criterion to define admissible discontinuities, or shocks, the Liu’s criterion, (see Liu
[20, 21]).

Definition 4.3. For a fixed WL, we call a shock curve each connected part {W} formed by
the WR in the RH(WL), such that v(WL,WR) ≤ v(WL, W ), where W ∈ RH(WL) between
WL and WR. In (x, t) space, each point of the shock curve represents a shock wave. The
shock curve parametrizes the (+) states of admissible shocks between the (−) and the (+)
states.

4.2.1. The Rankine-Hugoniot locus. For a fixed W− = (V −, u−) in a configuration and i =
1, 2, 3, the RH locus, or RH(W−), is obtained setting (4.18) to zero, i.e.:

v[Gi] = u+F+
i − u−F−

i , (4.19)

where [Gi] = G+
i − G−

i , G±
i = G±

i (V ±) and F±
i = F±

i (V ±) for i = 1, 2, 3. The states W+

can be in the same or in a different configuration. We rewrite Eq. (4.19) as a linear system:



[G1] −F+
1 F−

1

[G2] −F+
2 F−

2

[G3] −F+
3 F−

3







v
u+

u−


 = 0. (4.20)

We define the set of unordered index pairs P = {{1, 2}, {3, 1}, {2, 3}}. We utilize also the
notation:

Yij = F+
i F−

j −F+
j F−

i , X+
ij = F+

i [Gj]−F+
j [Gi] and X−

ij = F−
i [Gj]−F−

j [Gi]. (4.21)

For a non-trivial solution of the system (4.20) to exist, the determinant of matrix in Eq.
(4.20) must vanish; this yields another form of the Rankine-Hugoniot locus denoted by
RH(V −), namely for each V − it the set of V + satisfying HV (V −, V +) = 0 with:

HV := [G1]Y32 + [G2]Y13 + [G3]Y21. (4.22)

Generically, RH(V −) is 1-D structure, see Appendix C.
There are two primary variables in V + for the spg and the tp, so RH(V −) consists of the

union of two curves. In the spl there is only one scalar equation with the temperature as
the primary variable, so RH(T−) is the whole physical range of the temperature axis.
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Solving the system (4.20), we obtain u+ and v as functions of V −, V + and u−:

u+ = u−
X−

ij

X+
ij

, u+ = u−
∑

{l,k}∈PX−
lkX+

lk∑
{l,k}∈P

(X+
lk

)2 , v = u−
Yji

X+
ij

and v = u−
∑

{l,k}∈P YklX+
lk∑

{l,k}∈P
(X+

lk

)2 ,

(4.23)
for any {i, j} ∈ P. Eqs. (4.23.b) and (4.23.d) are useful for numerical calculations, and
are obtained from (4.23.a) and (4.23.c). Of course, Eqs. (4.23.a) and (4.23.c) are valid if
the corresponding denominator is non-zero, while (4.23.b) and (4.23.d) require that just one
denominator is non-zero. In [16] we give the definition of regular RH locus : for such a locus
(4.23.b) and (4.23.d) are well defined if V + 6= V −, because we assume that for each V in the
primary variables there is {p, q} ∈ P such that the inequality X−

pq 6= 0 is satisfied.

Remark 4.4. In the definitions that follow, all wave structures can be obtained in the space
of primary variables V . Using u+ = u+(V −, u−; V +) and v := v(V −, u−; V +), we define:

Z(V −; V +) =
u+

u−
, ṽ−(V −; V +) :=

v

u−
and ṽ+(V −; V +) :=

v

u−Z(V −; V +)
. (4.24)

Lemma 4.2. Assume that u− is positive. If the Darcy speed u− is modified while V − and
V + are kept fixed, the Darcy speed u+ as well as the shock waves are rescaled in the (x, t)
plane, while the values of V are preserved in the rescaled shock.

Proof: Performing the change of variable (x, t) −→ (x, u−t) in H = 0, for H given by
(4.18), we obtain:

v

u−
(G+ −G−) =

u+

u−
F+ − F−. (4.25)

The result follows from the relationships in (4.24), because Z and ṽ− depend only on the
primary variables V . ¤
4.3. Wave Sequences and Riemann Solutions. In the Riemann solution, we denote the
state W , V , W and V by a subindex between parenthesis to avoid confusion with vector
components. The left and right states are indicated only by the subindex L and R and the
(−) and (+) states by the superscript − and +.

A Riemann solution is a sequence of elementary waves wk (shocks and rarefactions) for
k = 1, · · · ,m and constant states W(k) = (V , u)(k) for k = 1, · · · ,m, which are states on the
equilibrium variety, plus the secondary variable u:

WL ≡ W(0)
w1−→W(1)

w2−→ · · · wm−→W(m) ≡ WR. (4.26)

The subscripts (k) in W do not indicate the component of a vector, but the position of a
state or a wave in the sequence. The wave wk has left and right states W(k−1) and W(k) and
speeds ξ−k < ξ+

k in case of rarefaction waves and v = ξ−k = ξ+
k in the case of shock waves,

where v is the shock speed. The left state of the first wave w1 is (V , u)L and the right state
of wm is (V , u)R, where uR needs to be found. In the Riemann solution it is necessary that
ξ+
k ≤ ξ−k+1; this inequality is called geometrical compatibility. When ξ+

k < ξ−k+1, there is a
constant state Wk+1 separating wk and wk+1; in this sequence the wave wk is indicated by
7→. If ξ+

k = ξ−k+1 there is no actual constant state in physical space, so the wave wk is a
composite with wk+1; it is indicated by ³.

When it is useful to emphasize the waves in the sequence (4.26) rather than the states,
we use the notation:

w1 ½ w2 ½ · · · ½ wm, (4.27)
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where for each wk, ½ represents 7→ for the case ξ+
k < ξ−k+1 and ³ for the case ξ+

k = ξ−k+1.
We will see, however, that we can determine the Riemann solution in the space of primary

variables V , without taking into account the secondary and trivial variables. The values of
these variables along the Riemann solutions are fully determined by the values of the primary
variables supplemented by a boundary condition on u. Indeed, we have proved:

Proposition 4.2. Assume that uL is positive. The values of primary variables V in the
shock and rarefaction curves do not depend on the left Darcy speed uL > 0. If a sequence of
waves and constant states solve the Riemann problem for (2.10) with left state WL = (VL, uL)
and right state WR = (VR, ·) in the primary variables for a given uL > 0, then this sequence
defines the solution for any other uL > 0 in the plane (x, uLt) for the problem with data:

{
(VL, ·) if x < 0
(VR, ·) if x > 0.

(4.28)

Then uR is given by:

uR = uL

%1∏

l=1

exp(γl)

%2∏
m=1

Zm, (4.29)

We could specify uR instead of uL; a formula similar to (4.29) is valid. In the Proposition
above, Zm is given by (4.24.a) for the m-th shock wave. Similarly γl is given by (4.13.b) for
ξ = ξ+ computed along the l-th rarefaction curve.

From Prop. 4.1 and Lemma 4.2, a minor modification of the proof of Lemma 4.2 yields,
see [16]:

Theorem 4.1. Assume the same hypotheses of Prop. 4.2. If the Darcy speed uL in the initial
data (1.5) is modified while VL and VR are kept fixed in the Riemann problem for (2.10), the
Darcy speed uR as well as the Riemann solutions are rescaled in the (x, t) plane, while the
values of V in the wave sequence are preserved.

Remark 4.5. Theorem 4.1 says that the Riemann solution can be obtained in each physical
configuration first in the primary variables V. Then the Darcy speed can be obtained at any
point of the space (V, u) in terms of V and uL by an equation analogous to Eq. (4.29).

Remark 4.5 leads us to omit the speed u in the figures.

5. Bifurcation theory for Riemann solutions

Riemann solutions bifurcate non-trivially for general systems of conservation law that
violate the conditions of the Lax Theorem, see [11, 12, 13].

5.1. Fundamental theorems for bifurcation theory. We recall an important theorem
for bifurcation of systems of conservation laws of standard form, the Triple Shock Rule [11]:

Proposition 5.1. For the system of conservation laws ∂G(V )/∂t+∂F (V )/∂x = 0, consider
three states V M , V + and V −. Assume that V − ∈ RH(V +), V M ∈ RH(V −) and V + ∈
RH(V M), with speeds v+,−, v−,M and vM,+. Then, either:

(1) v+,− = vM,− = v+,M ; or
(2) G(V +)−G(V −) and G(V +)−G(V M) are linearly dependent.

Instead of the Triple Shock Rule, we have the following Quadruple Shock Rule:
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Proposition 5.2. Assume that there are two physical configurations labelled by I and II,
with a common boundary. In these configurations, consider four states: (V −, u−), with V −

in I, (V +, u+) with V + in II; (V M , uM), (V ∗, u∗) with V M , V ∗ free to be in I and II.
Assume that the RH condition is satisfied by the following pairs of states:

(i) (V −, u−) and (V +, u+) with speed v−,+,
(ii) (V −, u−) and (V M , uM) with speed v−,M ,
(iii) (V M , uM) and (V ∗, u∗) with speed vM,∗,

such that two speeds coincide, i.e., at least one of the following equalities is satisfied:

either v−,+ = v−,M or v−,+ = vM,∗ or v−,M = v−,+. (5.1)

If the following conditions (a) to (c) are satisfied:
(a) G(V +)−G(V −) and G(V ∗)−G(V M) are linearly independent (LI);
(b) V + and V ∗ have one component Vk with coinciding values;
(c) ∂HV /∂Vj 6= 0 for j 6= k for all V ∈ RH(V −), see Eq. (4.22);

then:

(1) V ∗ = V +;

(2) u∗ = u+;

(3) all three speeds are equal: v−,+ = v−,M = vM,∗. (5.2)

Proof: The RH conditions (4.18) for (V −, u−)-(V +, u+), (V −, u−)-(V M , uM) and (V M , uM)-
(V ∗, u∗) are respectively:

v−,+(G+ −G−) = u+F+ − u−F−, (5.3)

v−,M(GM −G−) = uMFM − u−F−, (5.4)

vM,∗(G∗ −GM) = u∗F ∗ − uMFM . (5.5)

Assume that now Eq. (5.1.a) is satisfied. Substituting v−,+ = v−,M = v in Eqs. (5.3) and
(5.4) and subtracting Eq. (5.3) from (5.4), we obtain:

v(G+ −GM) = u+F+ − uMFM . (5.6)

Notice that Eqs. (5.6) and (5.5) define implicitly the RH locus by HV (V M ; V +) = 0 in the
variables V M and V +. Since the RH locus depends solely on V M and the accumulation and
flux functions, we obtain that both RH loci defined by Eqs. (5.6) and (5.5) coincide. From
the condition (b) the states V + and V ∗ have a coinciding coordinate Vk. From the conditions
(a) and (c), the implicit function theorem ensures that we can write the components Vj in
terms of Vk. Thus there exists a single V with component Vk satisfying (5.5) and (5.6), so
V ∗ and V + are equal.

Now from Eq. (4.23.b), we notice for a fixed u− that the Darcy and shock speeds depend
solely on V − and V +. From Eqs. (5.5) and (5.6), we can see that the (−) and (+) states
are the same for each expression and that they define the same RH locus, so u∗ = u+ and
Eq. (5.2) is satisfied.

The other cases are proved similarly. ¤
Another important bifurcation theorem for Riemann solutions is the Bethe-Wendroff The-

orem, see [28]. We extend this result for the velocity-dependent system (2.10), including
shocks connecting different sheets of the stratified variety, obtaining the generalized Bethe-
Wendroff Theorem; its proof is given in Appendix C.1:
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Proposition 5.3. Assume that F and G are C2. Let (W+; W−; v) be a shock between
different physical configurations. Assume that `i(V +) · (G+(V +)−G−(V −)) 6= 0. Then v has
a critical point at W+ (and ṽ+(V −; V +) has a critical point at V +), if and only if:

ṽ+(V −; V +) = λ̃i,+(V +) for i = 1 or 2, (5.7)

where λ+(V ) is given by Eq. (4.15) and v+(V −; V +) is given by (4.24). In this case the tan-
gent to RHL carro is parallel to the characteristic vector in the space W to the characteristic
vector ri at W+. Notice also that the RHL in the primary variables is parallel to r̃i at V +.

5.2. Bifurcation loci. Assume that there are no high-order degeneracies in any RH locus
described in Appendix C. For conservation laws of standard form, there are loci which
induce topological change in the solution, such as: secondary bifurcation, coincidence, double
contact, inflection, hysteresis and interior boundary contact, see [12, 13]. For our class of
problems, such loci are equally important.

5.2.1. Secondary bifurcation locus. This locus is defined in the space W = (V, u) for conser-
vation laws of standard form, however we will see that it suffices to study it in the space of
primary variables V . The RH locus for a fixed V − is obtained implicitly byHV (V −; V +) = 0,
where HV : R4 −→ R, and V + are primary variables. At some pairs (V −, V +) for fixed V −,
this implicit expression fails to define a curve for V +. Following [12], we call the set of the
points where there is potential for failure the secondary bifurcation locus in V . From
the implicit function theorem, they are the “ + ” states for which there exists a “ − ” state
such that the following equalities are satisfied:

HV (V −; V +) = 0 and
∂HV

∂V +
j

= 0, for j = 1 and 2. (5.8)

The following theorem yields an equivalent expression for the secondary bifurcation, which
is remarkably similar to the expression for standard conservation laws. This Proposition is
proved in Appendix C.2.

Proposition 5.4. A state V + belongs to the secondary bifurcation locus for the family i
when there exists a state V − such that:

V + ∈ RH(V −) with ṽ+(V −; V +) = λ̃i,+(V +) and `i(V +) · [G] = 0. (5.9)

Remark 5.1. The secondary bifurcation locus in the space W is a ruled surface in u. In
other words the RH locus for a fixed W− is obtained implicitly by HV (V −; V +) = 0 and in
addition to conditions (5.8) we have ∂HV /∂u+ = 0, which is trivially satisfied because the
RHL given by Eq. (4.22) depends only on the variable V .

5.2.2. Coincidence loci. There are two important types of speed coincidence: coincidence
between eigenvalues and coincidence between eigenvalues and shock speeds. The structures
where such coincidences occurs are important because the Riemann solution changes when
the L (or R) data is prescribed in different regions relatively to these curves.

Coincidence between eigenvalues in each physical configuration. This coincidence occurs
when eigenvalues of different families have coincident speed in a state W = (V, u):

λ1(W ) = λ2(W )

Notice from Lemma 4.1 that λi = ug(V ), thus it is possible to analyze the system in the
variables V without taking into account the Darcy speed u. At the coincidence locus between
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eigenvalues the Darcy speeds also coincide, so the coincidence locus in the V space consists
of the states in a certain physical configuration such that

λ̃1(V ) = λ̃2(V ).

5.2.3. Double contact curves. It consists of the states W− for which there is a state W+ such
that the shock joining W− and W+ has speed coinciding with the characteristic speed of
family i at (−) and of family j at (+):

W+ ∈ RH(W−) with λi(W−) = v−(W−,W+) and v+(W−,W+) = λ̃j(W+).

Similarly, we can define this structure only in the space of primary variables:

V + ∈ RH(V −) with λ̃i,−(V −) = ṽ−(V −, V +) and ṽ+(V −, V +) = λ̃j,+(V +).

Notice that V − and V + can be in the same or in different physical configurations.

5.2.4. Inflection curves. The rarefaction curves are useful to construct rarefaction waves
where the characteristic speed varies monotonically; the inflection curve is the curve where
the monotonicity fails, thus rarefaction curves stop at this curve. Any state W = (V, u) on
the inflection curve satisfies:

∇λi(W ) · ri(W ) = 0. (5.10)

However, the Darcy speed can be isolated in Eq. (5.10); indeed, in the space of primary
variables, the inflection curve of family i, for i = 1, 2, consists of the states V satisfying the
equation:

∇V λ̃i · r̃ = −λ̃ig3, (5.11)

where gi(V ) for i = 1, 2, 3 are the coordinates for the eigenvector r given in Eq. (4.4.b).

Remark 5.2. The hysteresis curves are important in general, see [11, 12, 13]; we do not
discuss then here because they does not arise in our model.

5.2.5. Interior boundary contact (extension of the boundary). Because of the presence of
physical region boundaries it is important to obtain the states W joined to points W ′ on
the physical boundary by shock waves that are characteristic at W for the family i. They
satisfy:

W ∈ RH(W ′) with W ′ on the boundary and λi(W ) = v−(W,W ′).

In the space of primary variables the interior boundary satisfies:

V ∈ RH(V ′) with V ′ on the boundary and λ̃i(V ) = ṽ−(V, V ′).

Frequently, for a fixed state V − there are points in the RH curve of V − that separate
potentially (admissible) shocks from (non-admissible) discontinuities. At these points the
shock speed coincides with the characteristic speed and the shock speed has an extremum
(see Proposition 5.3) so the Riemann solution usually changes. There are two types of such
shocks: left-characteristic and right-characteristic shocks, i.e., the shocks have speed equal
to the characteristic speed at the left or at the right state.
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5.2.6. Left and right characteristic shock. For a fixed state W−, the left characteristic shock
is formed by states W+ such that:

W+ ∈ RH(W−) with ṽ(W−; W+) = λj(W+) for family j = 1 or 2.

In the space of primary variables for a fixed V −, the left shocks are formed by the states
V + such that:

V + ∈ RH(V −) with ṽ+(V −; V +) = λ̃j,+(V +) for family j = 1 or 2.

Notice that V − and V + can be in the same or different physical configurations.
The right characteristic shock is obtained in similar way.

6. Elementary waves for the nitrogen-steam model

The elementary waves are the basic elements in the Riemann solution. In the previous
section we obtained some important results to construct the solution and proved that we
can obtain this solution in the space of primary variables. Thus in the following sections we
describes our structures in the Riemann solution in the space of primary variables only.

6.1. Elementary waves in single-phase gaseous configuration. The spg configuration
in Section 3.2.1 is described by (3.10)-(3.12).

6.1.1. Rarefaction waves. We have two eigenvalues and eigenvectors. The first eigenvalue is
labeled as λc, because the composition ψgw changes but the speed and the temperature are
constant; the eigenpair is given by:

λc = u/φ, rc = (1, 0, 0)T , (6.1)

which correspond to fluid transport; this wave is actually a contact discontinuity.
The other eigenpair is labelled as (λT , rT ), because the temperature changes on the rar-

efaction waves; it is given by:

λT =
(
1− ĈrT/F

)
u/ϕ and rT = (0,F, uĈr). (6.2)

where using (3.13), F := F(T ) = TψgwρgW h
′
gW + TψgnρgNh

′
gN + TĈr. As the temperature

dependet functions ρgW , ρgN , h′gW , h′gN and the constant Ĉr are positive and ψgw and ψgn are
non-negative, F(T ) is positive. The rarefaction wave has constant composition ψgw. Notice
that λT < λc in the physical range.

6.1.2. Inflection of thermal wave. An important structure is the gaseous thermal inflection
locus, which consist of the states (ψgw, T ) in spg that satisfy ∇λT · rT = 0 (or equivalently,
Eq. (5.11)). We denote the inflection curve as IT .

We plot the physical region and IT in Figure (6.1.a), showing the signs of Ξ. We plot the
horizontal rarefaction lines associated to λc and the vertical rarefaction lines associated to
λT , (6.2), In Figure 6.1.b, w.

6.1.3. Shock waves. The RH locus is obtained from Eq. HV (V −, V +) = 0 given by (4.22).
The waves associated to λc are contact discontinuities. A shock occurs with ψgw constant;

it is a thermal shock with speed v and Darcy speed u+ on the right side using Eq. (4.23.a), see
[16] for a particular expression. The thermal RH locus and rarefaction curves are contained
in the horizontal lines in Figure (6.1.b).
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Figure 6.1. a)-left: The single-phase gaseous configuration, the Γ curve and
the inflection locus IT . b)-right: Rarefaction curves. The horizontal rarefac-
tion curves are associated to λT ; we indicate with an arrow the direction of
increasing speed. The vertical lines are contact discontinuity lines associated
to λc, in which ψgw changes, T and u are constant; λc is constant in each curve.

6.2. Elementary waves in single-phase liquid configuration. For the (spl) given in
Section (3.2.2, Eq. (3.14) is linear, so a single wave is associated to λW

T , given by (3.14.b).
This wave is a contact discontinuity and there is no genuine rarefaction or shock wave.

Remark 6.1. In the spl there exists a cooling discontinuity between a state with temperature
T− and another state with temperature T+. For the Riemann data: T− if x is negative and
T+ if xis positive, the solution is T− if x/t < λW

T and T+ if x/t > λW
T .

6.3. Elementary waves in the two-phase configuration. The tp configuration in Sec-
tion 3.2.3 is described by (3.5)-(3.8).

6.3.1. The rarefaction waves. We have two waves: an isothermal wave, defined by the
Buckley-Leverett characteristic speed and characteristic vector:

λs =
u

ϕ

∂fg

∂sg

, rs = (1, 0, 0)T , (6.3)

On this rarefaction curve T and u are constant, only the saturation sg changes, hence the
subscript s.

The other eigenpair corresponds to an evaporation wave, where the temperature, satura-
tion and speed change:

λe =
u

ϕ

fg

[
(γ′3 −

(
ρ′gn/ρgn

)
γ3)ρW −HW (ρ′gw −

(
ρ′gn/ρgn

)
γ2)

]
+ CW ρW

ρW (CW + Ĉr) + sg

[
(γ′3 −

(
ρ′gn/ρgn

)
γ3)ρW −HW (ρ′gw −

(
ρ′gn/ρgn

)
γ2)

] , (6.4)

where γ2 = ρgw − ρw and γ3 = Hg −HW , with eigenvector

re = (−$1, γ̄1,−u$3)
T , and we have: (6.5)

γ̄1 =
∂fg

∂sg

− fg

[
(γ′3ρgn − ρ′gnγ3)ρW −HW (ρ′gwρgn − ρ′gnγ2)

]
+ CW ρW ρgn

ρW ρgn(CW + Ĉr) + sg

[
(γ′3ρgn − ρ′gnγ3)ρW −HW (ρ′gwρgn − ρ′gnγ2)

] ,
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$1 = γ̄4

((
ρ′gn

)
ρW − fg(ρ

′
gwρgn − ρ′gnγ2)

ρgnρW

)
+

∂fg

∂T
, $3 =

γ̄1γ̄4

(
ρ′gwρgn − ρ′gnγ2

)

ρW ρgn

,

where

γ̄4 =
CW (fg − sg)ρW ρgn + ĈrfgρW ρgn

ρW ρgn(CW + Ĉr) + sg

[
(γ′3ρgn − ρ′gnγ3)ρW −HW (ρ′gwρgn − ρ′gnγ2)

] ,

In Figs. (6.3.a) and (6.3.b) we can see that in the region where λs > λe, the temperature,
gaseous water saturation and u increase along the rarefaction wave, while in the region where
λs < λe the temperature and u increase and the gaseous water saturation decreases. This is
an evaporation wave hence the subscript e in λe, re.

6.3.2. Shock structures. The RH locus is obtained from Eq. HV (V −, V +) = with HV given
by (4.22). For this isothermal branch of the RH curve the shock speed is

v =
u−

ϕ

fw(s+
w , T )− fw(s−w , T )

s+
w − s−w

.

On this wave, the Darcy speed is constant. This is the Buckley-Leverett shock; the RH and
rarefaction curves associated to saturation waves lie on the same vertical lines in Fig. 6.3.
The other branch of RH, associated to λe, is a condensation shock drawn, in Fig. 6.4.

6.3.3. Coincidence curve. The coincidence curve between λe and λs in the space of primary
variables V is:

Cs,e = {(T, sg) ∈ tp such that λs(T, sg) = λe(T, sg)} . (6.6)

Computing ∂λe/∂sg from (6.4), equating it to zero and isolating ∂fg/∂sg, we obtain:

Lemma 6.1. On the coincidence curve Cs,e, the derivative ∂λe/∂sg vanishes.

We can prove that the points where ∇λe · re vanishes satisfy:

λe = λs or
fg

sg

=
CW

CW + Ĉr

. (6.7)

We define the curve Ie := {(T, sg) ∈ tp satisfying Eq. (6.7.b)}. We define the inflection
curve Ie = {(T, sg) satisfying (6.7.a) and (6.7.b)} associated to the evaporation rarefaction
in the tp.

The following Lemma follows from Definition (6.6) and Eq. (6.7).

Lemma 6.2. The coincidence curve Cs,e is contained in Ie. Moreover Ie = Cs,e

⋃
Ie.

7. The Riemann solution for geothermal energy recovery

We present an example of Riemann solution for the specific model in Section 3. Other
examples are found in [16]. We consider the injection of a two-phase mixture of water, steam
and nitrogen into a rock containing superheated steam (ψR = 1) at a temperature TR > T b.
The injection boundary condition and initial data are:{

(sg, ψ(T ), T, u)L if x = 0 (the injection point), with uL > 0,
(sg = 1, 1, T, ·)R if x > 0

(7.1)

From Prop. 4.2, the projection of the solution onto the primary variable space does not
depend on uL.
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Figure 6.2. a)-left: Coincidence curve Cs,e. Relative sizes of λs and λe in a
sheet of the tp state space. The almost horizontal coincidence curve λe = λs

is not drawn in scale, because it is very close to the axis Sg = 0. b)-right:
A zoom of the region below the lower coincidence curve. In both figures, all
curves form Ie, subdividing the tp configuration in four parts; the curve Ie is
the defined satisfying Eq. (6.7.b), the point P is the intersection of Ie with the
boundary of the TS plane at the water boiling temperature.

Cs,e

Ic

Cs,e

Ie

Figure 6.3. a)-left: The rarefaction curves projected in the (T, sg) plane.
The thin curve without arrows is Cs,e. The bold curve Ic is an invariant curve
for the rarefaction field, namely the integral curve through P of Fig. (6.2.b).
b)-right: The rarefaction curves in the regions III and IV shown in the Figure
(6.2.b). The arrows indicate the direction of increasing speed.

The inflection Ie defines in tp configuration 4. These regions are labeled as: I, II, III
and IV , see Figure 6.2.

For a fixed R in the spg configuration, we can subdivide each of regions I−IV in subregions
with the following property: for any L in a given subregion the Riemann problems with data
R of form (7.1) have the same sequence of waves, see Figure 7.1. The corresponding Riemann
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Figure 6.4. a)-left: The RH curves projected in the (T, sg) plane for the
marked (−) states: (320, 0.6), (370, 0.1), (370, 0.5) and (370, 0.8). The vertical
line is the isothermal wave: Buckley-Leverett shock and rarefaction. The
other branch is the condensation wave. b)- right: The region shown in Figure
(6.2.b) is a zoom of the bottom of (6.2.a). Each RH locus is formed by a non-
isothermal curve and a vertical line which is the isothermal Buckley-Leverett
RH locus. For the state (336, 0.04) the Rankine-Hugoniot locus reduces to the
isothermal line only.

solutions are described in Section 7.3, we utilize some results of [15] to obtain the Riemann
solutions.

In the following section we indicate the Riemann solution in the space of variables V , but
the bifurcation curves are drawn in the space of primary variables V .

L

2

3

L

L

Ie

Figure 7.1. a)-left: The 3 subregions in I and II for a Riemann data of
form (7.1). The curves are defined in Secs. 7.1.2, 7.1.1 and 7.1.3. The region
L4 lies below E1. b)-right: Zoom of regions II to IV . Each curve is explained
in Section 7.1. The curve Ie satisfies (6.7.b); it is an invariant curve for shocks
and rarefactions.
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7.1. Subdivision of tp. For the data (7.1) with TR fixed, the Riemann solutions have the
same wave sequence and structure for L in each subregion labelled L1 to L4 of Figure 7.1.
We obtain the curves that bound subregions: the curve E2, see Fig. (7.1.a) and Sec. 7.1.1;
the curve E1, see Figs. (7.1.a), (7.1.b) and Sec. 7.1.2; the curve E3, see Fig. (7.1.a) and Sec.
7.1.3.

Remark 7.1. The evaporation wave speed λe for states in L2 and L3 in the tp is larger than
the thermal wave speed in the spg. From geometrical compatibility, in the wave solution,
there is no thermal wave (rarefaction or shock) after the evaporation shock in the spg, i.e.,
the shock between regions should reach a state of the form V = (1, ψgw, TR).

7.1.1. Curve E2. This curve consists of the states V − in the tp such that the evaporation
rarefaction speed λe(V

−) equals the speed vBG(V −; V +) of the shock to the state V + =
(TR, ψgw), which is the primary variable of V+ = (1, TR, ψgw) in the spg. This curve is called
extension of the physical boundary, see Section 5.2.5.

We obtain ψgw as follows. For each primary variable state V − of the form V = (S, ψgw(T ), T )
in the tp, we search the state in the RH locus starting at V − with right temperature TR.
These restrictions yield a state in the spg with steam composition ψgw found numerically.

7.1.2. Curve E1. We find the Riemann solution for left states in I or II. From geometrical
compatibility, to solve the Riemann problem we choose first the slowest wave whenever pos-
sible. In II, the slowest wave is the evaporation wave. Since we are interested in connecting
a left state at lower temperature to a state at higher temperature, we use an evaporation
rarefaction curve instead of a shock, see Section 6.3. We can do this until the speed of
the state at the right of the evaporation rarefaction equals the speed of the shock between
regions; this occurs when the rarefaction curve crosses E2.

The rarefaction curves starting at certain left states do not cross E2, rather they reach
directly the steam region at boiling temperature. We define the curve E1 as the evaporation
rarefaction curve that crosses E2 at the boiling temperature of water. Notice that for left
states in II above E1, the evaporation rarefaction curve always crosses E2.

7.1.3. Curve E3. For states V − above the curve E2, the evaporation rarefaction speed is
larger than vBG(V −; V +), for the primary variable V + = (TR, ψgw) of the state V+ =
(1, TR, ψgw); in Figures (6.2.a) and (7.2.a) we show the relatives sizes of vBG, λe and λs.
When sg tends to 1 the Buckley-Leverett shock speed is zero, so there are transition curves,
vBL = vBG, vBL = vT and vBG = vT . From the Prop. 5.2, we obtain a bifurcation curve E3

where vT = vBL = vBG. For states above this curve, the Buckley-Leverett shock is slower
than vBG and vT , so there is no direct shock between the tp and the spg regions.

7.2. The Riemann solution. We use the notation VL = (sg, ψgw(T ), T )L, VR = (sg = 1, 1, T )R

and VL, VR for the respective primary variables. All the variables for the intermediate states
are written out. The states are labelled by 1, 2, etc. We use the following nomenclature:
the evaporation rarefaction is RE, the Buckley-Leverett shock and rarefaction are SBL and
RBL, the shock between the tp and the spg regions is SBG and the compositional contact
discontinuity is SC . We use the notation for wave sequences established in Section 4.3.

7.2.1. VL in L4. There is an evaporation rarefaction curve from VL up to V(1) = (sL, 1, T b),
where T b is the boiling temperature. For this state there is no nitrogen and so ψgw = 1.
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Figure 7.2. a)-left: The relevant curves for the Riemann solution for the
left states in the tp configuration. b)-right: Subregions L5 and L6. CBLE is
the coincidence curve vb

g,w = λe. For states in L5, we have that vb
g,w < λe; for

states in L6, we have that vb
g,w > λe.

The solution after the intermediate state (sM , 1, T b) was found in [15]: an evaporation shock
between the boiling configuration to the steam configuration appears, denoted by SV S.

The solution consists of the waves Re 7→ RBL ³ SV S with sequence:

VL
Re−→ V(1)

RBL−−→ V(2)
SV S−−→ VR. (7.2)

7.2.2. VL in L3. There is a rarefaction from VL up to V(1) = (s∗, ψgw(T ∗), T ∗) in the tp region;
V(1) is a state where λe(V(1)) = vBL(V(1); V(2)), with V(2) = (1, ψgw, TR) in the spg region. We
have described how to obtain ψgw in Section 7.1.1. Finally, there is a compositional contact
discontinuity at temperature TR with speed vC from V(2) to VR.

The solution consists of the waves RE ³ SBG 7→ SC with sequence:

VL
Re−→ V(1)

SBG−−→ V(2)
SC−→ VR. (7.3)

7.2.3. VL in L2. Let V(1) = (1, ψgw, TR) be a state in the spg region. Since λe(VL) >
vBL(VL; V(1)), there is a shock between VL and V(1) with speed vBG. From the state V(1)

there is a compositional contact discontinuity with speed vC to VR.
The solution consists of the waves SBG 7→ SC with sequence:

VL
SBG−−→ V(1)

SC−→ VR. (7.4)

7.2.4. VL in L3. Since vBG and vBL are smaller than vT , there is a Buckley-Leverett satura-
tion shock between VL and V(1) = (1, ψgw(TL), TL). From V(1) there is a thermal shock with
speed vT to V(2) = (1, ψgw(TL), TR) and finally there is a compositional contact discontinuity
with speed vC to VR.

The solution consists of the waves SBL ³ ST 7→ SC with sequence:

VL
SBL−−→ V(1)

ST−→ V(2)
SC−→ VR. (7.5)
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Figure 7.3. Riemann solutions in phase space, omitting the surface shown
in Fig. 3.1. a) left: Solution (7.2) for VL ∈ L4, Sec. 7.2.1. b) right: Solution
(7.3) for VL ∈ L3, Sec. 7.2.2. The numbers 1 and 2 indicate the intermediate
states V in the wave sequence.
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Figure 7.4. Riemann solutions in phase space, removing the surface shown
in Fig. 3.1. a) left: Solution (7.4) for VL ∈ L2, Sec. 7.2.3. b) right: Solution
(7.5) for VL ∈ L1, Sec. 7.2.4. The numbers 1 and 2 indicate the intermediate
states V in wave sequence.

7.3. VL in III and IV . The integral curves or RH locus starting at any point in III or IV
do not reach the water boiling temperature. Moreover, the RH locus between the tp and the
spg configurations for points in III or IV do not reach temperatures above the temperature
TL. So the only possibility to reach the right state is by crossing the curve B. However, the
evaporation wave does not cross the curve B; to cross it we need a Buckley-Leverett shock.
The Buckley-Leverett shock for an initial state below B and a final state above B is faster
than the evaporation wave λe. Moreover, it is faster than the shock between the spg and
the tp configurations. So with a Buckley-Leverett shock of this type, it is only possible to
reach states of form (1, ψgw(T ), T ) with T < T b. Since the thermal wave is slower than the
Buckley-Leverett shock, it is impossible to construct the Riemann solution satisfying the
geometrical compatibility principle for waves only in the tp configuration.
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To obtain the Riemann solution, we utilize the results of [15]. First we can identify
subregions L5 and L6 in III

⋃
IV . The only way to reach the spl region from III and

IV is by a Buckley-Leverret shock, see Section 7.3. Notice that the boundary between III
and IV is the coincidence curve λs = λe, in which λs and λe are given by Eqs. (6.3) and
(6.4). Moreover, there exists a coincidence curve between the evaporation wave and the hot
isothermal steam water, HISW, which is the shock between the (−) state (s−g , T b) in the spg

and the (+) state (0, T b) in the spl with speed vb
g,w defined in [15] as:

vb
g,w =

ub

ϕ

f b
g (s

−
g )

s−g
. (7.6)

Here the T b indicates the water boiling temperature. We denote this coincidence curve by
CBLE, see Fig. (7.2.b).

For VL in L6 the HISW is slower than the evaporation shock, so we can reach the spl
directly by a HISW. The proofs of next two lemmas are found in [15]. Notice that in [15] the
water saturation is the unknown, but in the current paper we use gas saturation as unknown,
to avoid misundersting we indicate all saturation by the sunbindex g.

Lemma 7.1. The following inequalities are valid for (sg, T ) in L6:

vb
g,w < vWES(sg = 0, T ; sg††, T b) < vw

T , (7.7)

where vWES is the shock speed between a (−) state (sg = 0, T−) in the spl region and a (+)
state (s+

g , T b) in the tp region with T b the boiling temperature of water given by:

vWES(sg = 0, T ; sg, T
b) =

u+

ϕ

f+
g ρb

gW

(
hb

gW − h−w
)

+ f+
w ρw

(
hb

w − h−w
)

Ĥb
r − Ĥ−

r + s+
g ρb

gW

(
hb

g − h−w
)

+ s+
wρw (hb

w − h−w)
, (7.8)

The gas saturation sg†† is obtained from the following equality:

λb
s(sg††) = vWES(T−, sg = 0; sg††). (7.9)

Lemma 7.2. There exists a state (ŝg, T
b) in the tp satisfying the following equality:

vV S =
ub

ϕ

∂fw

∂sw

(ŝg, T
b), (7.10)

where vV S is the shock speed between a (−) state (s−g , T b) in the tp and a (+) state (sg =

1, T+ > T b) in the spg.

vV S =
u−

ϕ

f−g ρb
gW

(
h+

gW − hb
gW

)
+ f−w ρw

(
h+

gW − hb
w

)

Ĥ+
r − Ĥb

r + s−g ρb
gW

(
h+

gW − hb
gW

)
+ s−wρw

(
h+

gW − hb
w

) . (7.11)

In the previous lemmas the superscript b in the functions indicates that they are evaluated
at the boiling temperature of water; similarly the superscript − indicates that the functions
are evaluated at temperature T−. The enthalpies per unit mass of water and steam are hw,
hgW , described in appendix A.

In the Riemann solution there a is a HISW shock between the state VL = (sL, ψgw(TL), TL)
and a state V(1) = (0, ψgw(TL), TL). From this state, there exists a shock of speed vWES

between the spl configuration and a state V(2) = (sg††, 0, T b) in the tp configuration without
nitrogen and with temperature T b. From V(2) there is a Buckley-Leverett rarefaction up to
the state V(3) = (ŝg, 0, T

b) and so there exists a shock between V(3) up to the right state VR.
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The Riemann solution consists of the waves HISW 7→ WES ³ Rs ³ V S with sequence:

VL
HISW−−−−→ V(1)

WES−−−→ V(2)
Rs−→ V(3)

V S−−→ VR, (7.12)

For the left primary variable VL in L5, the HISW is faster than the evaporation wave,
so from VL we reach a state V(0) belongs to CBLE using an evaporation rarefaction Re.
From this state in the coincidence curve, we can reach the spl directly by a HISW a state
V(1) = (0, ψgw(TL), TL); from this state the sequence of wave is the same of (7.12)

The Riemann solution consists of the waves Re ³ HISW 7→ WES ³ Rs ³ V S with
sequence:

VL
Re−→ V(0)

HISW−−−−→ V(1)
WES−−−→ V(2)

Rs−→ V(3)
V S−−→ VR, (7.13)

L

R

1

S
BL

R

S
BL

L

R
e 1

2

Figure 7.5. Riemann solutions in phase space, omitting the surface shown
in Fig. 3.1. a) left: Solution (7.12) for VL ∈ L6. b) right: Solution (7.13)
for VL ∈ L5. The numbers 1 and 2 indicate intermediate states V in the wave
sequence. The waves after spl configuration are not represented in this figure.

8. Summary and Conclusions

We have described a solution of the Riemann problem for the injection of a mixture
nitrogen/steam/water into a porous rock filled with steam above boiling temperature. We
have developed a systematic theory for the Riemann solution for a 4 × 4 balance system,
where we assume thermodynamical equilibrium laws. This theory can be applied for a
system n × n. The set of solutions depends L1-continuously on the Riemann data. It
is a step towards obtaining a general method for solving Riemann problems for a wide
class of balance equations with phase changes, [16]. In [18], we intend to understand how
small deviations from thermodynamical equilibrium determines the discrepancy between the
solution under assumptions of thermodynamical equilibrium and the solution in which we
relax this assumption.

Our formalism has applications in numerical simulations for fluid flow such as the “mortar
upscaling method”. This method consists in dividing the spatial domain in several sub-
regions; different models are used in each sub-region, see [23]. The formalism developed in
this paper gives physically meaningful conditions to match adjoining sub-regions. Since we
need to track the moving discontinuities between sub-domains, we can also use this formalism
by a natural way in the front-tracking algorithm, see [8, 9].
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Appendix A. Physical quantities; symbols and values

Table 2, Summary of physical input parameters and variables

Physical quantity Symbol Value Unit
Water, steam fractional functions fw, fg Eq. (3.2) . [m3/m3]
Porous rock permeability k 1.0× 10−12. [m3]
Water, steam relative permeabilities krw, krg Eq. (A.9) . [m3/m3]
Pressure pat 1.0135× 105. [Pa]
Water Saturation Pressure psat Eq. (A.6). [Pa]
Water, gaseous phase velocity uw, ug Eq. (3.1) . [m3/(m2s)]
Total Darcy velocity u uw + ug, Eq. (3.3) . [m3/(m2s)]
Effective rock heat capacity Cr 2.029× 106. [J/(m3K)]
Steam and nitrogen enthalpies hgW , hgN Eqs. (A.1), (A.2). [J/m3]
Water enthalpy hW hW = CW T/ρw. [J/m3]
Rock enthalpy Hr Eq. (A.3). [J/m3]
Water, steam saturations sw, sg Dependent variables. [m3/m3]
Connate water saturation swc 0.15. [m3/m3]
Temperature T Dependent variable. [K]
Water, gaseous phase viscosity µw, µg Eq. (A.4) , Eq. (A.5) . [Pa s]
Steam and nitrogen densities ρgw, ρgn Eq. (A.7.a), (A.7.b). [kg/m3]
Constant water density ρW 998.2. [kg/m3]
Steam and nitrogen gas composition ψgw, ψgn Dependent variables. [−]
Universal gas constant R 8.31 [J/mol/K]
Nitrogen and water molar masses MN , MW 0.28, 0.18 [kg/mol]
Rock porosity ϕ 0.38. [m3/m3]

A.1. Temperature dependent properties of steam and water. Following [3], the water
enthalpy per mass unit hW = CW T/ρw. The steam enthalpy hgW [J/kg] as a function of
temperature is approximated by

hgW (T ) = −2.20269× 107 + 3.65317× 105T − 2.25837× 103T 2 + 7.3742T 3

− 1.33437× 10−2T 4 + 1.26913× 10−5T 5 − 4.9688× 10−9T 6 − hw. (A.1)

The nitrogen enthalpy hgN [J/kg] as a function of temperature is approximated by

hgN (T ) = 975.0T + 0.0935T 2 − 0.476× 10−7T 3 − hgN . (A.2)

These constants enthalpies hw and hgN are chosen such that hw (T ), hgN (T ) vanish at a

reference temperature T = 293K. The rock enthalpy Hr, Ĥr, water and gaseous enthalpies
per mass unit Hw and Hg are are given by:

Hr = (1− ϕ)Cr(T − T̄ ), Ĥr = Hr/ϕ, Hw = ρwhw and Hg = ρgwhgW + ρgnhgN . (A.3)
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The temperature dependent liquid water viscosity µw [Pas] is approximated by

µw = −0.0123274 +
27.1038

T
− 23527.5

T 2
+

1.01425× 107

T 3
− 2.17342× 109

T 4
+

1.86935× 1011

T 5
.

(A.4)
We assume that that the viscosity of the gas is independent of the composition.

µg = 1. 826 4× 10−5
(
T/T b

)0.6
, (A.5)

where T b = 373.14K is the boiling temperature of the water.
The water saturation pressure as a function of temperature is given as

psat = 103(−175.776 + 2.29272T − 0.0113953T 2 + 0.000026278T 3

−0.0000000273726T 4 + 1.13816× 10−11T 5)2 (A.6)

The corresponding concentrations ρgw, ρgn are calculated with the ideal gas law:

ρgw = MW psat/ (RT ) , ρgn = MN

(
pat − psat

)
/ (RT ) , (A.7)

The pure phase densities are:

ρgW (T ) = MW pat/ (RT ) , ρgN(T ) = MNpat/ (RT ) , (A.8)

where the gas constant R = 8.31[J/mol/K], MW and MN are the the nitrogen and water
molar masses.

For simplicity the liquid water density is assumed to be constant at 998.2.kg/m3.

A.2. Constitutive relations. The relative permeability functions krw and krg are consid-
ered to be power functions of their respective saturations, i.e.

krw =

{
k′rw

(
sw−swc

1−swc−sgr

)nw

0
, krg

{
k′rg =

(
sg−sgr

1−swc−sgr

)ng

1

for swc ≤ sw ≤ 1,
for sw < swc.

(A.9)

For the computations we take nw = 2 and ng = 2. The end point permeabilities k′rw, k′rg are
0.5 and 0.95 respectively. The connate water saturation swc is given in the table.

Appendix B. Sppliting in the system

For these flows, the principle of conservation of mass for each chemical species implies that
there exist two linear maps E : Rm+1 −→ Rn and S : Rm+1 −→ Rm+1−n that satisfy:

E(q̂(V)) = 0 and S(Q(V)) = q(V) ∀ V . (B.1)

The function q(V) is a m + 1− n vector. Each component of this vector represents a single
type of mass transfer. For example, water can exist in liquid and gaseous form, when the
water evaporates, the total amount of mass of water that disappears in the equation for
balance of liquid water is the same quantity that appears in the equation for balance of
steam (gaseous water), so these mass transfers are dependent: because in the equation for
liquid water the transfer term is the negative of the term appearing in the equation for
gaseous water (steam). The vector q(V) is obtained from the independent components of
the set (q̂1, q̂2, · · · , q̂l, 0, · · · , 0). In Eq. (B.1.a), 0 is a n×1 vector. The linear map S isolates
the independent entries of Q. One can prove that the matrix M defined as:

M =

(
S
E

)
(B.2)
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is non-singular and transforms the system (1.1)-(1.2) into the equivalent system (2.1)-(2.2).

Appendix C. Degeneracies of the RH Locus and Bifurcations

Proposition 4.2 is valid if the denominator of Eq. (4.29) is non zero for some {i, j} ∈ P.
So it is necessary to study the behavior of the solution when X+

ij = 0 for all {i, j} ∈ P. For
a fixed pair {i, j} ∈ P, it easy to prove that:

Lemma C.1. Let {V −, V +} satisfy HV (V −; V +) = 0, where HV is given by Eq. (4.22). If
X+

ij = 0, then one of following conditions is satisfied:

(i) Yij = 0 or (ii) X+
12 = X+

31 = X+
23 = 0. (C.1)

From this Lemma it follows immediately that:

Corollary C.1. Let {V −, V +} satisfy HV (V −; V +) = 0. If X+
ij vanishes for two index pairs

{i, j} ∈ P, then it vanishes for all pairs.

Proposition C.1. If X+
ij = 0 for all {i, j} ∈ P and (F+

1 , F+
2 , F+

3 ) 6= 0, we obtain:

[Gk] = %1F
+
k and F−

k = %2F
+
k , for k = 1, 2, 3. (C.2)

where %1 and %2 are constants depending on [G], F− and F+, which are obtained in the proof
of Proposition. Moreover, for Z defined in (4.24.a), the shock speed v satisfies:

v = u−
Z(V −; V +)− %2

%1

. (C.3)

Proof: Let u− > 0. Since X+
ij = 0 ∀ {i, j} ∈ P, it follows that:

X+
23e1 + X+

31e2 + X+
12e3 = 0, (C.4)

where ei for i = 1, 2, 3 is the canonical basis for R3. Eq. (C.4) can be written as:

(F+
1 , F+

2 , F+
3 )× ([G1], [G2], [G3]) = 0, (C.5)

where × represents the outer product. Since Eq. (C.5) is satisfied, it follows that [G] is
parallel to F+, so there is a constant %1 so Eq. (C.2.a) is satisfied. Substituting [G] = %1F

+

into the RH condition (4.18), we obtain, for i = 1, 2, 3:

v%1F
+
i = u+F+

i − u−F−
i , (C.6)

If F−
i = 0 for some i = 1, 2, 3, so v = u+/%1. If F−

i 6= 0 for all i = 1, 2, 3, multiplying
Eq. (C.6) for i = 1 by F−

2 and (C.6) for i = 2 by −F−
1 and adding, it follows that

vϕ%1Y12 = u+Y12. Let us assume temporarily that Y12 6= 0, so Eq. (C.6) yields v = u+/%1.
Substituting v = u+/%1 into Eq. (C.6) we obtain u−F−

1 = 0. Since F−
1 6= 0, generically, it

follows that u− = 0, which is false. So Y12 = 0.
Similar calculations show that Y12 = Y23 = Y31 = 0, so there exists a constant %2 such

that F− = %2F
+. Eq. (C.3) can be obtained by substituting [G] = %1F

+ and F− = %2F
+ in

the RH condition (4.18). ¤
Remark C.1. If (F+

1 , F+
2 , F+

3 ) = 0 and ([G1], [G2], [G3]) 6= 0, it is easy to prove that:

F−
k = ρ3[Gk] and v = u−ρ3, (C.7)

where ρ3 is a constant that depends on [G] and F−.
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Corollary C.2. The states {V −, V +} satisfying the RH condition (4.18) for which X+
ij = 0

for all {i, j} ∈ P, satisfy also:

Yij = 0, ∀ {i, j} ∈ P. (C.8)

We notice that the system (C.8) has always the trivial solution V + = V −.

C.1. Proof of Proposition 5.3. Proof: Assuming that the RH curve can be parametrized
by Z in a neighborhood of (V +, u+), we can write the RH condition as:

v(G(V (ζ))−G−) = u(ζ)F (V (ζ))− u−F−, (C.9)

where v := v(ζ). Differentiating (C.9) with respect to ζ we obtain:

dv

dζ
(G(V (ζ))−G−) + v

∂G(V (ζ))

∂W

dW

dζ
=

∂ (u(ζ)F (V (ζ)))

∂W

dW

dζ
, (C.10)

Setting ζ+ such that (V (ζ+), u(ζ+)) = W (ζ+) = W+ = (V +, u+), Eq. (C.10) yields:

[G]
dv

dζ
+ v

∂G

∂W

dW

dζ
=

∂ (uF )

∂W

dW

dζ
, (C.11)

where W = (V, u). Assume first that (5.7) is satisfied. Notice that if ṽ+(V −, V +) = λ̃+,

then for (V +, u = u+), we have λ = u+λ̃+ and v(V −, u−; V +) = λ(V +, u+) (we dropped the
family index p). Substituting them in (C.11) we obtain at (+) = (V +, u+) the expression

(C.11) with v := uλ/u. Let ` the left eigenvector associated to λ̃+; taking the inner product
of (C.11) at (V +, u+) by `, we obtain:

` · [G]
dv

dζ
+ ` ·

(
u
λ

u

∂G

∂W
− ∂ (uF )

∂W

)
dW

dζ
= 0. (C.12)

Since ` is an eigenvector associated to λ, the second term of (C.12) is zero and it follows
that:

` · [G]
dv

dζ
= 0.

Since by hypothesis ` · [G] 6= 0, we obtain that dv/dζ = 0 and the shock speed is critical.
On other hand, assume that v has a critical point, so dv/dζ = 0 and Eq. (C.11) reduces

to:

v
∂G

∂W

dW

dζ
=

∂ (uF )

∂W

dW

dζ
, or

(
∂ (uF )

∂W
− v

∂G

∂W

)
dW

dζ
= 0. (C.13)

Notice that dW/dζ is parallel to the eigenvector r at W+. Similarly the projection of dW/dζ
is parallel to the projection of eigenvector r̃i at V +.

Eq. (C.13) has a solution if, only if,

v(V −, u−; V +) = λ(V +, u+) so ṽ+(V −; V +) = λ̃+(V +).

¤
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C.2. Proof of Proposition 5.4. Proof: We drop the family index i. Assume that (5.8) is
satisfied, where the ∂HV /∂V +

j for j = 1, 2 are:
(

F− × ∂F+

∂V +
j

)
[G]T + (Y32,Y13,Y21)

(
∂G+

∂V +
j

)T

,

where × is the outer product. Rearranging the terms, we can rewrite ∂HV /∂V +
j as:

∂HV

∂V +
j

=
(X−

32,X−
13,X−

21

)
(

∂F+

∂V +
j

)T

+ (Y32,Y13,Y21)

(
∂G+

∂V +
j

)T

. (C.14)

Recall that λ+ = u+λ̃+, so ∂W (uF )− λ∂W G at (V +, u+) is:



u+C1,1(V
+; λ̃+) u+C1,2(V

+; λ̃+) F+
1

u+C2,1(V
+; λ̃+) u+C2,2(V

+; λ̃+) F+
2

u+C3,1(V
+; λ̃+) u+C3,2(V

+; λ̃+) F+
3


 . (C.15)

Setting ṽ+(V −; V +) = λ̃+(V +) in (C.15) and assuming that X−
ij 6= 0 for all {i, j} ∈ P, we

use Eqs. (4.23.a) and (4.24) to write an equivalent but convenient expression for ṽ+ in each
matrix element, obtaining for Yij = Yij/Xij:


u+C1,1(V

+;Y32) u+C1,2(V
+;Y32) F+

1

u+C2,1(V
+;Y13) u+C2,2(V

+;Y13) F+
2

u+C3,1(V
+;Y21) u+C3,2(V

+;Y21) F+
3


 . (C.16)

Since ∂HV /∂V +
j = 0 for j = 1, 2, from Eq (C.14), it follows that for ` given by

` =
(X−

32, X−
13, X−

21

)
, (C.17)

the inner products of columns 1 and 2 of (C.16) by ` are zero. Since at (V −, V +) the
expression HV (V −) vanishes, after some calculations we obtain that ` · (F+

1 , F+
2 , F+

3 ) = 0,
so it is clear that ` is a left eigenvector of the system. Since the system is hyperbolic, there
is only a left eigenvalue associated to the eigenvalue, thus all left eigenvectors of (C.16)
with λ(V +) = v(V −, V +) are parallel to `. Notice that ` · ([G1], [G2], [G3] = 0, because this
equality satisfies the RH condition HV = 0, with HV given by (4.22).

If X−
ij = 0 for a pair {i, j} ∈ P, using Lemma C.1, the relationships Y−ij = 0 or X−

ij = 0 for

all {i, j} ∈ P are satisfied, so `i(V +) · [G] = 0.
Assume that X−

ij 6= 0 for some {i, j} ∈ P. For concreteness we set i = 1 and j = 3; the

other cases can be proved similarly. Since X−
13 6= 0 and the matrix (C.16) has the form (aij)

for i, j = 1, 2, 3, and we can write a11, a12 and a13, respectively as:

u+C1,1(V
+;Y13), u+C1,2(V

+;Y13) and F+
1 .

Substituting ` in (C.17) by the the following vector:

` =
(
0, F−

1 [G3]− F−
3 [G1], F−

2 [G1]− F−
1 [G2]

)
, (C.18)

it is easy to prove that this vector ` is in the kernel of the transpose of the matrix (C.16).
Finally assume that X−

ij = 0 for all {i, j} ∈ P. Since ` is a left eigenvector of the matrix

(C.16) it follows that ` · (F+
1 , F+

2 , F+
3 ) = 0. From Eq. (C.2.a) in the Proposition C.1, we see

that ([G1], [G2], [G3]) = ρ1(F
+
1 , F+

2 , F+
3 ) for any constant ρ1 ∈ R, so:

` · [G] = ` · (ρ1F
+) = ρ1` · F+ = 0.
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The converse can be proved similarly by reversing the order of the calculations. ¤
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