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Abstract. We give an alternative proof of the Benedicks-Carleson theorem on
the existence of strange attractors in Hénon-like families on surfaces. To bypass
a huge inductive argument, we introduce an induction-free explicit definition of
dynamically critical points. The argument is sufficiently general and in particular
applies to the case of non-invertible maps as well. It naturally raises the question
of an intrinsic characterization of dynamically critical points for dissipative surface
maps.
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1. Introduction

Strange attractors are of fundamental importance in the study of dynamical sys-
tems. While they are quite often observed numerically, a theoretical study of them
still remains a challenge. The first existence theorem was obtained by Benedicks
and Carleson [BC91], on the Hénon family (x, y) → (1− ax2 + y, bx) for a positive
measure set of parameters close to (2, 0). Mora and Viana [MV93], Dı̀az, Rocha, and
Viana [DRV96] pushed their argument further and proved the existence of strange
attractors in very general bifurcation mechanisms, such as homoclinic tangencies or
critical saddle-node cycles. See also Wang and Young [WY01] for a more geometric
treatment which yields advanced properties of the attractor.

A breakthrough in this direction had taken place before in the context of the
quadratic family fa : x → 1 − ax2. With a careful control of the recurrence of the
critical point x = 0, Jakobson [J81] constructed a positive measure set of parameters
such that the corresponding maps admit absolutely continuous invariant probability
measures. See [CE83] [BC85] taking similar approaches.

[BC91] is a very creative extension of their previous argument in one dimension
[BC85]. Since the Hénon map is a diffeomorphism, there is no critical point in
the usual sense. However, they remarkably invented dynamically critical points for
certain Hénon maps, which allowed them to develop a parameter selection argument
with some partial resemblance to the one dimensional case.

In [BC91] [MV93] [WY01], the construction of critical points involves a huge
inductive scheme. To recover the assumption of the induction, parameter selections
are made with a careful control of the recurrence of critical points constructed at
early stages. As such, the assumption of the induction has to incorporate both phase
space dynamics and structures in parameter space relative to the old critical points,
and necessarily becomes complicated.

The aim of this paper is to improve this point by providing a conceptually simpler
proof of the Benedicks-Carleson theorem. A key ingredient is an induction-free ex-
plicit definition of critical points. A strong dissipation and an exponential growth of
derivatives along the orbits of critical points together imply the existence of strange
attractors with positive Lyapunov exponents (Theorem A). The set of parameters
satisfying this growth condition is shown to have positive Lebesgue measure (The-
orem B). The definition of critical points is a purely analytic one and makes sense
for any smooth dissipative surface maps. It is interesting to ask whether it has any
intrinsic meaning. A similar question is addressed and some results are given in
[PH].

Our argument is sufficiently general and in particular applies to the case of non-
invertible maps such that the unstable manifold intersects itself. While no explicit
result has been known in this case (see the next paragraph), non-invertible Hénon-
like families often appear in many places: for example, in homoclinic bifurcations
of surface maps in which transverse homoclinic orbits intersects fold singularities,
studied in [San00]; in certain reaction-diffusion equations, studied in [OP00].

Let us make a technical and historical remark. A crucial fact used in [BC91]
[MV93] [WY01] is that tangent directions of two nearby horizontal pieces of the
unstable manifold are nearby as well, for them to avoid intersecting each other.
A new difficulty in the non-invertible case is the obvious failure of this property.
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Meanwhile, the same difficulty appears in dimension higher than two, and Viana
[Via95] dealt with this by taking the closeness of tangent directions as an indepen-
dent assumption. This implies that one can deal with the non-invertible case in two
dimension by adapting his argument. See also Remark 2.10.3.

1.1. Statement of the result. An Hénon-like family is a continuous two parameter
family of not necessarily invertible maps Ha,b : [−2, 2]2 → R2, of the form

(1) Ha,b :

(
x
y

)
→

(
1− ax2 + bu(a, b, x, y)

bv(a, b, x, y)

)
,

where (a, b) is close to (2, 0), and u, v are C4 with respect to a, x, y. We assume

(2) ∂xv(2, 0, 0, 0) 6= 0.

Let P denote the hyperbolic fixed point whose x-coordinate is positive. Regardless
of whether H is invertible or not, the unstable manifold W u(P ) is obtained as an
immersed real line. To bypass its possible self-intersections, define

TzW
u(P ) = {v ∈ TzR2 : there exists a segment in W u(P ) which is tangent to v}.

The result splits into two theorems. The first one gives a sufficient condition
for the existence of strange attractors, in the form of exponential growth condition
(EG)n. It is a condition on the growth of orbits of critical points of order n. We
need to wait until Section 4 to correctly define this.

Theorem A. For an Hénon-like family (Ha,b), there exists N > 0 such that if (a, b),
b > 0 is sufficiently close to (2, 0) and H = Ha,b satisfies (EG)n for all n ≥ N , then:
(i) cl(W u(P )) is a compact, positively invariant set under H;
(ii) there exists a countable set C ⊂ W u(P ) near (0, 0) such that:
(iia) for every z ∈ C and n ≥ 1,

‖DHn(H(z)) ( 1
0 ) ‖ ≥ e

99
100

log 2·n;

(iib) for every z ∈ C there exists a unique (up to sign) unit vector e ∈ TH(z)W
u(P )

such that for every n ≥ 1,

‖DHn(H(z))e‖ ≤ (Kb)n,

where K > 0 is a uniform constant;
(iic) for all z ∈ W u(P ) \⋃∞

n=−∞ Hn(C) and u ∈ TzW
u(P ),

lim sup
n→+∞

1

n
log ‖DHn(z)u‖ ≥ log 2

3
;

(iid) there exists z ∈ C whose forward orbit is dense in cl(W u(P ));
(iii) For any periodic point p ∈ [−2, 2]2,

lim sup
n→+∞

1

n
log ‖DHn(p)‖ ≥ log 2

3
.

In particular, all periodic points of H are hyperbolic of saddle type.

The following theorem states that the condition in Theorem A is not empty
from a measure theoretical point of view. These two theorems together imply the
Benedicks-Carleson theorem.
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Theorem B. For an Hénon-like family (Ha,b) and b > 0 small, there exists a positive
measure set Ωb of a-values near (2, 0) such that H = Ha,b satisfies (EG)n for all
n ≥ N whenever a ∈ Ωb.

Several remarks are in order on the scope of the theorems. The present setting
may be considerably extended along the line that is now well-understood. In the
definition of the Hénon-like family, one may replace the quadratic family by the
so-called transversal family of uni/multimodal maps and keep the conclusion the
same, except transitivity. Moreover, while only the two dimensional case is treated
here, the argument may be extended to higher dimensions with additional geometric
considerations, as in [Via95] [WY]. We have suppressed these possible extensions
for simplicity.

For cl(W u(P )) to deserve the name of attractor, its basin of attraction should have
nonempty interior. This is known to be the case when the map is invertible: see
[PT93] Appendix 3. However, the same argument does not hold when singularities
exist. Meanwhile, Benedicks personally communicated to us that he has a new
argument which holds even if singularities exist.

Adapting [BY93] [BY00] to our setting, one can prove the existence of physical
measures with nice statistical properties, under the same assumption as in Theorem
A. Other known properties in[WY01] would follow, in the invertible case.

In view of the history in one-dimensional dynamics, it would be interesting to
look for an weaker condition which guarantees the existence of physical measures.
However, before doing this we must pause on any intrinsic meaning of the critical
points we are going to introduce.

A hidden aim of this paper is to lay a ground work for possible further develop-
ments. What we have in mind is the basin problem for the case of non-invertible
maps with fold singularities, posed by Tsujii more than three years ago. It is a
question on the coincidence of the asymtotic distribution of Lebesgue almost every
point in the basin of attraction. A new difficulty here is how to eventually control
Lebesgue almost every orbit in the basin of attraction, in defiance of singularities.
Based on the present paper, we shall give a positive solution to this problem. A posi-
tive solution to the same problem for invertible case was initially given by Benedicks
and Viana [BV01], and then by Wang and Young [WY01], under certain regularity
condition on the Jacobian of the map. While this condition has been removed in
[T06], invertibility remains crucial.

1.2. Overview of the paper. The rest of this paper consists of seven sections.
Section 2 provides basic estimates and constructions which will be frequently used
later. Some are new and some are old, already appearing in [BC91] [MV93] [WY01]
in one form or another. Building on some of them we define (pre) critical points
(Sect.2.9, Sect.2.11). Intuitively, they are points of tangencies between stable and
unstable directions having regular backward orbits.

One important problem is the analysis of the growth of orbits starting from neigh-
borhoods of critical points. Assuming strong regularity condition on critical orbits
and admissible position (Sect.3.1), we prove that an exponential growth of deriva-
tives prevails (Lemma 3.3.2). At this point, a precise distortion estimate in Lemma
2.4.1 is crucial in order to faithfully copy the growth of the critical orbit.



6 HIROKI TAKAHASI

In Section 4, we introduce the exponential growth condition (EG)n on the orbit of
critical points of order n. This condition is sufficient to develop a capture argument
which systematically assigns suitable critical points (binding points) to every free
return. As a by-product, we conclude a proof of Theorem A.

Sections from 5 to 8 deal with parameter issues. The goal is the construction of
the parameter set in Theorem B. Parameters which satisfy (EG)n−1 but not (EG)n

are discarded at step n. The condition (EG)n is not well-adapted to our inductive
scheme. Hence, we introduce in Sect.6.2 a stronger condition, called reluctant recur-
rence condition1 (RR)n. Parameters have to satisfy this condition to be selected.

We pay attention to the complement of good parameter sets. This idea has been
borrowed from the work of Tsujii [Tsu93a] [Tsu93b] on the Benedicks-Carleson-
Jakobson theorem in one dimension. He proved that parameters discarded at step
n are contained in a finite union of well-structured sets the measures of which are
uniformly exponentially small in n. We show that essentially the same thing prevails
in two dimension. In doing this, two issues intrinsic to two-dimension need to
be considered and remedies are made accordingly, as explained in the next two
paragraphs.

Critical points disappear when parameters are varied. Hence we work with quasi
critical points (Sect.5.1) rather than the critical points itself. Proposition 5.4.1
guarantees the existence of smooth continuations of quasi critical points in a suf-
ficiently large interval. This sets the stage for considering the dynamics of critical
curves, in section 7. Under the assumption of (RR)n−1, we manage to recover three
consequences which are known to hold in one-dimension [Tsu93a] [Tsu93b] : good
distortion and curvature estimates (Proposition 7.1.2); a large amount of expan-
sion in parameter space at essential returns (Proposition 7.4.1); existence of binding
points for critical curves (Proposition 7.5.1).

By definition, there are uncountably many critical points of the same order. Nev-
ertheless, the total number of analytically distinguishable critical points at step n
is finite and not too large. Here, we regard two distinct critical points of the same
order as indistinguishable, if their backward and forward orbits are characterized
by the same set of discrete data, called sample points (Sect.5.2), essential return
times (Sect.6.1), essential return depths (Sect.7.4). Each indistinguishable class of
critical points makes holes in good parameter sets. It turns out that these sets are
well-structured and the total measure of parameters discarded at step n is smaller
than the total number of indistinguishable classes times some exponentially small
number in n. Consequently, a positive measure set is left over (Proposition 8.1.2).

I am grateful to Masato Tsujii for having brought this problem to my attention.
I have to say his notes [Tsu03] is very important for the existence of this paper.
Most of this work has been done while I was at Instituto de Matemàtica Pura e
Aplicada. Above all, I am grateful to Paulo Varandas and Samuel Senti for useful
conversations, to Jacob Palis and Marcelo Viana for their hospitality and providing
a stimulating atmosphere. Research supported by CNPq.

1This terminology appears in one-dimensional dynamics and designates a different object.
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2. Basic estimates and constructions

This section is mostly devoted to basic estimates and constructions which will be
frequently used later.

2.1. Trapping region. To begin with, we identify a positively invariant region in
which strange attractors potentially exist. This is done up to certain unimportant
restriction on parameters. See [MV93] Proposition 4.1 for related discussions in the
invertible case. We need to employ a different argument for our purpose.

Let Q denote the hyperbolic fixed point which is not P . For b > 0 small, two
straight lines [−2, 2]×{±1/10} cut two curves S1 and S2 in the stable set of Q, such
that Q ∈ S1 and H(S2) ⊂ S1. Define D to be the closed region surrounded by these
two lines and two curves. Clearly, P ∈ Int D holds.

Let ea denote the fa-preimage of Q which is not Q.The number ea−fa(0) is positive
and strictly monotone decreasing to zero as a → 2. This implies fa([Q, ea]) ( [Q, ea],
and hence Ha,0(D) ( D. Put an = 2 − n−1. Define a sequence {bn}+∞

n=0 as follows:
choose b0 > 0 such that H(D) ⊂ D for all (a, b) ∈ [a0, a1]× [0, b0]; given bn−1, choose
bn ≤ bn−1 such that H(D) ⊂ D for all (a, b) ∈ [an, an+1] × [0, bn]. Define Ω′ to be
the set of (a, b) ∈ Ω such that a ∈ [an, an+1] and b ∈ [0, bn] for some n ≥ 0. The
following holds by construction:

Proposition 2.1.1. For any open neighborhood U of (2, 0), Ω′∩U contains an open
set. Moreover, H(D) ⊂ D and cl(W u(P )) ⊂ D holds for all (a, b) ∈ Ω′.

2.2. Constants and notation. We introduce absolute constants which are defi-
nitely fixed throughout the argument. They are

∆ = 3, σ = 100, ` = 49/100, λ̂ ≈ log 2.

The choice of ∆ ensures that the norms of all the partial derivatives of (a, z) → Ha(z)
are bounded from above by e∆. The constants entirely determined by the family
(Ha,b) are mostly denoted by K. Keep in mind that the values of K are different in
different places in general. Hence we have the liberty to write 2K ≤ K and so on.
We reserve the letters K0, K1 for special use as follows:

K0 concerns hyperbolic behaviors away from the critical region2 (Lemma 2.5.1);
K1 determines the angle of vertical cones in which the mostly contracting direc-

tions reside (Lemma 2.7.4).
On the other hand, we introduce system constants which are allowed to change,

provided that a finite number of conditions are satisfied. They are

α, M , β, δ, θ, b,

chosen in this order. We have α, δ, θ, b ¿ 1 and M , β À 1.
We frequently use the following notation: Ai = H i(A) for a set A ⊂ D and i ≥ 0;

vi(zi) = DH i(z0)v0 for v0(z0) ∈ TR2|D and i ≥ 0. The sequence {vi(zi)}n
i=0 is called

a vector orbit of H. We only consider vector orbits which consist of nonzero vectors.

2In the present context, K0 ≈ 1 holds.
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2.3. Curvature.

Lemma 2.3.1. Let v = {vi(zi)}n
i=0 be a vector orbit, and γ0 ⊂ D a C2 curve which

is tangent to v0(z0). Let κj(zj) denote the curvature of γj at zj. Then for every
1 ≤ j ≤ n,

κj(zj) ≤ (Kb)j ‖v0‖3

‖vj‖3
κ0(z0) +

j∑

`=1

(Kb)`‖vj−`‖3

‖vj‖3
.

Proof. Parametrize γ0 by s ∈ [0, 1], and suppose that z0 = γ0(s0). Let γi(s) =
H i(γ0(s)) for i ≥ 0. By the chain rule,

γ′i(s) = DH(γi−1(s))γ
′
i−1(s)

and
γ′′i (s) = D2H(γi−1(s))γ

′
i−1(s) + DH(γi−1(s))γ

′′
i−1(s),

where

DH =

(
A B
C D

)

and

D2H(γi−1(s)) =

(〈∇A, γ′i−1(s)〉 〈∇B, γ′i−1(s)〉
〈∇C, γ′i−1(s)〉 〈∇D, γ′i−1(s)〉

)
.

Then

κi(zi) =
‖γ′i(s0)× γ′′i (s0)‖

‖γ′i(s0)‖3
≤ I + II,

where

I = Kb · ‖γ
′
i−1(s0)‖3

‖γ′i(s0)‖3
κi−1(zi−1)

and
II = ‖γ′i(s0)‖−3‖DH(γi−1(s0))γ

′
i−1(s0)×D2H(γi−1(s0))γ

′
i−1(s0)‖.

The vector product in II is degree three homogeneous in ‖γ′i−1(s0)‖. Moreover, since
the C1-norms of B, C, D are bounded by Kb, the second components of the two
vectors in the product have a factor b. Therefore

κi(zi) ≤ ‖vi−1‖3

‖vi‖3
(Kb + Kb · κi−1(zi−1)).

A recursive use of this inequality gives the desired one. ¤

2.4. Distortion. For a vector orbit v = {vi(zi)}n
i=0, define

Θ(v, i) = min
i≤j≤n

‖v0‖
‖vi‖

‖vj‖2

‖vi‖2

and
Ξ(v) = e−ασn · min

0≤i≤n
Θ(v, i).

We say v is κ-expanding, or simply expanding, if there exists κ ≥ b1/4 such that

‖vi‖ ≥ κi‖v0‖ 1 ≤ ∀i ≤ n.
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Choose a large integer M > 0 such that ne−ασn ≤ 1/2 holds for every n ≥ M . For a
C1 curve γ0 ⊂ D and z0 ∈ γ0, let tγ0(z0) denote the unit vector tangent at z0 to γ0.

Lemma 2.4.1. Let n ≥ M , and suppose that v = {vi(zi)}n
i=0 is expanding. Let

γ0 ⊂ D be a C2 curve which is tangent to v0, length(γ0) ≤ Ξ(v), and curvature ≤ 1
everywhere. For every 1 ≤ i ≤ n and z′0 ∈ γ0,

∣∣∣∣log
‖DH i(z0)tγ0(z0)‖
‖DH i(z′0)tγ0(z

′
0)‖

∣∣∣∣ ≤
1

2
.

Proof. Let κi denote the maximum of the curvature of γi. Then

(e∆ + κ0) · length(γ0) ≤ e2∆Ξ(v)Θ(v, 0)−1Θ(v, 0)

≤ e2∆Ξ(v)Θ(v, 0)−1‖v1‖2

‖v0‖2

≤ e3∆−ασn‖v1‖
‖v0‖ .

Since n ≥ M , it is enough to prove the following by induction on i ∈ [0, n− 1]:

(3) (e∆ + κi) · length(γi) ≤ e3∆−ασn‖vi+1‖
‖vi‖ ;

(4)

∣∣∣∣log
‖DH i+1(z0)tγ0(z0)‖
‖DH i+1(z′0)tγ0(z

′
0)‖

∣∣∣∣ ≤ (i + 1)e3∆−ασn/2 ∀z′0 ∈ γ0.

(3)=⇒(4). Let 0 ≤ j ≤ i and z′0 ∈ γ0 be arbitrary. Put v′j = DHj(z′0)tγ0(z
′
0) to

ease notation. Using (3),
∥∥∥∥

vj+1

‖vj‖ −
v′j+1

‖v′j‖

∥∥∥∥ ≤ (e∆ + κj)length(γj) ≤ e3∆−ασn‖vj+1‖
‖vj‖ ,

and thus

‖v′j+1‖
‖v′j‖

≥ ‖vj+1‖
‖vj‖ −

∥∥∥∥
v′j+1

‖v′j‖
− vj+1

‖vj‖

∥∥∥∥ ≥ (1− e3∆−ασn)
‖vj+1‖
‖vj‖ .

Taking logs,
∣∣∣∣log

‖vj+1‖
‖vj‖ − log

‖v′j+1‖
‖v′j‖

∣∣∣∣ ≤ e3∆−ασn/2.

Using this for every 0 ≤ j ≤ i, we obtain (4).
(4)=⇒(3) with i = i + 1. Using (4),

length(γi+1) ≤ e · ‖vi+1‖
‖v0‖ length(γ0) ≤ e · Ξ(v)

‖vi+1‖
‖v0‖ .

Using Lemma 2.3.1 and κ0 ≤ 1,

(e∆ + κi+1) · length(γi+1) ≤ Ξ(v) (I + II + III) ,
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where

I = e
‖vi+1‖
‖v0‖ ,

II = e4(Kb)i+1 ‖v0‖2

‖vi+1‖2
,

III = e4‖vi+1‖
‖v0‖

i+1∑
j=1

(Kb)j ‖vi+1−j‖3

‖vi+1‖3
.

By the definition of Θ(v, i + 1),

(5) Θ(v, i + 1)−1Θ(v, i + 1) ≤ Θ(v, i + 1)−1 ‖v0‖
‖vi+1‖

‖vi+2‖2

‖vi+1‖2
,

and therefore

I ≤ e∆Θ(v, i + 1)−1‖vi+2‖
‖vi+1‖ .

Using (5) and the expansivity of v,

II ≤ e4(Kb)i+1Θ(v, i + 1)−1 ‖v0‖3

‖vi+1‖3

(‖vi+2‖
‖vi+1‖

)2

≤ (Kb)i+1b
−3(i+1)

4 e4+∆Θ(v, i + 1)−1‖vi+2‖
‖vi+1‖

≤ Θ(v, i + 1)−1‖vi+2‖
‖vi+1‖ .

Regarding III, for every 0 ≤ k ≤ n we have

‖vi+1‖
‖v0‖

‖vi+1−j‖3

‖vi+1‖3
= Θ(v, k)−1Θ(v, k)

‖vi+1‖
‖v0‖

‖vi+1−j‖3

‖vi+1‖3

= Θ(v, k)−1 min
k≤`≤n

‖vi+1‖
‖vk‖

‖v`‖2

‖vk‖2

‖vi+1−j‖3

‖vi+1‖3
.

Substituting k = i + 1 − j ≤ n − 1 into the right hand side and then using
mini+1−j≤`≤n ‖v`‖2 ≤ ‖vi+1‖‖vi+2‖, we have

‖vi+1‖
‖v0‖

‖vi+1−j‖3

‖vi+1‖3
≤ Θ(v, i + 1− j)−1‖vi+2‖

‖vi+1‖ .

Consequently,

III ≤ ‖vi+2‖
‖vi+1‖

i+1∑
j=1

(Kb)j ·Θ(v, i + 1− j)−1.

Altogether these three inequalities and the definition of Ξ(v) yield (3) with i + 1 in
the place of i. ¤
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2.5. Hyperbolicity and regularity. The following lemma ensures certain amount
of hyperbolicity outside of the critical region Cδ = (−δ, δ)× [−1/10, 1/10].

Lemma 2.5.1. For all λ̂ < log 2, α > 0, δ > 0, there exists K0 > 0 and the following
holds for all H = Ha,b with (a, b) close to (2, 0) and λ = λ̂ − α > 0: suppose that
{vi(zi)}n

i=0, n ≥ 1 is a vector orbit of H such that slope(v0) ≤ K0b.
(i) If z0, z1, · · · , zn−1 /∈ Cδ, then for every 0 ≤ i ≤ j ≤ n,

slope(vi) ≤ K0b and ‖vj‖ ≥ K0δe
λ(j−i)‖vi‖.

(ii) Let xi denote the x-coordinate of zi. If moreover |xn| ≤ 2|x0|, then

‖vn‖ ≥ K0e
λn‖v0‖.

(iii) If ‖vn‖ ≥ e−2K0δ‖vn−1‖, then slope(vn) ≤ K0b.

We omit a proof because it is well-known.
A vector orbit {vi(zi)}n

i=0 is called r-regular (r > 0) if

‖vn‖ ≥ K0rδ‖vi‖ 0 ≤ ∀i ≤ m.

It is easy to see that the following holds.

Corollary 2.5.2. Let r ≥ e−2, and suppose that {vi(zi)}n
i=0 is an r-regular vector

orbit of H as in Lemma 2.5.1. Then slope(vn) ≤ K0b. Let m = min{i ≥ n : zi ∈ Cδ}.
Then {vi(zi)}m

i=0 is r-regular.

2.6. Admissible curves. A C2 curve γ is called admissible if slope(tγ(z)) ≤ K0b
for all z ∈ γ and the curvature is ≤ 1 everywhere on γ.

Lemma 2.6.1. Let n ≥ M . Suppose that a vector orbit v = {vi(zi)}n
i=0 is κ-

expanding and e−4-regular. Let γ0 be a C2 curve which is tangent to v0(z0), length(γ0) =
Ξ(v), curvature ≤ 1 everywhere. Then γn is an admissible curve and

length(γn) ≥ e−3∆nκ3n.

Proof. Using Lemma 2.4.1, ‖vj‖ ≥ κj‖v0‖ ≥ κn‖v0‖, and ‖vi‖ ≤ e∆i‖v0‖ ≤ e∆n‖v0‖,

length(γn) ≥ e−5ασn−1/2‖vn‖
‖v0‖ · min

0≤i≤n

(
min

i≤j≤n

‖v0‖
‖vi‖

‖vj‖2

‖vi‖2

)

≥ e−ασn‖vn‖
‖v0‖ · min

0≤i≤n

‖v0‖
‖vi‖ · min

i≤j≤n

‖vj‖2

‖vi‖2

≥ e−3∆nκ3n.

By Lemma 2.3.1 and the regularity of v, the curvature of γn is ≤ 1 everywhere. The
slope estimate follows from (iii) in Lemma 2.5.1. ¤
2.7. Mostly contracting directions. Let M be a 2× 2 matrix. Denote by e(M)
a unit vector (up to sign) such that ‖Me(M)‖ ≤ ‖Mu‖ holds for any unit vec-
tor u. We call e(M), when it exists, the mostly contracting direction of M . We
analogously define a unit vector f(M) which is mostly expanded by M . Clearly
Me(M)⊥Mf(M), and moreover e(M)⊥f(M) holds3.

3Consider the dual M∗. Then e(M∗), f(M∗) is well-defined and M∗e(M∗)⊥M∗f(M∗).
Since Me(M) ∈ ker f(M∗) and Mf(M) ∈ ker e(M∗) we have M∗Me(M) ∈ kerM∗f(M∗) and
M∗Mf(M) ∈ kerM∗e(M∗). This implies e(M)⊥f(M).
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For a sequence of matrices M1, M2 · · · , we use M (i) to denote the matrix product
Mi · · ·M2M1, and ei to denote the mostly contracting direction of M (i). We assume
| det Mi| ≤ Kb and ‖Mi‖, ‖DMi‖ ≤ e∆. We quote some results in [WY01] without
proofs.

Lemma 2.7.1. ([WY01] Lemma 2.1) Suppose that ‖M (i)‖ ≥ κi and ‖M (i−1)‖ ≥
κi−1 for some κ ≥ b1/4. Then ei and ei−1 are well-defined, and satisfy

‖ei × ei−1‖ ≤
(

Kb

κ

)i−1

.

Corollary 2.7.2. ([WY01] Corollary 2.1) If ‖M (i)‖ ≥ κi for every 1 ≤ i ≤ n, then
‖en − e1‖ ≤ κ−1Kb, and ‖M (i)en‖ ≤ (Kb)i holds for every 1 ≤ i ≤ n.

Next we consider parametrized matrices Mi(s1, s2, s3) such that ‖∂Mi(s1, s2, s3)‖ ≤
e∆ and | det Mi(s1, s2, s3)| ≤ e∆, where ∂ denotes any first order partial derivatives.

Corollary 2.7.3. ([WY01] Corollary 2.2) Suppose that ‖M (i)(s1, s2, s3)‖ ≥ κi for
every 1 ≤ i ≤ n. Then for every 2 ≤ i ≤ n,

|∂(ei × ei−1)| ≤
(

Kb

κ3

)i−1

.

Let us come back to the original setting. For z ∈ D and n ≥ 1, define en(z) =
e(DHn(z)) and fn(z) = f(DHn(z)) when they make sense.

Lemma 2.7.4. There exists K1 such that if z = (x, y) /∈ Cδ then e1(z) is well-defined
and

slope(e1(z)) ≥ K−1
1 δb−1 and ‖∂e1(z)‖ ≤ K1|x|−2.

If moreover ‖DH i(z)‖ ≥ κi for every 1 ≤ i ≤ n then

slope(en(z)) ≥ K−1
1 δb−1 and ‖∂en‖ ≤ K1|x|−2.

Proof. The well-definedness of e1(z) follows from | det DH(z)| ≤ Kb and ‖DH(z)‖ ≥
2δ À

√
Kb/π. The Lagrange method of undetermined coefficients gives

e1 = ρ−1(C2 + D2 − λ2,−(AC + BD)),

where ρ > 0 is the normalizing constant,

DH =

(
A B
C D

)
, ‖DHe1‖ = λ, λ =

I −√I2 − 4II

2
,

and I = A2 + B2 + C2 + D2, II = A2D2 + B2C2 − 2ABCD. By (1), B, C, D are
O(b), and |A| ≤ K|x|. Hence the slope estimate follows.

We now estimate the partial derivatives of e1. By (1), all partial derivatives of
B, C, D are O(b), and ‖∂A‖ ≤ K, ρ ≥ Kb|x|. This gives

√
I2 − 4II ≥ K|x|,

I, ‖∂I‖ ≤ K|x|, ‖∂II‖ = O(b), and in particular ‖∂ρ‖ ≤ Kb and ‖∂λ‖ ≤ K|x|.
Putting altogether these we obtain the desired inequality. The rest of the assertion
readily follows from Corollary 2.7.2 and Corollary 2.7.3. ¤
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2.8. Long stable leaves. A long stable leaf of order k is an integral curve of ek

having the form

Γ = {(x(y), y) ∈ D : |y| ≤ 1/10}, |x′(y)|, |x′′(y)| ≤ Kb.

For a long stable leaf Γ and r > 0, define a strip

Γ(r) = {(x, y) ∈ D : |x− x(y)| ≤ r}.
The following proposition asserts the existence of long stable leaves around expand-
ing orbits. While similar constructions have already appeared in [BC91] [MV93]
[WY01], we work with the distortion estimate in Lemma 2.4.1 rather than the so-
called matrix perturbation Lemma ([BC91] Lemma 5.5). This yields a more intuitive
construction and better bounds on the width of the strip, which plays a crucial role
later.

Proposition 2.8.1. Let n ≥ M , z0 /∈ Cδ, and define a vector orbit w = {wi(zi)}n
i=0

by wi = DH i(z0) ( 1
0 ). If w is expanding, then

(i) for every 1 ≤ k ≤ n, the maximal integral curve Γ(k) of ek through z0 is a long
stable leaf of order k.

(ii) for 1 ≤ k ≤ n − 1, ei (1 ≤ i ≤ k + 1) is well-defined on Γ(k)(Π
max{M,k+1}
0 w).

Moreover, for all z′0 ∈ Γ(k)(Π
max{M,k+1}
0 w) and 1 ≤ i ≤ k + 1,

(6)

∣∣∣∣log
‖DH i(z0) ( 1

0 ) ‖
‖DH i(z′0) ( 1

0 ) ‖

∣∣∣∣ ≤ 1.

Proof. It is easy to see that Γ(1) is a long stable leaf of order 1. We prove (ii) for
k = j ≤ n− 1, assuming that Γ(j) is a long stable leaf, and that Γ(j) is contained in

Γ(j−1)(Π
max{M,j}
0 w) when j ≥ 2. For z′0 ∈ Γ(j) and i ∈ [0, j], define w′

i = DH i(z′0) ( 1
0 ).

Put A = DH(zi−1), A′ = DH(z′i−1). Then for i ≥ 1,

angle(wi, w
′
i) =

‖wi × w′
i‖

‖wi‖ · ‖w′
i‖

=
‖A′wi−1 × A′w′

i−1 + (A− A′)wi−1 × A′w′
i−1‖

‖wi‖ · ‖w′
i‖

≤ ‖wi−1‖
‖wi‖

‖w′
i−1‖

‖w′
i‖

(| det A′| · angle(wi−1, w
′
i−1) + K|zi−1 − z′i−1|)

≤ ‖wi−1‖
‖wi‖

‖w′
i−1‖

‖w′
i‖

(Kb · angle(wi−1, w
′
i−1) + (Kb)i−1).

Using this recursively and then ‖wi‖ ≥ κi, ‖w′
i‖ ≥ e−1κi,

angle(wi, w
′
i) ≤ (Kb)i−1

i∑
j=0

‖wj‖
‖wi‖

‖w′
j‖

‖w′
i‖
≤ b

j−1
2 .

This and ‖wi‖ ≈ ‖w′
i‖ imply ‖wi − w′

i‖ ≤
√

3‖wi‖ · angle(wi, w
′
i) ≤ b

i−1
3 . Thus

∣∣‖wi+1‖ − ‖w′
i+1‖

∣∣ ≤ ‖wi+1 − w′
i+1‖ ≤ ‖A‖‖wi − w′

i‖+ ‖A−B‖‖w′
i‖ ≤ b

i−1
4 .
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This and ‖wi+1‖ ≥ κi+1 À b
i−1
4 yield

∣∣∣∣log
‖wi+1‖
‖w′

i+1‖

∣∣∣∣ ≤ b
i
5 .

We now choose arbitrary z′′0 ∈ Γ(j)(Π
max{M,j+1}
0 w), and take z′0 ∈ Γ(j) whose y-

coordinate coincides with that of z′′0 . Then |z′0 − z′′0 | ≤ Ξ(Π
max{M,j+1}
0 w) holds. For

i ∈ [0, j], define DH i(z′′0 ) ( 1
0 ) = w′′

i . Using the previous estimate and Lemma 2.4.1,
∣∣∣∣log

‖wi+1‖
‖w′′

i+1‖

∣∣∣∣ ≤
∣∣∣∣log

‖wi+1‖
‖w′

i+1‖

∣∣∣∣ +

∣∣∣∣log
‖w′

i+1‖
‖w′′

i+1‖

∣∣∣∣ ≤ b
i
4 +

1

2
≤ 1.

This yields ‖w′′
i+1‖ ≥ e−1κi+1‖w′′

0‖, and hence ei+1(z
′′
0 ) is well-defined. Consequently,

(ii) holds with k = j.
We show that Γ(j+1) is a long stable leaf. Parametrize Γ(j+1) and Γ(j) by arc length

and assume that z0 = Γ(j+1)(0) = Γ(j)(0). Suppose that Γ(j+1)(s) is well-defined for
s ∈ [0, s0]. For any such s, using Lemma 2.7.1 and Corollary 2.7.4,

‖ej+1(Γ
(j+1)(s))− ej(Γ

(j)(s))‖ ≤‖ej+1(Γ
(j+1)(s))− ej(Γ

(j+1)(s))‖
+ ‖ej(Γ

(j+1)(s))− ej(Γ
(j)(s))‖

≤
(

Kb

κ

)j

+ K|Γ(j+1)(s)− Γ(j)(s)|.

Therefore

|Γ(j+1)(s)− Γ(j)(s)| =
∣∣∣∣
∫ s

0

dΓ(j+1)(s)

ds
− dΓ(j)(s)

ds
ds

∣∣∣∣

≤
∫ s

0

‖ej+1(Γ
(j+1)(s))− ej(Γ

(j)(s))‖ds

≤
(

Kb

κ

)j

s + K

∫ s

0

|Γ(j+1)(s)− Γ(j)(s)|ds

≤ Ks +

(
Kb

κ

)j

s

...

≤ (Ks)m

m!
+

(
Kb

κ

)j m∑

k=1

(Ks)k

k!
.

Notice that the third inequality follows from substituting |Γ(j+1)(s) − Γ(j)(s)| ≤ 1
into the inside of the integral. Similarly, the m-th inequality (m ≥ 4) follows from
substituting the m− 1-th one into the same place. We now Put s = s0 and pass m
to the limit → +∞. Then it follows that Γ(j+1)(z0) hits neither the left nor right

boundary of Γ(j)(Πmax M,j+1
0 w). Hence Γ(j+1)(s) defined for all s ∈ [−1/10, 1/10].

Corollary 2.7.4 implies that Γ(j+1) is indeed a long stable leaf with the desired
derivative estimate.
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It is left to prove Γ(j+1) ⊂ Γ(j)(Π
max{M,j+1}
0 w). For (x′0, y

′
0) ∈ Γ(j+1), choose

(x′′0, y
′
0) ∈ Γ(j). Then |x′0 − x′′0| ≤ (Kb)j ≤ Ξ(Π

max{M,j+1}
0 w) holds, regardless of

whether j + 1 ≥ M or not. This implies the inclusion. ¤

2.9. Precritical points. Suppose that γ0 is an admissible curve in Cδ. We say
ζ0 ∈ γ0 is a precritical point of order n on γ0, if
(a) ‖DH i(ζ1)‖ ≥ e−1 for every 1 ≤ i ≤ n;
(b) en(ζ1) is tangent to DH(ζ0)tγ0(ζ0).

Remark 2.9.1. By Lemma 2.7.1 and Lemma 2.7.4, we have

(7) slope(DHtγ(ζ)) ≥ K−1
1 δb−1.

This implies that all precritical points are contained in a small neighborhood of
(0, 0), provided that b is sufficiently small.

Remark 2.9.2. Every admissible curve admits no more than two precritical points
of the same order. Let us see why this is so. By definition, precritical points are
points of tangencies between the images of admissible curves and long stable leaves.
For any long stable leaf and any admissible curve, there is at most one point of
tangency between them. Meanwhile, by the uniqueness of solutions in ordinary
differential equations, two distinct long stable leaves do not intersect each other.
These two facts together imply the claim.

2.10. Creation of new precritical points. The following two lemmas are used
to create new precritical points around the existing ones. For related discussions,
see: [BC91] p.113, Lemma 6.1; [MV93] sect.7A, 7B; [WY01] Lemma 2.10, 2.11.
Our argument that follows is a slight adaptation of them. In this subsection, all
admissible curves are assumed to be parametrized by arc length.

Lemma 2.10.1. Let γ0 be an admissible curve in Cδ, where γ0(0) = ζ0 is a precritical
point of order m. Let ε ∈ [Kb, e−40β], and suppose that γ0(s) is defined for s ∈
[−εm/2, εm/2]. Suppose that there exists j ∈ [β−1m,βm] such that ‖DH i(ζ1)‖ ≥ 1

holds for every 1 ≤ i ≤ j. Then there exists a precritical point ζ̂0 of order j on γ0

such that |ζ0 − ζ̂0| ≤ εm/2.

Proof. Let Γ(j−1) denote the long stable leaf of order j−1 through ζ1. Let w denote
the forward vector orbit of ζ0. Since Πj

0w ≥ e−20∆j ≥ e−20βm À 2e∆εm/2 and
diam(γ1) ≤ e∆ · length(γ0) ≤ 2e∆εm/2, we have γ1 ⊂ Γ(j−1)(Πj

0w). Hence it makes
sense for z0 ∈ γ0 to consider the splitting

DH(z0)tγ0(z0) = ξ̃ej(z1) + η̃fj(z1) and DH(z0)tγ0(z0) = ξem(ζ1) + ηfm(ζ1).

Put ψ(z0) = angle(em(ζ1), ej(z1)). We clearly have η̃ = η cos ψ ± ξ sin ψ, the sign
being chosen as the case may be. By Lemma 2.8.1,

ψ(z0) ≤ angle(em(ζ1), em(z1)) + angle(em(z1), ej(z1))

≤ K|ζ0 − z0|+ (Kb)m.

In particular, we have ψ(z0) ¿ 1. Suppose that z0 is the endpoint of γ0. Then the
above inequality implies ψ(z0) ≤ K|ζ0−z0|. Lemma 3.3.3 implies |η(z0)| = |ζ0−z0|,
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|ξ(z0)| ≤ K1δ
−1b, and η(z0)η(z′) < 0, where z′ is the other endpoint of γ0. Without

loss of generality we may assume η(z0) > 0. Then

η̃(z0) ≥ |ζ0 − z0|
(

1

2
−Kδ−1b

)
> 0,

and η̃(z′) < 0 on the other hand. By the intermediate value theorem, there exists

ζ̂ ∈ γ0 such that η̃(ζ̂0) = 0. In other words, ζ̂0 is a critical point of order j. ¤
Lemma 2.10.2. Let ε ∈ (0, e−10∆] and m ≥ log δ4/ log ε. Let γ and γ̃ be two
admissible curves in Cδ. Suppose that:

(a) γ(s), γ̃(s) are defined for s ∈ [−εm/2, εm/2].
(b) γ(0) is a precritical point of order m and ‖DH i(γ(0))‖ ≥ e for 1 ≤ i ≤ m;
(c) the x-coordinates of γ(0) and γ̃(0) coincide,
(d) |γ(0)− γ̃(0)| ≤ min(Kb, εm) and angle(γ′(0), γ̃′(0)) ≤ εm.

Then there exists s0 ∈ [−εm/2, εm/2] such that γ̃(s0) is a precritical point of order m.

Remark 2.10.3. In [BC91] [MV93] [WY01], γ and γ̃ are assumed to be disjoint,
which is crucial. The smallness of the angle between γ′(0) and γ̃′(0) automatically
follows from this, for them to avoid intersecting each other. In the present context,
we need to allow γ to intersect γ̃, and thus the smallness of the angle needs to be
taken as an independent assumption as in (d).

Proof. Let z ∈ γ̃1. Since diam(γ̃1) ≤ εm/2 and ε ≤ e−10∆, we have

|H(γ(0))− z| ≤ |H(γ(0))−H(γ̃(0))|+ εm/2 ≤ 2εm/2 ≤ e−10∆m.

By the same reasoning as in the proof of Lemma 2.10.1, em is well-defined on a
neighborhood of γ̃1. Hence, it makes sense for z0 ∈ γ̃ to consider the splitting

DHtγ̃(z0) = ξtγ̃1(z̃1) + ηtγ̃1(z̃1)
⊥ and DHtγ̃(z0) = ξ̃em(z1) + η̃fm(z1).

Then η̃ = η cos ψ ± ξ sin ψ holds, where ψ = angle(DHγ̃′(0), em(z1)). Since γ(0) is
a precritical point, we have slope(DHγ̃′(0)) ≥ K−1

1 δb−1. Thus Lemma 3.3.3 gives
η = L|γ̃(0) − z0| and |ξ| ≤ K1δ

−1b. Suppose that z0 is one of the endpoints of γ̃.
Using the fact that DHγ′(0) is collinear to em(H(γ(0))) we have

ψ ≤ angle(DHγ′(0), DHγ̃′(0)) + angle(em(H(γ(0))), em(z1))

≤ (Kb−1εm/2 + 1)e∆|γ(0)− z0|.
In particular, ψ ¿ 1 holds. For the same reason as in the proof of Lemma 2.10.1,
we may assume η̃(z0) > 0. Moreover we assume

(8) angle(DHγ′(0), DHγ̃′(0)) ≤ Kb−1e∆(|γ(0)− γ̃(0)|+ ‖γ′(0)− γ̃′(0)‖).
Then

η̃(z0) ≥ L|γ̃(0)− z0| cos ψ −Kδ−1b sin ψ

≥ |γ̃(0)− z0|
(
1−Kδ−1b−Kδ−1εm/2

)
> 0,

where the last inequality follows from the assumption on m, ε, δ. On the other hand
we have η̃(z′) < 0, where z′ is the other endpoint of γ̃. By the intermediate value
theorem there exists s0 ∈ [−εm/2, εm/2] such that η̃(γ̃(s0)) = 0. In other words, γ̃(s0)
is a critical point of order m.
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It is left to prove (8). For this it is enough to prove angle(DHγ′(0), DHγ̃′(0)) ¿ 1.
Let us see why this is so. This inequality implies

angle(DHγ′(0), DHγ̃(0)) ≤ ‖DHγ′(0)−DHγ̃′(0)‖
min (‖DHγ′(0)‖, ‖DHγ̃′(0)‖) .

The denominator is ≥ Kb, by (1) (2) and the fact that the slopes of γ′(0) and γ̃′(0)
are ≤ K0b. Hence (8) follows.

Put DHγ′(0) = (ξ, η), DHγ̃′(0) = (ξ̃, η̃). It is enough to show slope(DHγ̃′(0)) ≤
K−1

1 δb−1, or equivalently |ξ̃| ≤ 2K1δ
−1b|η̃|. Put γ′(0) = ρ·(1, θ) and γ̃′(0) = ρ̃·(1, θ̃),

where ρ, ρ̃ ≈ 1 are the normalizing constants. By (2) and the fact that |θ|, |θ̃| ≤
K0b ¿ 1, |η|, |η̃| have the order b. Thus

|ξ̃|
|η̃| ≤(Kb)−1|ξ̃| ≤ (Kb)−1|ξ|

+ K−1(|∂xu(γ(0))− ∂xu(γ̃(0))|+ θ̃|∂yu(γ(0))− ∂yu(γ̃(0))|)
+ K−1|θ − θ̃||∂yu(γ(0))|.

Using |γ(0)− γ̃(0)| ≤ Kb and |θ − θ̃| ≤ Kb,

|ξ̃|
|η̃| ≤ (Kb)−1|ξ|+ Kb ≤ K

|ξ|
|η| + Kb ≤ K1δ

−1b + Kb ≤ 2K1δ
−1b.

This completes the proof (8) and hence that of Lemma 2.10.2. ¤
2.11. Critical points. Put

N = −∆−1 log δ.

We say a precritical point ζ0 of order n ≥ N on an admissible curve γ is a critical
point of order n, if:

(a) ‖DH i(H(ζ0))‖ ≥ 1 for every 1 ≤ i ≤ n;
(b) there exists an e−2-regular and e−10∆-expanding orbit {wi(ζi)}0

i=−n ⊂ D such
that ζ−n /∈ Cδ and w0(z0) is tangent to γ0 at ζ0.

Remark 2.11.1. Suppose that ζ0 is a critical point of order n. Then ζ0 ∈ Dn holds.
In other words, critical points dig deeper inside as their orders increase.

Remark 2.11.2. By (b), the long stable leaf of order n through ζ−n is well-defined.
It intersects the top side of D. Hence, ζ0 is approximated by the Hn-image of it.
We shall take advantage of this fact in later sections. For example, we construct
secondary quasi critical points on the forward iterates of the top side.

2.12. Hyperbolic times. Let v = {vi(zi)}n
i=0 be a vector orbit. An integer h ∈

[0, n] is called a hyperbolic time if zn−h /∈ Cδ and the vector orbit Πn
n−hv is e−9∆-

expanding. This notion is a reminiscent of favorable iterates, introduced in [BC91]
Lemma 6.6, [MV93] Lemma 9.1. The next lemma asserts that there exist plenty of
hyperbolic times in regular orbits and that they are nicely distributed.

Lemma 2.12.1. Let m ≥ N . Suppose that a vector orbit v = {vi(zi)}m
i=0 is e−3-

regular and z0 /∈ Cδ. Then there exists a sequence of hyperbolic times h1 < h2 <
· · · < hs = m such that hi+1 ≤ 4hi for every 1 ≤ i ≤ s− 1.

Proof. The following is a slight modification of [[WY01], Claim 5.1].
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Sublemma 2.12.2. For every i ∈ [N, m], there exists a hyperbolic time i′ ∈ [[i/2], i].

Proof. Suppose that i 6= m. Consider the graph, denoted by G, of the function
k → log ‖vk‖ defined on [m− i,m]. Let L be the infinite line through (m, log ‖vm‖)
with slope ∆. Clearly, all points of G lies above L. Let P be the point of intersection
between L and the line {x = m−[i/2]}. Let L be pivoted at P and rotate it clockwise
until it hits G. With L in its final position, G still lies above L. For i 6= m, define
an integer i′′ so that (m− i′′, log ‖vm−i′′‖) belongs to the set of the first hit. Define
m′ = hs. We clearly have i′′ ∈ [[i/2], i]. Since ‖vm‖ ≥ K0δe

−3‖vm−i′′‖ and i ≥ N ,
the slope of L in its final position is bigger than

−∆ +
log ‖vm‖ − log ‖vm−i′′‖

[i/2]
≥ −∆ + 2i−1 log(K0e

−3δ) ≥ −4∆.

This implies that Πm
m−i′′v is e−4∆ - expanding. Define i′ = i′′ − 1 if zm−i′′ ∈ Cδ,

and i′ = i′′ otherwise. Then zm−i′ /∈ Cδ and i′ ∈ [[i/2], i] hold. Moreover, for every
1 ≤ j ≤ i′ we have

‖vm−i′+j‖ = ‖vm−i′′+j+1‖ ≥ e−4∆(j+1)‖vm−i′′‖ ≥ e−4∆j−5∆‖vm−i′‖ ≥ e−9∆j‖vm−i′‖,
where the second inequality follows from ‖vm−i′′‖ ≥ e−∆‖vm−i′‖.

It is left to define m′. We define m′ = hs. It is easy to see that m′ satisfies the
desired properties. ¤

We now complete the proof of the lemma. Align the sequence {i′}m
i=N of hyperbolic

times in an increasing order and define a new sequence I. Define {hi}s
i=1 to be the

subsequence of I which is strictly monotone and maximal with respect to inclusion.
It is enough to prove hi+1 ≤ 4hi. Suppose that hi+1 = j′ for some j ∈ [N, m]. If
j ≤ 2N , then hi+1 ≤ 2N holds, by Sublemma 2.12.2. On the other hand we have
hi ≥ N/2, and therefore hi+1 ≤ 4hi. Suppose that j > 2N . Then

hi+1 ≥
[
j + 1

2

]
>

[
j − 1

2

]
≥

[
j − 1

2

]′
.

Since hi and hi+1 are two consecutive hyperbolic times, we have

hi ≥
[
j − 1

2

]′
≥ 1

2

[
j − 1

2

]
.

This and hi+1 ≤ j yields hi+1 ≤ 4hi. ¤

3. Critical dynamics

In this section we study the dynamics along the orbit of a precritical point which
has exponentially growing derivatives.

3.1. Strong regularity. Let ζ0 be a precritical point of order n ≥ M on an ad-
missible curve γ0. A vector orbit w = {wi(ζi+1)}βn

i=0 defined by wi = DH i(ζ1) ( 1
0 ) is

called a forward vector orbit of ζ0. We say w is strongly regular if:

(a) ‖wj‖ ≥ e(λ−α)(j−i)−ασi‖wi‖ 0 ≤ ∀i ≤ ∀j ≤ βn;

(b) for every k ∈ [0, βn] there exists χ(k) ∈ [(1 − ασ)k, k] such that Π
χ(k)
0 w is

1-regular.
We say ζ0 is good if w is strongly regular.
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Remark 3.1.1. By Remark 2.9.1 and f2(0) = −1 = f(−1), it follows that for an
arbitrarily large integer N , one may assume that all precritical points of order ≤ N
are good, shrinking Ω′ close to (2, 0) if necessary.

3.2. Admissible position. Suppose that ζ0 is a good precritical point of order
n ≥ M on an admissible curve γ0. A nonzero vector v0(z0) is in admissible position
relative to ζ0 if it is tangent to γ0 and

(9)

( ‖w0‖
‖wχ(βn)‖

)1−`

≤ |ζ0 − z0| ≤
(
L−1Ξ(Π

χ(βn)
0 w)

) 1
2
,

where L = |f ′′2 (0)| = 4. We say v0(z0) is in critical position relative to ζ0 if

|ζ0 − z0| ≤
( ‖w0‖
‖wχ(βn)‖

)1−`

.

We say v0(z0) is related to ζ0 if it is either in critical position or in admissible position
relative to ζ0. The definition of admissible position makes sense by the next lemma.

Lemma 3.2.1. For the above w, we have

Ξ(Π
χ(βn)
0 w) ·

(‖wχ(βn)‖
‖w0‖

)2−2`

≥ e(1−2`)λβn/2.

Proof. Suppose that K0δe
ασβn ≥ 1. The strong regularity of w gives

‖wj‖ ≥ e−ασβn‖wi‖ 0 ≤ ∀i ≤ ∀j ≤ χ(βn)

and

‖w0‖
‖wi‖ =

‖wχ(βn)‖
‖wi‖

‖w0‖
‖wχ(βn)‖ ≥ K0δ

‖w0‖
‖wχ(βn)‖ ≥ e−αβσn ‖w0‖

‖wχ(βn)‖ 0 ≤ ∀i ≤ χ(βn).

Substituting these into the definition of Θ(Π
χ(βn)
0 w, i) and rearranging gives

Θ(Π
χ(βn)
0 w, i)

‖wχ(βn)‖
‖w0‖ ≥ e−2ασβn,

and thus

Θ(Π
χ(βn)
0 w, i)

(‖wχ(βn)‖
‖w0‖

)2−2`

≥ e−2ασβn

(‖wχ(βn)‖
‖w0‖

)1−2`

≥ e(1−2`)λβn/2.

Since i ∈ [0, χ(βn)] is arbitrary, we obtain the desired inequality.
Suppose that K0δe

ασβn < 1. Since ζ0 is a precritical point, ‖wj‖ ≥ K0‖wi‖ holds
for every 0 ≤ i ≤ j ≤ χ(βn). Hence

Θ(Π
χ(βn)
0 w, i)

‖wχ(βn)‖
‖w0‖ ≥ K3

0e
−αβσn.

The rest of the reasoning is almost the same as the previous case. ¤
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3.3. Derivative recovery. Define

p =

[
(1− `)β∆n

− log
√

b

]
+ 1,

and
q = χ(βn),

where [·] is the Gauss symbol. We call p the folding period, and q the binding period.

Remark 3.3.1. Dynamical meanings of there two periods are the following. The
binding period is the time of duration in which the orbit of the point in admissible
position shadows the critical orbit in a sufficiently regular way. During this time we
compare the growth of these two orbits. The folding period is a time at which the
corresponding two vectors become sufficiently parallel to each other.

Proposition 3.3.2. Suppose that a nonzero vector v0(z0) is in admissible position
relative to a good precritical point ζ0 of order n ≥ M . Then

(10) ‖vi‖ ≤ ‖v0‖e−βi 0 ≤ ∀i ≤ p;

(11) L|ζ0 − z0|1+α̃‖v0‖ ≤ ‖vp‖ ≤ L|ζ0 − z0|1−α̃‖v0‖,
where α̃ is a constant which can be made arbitrarily small by choosing small b;

(12) ‖vq+1‖ ≥ ‖v0‖e(λ−α−2ασ)`(q+1);

(13) ‖v0‖|ζ0 − z0|−1+3(1−2`) ≤ ‖vq+1‖ ≤ ‖v0‖|ζ0 − z0|−1−α̃+ 3ασ
∆(2−2`) ;

(14) log |ζ0 − z0|−
3

∆(2−2`) ≤ q ≤ log |ζ0 − z0|− 3
λ ;

(15) |ζi − zi| ≤ e−ασq/2 1 ≤ ∀i ≤ q + 1;

(16) ‖vq+1‖ ≥ e−1K0δ‖vi‖ 0 ≤ i ≤ q + 1;

(17)
‖vj‖
‖vi‖ ≥

(‖vp‖
‖v0‖

)1+ 3ασ
λ(1+α̃)

0 ≤ ∀i ≤ ∀j ≤ q + 1.

Proof. We begin by studying the action of H on admissible curves containing pre-
critical points.

Lemma 3.3.3. Let γ0 be an admissible curve in Cδ. Suppose that there exists
ζ0 ∈ γ0 such that slope(DHtγ0(ζ0)) ≥ K−1

1 δb−1. For z ∈ γ0, split DH(z)tγ0(z) =
ξ(z)tγ1(ζ1) + η(z)tγ1(ζ1)

⊥. Then

|ξ| ≤ 2K1δ
−1b

and
(1− θ)L|ζ0 − z| ≤ |η| ≤ (1 + θ)L|ζ0 − z|.
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Proof. Put ψ = angle(DHtγ0(ζ0), ( 0
1 )). Define two matrices T−1

0 = (tγ0(z), tγ0(z)⊥)
and T−1

1 = (tγ1(ζ1)
⊥, tγ1(ζ1)). Since γ0 is an admissible curve, there exists a closed

interval I ⊂ [−δ, δ] and a function γ̂0 on I such that γ0 = graph(γ̂0). Hence, any
z ∈ γ0 is written as z = (x, γ̂0(x)). The matrix T0 is the rotation by θ(x) =
angle(tγ0(z), ( 1

0 )), where |θ(x)| ≤ Kb and |θ′(x)| ≤ K. The matrix T1 is the rotation
with angle ψ. We have the identity

DH(z)(tγ0(z), tγ0(z)⊥) = (tγ1(ζ1)
⊥, tγ1(ζ1))T1DH(z)T−1

0 .

The number ξ(z) corresponds to the (2, 1)-entry of T1DH(z)T−1
0 , and hence the

desired inequality follows. The number η(z) corresponds to the (1, 1)-entry of the
same matrix. A direct computation using b ¿ δ gives

(1− θ/2)|f ′′a (0)| ≤
∣∣∣∣
dη(z)

dx

∣∣∣∣ ≤ (1 + θ/2)|f ′′a (0)|.

Using the Taylor expansion around ζ0 = (x0, y0) and η(ζ0) = 0,

(1− θ)L|x0 − x| ≤ |η(z)| ≤ (1 + θ)L|x0 − x|,
for small δ and a close to 2. This implies the desired inequality because |x0 − x| ≈
|ζ0 − z| holds. ¤
Claim 3.3.4. Let Γ(q−1) denote the long stable leaf of order q − 1 through ζ1. Then
we have z1 ∈ Γ(q−1)(Ξ(Πq

0w)).

Proof. Suppose that ζ1 − z1 = (ξ, η). Let z′ (resp. z′′) denote the unique point in
Γ(n) (resp. Γ(q−1)) whose y-coodinate coincides with that of z1. Then ζ1−z′ = (ξ′, η)
and ζ1−z′′ = (ξ′′, η) hold for some ξ′, ξ′′. Parametrize Γ(n) by arc length and assume
that Γ(n)(0) = ζ1. Define ϕ(s) = angle(en(Γ(n)(s)), en(ζ1)). Then we have ϕ(0) = 0
and |ϕ′(s)| ≤ K. Thus

|ξ′| ≤ K

∫ |η|

0

|ϕ(s)|ds ≤ K

∫ |η|

0

sds ≤ Kη2.

By Lemma 3.3.3 we have η2 ≤ K1δ
−1b|ξ|, and thus |ξ′| ≤ KK1δ

−1b|ξ|. Hence
|ξ − ξ′| ≤ |ξ|+ |ξ′| ≤ 2|ξ|, and by Lemma 3.3.3 again,

|ξ| ≤ (1 + 2θ)

∫
L|ζ0 − z|dz,

where z ranges over all z ∈ γ0 in between ζ0 and z0. Integrating this and using (9)
we obtain |ξ| ≤ Ξ(Πq

0w)/3. Using the proof of Proposition 2.8.1 to bound |ξ′ − ξ′′|
by (Kb)n, we obtain

|ξ − ξ′′| ≤ |ξ − ξ′|+ |ξ′ − ξ′′| ≤ 2Ξ(Πq
0w)/3 + (Kb)n ≤ Ξ(Πq

0w).

This implies the claim. ¤
Split v1(z1) = ξeq(z1) + ηfq(z1). We estimate |η|. The idea is to compare this

decomposition with the one in Lemma 3.3.3. By Lemma 2.7.4,

angle(eq(ζ1), eq(z1)) ≤ ‖Deq‖|ζ1 − z1| ≤ KK1δ|ζ0 − z0|.
By Lemma 2.7.1 and the left hand side of (9),

angle(eq(ζ1), en(ζ1)) ≤ (Kb)n ≤ |ζ0 − z0|2.
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Thus angle(en(ζ1), eq(z1)) ≤ Kδ|ζ0 − z0|, and this implies

(18) |η| ' L|ζ0 − z0|‖v0‖.
We prove (10). Using (18), for every 0 ≤ i ≤ p we have

‖DH iηfq(z1)‖ ≤ ‖DH i(z1)‖|η| ≤ e−ασq‖v0‖.
Using 2p ≤ ασn,

‖DH iηfq(z1)‖ ≤ e−2βp‖v0‖ ≤ e−2βi‖v0‖.
This and ‖DH iξeq(z1)‖ ≤ (Kb)i‖v0‖ yield (10).

We prove (11). For every 0 ≤ i ≤ q,

‖DH ifq(z1)‖ ≥ e−1 · ‖wi‖
‖w0‖ ≥ e(λ−α)i−1.

Since z0 is in admissible position, (18) implies

|η| ≥
(‖w0‖
‖wq‖

)1−`

‖v0‖ ≥ e(`−1)∆q‖v0‖.

Using the definition of p, for every p ≤ i ≤ q we have

‖DH iξeq(z1)‖
‖DH iηfq(z1)‖ ≤

(Kb)i

e−1e(`−1)∆qe(λ−α)i
≤ bi/2 ≤ θ.

This implies

(19) (1− θ)‖DH iηfq(z1)‖ ≤ ‖vi+1‖ ≤ (1 + θ)‖DH iηfq(z1)‖.
Take small α̃ > 0 such that ∆p/n− αα̃βσ < 0 holds. Then

‖vp‖
‖v0‖ ≤ (1 + θ)L · |ζ0 − z0|‖DHpfp(z1)‖

≤ L|ζ0 − z0|1−α̃e∆p−αα̃βσn

≤ |ζ0 − z0|1−α̃.

This yields the upper estimate in (11). On the other hand, p ≥ 1 and ‖DHpfq(z1)‖ ≥
e−1‖wp‖ ≥ eλ−α−1 gives

‖vp‖
‖v0‖ ≥ Leλ−α−1|ζ0 − z0| ≥ L|ζ0 − z0|1+α̃.

We prove (12). Using (19), for all p− 1 ≤ i ≤ j ≤ q we have

(20)

∣∣∣∣log
‖vj+1‖
‖vi+1‖ − log

‖wj‖
‖wi‖

∣∣∣∣ ≤ 1.

Therefore

‖vq+1‖ ≥ ‖DHqηfq(z1)‖ ≥ e−1

(‖wq‖
‖w0‖

)`

‖v0‖ ≥ e(λ−α−2ασ)`(q+1)‖v0‖.

We prove (13). Let τ0 denote the straight segment whose endpoints are z1 and
z′′. By Lemma 2.4.1, for every 0 ≤ i ≤ q we have

(21) e−1 ‖wi‖
‖w0‖ ≤

length(τi)

length(τ0)
≤ e

‖wi‖
‖w0‖ .
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Integrating (18) and using η2 ≤ K1δ
−1b, we have length(τ0) ' |ζ0 − z0|2. Hence

length(τq) ≥ e−1‖wq‖
‖w0‖|ζ0 − z0|2 ≥ e−3

(‖wq‖
‖w0‖

)2`−1

≥ e−(1−2`)λq.

Rearranging this and using the upper estimate of q,

‖DHqηfq(z1)‖
|η| ≥ e−1‖wq‖

‖w0‖ ≥ |ζ0 − z0|−2e−(1−2`)λq ≥ |ζ0 − z0|−2+3(1−2`).

This yields the lower estimate. On the other hand, using (21) for i = p and q,

‖vp‖
‖v0‖

‖vq+1‖
‖vp‖ ≤ e|ζ0 − z0|1−α̃ ‖wq‖

‖wp−1‖ ≤ e2|ζ0 − z0|1−α̃ length(τq)

length(τp−1)
.

To estimate the right hand side, we use (14) and (15) to yield length(τq) ≤ e−ασq ≤
|ζ0 − z0|

3ασ
∆(2−2`) . Moreover, by (20) we have length(τp−1) ≥ length(τ0) ≥ |ζ0 − z0|2.

Substituting these into the right hand side we obtain the upper estimate.
We prove (14). Using (20),

length(τq) ≤ e · |ζ0 − z0|2 · ‖wq‖
‖w0‖ ≤ e · Ξ(Πq

0w) · ‖wq‖
‖w0‖ ≤ e1−ασq.

On the other hand,

length(τq) ≥ e−1|ζ0 − z0|2 · ‖wq‖
‖w0‖ ≥ |ζ0 − z0|2e−1+(λ−α−ασ)q.

These two inequalities together imply the upper estimate of q. On the other hand,
we have

e−1

(‖wq‖
‖w0‖

)2`−1

≤ e−1|ζ0 − z0|2‖wq‖
‖w0‖ ≤ length(τq) ≤ e · |ζ0 − z0|2‖wq‖

‖w0‖ ,

and thus

|ζ0 − z0|2 ≥ e−2

(‖wq‖
‖w0‖

)2`−2

≥ e−∆(2−2`)q−4.

Taking logs and rearranging we obtain the lower estimate of q.
We prove (15). We have

|ζi − zi| ≤ |ζi − z′′i−1|+ |zi − z′′i−1|.
We clearly have

|zi − z′′i−1| ≤
‖wi‖
‖w0‖ · Ξ(Πq

0w) ≤ e−ασq.

Since z′′0 ∈ Γ(q−1) we have |ζi − z′′i−1| ≤ |ζ1 − z′′0 | for 1 ≤ i ≤ q. Moreover, Lemma
3.3.3 gives |ζ1 − z′′0 | ≤ K1δ

−1b|ζ0 − z0|2 ≤ e−ασq. Altogether these imply the desired
inequality.

We prove (16). Using (10) (12), for every 0 ≤ i ≤ p we have

‖vq+1‖
‖vi‖ ≥ ‖vq+1‖

‖v0‖ ≥ e(λ−α−2ασ)`q ≥ e−1K0δ.



24 HIROKI TAKAHASI

Using (20), for every p + 1 ≤ i ≤ q we have

‖vq+1‖
‖vi‖ ≥ e−1 · ‖wq‖

‖wi−1‖ ≥ e−1K0δ.

Thus (16) follows.
We prove (17). There are three cases: i ≤ j ≤ p; i ≤ p ≤ j; p ≤ i ≤ j. In the

first case, using ‖vj‖ ≥ e−∆p‖vp‖ and (10) (11),

‖vj‖
‖vi‖ ≥

‖vp‖
‖vi‖

‖vj‖
‖vp‖ ≥

‖vp‖
‖v0‖e−∆p ≥

(‖vp‖
‖v0‖

)1+∆α̃

≥
(‖vp‖
‖v0‖

)1+ 3ασ
λ(1+α̃)

.

The remaining cases have similar proofs. Using (20), for all p ≤ i ≤ j ≤ q we have

‖vj‖
‖vi‖ ≥ e−2‖wj‖

‖wi‖ ≥ e−ασj ≥ e−ασq.

Substituting (11) (14) into this we obtain

‖vj‖
‖vi‖ ≥

(‖vp‖
‖v0‖

) 3ασ
λ(1+α̃)

≥
(‖vp‖
‖v0‖

)1+ 3ασ
λ(1+α̃)

.

This finishes the proof in the last case. In the second case, the above inequality with
i = p and ‖vi‖ ≤ ‖v0‖ in (10) yields the desired one. ¤

4. Global dynamics

The aim of this section is to study global behaviors of generic orbits. We begin
by introducing the exponential growth condition (EG)n in Theorem A. Assuming
this condition, we develop an argument to find a suitable precritical points to which
the results in Section 3 apply. Consequently we obtain a proof of Theorem A.

4.1. Exponential growth condition. Let n ≥ N . We say H satisfies (EG)n if all
critical points of order ≤ n on any admissible curves are good.

4.2. Capture argument. The following proposition guarantees that under the as-
sumption (EG)n, one can associate suitable critical points (binding points) to all
e−1-regular orbits which fall inside Cδ.

Proposition 4.2.1. Suppose that H satisfies (EG)n for some n ≥ N .Let {vi(zi)}m
i=0

be a e−1-regular vector orbit of H such that m ≥ N and zm ∈ Cδ. Let {hi}s
i=1 denote

the sequence of hyperbolic times associated with {vi(zi)}m
i=0. Let i0 denote the largest

integer such that hi0 ≤ n. Then there exists a good precritical point of order ≤ hi0

relative to which vm(zm) is in admissible position, or else there exists a good critical
point of order hi0 relative to which vm(zm) is in critical position. In the first case,
{vi(zi)}m+q+1

i=0 is e−1-regular, where q is the binding period.

Remark 4.2.2. It is important that no relation between m and n is assumed. In
particular m is allowed to be larger than n. If m ≤ n, then hi0 = hs by definition.

Proof of Proposition 4.2.1. We fix some notation. For a nonzero vector v(z) and
r > 0, let γ(v(z), r) denote the straight line of length r which is centered at z and
tangent to v(z). Put ρ = e−10∆. For every 1 ≤ i ≤ s, put γ(i) = Hhi(γ(vm−hi

, ρhi)).
Since hi is a hyperbolic time, ρhi ≤ Ξ({vj}m

j=m−hi
) holds. Thus, by Lemma 2.6.1,
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γ(i) is an admissible curve with length ≥ ρ2hi . In particular, it makes sense to speak
about the existence of precritical points on γ(i).

Lemma 4.2.3. Let i ≤ i0 − 1, and suppose that there exists a good critical point of
order hi on γ(i) relative to which vm(zm) is in critical position. Then there exists a
good precritical point of order ∈ [hi +1, hi+1] on γ(i+1) relative to which vm(zm) is in
admissible position, or else there exists a good critical point of order hi+1 on γ(i+1)

relative to which vm(zm) is in critical position.

Proof. Let ζ
(hi,i)
0 denote the good critical point of order hi on γ(i) relative to which

vm is in critical position. Take ẑ ∈ γ(i+1) whose x-coordinate coincides with that of

ζ
(hi,i)
0 . Such ẑ uniquely exists because of the lower bound on the length of γ(i+1) and

the assumption that vm(zm) is in critical position relative to ζ
(hi,i)
0 . Let w = {wi}βhi

i=0

denote the forward vector orbit of ζ
(hi,i)
0 .

Claim 4.2.4. We have

|ζ(hi,i)
0 − ẑ| ≤ K

( ‖w0‖
‖wβhi

‖
)2−2`

and

angle(tγ[i]ζ
(hi,i)
0 , tγ[i+1](ẑ)) ≤ K

( ‖w0‖
‖wβhi

‖
)2−2`

.

Proof. Parametrize γ(i) and γ(i+1) by arc length so that γ(i)(0) = zm = γ(i+1)(0) and
the x-components of the derivatives have the same sign. Then

|γ(i)(s)− γ(i+1)(s)| ≤ K

∫ s

0

‖γ̇(i)(t)− γ̇(i+1)(t)‖dt.

Since γ(i) and γ(i+1) are admissible curves which are tangent to vm(zm), we have
γ̇(i)(0) = γ̇(i+1)(0) and ‖γ̈(i)(0)‖, ‖γ̈(i+1)(0)‖ ≤ 1. Thus∫ s

0

‖γ̇(i)(t)− γ̇(i+1)(t)‖dt ≤ K

∫ s

0

tdt ≤ Ks2.

This implies the first inequality. The second one follows from the bound on the
curvatures of γ(i) and γ(i+1). ¤
Claim 4.2.5. For every 1 ≤ k ≤ βhi,∣∣∣∣∣log

‖DHk(H(ζ
(hi,i+1)
0 )) ( 1

0 ) ‖
‖DHk(H(ζ

(hi,i)
0 )) ( 1

0 ) ‖

∣∣∣∣∣ ≤ 1.

Proof. Since β À 1, γ(i) (resp. γ(i+1)) contains a curve of length À
(

‖w0‖
‖wβhi

‖

)1−`

centered at ζ
(hi,i)
0 (resp. ẑ). Hence, by Lemma 2.10.2, there exists a precritical

point of order hi on γ(i+1), called ζ
(hi,i+1)
0 , such that |ẑ − ζ

(hi,i+1)
0 | ≤ K

(
‖w0‖
‖wβhi

‖

)1−`

.

Combining this with the first inequality in Claim 4.2.4,

|ζ(hi,i)
0 − ζ

(hi,i+1)
0 | ≤ K

( ‖w0‖
‖wβhi

‖
)1−`

.
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Using Lemma 3.3.3 and Lemma 3.2.1, we obtain ζ
(hi,i+1)
0 ∈ Γ(χ(βhi)−1)(ΞΠ

χ(βhi)
0 w).

Hence the inequality follows. ¤
For every k ∈ [hi + 1, hi+1], Lemma 2.10.1 yields a precritical point of order k on

γ(i+1), called ζ
(k,i+1)
0 . In fact, ζ

(hi+1,i+1)
0 is a good critical point of order hi+1, because

of (EG)n, hi+1 ≤ n, and the fact that there exists a e−2-regular backward orbit of

length hi+1, by Lemma 2.4.1. Hence all ζ
(k,i+1)
0 is a good precritical point for every

hi + 1 ≤ k ≤ hi+1 − 1.

Sublemma 4.2.6. Suppose that ζ0, ζ ′0 are good precritical points of order m and

m+1 on an admissible curve γ0 such that |ζ0−ζ ′0| ≤ (Kb)m/2. Let w = {wi(ζi+1)}βm
i=0,

w′ = {w′
i(ζ

′
i+1)}β(m+1)

i=0 denote the respective forward vector orbtits. Denote by χ′(·)
the function χ(·) for w′. Then

Ξ(Π
χ′(β(m+1))
0 w′) ·

(‖wχ(βm)‖
‖w0‖

)2−2`

≥ e(1−2`)λβm/2.

Proof. First of all, recall that by (6) we have

(22)

∣∣∣∣log
‖w′

i‖
‖wi‖

∣∣∣∣ ≤ 1 1 ≤ ∀i ≤ βm.

Suppose that χ′(β(m+1)) < χ(βm). Then the inequality immediately follows from

(22) and Ξ(Π
χ′(β(m+1))
0 w′) ≥ Ξ(Π

χ(βm)
0 w′).

Suppose that χ′(β(m+1)) ≥ χ(βm), and moreover K0e
−2δ ≥ e−2∆αβσm. Using(22),

for every 0 ≤ i ≤ χ(βm) we have

‖w′
0‖

‖w′
i‖

=
‖w′

0‖
‖w′

χ(βm)‖
‖w′

χ(βm)‖
‖w′

i‖
≥ K0e

−2δ
‖w′

0‖
‖w′

χ(βm)‖
.

It is straightforward to check that |χ′(β(m + 1)) − χ(βm)| ≤ 2αβσm. Using this,
for every χ(βm) ≤ i ≤ χ′(β(m + 1)) we have ‖w′

χ(βm)‖ ≥ e−2∆αβσm‖w′
i‖. Thus, for

every 0 ≤ i ≤ χ′(β(m + 1)) we obtain

‖w′
0‖

‖w′
i‖
≥ e−2∆αβσm ‖w′

0‖
‖w′

χ(βm)‖
.

Using ‖w′
j‖ ≥ e−ασβm‖w′

i‖ and (22),

Ξ(Π
χ′(β(m+1))
0 w′) ≥ e−3∆αβσm ‖w0‖

‖wχ(βm)‖ .

This implies the desired inequality. The case K0δ < e−2∆αβσm can be handled
similarly to the last part of the proof of Lemma 3.2.1. ¤

Claim 4.2.5 implies that vm(zm) is related to ζ
(hi,i+1)
0 . Suppose that vm(zm) is in

critical position relative to ζ
(hi,i+1)
0 . In this case, it follows from Sublemma 4.2.6

that vm(zm) is related to ζ
(hi+1,i+1)
0 . If vm(zm) is in admissible position relative to

ζ
(hi+1,i+1)
0 , then it is done. Otherwise, we again use Sublemma 4.2.6 and repeat

the same argument. Eventually, only two possibilities are left: there exists k ∈
[hi + 1, hi+1] such that vm(zm) is in admissible position relative to ζ

(k,i+1)
0 , or else
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vm(zm) is in critical position relative to ζ
(hi+1,i+1)
0 . This completes the proof of

Lemma 4.2.3. ¤

Let us come back to the proof of Proposition 4.2.1. We firstly consider the case
zm /∈ Cδ10 . Choose a large integer R which do not depend on δ, and consider
H = Ha,b such that (a, b) is close enough to (2, 0) so that all precritical points of
order ≤ R are good. Take a straight segment γ0 which is tangent at zm to vm and
intersects both {δ}×R and {−δ}×R. Clearly, γ0 is an admissible curve, and there
exists a good precritical point of order M on γ0 to which vm(zm) is related. Since all
precritical points of order ≤ R are good, we can successively apply Lemma 2.10.2
to create good precritical points of higher order on γ0.

We claim that there exists a precritical point of order ≤ R on γ0 relative to which
vm(zm) is in admissible position. Let us see why this is so. Sublemma 4.2.6 implies
that if vm(zm) is in critical position relative to a precritical point z0 of order j < R
on γ, then vm(zm) is related to the precritical point of order j +1 on γ0. This leaves
out only two possibilities: either there exists a precritical point of order ≤ R on γ0

relative to which vm(zm) is in admissible position, or vm(zm) is in critical position
relative to the precritical point of order R on γ0. However, the second possibility is
eliminated by the fact that all precritical points are contained in Cδ10 , and R can be
made arbitrarily large after δ is fixed. Hence the claim follows.

Next, we consider the case zm ∈ Cδ10 . Since length(γ[1]) ≥ ρ2h1 ≥ ρN , the admissi-

ble curve γ
(h1)
h1

intersects both {δ10}×R and {−δ10}×R. Hence there exists a good

precritical point of order N on γ(1) to which vm(zm) is related. If vm(zm) is related
to it then it is done. If not, we appeal to Lemma 4.2.3. This finishes the proof of
the first half of the assertion of the proposition.

It is left to prove that v′ is e−1-regular. This follows from ‖vm+q+1‖ ≥ ‖vm‖ and
(16). ¤

4.3. Controlled vector orbits. Suppose that H satisfies (EG)n. Consider a vector
orbit v = {vi(zi)}m

i=0. We say an integer i ∈ [0,m] is a return time if zi ∈ Cδ holds.
We say v is controlled up to time m, if slope(v0) ≤ K0b, and no return takes place
up to time m, or else there exists a sequence of return times m0 < m1 · · · < mt ≤ m
such that:

(a) m0 is the first return time and m0 ≥ N ;
(b) Πm0

0 v is e−1-regular;
(b) for every 0 ≤ s ≤ t, there exists a binding point of order ≤ min(ms, n) relative

to which vms(zms) is in admissible position;
(c) for every 0 ≤ s ≤ t− 1, ms+1 = min{i : i ≥ ms + qs + 1, zi ∈ Cδ}, where qs is

the corresponding binding period;
(d) mt ≤ m ≤ mt + qt + 1, or m > mt + qt + 1 and no return takes place from

mt + qt + 1 to m− 1.
We call i bound if i ∈ [ms + 1, ms + qs] for some s ∈ [0, t]. We call i free if it is

not bound.

Lemma 4.3.1. If v = {vi}m
i=0 is controlled, then for every free iterate 0 ≤ i ≤ m,

‖vi‖ ≥ K0δe
λi/3‖v0‖.
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Proof. By Lemma 2.5.1, for every i ≤ m0 we have ‖vi‖ ≥ K0δe
λi‖v0‖. Since m0 ≥ N ,

we have ‖vm0‖ ≥ eλi/3‖v0‖. Suppose that for every i ∈ ∪t
s=0{ms + qs + 1},

(23) ‖vi‖ ≥ eλi/3‖v0‖.
Using slope(vms+qs+1) ≤ K0b and Lemma 2.5.1, for every ms + qs + 1 ≤ i ≤ ms+1

we have

‖vi‖
‖v0‖ ≥

‖vi‖
‖vms+qs+1‖

‖vms+qs+1‖
‖v0‖ ≥ K0δe

λ(i−ms−qs−1)e
λ
3
(ms+qs+1) ≥ K0δe

λ
3
i.

By the same reasoning we have ‖vi‖ ≥ K0δe
λi/3‖v0‖ for every free iterate in between

mt and m.
It is left to prove (23) for i ∈ ∪t

s=0{ms + qs + 1}. By (12), (23) holds for i =
m0 + q0 + 1. Suppose that (23) holds for some i = ms + qs + 1. Then the better
estimate in Lemma 2.5.1 and (12) together yield (23) for i = ms+1 + qs+1 + 1. This
completes the proof. ¤

4.4. Proof of Theorem A. We are in position to prove Theorem A. We fix α,
M , β, δ, one and for all. For small b > 0, let Ω(0) denote a small a-interval such
that {(a, b) : a ∈ Ω(0)} ⊂ Ω′, where Ω′ is the one appearing in Proposition 2.1.1.
We moreover assume that {(a, b) : a ∈ Ω(0)} is close enough to (2, 0) so that all the
previous estimates and arguments hold. In what follows we only consider H = Ha,b

such that a ∈ Ω(0).
Suppose that H satisfies (EG)n for every n ≥ N . For z0 ∈ W u(P ), take an

integer k0 ≥ 0 such that the set of preimages H−k0(z0) intersects W u
loc(P ). Pick one

point from H−k0(z0) ∩W u
loc(P ) and denote it by z−k0 . Notice that zi = H i+k0z−k0

is uniquely determined for i ≤ −k0. For an arbitrary j ≤ min{−k0, N}, define a
vecor orbit {vi(zi)}−k0

i=j by vi = DH i+k0tW u
loc(P )(z−k0). Since P is a hyperbolic fixed

point, we have ‖v−k0‖ ≥ ‖vi‖ for j ≤ i ≤ −k0. Let m0 = min{i : H i(z−k0) ∈ Cδ}.
By Lemma 2.5.1 and slope(v−k0) ≤ K0b, we have ‖vm0−k0‖ ≥ K0δ‖vi‖ for j ≤ i ≤
m0− k0. Since m0− k0− j ≥ −j ≥ N , the necessary conditions are satisfied for the
capture argument to work. Moreover, since j is arbitrary, we can successively apply
the capture argument and end up with either of the following two cases: obtain
a good precritical point relative to which vm(zm) is in admissible position; not so,
namely, vm(zm) is in critical position relative to all the precritical points assigned
by the capture argument. In the first case, we iterate further. When the next free
return takes place, we apply the capture argument again. By the same reasoning,
two possibilities are left.

By now it is clear how to define C. Define C to be the set of all z0 ∈ W u(P ) such
that there exists a controlled vector orbit {vi(zi)}0

i=−j such that: (i) z−j is near P
and v−j is tangent to W u

loc(P ); (ii) z0 is a free return; (iii) v0(z0) is in critical position
relative to any critical point which is assigned by the capture argument. Let us see
C satisfies the desired properties.

First of all, by Lemma 2.6.1 and the fact that W u
loc(P ) is an admissible curve, any

z0 ∈ C is contained in the interior of an admissible curve, say γ, which is contained in
W u(P ). For now let us suppose that there is no self intersection of W u(P ). Lemma
2.10.2 and the definition of C implies the existence of a sequence of infinitely many
good precritical points of arbitrarily high order on γ, converging on z0. This implies
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C ∩ γ = {z0}. Let us see why this is so. Suppose that z′0 ∈ C ∩ γ. Then, by
the same reasoning, there exists a sequence of infinitely many precritical points of
arbitrarily high order on γ which converges on z′0. Since γ is an admissible curve,
there exists no more than two distinct critical points on γ of the same prder. This
implies that the two sequences must converge on the same point. Hence z′0 = z0,
and the claim follows. Let us now suppose that there is a self intersection of W u(P ).
In this case, the above argument is slightly incomplete because there may exist two
distinct critical points on two distinct admissible curves which intersect each other.
To deal with this, consider an immersion ι : R→ W u(P ). Then the above argument
shows that ι−1(γ ∩C) contains exactly one point. Consequently, C is a countable set
regardless of whether W u(P ) intersects itself or not.

For z0 ∈ C. let yn denote the good precritical point of order n which belongs to
the sequence converging on z0. Since the speed of this convergence is exponential
which does not depend on z0, (iia) follows. Let Γ(n) denote the long stable leaf of
order n through H(yn). It follows from the proof of Proposition 2.8.1 that {Γ(n)}∞n=1

forms a Cauchy sequence in the C2 topology. Let Γ(∞) denote its C2 limit. Since
Γ(n) is tangent to H(γ) at H(yn) and H(yn) → z1, Γ(∞) is tangent at z1 to H(γ).
This yields (iib). (iic) automatically follows from the definition of C.

It is left to prove prove (iii). Since the Lyapunov exponents of all periodic points
of f2 are log 2, we may assume that the largest Lyapunov exponents of all periodic
points of H with period ≤ N are ≥ log 2/3. For a periodic orbit O with period
p ≥ N , there exists a sub-orbit of length N which stays outside of Cδ. Along
this orbit we construct an e−1-regular vector orbit of length N and then apply the
capture argument. If the vector orbit is always in admissible position, then the
largest Lyapunov exponent of O is ≥ log 2/3, by Lemma 4.3.1. Otherwise, there
exists a vector orbit of length ≥ √

βN which shadows the orbit of the critical point.
In particular it is e−1-regular and grows exponentially fast in norm. If

√
βN ≥ p,

then the largest Lyapunov exponent of O is ≥ λ−α. If
√

βN ≤ p, then we apply the
capture argument to this longer vector orbit and repeat the same argument. Since
p is finite, this argument stops sooner or later. Consequently, the largest Lyapunov
exponents of all periodic points are ≥ log 2/3. ¤

5. Smooth continuation of critical points

In this section we deal with parameter dependence of critical points. We prove
that quasi critical points continue to exist in a sufficiently large parameter interval.
Besides, we prove that their dependence on parameter is rather small.

5.1. Quasi critical points. We say a precritical point ζ0 of order n ≥ N on an
admissible curve γ0 is a primary quasi critical point if there exists an e−3-regular
and e−11∆-expanding orbit {wi(ζi)}0

i=−n such that ζ−n /∈ Cδ and w0(ζ0) ∈ Tζ0γ0. We
say ζ0 is a secondary quasi critical point if there exists an e−12∆-expanding vector
orbit {wi(ζi)}0

i=−n such that ζ−n /∈ Cδ and w0(ζ0) ∈ Tζ0γ0.
The following lemma states that near critical points there exists a stack of primary

quasi critical points of lower order.

Lemma 5.1.1. Let ζ̂
(j)
0 be a critical point of order hj on γ0, with {wi}0

i=−hj
its

backward orbit and {hi}j
i=1 the corresponding sequence of hyperbolic times. For every
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1 ≤ i ≤ j there exists a primary quasi critical point ζ̂
(i)
0 of order hi on an admissible

curve γ(i) := Hhiγ(w−hi
, ρhi) such that

(24) |ζ̂(i)
0 − ζ̂

(j)
0 | ≤

j∑

k=i

(Kb)hk/3.

Proof. Clearly, the assertion with i = j holds, because γ0 and γ(j) are tangent at ζ̂
(j)
0 .

Let i ∈ [1, j − 1], and suppose that there exists a primary quasi critical point ζ̂
(i+1)
0

of order hi+1 on γ(i+1) with |ζ̂(i+1)
0 − ζ̂

(j)
0 | ≤ ∑j

k=i+1(Kb)hk/3. Then the lower bound

on the length of γ(i+1) implies that ζ̂
(i+1)
0 is located around the middle of γ(i+1). This

permits us to use Lemma 2.10.2 to yield a precritical point of order hi on γ(i+1),

called ζ̂
(hi,i+1)
0 , such that |ζ̂(i+1)

0 − ζ̂
(hi,i+1)
0 | ≤ (Kb)hi+1/2. Let z0 ∈ γ(i) denote the

point whose x-coordinate coincides with that of ζ̂
(hi,i+1)
0 . Such z0 uniquely exists

because length(γ(i)) À |ζ̂(j)
0 − ζ̂

(hi,i+1)
0 | holds.

Claim 5.1.2. We have

|ζ̂(hi,i+1)
0 − z0| ≤ (Kb)hi/2

and

angle(tγ(i+1)(ζ̂
(hi,i+1)
0 ), tγ(i)(z0)) ≤ (Kb)hi/2.

Proof. Since hi is a hyperbolic time, we have

|z−hi
− ζ̂

(hi,i+1)
−hi

| ≤ e|z0 − ζ̂
(hi,i+1)
0 |‖w−hi

‖
‖w0‖ .

Since γ(i+1) and γ(i) are admissible curves which are tantent to w0, we have |z0 −
ζ̂

(hi,i+1)
0 | ≤ |ζ̂(hi,i+1)

0 − ζ̂
(hi,i+1)
0 |. Using the assumption of the induction,

|z−hi
− ζ̂

(hi,i+1)
−hi

| ≤ e10∆hi

(
(Kb)hi+1/2 +

j∑

k=i+1

(Kb)hk/3

)
≤ (Kb)hi/4.

Thus the long stable leaf Γ(hi) of order hi through ζ̂
(hi,i+1)
−hi

is well-defined. In view

of the proof of Proposition 5.3.1, the desired inequality follows if Γ(hi) intersects
γ(w−hi

, ρhi). This follows from Sublemma 5.3.3 and the fact that γ(w−hi
, ρhi) is a

straight segment. ¤
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By the above claim and Lemma 2.10.2, there exists a precritical point ζ̂
(i)
0 of order

hi on γ(i) such that |ζ̂(i)
0 − z0| ≤ (Kb)hi/2. Consequently,

|ζ̂(i)
0 − ζ̂

(j)
0 | ≤ |ζ̂(i)

0 − z0|+ |z0 − ζ̂
(hi,i+1)
0 |+ |ζ̂(hi,i+1)

0 − ζ̂
(i+1)
0 |+ |ζ̂(i+1)

0 − ζ̂
(j)
0 |

≤ 2(Kb)hi/2 + (Kb)hi+1/2 +

j∑

k=i+1

(Kb)hk/3

≤ 3(Kb)hi/2 +

j∑

k=i+1

(Kb)hk/3

≤
j∑

k=i

(Kb)hk/3.

This restores the assumption of the induction and completes the proof. ¤

5.2. Sample points. Let n ≥ N . Cut the segment I = {(x, 1/10) : δ2 ≤ |x| ≤ 2}
into e100∆n subsegments of equal length. The mid points of these subsegments are
called sample points. Let S(n) denote the set of all sample points. Clearly we have

(25) Card(S(n)) = e100∆n.

We say a vector orbit w = {wi(zi)}0
i=−h is linked to a sample point z̃ ∈ S(n) if

w−h(z−h) is tangent to I and |z−h − z̃| ≤ Ξ(w) holds.

5.3. Existence of smooth continuations. Suppose that ζ0 is a secondary quasi
critical point of Ha∗ of order h ∈ [N,n], whose backward orbit is linked to z̃ ∈ S(n).
We say ζ0 has a smooth continuation on an interval J containing a∗, if there exists a
C3 map ζ0(·) : J → R2 such that ζ0(a∗) = ζ0 and ζ0(a) is a secondary quasi critical
point of order h of Ha which is linked to z̃.

For a ∈ Ω(0) and h > 0, define

Ĵ(a, h) = [a− e−λh/2, a + e−λh/2] ∩ Ω(0).

The following proposition asserts the existence of smooth continuations.

Proposition 5.3.1. Let a∗ ∈ Ω(0), and suppose that ζ̂0 is a good primary quasi
critical point of order h ∈ [N, 2n] of Ha∗. There exists a secondary quasi critical
point ζ0 of order h such that

(26) |ζ̂0 − ζ0| ≤ (Kb)h/2.

The backward vector orbit of ζ0 is linked to some z̃ ∈ S(n). Moreover, ζ0 has a

smooth continuation a ∈ Ĵ(a∗, h) → ζ
(j)
0 (a) such that ‖ζ̈0(a)‖, ‖

...
ζ 0(a)‖ ≤ e100∆h

holds for all a ∈ Ĵ(a∗, h).

Proof of Proposition 5.3.1. We divide the argument into three parts: proof of the
existence of ζ0; the existence of smooth continuations of ζ0; the derivative estiamte
of smooth continuations.
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Existence of ζ0. Since the backward vector orbit {wi}0
i=−h of ζ̂0 is expanding and

ζ̂−h /∈ Cδ, the long stable leaf Γ(h) of order h through ζ̂−h is well-defined. Let
z0 = Γ(h) ∩ I, and define v = {vi(zi)}h

i=0 by vi(zi) = DH i(z0) ( 1
0 ) for 0 ≤ i ≤ h.

Take a straight segment γ̃ ⊂ I of length ρh which is centered at z0. Then length(γ̃) ≥
e−100∆n holds, and thus there exists a sample point z̃ ∈ γ̃. Since {DH i(ζ̂−h)fh}0

i=−h

is expanding, v is e−12∆- expanding, by Lemma 2.7.1. Hence length(γ̃) ≤ Ξ(v)
holds. This and Lemma 2.4.1 give length(γ̃h) ≥ ρ2h.

Claim 5.3.2. γ̃h is an admissible curve.

Proof. A different argument from that of Lemma 2.6.1 is needed because v is not
regular in general. The statement is not affected even if we assume that w−h is a
unit vector, and we do so. Since γ̃ is a straight segment, the curvature is smaller
than

e3

h∑

`=1

(Kb)`‖vh−`‖3

‖vh‖3
.

To bound the sum, we argue as follows.

Claim 5.3.3. angle(eh, w−h) ≥ e−12∆h.

Proof. Put ψ = angle(eh, w−h). Split w−h = ‖w−h‖(cos ψ · eh + sin ψ · fh). Then

e−20∆h ≤ ‖w0‖2

‖w−h‖2
≤ (Kb)2h cos2 ψ + e2∆h sin2 ψ ≤ (Kb)2h + e2∆h sin2 ψ.

Taking the both sides of the inequality and rearranging gives the inequality. ¤
Split w−h = ξeh + ηfh. By Claim 5.3.3, we have |η| ≥ e−10∆h and thus ‖wi−h‖ ≈

‖DH iηfh‖ for i ≥ h/10. For ` ∈ [1, 9h/10], by Lemma 2.8.1 we obtain

(27)
‖vh−`‖
‖vh‖ ≤ e

‖DHh−`ηfh‖
‖DHhηfh‖ ≤ e · ‖w−`‖

‖w0‖ ≤ K−1
0 δ−1e4.

For ` ∈ [9h/10, h] we have

(28)
‖vh−`‖
‖vh‖ =

‖vh−`‖
‖v0‖

‖v0‖
‖vh‖ ≤ e∆(h−`)e12∆h ≤ e13∆`.

Substituting (27) (28) into the sum we obtain the bound on the curvature. (27)
with ` = 1 and Lemma 2.5.1 yields that the slopes of tangent directions of γ̃h are
≤ K0b. ¤

In the same spirit as the beginning of the proof of Proposition 2.8.1, we have

angle(vh, w0) ≤ (Kb)h−1

h∑
i=0

‖vi‖
‖vh‖

‖wi−h‖
‖w0‖ .

To bound the sum, we use (27) (28) and ‖wi−h‖ ≤ K−1
0 e3δ−1‖w0‖. This yields

angle(vh, w0) ≤ (Kb)h/2. Take a straight segment γ0 of length ρh which is centered

at ζ̂−h and tangent to w−h. Then γh is an admissible curve of length ≥ ρ2h ≥ (Kb)h/2

by Lemma 2.6.1. Applying Lemma 2.10.2 to the pair of admissible curves γh, γ̃h, we
conclude the existence of a precritical point ζ0 of order h on γ̃h. Since the distortion
estimate in Lemma 2.4.1 holds on γ̃, ζ0 has an e−12∆-expanding backward orbit of
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length h, which in addition is linked to z̃, by constuction. Hence ζ0 is a secondary
quasi critical point of order h.

Existence of a smooth continuation of ζ0.

Claim 5.3.4. For every a ∈ Ĵ , Hh
a γ̃ is an admissible curve of length ≥ ρ3h.

Proof. Define v(a) = {vi(a)}h
i=0 by vi(a) = DH i

a(z0) ( 1
0 ). The chain rule gives

‖∂aDH i
a(z0)‖ ≤ he∆h for 1 ≤ i ≤ h, and therefore

(29) ‖vi(a∗)− vi(a)‖ ≤ he∆h|a∗ − a| ≤ e−λβh/3,

where the last inequality follows from a ∈ Ĵ . By Lemma 2.8.1, ‖vi(a∗)‖ ≥ e−12∆i

holds. This and (29) yields ‖vi(a)‖ ≥ e−13∆i. Hence the claim follows. Let us record

(30) |log ‖vi(a∗)‖ − log ‖vi(a)‖| ≤ 1.

¤
Put zi(a) = H i

az0. Since ‖żi(a)‖ ≤ ie∆i, we have

(31) |zh(a∗)− zh(a)| ≤ he∆h|a∗ − a| ≤ e−λβh/3.

Let ζ(a) ∈ γ̃ denote the point such that the x-coordinate of Hh
a ζ(a) coincides with

that of zh(a∗). Such ζ(a) uniquely exists for all a ∈ Ĵ , because length(Hh
a γ̃) À

|zh(a∗) − zh(a)| holds. Using the fact that Hh
a γ̃ is an admissible curve and the

”Pythagoras theorem”, we have

|zh(a)−Hh
a ζ(a)| ≤ |zh(a∗)− zh(a)| ≤ e−λβh/2,

and thus angle(vh(a), DHh
a (ζ(a)) ( 1

0 )) ≤ e−λβh/2. Using this and (29) we have

angle(DHh
a (ζ(a)) ( 1

0 ) , vh(a∗)) ≤ e−λβh/2.

Put γ̃h(a) = Hh
a (γ̃), and parametrize γ̃h(a) so that γ̃h(a)(0) = Hh

a (ζ(a)) holds.
Then γh(a)(s) is well-defined on [−e−λβh/4, e−λβh/4]. This and the above two in-
equalities permits us to apply Lemma 2.10.2 to conclude that there exists s ∈
[−e−λβh/4, e−λβh/4] such that γh(a)(s) is a precritical point of order h of Ha∗ .

Sublemma 5.3.5. Let γ be an admissible curve in Cδ, where γ(0) = ζ is a precritical
point of order m of Ha∗. Assume that ε ≥ e−λβ/2, and γ(s) is defined for s ∈
[−εm/2, εm/2]. Then for all a ∈ [a∗ − e−λβm/2, a∗ + e−λβm/2] there exists ŝ(a) ∈
[−εm/2, εm/2] such that γ̃(ŝ(a)) is a precritical point of order m of Ha.

By this sublemma, there exists a precritical point of order h of Ha on Hh
a γ. By

construction, it is a secondary quasi critical point of order h which is linked to
z̃ ∈ S(n).

Proof of Sublemma 2.10.1. Let w = {wi}βm
i=0 denote the forward vector orbit of

ζ, and let Γ(m−1) denote the long stable leaf of order m − 1 through z1. Then
Haγ ⊂ Γ(m−1)(Ξ(Πm

0 w)) holds, because |Haζ −Ha∗ζ| ≤ e∆|a− a∗| ¿ Ξ(Πm
0 w), and

diam(Haγ) ≤ length(γ) ≤ e−49∆n ¿ Ξ(Πm
0 w). Hence, for every 1 ≤ i ≤ m, the

contractive field under the iteration of DHa∗ , denoted by ei(a∗), is well-defined on
a neighborhood of Ha(γ). Define w(a) = {wi(a)}m

i=0 by wi(a) = DH i
a(Ha∗ζ) ( 1

0 )
and w′(a) = {w′

i(a)}m
i=0 by w′

i(a) = DH i
a(Haζ) ( 1

0 ). The same estimate as in (30)
applies and for every 1 ≤ i ≤ m we have |log ‖wi(a∗)‖ − ‖wi(a)‖| ≤ 1. In particular,
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w(a) is expanding up to time m. On the other hand, by |Ha∗ζ −Haζ| ¿ Ξ(w(a))
and (6), for every 1 ≤ i ≤ m we have |log ‖wi(a)‖ − ‖w′

i(a)‖| ≤ 1. Hence w′(a) is
expanding up to time m. By a similar reasoning to before, ei(a) is well-defined on
a neighborhood of Haγ for every 1 ≤ i ≤ m.

The rest of the argument goes similarly to that of Lemma 2.10.1, with parameter
dependence in mind. For z ∈ γ, split

DHa∗tγ(z) = ξen(a∗)(Haζ) + ηfn(a∗)(Haζ)

and

DHatγ(z) = ξ̃en(a)(Haz) + η̃fn(a)(Haz).

By Lemma 3.3.3 we have η(z) = |ζ − z| and |ξ(z)| ≤ K1δ
−1b. Put

ψ = angle(em(a∗)(Ha∗ζ), em(a)(Haz)).

Comparing the coefficients of the both sides of the identity DHatγ(z) = DHa∗tγ(z)+
(DHa −DHa∗)tγ(z), we have

η̃(z) = η(z) cos ψ ± ξ(z) sin ψ + R,

where |R| ≤ ‖DHa∗ −DHa‖ ≤ e−λβm/2. By Lemma 2.8.1,

ψ ≤ angle(em(a∗)(Ha∗ζ), em(a∗)(Haz)) + angle(em(a∗)(Haz), em(a)(Haz))

≤ K|Ha∗ζ −Haz|+ K|a∗ − a|
≤ Ke∆|ζ − z|+ K|a∗ − a| ¿ 1.

Suppose that z is one of the two endpoints of γ. Then ψ ≤ Ke∆|ζ − z| holds.
Without loss of generality we may assume η(z) > 0. Then

η̃(z) ≥ |ζ − z|(1− 2Kδ−1b)− |R| > 0.

In the same way we have η̃(z′) < 0, where z′ is the other endpoint of γ. Hence there
exists ŝ(a) ∈ [−εm/2, εm/2] such that η̃(γ̃(ŝ(a))) = 0. In other words, Haγ̃(ŝ(a)) is a
critical point of Ha of order m. ¤

Derivative estimates. We consider an implicit representation of ζ0(a). Parametrize
γ̃ by arc length and let s(a) be the one such that ζ0(a) = Hh

a (γ̃(s(a))). We estimate

the derivatives of s(a). For (s, a) ∈ γ̃ × Ĵ , define

v(s, a) =
DHh+1

a (γ̃(s)) ( 1
0 )

‖DHh+1
a (γ̃(s)) ( 1

0 ) ‖ and w(s, a) = eh(a)(Hh+1
a (γ̃(s))).

Notice that v(s(a), a) − w(s(a), a) ≡ 0. Let κ denote the curvature of Hh+1
a γ̃ at

ζ̈h+1(a). It is easy to see that κ = O(b−2). Let {wi(a)}0
i=−h denote the backward

vector orbit of ζ0(a). Using (2), for small variance ds we have ‖v(s+ds, a)−v(s, a)‖ ≥
Kbκds‖w−h(a)‖−1. Taking limit ds → 0 we have ‖∂sv(s, a)‖ ≥ Kb−1‖w−h(a)‖−1. On
the other hand, by Lemma 2.7.4 we have ‖∂sw‖ ≤ K‖w−h(a)‖−1. Hence we obtain

‖∂sv(s, a)− ∂sw(s, a)‖ ≥ K‖w−h(a)‖−1 ≥ Ke−15∆h.

In particular, one of the component of the difference is ≥ Ke−20∆h. By the implicit
function theorem we obtain

(32) |ṡ(a)|, |s̈(a)|, |...s (a)| ≤ Ke70∆h.
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Put Ai(a) = H i
a(γ̃(s(a))). Then Ah(a) = ζ0(a) holds. Since Ai(a) = H(a, Ai−1(a)),

we have Ȧi = ∂aH(a,Ai−1) + DHa(Ai−1)Ȧi−1. Using this for `-times (` ≤ i),

(33) Ȧi = DH`
a(Ai−`)Ȧi−` +

`−1∑
s=0

DHs
a(Ai−s)∂aH(a,Ai−s−1).

Substituting ` = i, and then i = h, and using (32) we obtain

(34) ‖Ȧh‖ ≤ he∆h + e∆h‖ṡ(a)‖ ≤ e100∆h.

To estimate ‖Äh‖, we differentiate (33) use the second order derivative estimate in
(32). The estimate of ‖...Ah‖ is analogous. The details are left as an elementary
excersise of computation. This completes the proof of Proposition 5.3.1. ¤

5.4. Derivative estimates of smooth continuations. The derivative estimates
of smooth continuations in Proposition 5.3.1 are too coarse to be adapted to our
argument. To rectify this, we derive much finer derivative estimates.

We make clear a link between hyperbolic times and sample points. Fix n ≥ N , and
suppose that ζ0 is a critical point of order hs ≥ n, with {hj}s

j=1 the corresponding
sequence of hyperbolic times. Let j0 denote the miminum integer such that n ≤ hj0 .
It can be read out from the proof of Proposition 5.3.1 that for every 1 ≤ j ≤ j0,
there exists z(j) ∈ S(n) such that z(j) ∈ γ

(
tI(Γ(hj) ∩ I), ρhj

)
holds, where Γ(hj) is the

long stable leaf of order hj through ζ−hj
and I is the one appearing in the definition

of sample points (Sect. 5.2). We say z(j) is a sample point corresponding to the
hyperbolic time hj. Multiple sample points may correspond to one hyperbolic time
and it does not matter.

Proposition 5.4.1. Suppose that ζ0 is a critical point of Ha∗ of order ξ(= hs) ≥ n.
Let {hj}s

j=1 and denote the sequence of hyperbolic times associated with the backward

orbit of ζ0. Let j0 denote the miminum integer such that n ≤ hj0. Let {z(j)}j0
j=1

denote the sequence of corresponding sample points in S(n). For every 1 ≤ j ≤ j0,

there exists a secondary quasi critical point ζ
(j)
0 which is linked to z(j), and has a

smooth continuation a ∈ Ĵ(a∗, hj) → ζ
(j)
0 (a) such that

(35) ‖ζ̇(j)
0 (a)‖, ‖ζ̈(j)

0 (a)‖ ≤ δ.

Moreover, if the forward vector orbit of ζ0 is strongly regular up to time m ∈ [M,βξ],
then for every 1 ≤ j ≤ j0 and 1 ≤ i ≤ min{m,βhj},

(36)

∣∣∣∣∣log
‖DH i(ζ1) ( 1

0 ) ‖
‖DH i(H(ζ

(j)
0 )) ( 1

0 ) ‖

∣∣∣∣∣ ≤ 1.

Proof. By Lemma 5.1.1, there exists a primary quasi critical point ζ̂
(j)
0 of order hj

such that |ζ0 − ζ̂
(j)
0 | ≤ ∑s

k=j(Kb)hk/3. For every 1 ≤ j ≤ j0, applying Proposition

5.3.1 to ζ̂
(j)
0 , we obtain a secondary quasi critical point ζ

(j)
0 of order hj which has a

smooth continuation ζ
(j)
0 (a) on Ĵ(a∗, ζ0, βhj/2). By construction, it is linked to z(j).

By (24) and (26) we have |ζ0 − ζ
(j)
0 | ≤ |ζ0 − ζ̂

(j)
0 | + |ζ̂(j)

0 − ζ
(j)
0 | ≤ (Kb)hj/4. Hence

(36) follows.
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We now estimate ‖ζ̇(j)
0 (a)‖. A basic idea is to apply the Hadamard lemma to

ζ
(i+1)
0 (a)− ζ

(i)
0 (a) for 1 ≤ i ≤ j− 1, together with the coarse second order derivative

estimate in Proposition 5.3.1.

Lemma 5.4.2. (Hadamard) Let g ∈ C2[0, L] be such that |g| ≤ M0 and |g′′| < M2.
If 4M0 < L2 then |g′| ≤ √

M0(1 + M2).

Unfortunately, the construction of smooth continuations in itself does not imply

any correlation between ζ
(i+1)
0 (a) and ζ

(i)
0 (a). Therefore, in order to bound the

norm of the difference ζ
(i+1)
0 (a)− ζ

(i)
0 (a), we consider another expression of smooth

continuations. Let us explain how to do this. We begin by constructing for all

a ∈ Ĵ(a∗, hj) a primary quasi critical point ζ̂
(j)
0,a of order hj of Ha which smoothly (C3

sense) depends on a and whose backward orbits share the same combinatorial type.

Then, applying Lemma 5.1.1 to ζ̂
(j)
0,a, we obtain for every 1 ≤ i ≤ j a primary quasi

critical point ζ̂
(i)
0,a of order hi of Ha. By Proposition 5.3.1, we obtain an associated

secondary quasi critical point ζ
(i)
0,a of order hi. By construction it follows that ζ

(i)
0,a is

linked to z(i). It turns out that ζ
(i)
0,a = ζ

(i)
0 (a) holds. Hence, it is enough to consider

|ζ(i+1)
0,a − ζ

(i)
0,a|. This can be bounded by (24) and (26).

Let ζ̂
(j)
0,a∗ denote the primary quasi critical point of order hj which is constructed

from ζ0 by Lemma 5.1.1. Let {wi(a∗)}0
i=−hj

denote its backward vector orbit. It

can be read out from the proof of Proposition 5.3.1 that H
hj
a γ(w−hj

(a∗), ρhj) is

an admissible curve for all a ∈ Ĵ(a∗, hj). Comparing the two admissible curves

H
hj
a∗ γ(w−hj

(a∗), ρhj) and H
hj
a γ(w−hj

(a∗), ρhj) as in the proof of Proposition 5.3.1

and using Sublemma 5.3.5, we can construct a primary quasi critical point ζ̂
(j)
0,a of

order hj of Ha on H
hj
a γ(w−hj

(a∗), ρhj). By construction, the backward vector orbit

of ζ̂
(j)
0,a satisfies the following for all a ∈ Ĵ(a∗, hj):

(i) e−11∆-expanding and e−3-regular (slightly better than the mere primary quasi
critical case);

(ii) the associated sequence of hyperbolic times is {hi}j
i=1

(iii) the associated sequence of sample points in S(n) is {z(i)}j
i=1.

(i) allows us to apply Lemma 5.1.1 to ζ̂
(j)
0,a to yield a primary quasi critical point

ζ̂
(i)
0,a of order hi for every 1 ≤ i ≤ j. By Proposition 5.3.1 and (iii), to each ζ̂

(i)
0,a

there exists an associated secondary quasi critical point ζ
(i)
0,a which is linked z(i). On

the other hand, there exists a smooth continuation a ∈ Ĵ(a∗, hi) → ζ
(i)
0 (a). Since

Ĵ(a∗, hi) ⊃ Ĵ(a∗, hj), ζ
(i)
0 (a) is well-defined. In fact, the construction of ζ

(i)
0,a, ζ

(i)
0 (·),

(ii) (iii), and Remark 2.9.2 together imply ζ
(i)
0,a = ζ

(i)
0 (a). Using this, (24) and (26),

‖ζ(i+1)
0 (a)− ζ

(i)
0 (a)‖ ≤ ‖ζ(i+1)

0,a − ζ̂
(i+1)
0,a ‖+ ‖ζ̂(i+1)

0,a − ζ̂
(i)
0,a‖+ ‖ζ̂(i)

0,a − ζ
(i)
0,a‖

≤ 4(Kb)hi .

The second order derivative estimate in Proposition 5.3.1 permits us to apply Lemma

5.4.2 to yield ‖ζ̇(i+1)
0 (a)−ζ̇

(i)
0 (a)‖ ≤ (Kb)hi . Meanwhile we clearly have ‖ζ̇(1)

0 (a)‖ ≤ δ,
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because b is chosen to be small after δ. Consequently,

‖ζ̇(j)
0 (a)‖ ≤ ‖ζ̇(1)

0 (a)‖+

j−1∑
i=1

‖ζ̇(i+1)
0 (a)− ζ̇

(i)
0 (a)‖ ≤ Kb + δ/2 ≤ δ.

The second order derivative estimate is done in the same way. We use Lemma 5.4.2

with respect to ζ̇
(i+1)
0 (a) − ζ̇

(i)
0 (a) together with the third order derivative estimate

in Proposition 5.3.1. This completes the proof of Proposition 5.4.1. ¤

6. Inductive assumption

In this section we introduce reluctant recurrence condition (RR)n. It is shown to
be stronger than (EG)n+1.

6.1. Essential returns. Suppose that H satisfies (EG)n for some n ≥ N . Let
w = {wi}m

i=0 be a controlled vector orbit of H. Let 0 < m1 < m2 < · · · < mt ≤ m
denote the set of all free returns up to time m. Denote by pi and qi the folding and
binding periods associated with the free return mi. Suppose that mi < mj. We say
mj is subject to mi if

(37)
∑

i+1≤k≤j

log
‖wmk+pk

‖
‖wmk

‖ ≥ 10 · log
‖wmi+pi

‖
‖wmi

‖ .

A free return mi is called essential if i = 1, or else it is not subject to any previous
free return. We say w is reluctantly recurrent up to time m if

(38)
∑

mi≤j : essential

log
‖wmi+pi

‖
‖wmi

‖ ≥ − αj

100

holds for every 0 ≤ j ≤ m, where the sum runs over all essential returns which take
place before j.

6.2. Reluctant recurrence condition. Suppose that H satisfies (EG)n for some
n ≥ N . We say H satisfies (RR)n if the forward orbit of every critical point is
controlled and reluctantly recurrent up to time min(β(n+1), βξ)−1, where ξ is the
order of the critical point. To simplify formalism, we say Ha,b satisfies (RR)N−1 if
a ∈ Ω(0).

Remark 6.2.1. The condition (RR)n is a condition on all critical points.

Remark 6.2.2. An inductive nature lurks behind the definition of (RR)n, concern-
ing the relation between the order of binding points and that of controlled critical
points. No contradiction arises at this point because of the following two facts: for-
ward orbits of critical points of order N are obviously controlled; to control forward
orbits of critical points at most up to time β(n + 1), only those critical points of
order ≤ α(n + 1) are used. This follows from (38).

Proposition 6.2.3. Suppose that H satisfies (EG)n, and ζ0 is a critical point of
order m. If the forward orbit of ζ0 is reluctantly recurrent up to time k ≤ βm − 1,
then it is strongly regular up to time k + 1. In particular, if H satisfies (RR)n then
(EG)n+1 holds.
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Proof. We firstly prove ‖wj‖ ≥ e(λ−α)(j−i)−ασi‖wi‖ for all 0 ≤ i ≤ j ≤ k + 1. Then
we define a function χ(·).

Case I: no free return takes place in (i, j), and i is free. It is easy to see that the
inequality holds if K0e

αjδ ≤ 1, because ζ0 is a critical point and thus no return takes
place up to time j. If K0e

αjδ ≥ 1, Lemma 2.5.1 and σ ≥ 1 gives

‖wj‖ ≥ K0δe
λ(j−i)‖wi‖ = K0δe

(λ−α)(j−i)e−αieαj‖wi‖ ≥ e(λ−α)(j−i)−ασi‖wi‖.

Case II: some free returns take place in (i, j) and both i, j are free. Let i < mi0 <
mi0+1 · · · < mj0 < j denote all such free returns. Then

‖wj‖
‖wi‖ =

‖wj‖
‖wmj0

+qj0
+1‖ ·

j0−1∏
i=i0

‖wmi+1
‖

‖wmi+qi+1‖ ·
j0∏

i=i0

‖wmi+qi+1‖
‖wmi

‖ · ‖wmi0
‖

‖wi‖ .

Using ‖wmi+qi+1‖ ≥ ‖wmi
‖ for every i0 ≤ i ≤ j0 and Lemma 2.5.1 with respect to

the first and last fractions, we have

‖wj‖
‖wi‖ ≥ Kj0−i0+1

0 δ exp

[
λ

(
j − i−

j0∑
i=i0

qi

)]
.

Since ζ0 is a critical point and some return takes place before j, we have K0δe
αj/10 ≥

1. Thus

‖wj‖
‖wi‖ ≥ Kj0−i0

0 exp

[
λ

(
j − i−

j0∑
i=i0

qi

)
− αj/10

]
.

To bound the sum of the binding periods we argue as follows. Using (12),

j0∑
i=i0

qi ≤ − 3

λ(1− α̃)

j0∑
i=i0

log
‖wmi+pi

‖
‖wmi

‖ .

Since each mi is an essential return, or else is subject to some previous essential
return, we have

j0∑
i=i0

qi ≤ − 33

λ(1− α̃)

∑
mi<j

essential

log
‖vmi+pi

‖
‖vmi

‖ ≤ αj

10
,

where the last inequality follows from (38). To bound Kj0−i0
0 , we use the next

elementary sublemma and obtain j0 − i0 ≤ ∆(j−i)
− log δ

. A proof of the sublemma is left

as an exercise. Consider a perturbation from H2,0.

Sublemma 6.2.4. max{i ∈ N : H i(Cδ) ∩ Cδ = ∅} ≥ −∆−1 log δ.

Substituting these two inequalities into the above one we have

(39) ‖wj‖ ≥ e(λ−α(λ+1)/10)j−λi ≥ e(λ−α(λ+1)/20)(j−i)‖wi‖ ≥ e(λ−α)(j−i)−ασi‖wi‖.
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Case III: some free returns take place in (i, j), i is free, j is bound. Let mj0 denote
the free return such that mj0 < j ≤ mj0 + qj0 + 1. Then

‖wj‖
‖wi‖ =

‖wj‖
‖wmj0

+qj0
+1‖

‖wmj0
+qj0

+1‖
‖wi‖ .

Regarding the first term, we have

‖wj‖ ≥ e−∆(mj0
+qj0

+1−j)‖wmj0
+qj0

+1‖ ≥ e−∆qj0‖wmj0
+qj0

+1‖ ≥ e−∆αj/10‖wmj0
+qj0

+1‖.
Using this and applying (39) to the second term, we obtain

‖wj‖ ≥ e(λ−α(λ+1)/20)(j−i)−α∆j/10‖wi‖ ≥ e(λ−α)(j−i)−ασi‖wi‖.

Case IV: some free returns take place in (i, j), i is bound, j is free. Let mi0 denote
the free return such that mi0 < i ≤ mi0 + qi0 + 1. Suppose that i ≤ mi0 + pi0 . By
(10) we have

(40)
‖wj‖
‖wi‖ =

‖wj‖
‖wmi0

‖
‖wmi0

‖
‖wi‖ ≥ ‖wj‖

‖wmi0
‖ .

Since mi0 and j are free, (39) applies to the right hand side. Since mi0 < i, we
obtain the desired inequality. Suppose that i > mi0 + pi0 . (19) implies

‖wi‖ ≤ (1 + θ)L|ζ̃0 − ζmi0
+1|e∆(i−mi0

)‖wmi0
‖,

where ζ̃0 is a critical point relative to which wmi0
is in admissible position. Since

i − mi0 ≤ qi0 ≤ αmi0/10 and |ζ̃0 − ζmi0
+1| ≤ δ we have ‖wi‖ ≤

√
δe∆αmi0‖wmi0

‖.
Using this and (39),

‖wj‖
‖wi‖ =

‖wj‖
‖wmi0

‖
‖wmi0

‖
‖wi‖ ≥ e(λ−α(λ+1)/20)(j−mi0

)e−∆αmi0
/10 ≥ e(λ−α)(j−i)−ασi.

6.2.5. Case V : both i and j are bound. Suppose that i and j are bound to different
free returns. In this case, there exists a free return mi0 such that i < mi0 < j. Using
the estimates in III and IV we have

‖wj‖
‖wi‖ =

‖wj‖
‖wmi0

‖
‖wmi0

‖
‖wi‖ ≥ e(λ−α(λ+1)/20)(j−i)−α∆(j+mi0

)/10 ≥ e(λ−α)(j−i)−ασi.

Suppose that i and j are bound to the same free return mi0 . Let ζ̃0 denote the critical

point of order k relative to which wmi0
is in admissible position. Let w̃ = {w̃i}βk

i=0

denote the forward vector orbit of ζ̃0. By (EG)n, w̃ is strongly regular. Three cases
need to be considered separately:

(i) mi0 + pi0 ≤ i < j. Using (20) we have

‖wj‖
‖wi‖ ≥ e−2

‖w̃j−mi0
−1‖

‖w̃i−mi0
−1‖ ≥ e−2e(λ−α)(j−i)−ασ(i−mi0

−1) ≥ e(λ−α)(j−i)−ασi.
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(ii) mi0 ≤ i ≤ mi0 + pi0 ≤ j. Using (20) we have

|ζ̃0 − ζmi0
+1|−1 ‖wj‖

‖wmi0
‖ ≥ e−2

‖w̃j−mi0
−1‖

‖w̃0‖ .

Rearranging this and using |ζ̃0 − ζmi0
+1| ≥ e−αmi0

/10 which follows from (12) and
(RR)n, we have

‖wj‖ ≥ e−2−2αm0e(λ−α)(j−m0−1)‖wmi0
‖ ≥ e(λ−α)(j−i)−ασi/2‖wmi0

‖.
This and ‖wi‖ ≤ ‖vmi0

‖ yield the desired inequality.

(iii) mi0 ≤ i < j ≤ mi0 + pi0. Using the estimate in (ii) and p0 ¿ αm0 we have

‖wmi0
+pi0

‖ ≥ e(λ−α)(j−i)−ασi/2‖wi‖.
On the other hand, the definition of the folding period gives

‖wmi0
+pi0

‖ ≤ e∆(mi0
+pi0

−j)‖wj‖ ≤ e∆pi0‖wj‖ ≤ eαmi0 ≤ eαi‖wj‖.
Combining these two inequalities we obtain the desired one.

It is left to define a function χ(·). For convenience we introduce the following
terminology. We say j ∈ [0,m + 1] is isolated if (1) it is free, and (2) there is no
return before j, or else j ≥ j′ + q − λ−1e log(K0δ) holds for the last free return j′

before j with the binding period q. Define χ(j) to be the largest integer in [0, j]
which is isolated.

Let us see χ(·) indeed satisfies the desired properties. They are clearly satisfied
when there is no return before j, by Lemma 2.5.1 and χ(j) = j in this case. Suppose
that that j′ is the last free return before χ(j). Since there is no return in between
j′+q and χ(j), and by Lemma 2.5.1, we have ‖wχ(j)‖ ≥ K0δ‖wi‖ for every j′+q+1 ≤
i ≤ χ(j). On the other hand, by Proposition 3.3.2 we have ‖wj′+q+1‖ ≥ e−1K0δ‖wi‖
for every 0 ≤ i ≤ j′ + q + 1, and therefore

‖wχ(j)‖
‖wi‖ =

‖wχ(j)‖
‖wj′+q+1‖

‖wj′+q+1‖
‖wi‖ ≥ K0δe

λ(χ(j)−j′−q) · e−1K0δ ≥ K0δ.

It is left to prove χ(j) ∈ [(1 − ασ)j, j]. If j is isolated then it is done because
χ(j) = j by definition. Suppose the contrary, and let ψ(j) denote the last free
return which takes place before j. We derive a contradiction assuming that there
exists k ≥ 1 such that ψ(j), · · · , ψk(j) = ψ◦· · ·◦ψ(j) (k-composite) are not isolated
and ψk(j) ≤ (1 − ασ)j. By the definition of isolated iterates, two consecutive free
returns in [(1−ασ)j, j] are close to each other. More precisely, one free return takes
place right after −λ−1 log(K0δ) iterates of the end of the binding period of another
at the latest. Meanwhile, any binding period is ≥ − 3

∆(2−2`)
log δ, by Lemma 3.3.2.

This implies that the proportion of total bound iterates in [j − ασ, j] is bigger than
certain uniform constant which only depends on ∆ and λ. On the other hand, the
total number of bound iterates in [(1 − ασ)j, j] is clearly smaller than the sum of
the binding periods of free returns which take place before j, which is ≤ αj as was
already proved. These two estimates yield a contradiction. This completes the proof
of Proposition 6.2.3. ¤
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7. Dynamics of critical curves

The aim of this section is to study the growth of curves of secondary quasi critical
points under the assumption (RR)n−1.

7.1. Distortion with respect to smooth continuations. Let RRn−1 denote the
set of a ∈ Ω(0) such that Ha,b satisfies (RR)n−1. Let a∗ ∈ RRn−1, and suppose that
ζ0 is a critical point of order ξ > n of Ha∗ . Let m ≤ β(n + 1)− 1 denote the largest

integer up to which the forward vector orbit w = {wi(ζi+1)}βξ
i=1 of ζ0 is reluctantly

recurrrent. Recall that (RR)n−1 implies m ≥ βn− 1. Define

Φ(Πν
0w) = e−10∆ ·




∑

0≤i≤min(ν−1,m)

free

Θ(Πν
0w, i)−1




−1

.

Let {hi}s
i=1 denote the sequence of hyperbolic times associated with the backward

orbit of ζ0. Put α0 = αλσ
200∆

, and define

J(a∗, ζ0, ν, d) = [a∗ − e−α0d/2Φ(Πν
0w), a∗ − e−α0d/2Φ(Πν

0w)] ∩ Ω(0).

Lemma 7.1.1. For all h > 0 such that βh/2 ≤ ν ≤ βh, we have

J(a∗, ζ0, ν, 0) ⊂ Ĵ(a∗, h).

Proof. Let us recall from the proof of Proposition 6.2.3 that χ(·) is a free iterate.
Thus Φ(Πν

0w) ≤ Θ(Πν
0w, χ(ν − 1)) holds. By the strong regularity of w and the

assumption on ν, we have

Θ(Πν
0w, χ(ν − 1)) ≤ ‖w0‖

‖wχ(ν−1)‖ ≤ e−λβh/2.

This implies the inclusion. ¤
Proposition 7.1.2. Let a∗ ∈ RRn−1, and suppose that ζ0 is a critical point of Ha∗
of order ξ > n, with {hj}s

j=1 the associated sequence of hyperbolic times. Let j0 be

the mimimum integer such that n ≤ hj0. For every 1 ≤ j ≤ j0, a ∈ Ĵ(a∗, hj), and

i ≥ 0, define ζ
(j)
i (a) = H i

a(ζ
(j)
0 (a)) and wi(a) = DH i

a(ζ
(j)
1 (a)) ( 1

0 ) , where ζ
(j)
0 (a) is

the smooth continuation of order hj in Proposition 5.4.1. For every ν ∈ [βhj/2, βhj]

and every free iterate 1 ≤ i ≤ min{ν, m + 1}, Ji := {ζ(j)
i+1(a) : a ∈ J(a∗, ζ0, ν, 0)} is

an admissible curve. Moreover, for all a ∈ J(a∗, ζ0, ν, 0),

(41)

∣∣∣∣∣log
‖ζ̇(j)

i+1(a∗)‖
‖ζ̇(j)

i+1(a)‖

∣∣∣∣∣ ≤
1

2
+

∑
0≤k≤i−1

free

[
2Φ(Πν

0w)Θ(Πν
0w, k)−1 +

(‖w0‖
‖wk‖

) 1
2

]
;

(42)

∣∣∣∣log
‖wi(a∗)‖
‖wi(a)‖

∣∣∣∣ ≤
1

2
+

∑
0≤k≤i−1

free

[
2Φ(Πν

0w)Θ(Πν
0w, k)−1 +

(‖w0‖
‖wk‖

) 1
2

]
;

(43) ‖ζ̈(j)
i+1−k(a)‖ ≤ ‖ζ̇(j)

i+1(a)‖3 0 ≤ ∀k ≤ i + 1.

Remark 7.1.3. The number in the right hand side of (41) (42) is ≤ 1.
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Remark 7.1.4. It is worth to call attention to subtleties behind the proof of the
proposition. In the first place, it involves a double induction with respect to n and
i. When considering the case for general n, it is necessary that binding structures
for w are available uniformly on J(a∗, ζ0, ν, 0). To be more precise, let k < n denote

the order of a binding point ζ̃0 at a free return i ∈ [0,m] of w. We need that the

secondary quasi critical point of order k associated with ζ̃0 has a smooth continuation
on J(a∗, ζ0, ν, 0) whose forward orbits obey a uniform distortion estimate in the form

of (42). This follows if Φ(w) ≤ Φ(w̃), where w̃ is the forward orbit of ζ̃0. Let us see
this. The condition (RR)k implies χ(βk) ≤ αi, and hence βk ≤ αi ≤ αn ¿ n, and
in particular

Φ(w) ≤ ‖w0‖
‖wn‖ ≤ e−2ασβk−∆βk ≤ 1

βk
min

1≤i≤βk
Θ(w̃, i) ≤ Φ(w̃).

7.2. Wang-Young’s inequality. Before entering the proof of the proposition, we
prove a very useful inequality which will be used later. It is an adaptation of [[WY01]
Lemma 6.2] to our context.

Lemma 7.2.1. Suppose that H satisfies (RR)n−1, and that {wj(zs)}i
j=0 is reluctantly

recurrent up to time i− 1. Then for every 0 ≤ s ≤ i,

‖DH i−s(z0)‖ ≤ Ke−λs/2 ‖wi‖
‖w0‖ .

Proof. Let qt denote the binding period of a free return t ≤ i, and define It =
[t− qt, t+ qt]. These intervals are not necessarily two by two disjoint and it does not
matter.

Claim 7.2.2. For every s /∈ ∪It and j ∈ [1, i− s],

‖ws+j‖ ≥ e−2∆j‖ws‖.
Proof. Fix s, and then fix j. Let r be the last free return between s and s + j. If
no such r exists, then the inequality follows because s is free. Let j′ ≥ j be the
smallest integer such that zs+j′ is free. Notice that j′ may be bigger than i and it
does not matter. Using the fact that s is free,

‖ws+j‖ ≥ e−∆(j′−j)‖ws+j′‖ ≥ e−∆(j′−j)|ζ̃0 − zr|‖ws‖ ≥ e−∆(j′−j)e−λqr/3‖ws‖,
where ζ̃0 is the binding point for zr. Since r is the last free return, s + j′ ≤ r + qr

holds, and thus j′ ≤ j + qr. Since s < r − qr ≤ r ≤ s + j, we have qr ≤ j. This
yields the desired inequality. ¤

Suppose that s /∈ ∪It. Then ek(zs) is well-defined for 1 ≤ k ≤ i − s. Since s is
free, slope(ws) ≤ K0b. Hence we obtain

‖DH i−s(zs)‖ ≤ K
‖wi‖
‖ws‖ ≤ Ke−λs ‖wi‖

‖w0‖ ,

where the last inequality follows from the strong regularity of w.
Suppose that s ∈ ∪It. Let r denote the last return such that s ∈ Ir. Since w is

reluctantly recurrent, we have qr ≤ 10αs. If i ∈ Ir, then

‖DH i−s(zs)‖ ≤ e∆qr ≤ e10α∆s ≤ e−λs/2 ‖wi‖
‖w0‖ .
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Suppose that i /∈ Ir. Suppose that s ≥ (1− 10α)i. Then we have

‖DH i−s(zs)‖ ≤ e∆αi ≤ e
∆αs
1−α ≤ e−λs/2 ‖wi‖

‖w0‖ .

It is left to consider the case s < (1 − 10α)i. We consider the following operation.
Put s1 = r0 + 10qr0 . Ask whether s1 /∈ ∪It or not. If so, then stop the operation.
If not, then let r1 denote the last return such that s1 ∈ Ir1 . Put s2 = r1 + 10qr1 ,
and ask whether s2 /∈ ∪It or not. If so, then stop the operation. If not, then let
r2 ≤ i denote the last return such that s2 ∈ Ir2 . Put s3 = r2 + 10q2. Repeat this.
This operation defines an increasing sequence of integers. Denote by {si}`

i=0 such a
sequence which is maximal with respect to inclusion as a set. Suppose that s` ∈ ∪It.
This implies s` ≥ i. By construction, si+1 − si ≤ 2qri

. This implies

∑̀
i=0

qri
≥ s` − s0 ≥ i− s0 ≥ 10αi.

On the other hand, since w is reluctantly recurrent,
∑`

i=0 qri
≤ αs` ≤ αi holds.

This yields a contradiction. Consequently, s` /∈ ∪It holds. Then

‖DH i−s(zs)‖ ≤ ‖DH i−s`(zs`
)‖

`−1∏
i=0

‖DHsi+1−si(zsi
)‖

≤ Ke−λs`/2e−λs`/2 ‖wi‖
‖w0‖eαs`

≤ Ke−λs/2 ‖wi‖
‖w0‖ .

¤

The following lemma is a slight adaptation of [WY01] Proposition 6.1 to our
context. The proof is almost the same and we omit it. Here, Lemma 7.2.1 plays an
important role.

Lemma 7.2.3. There exists D1, D2 > 0 such that for every i ≤ min{ν, m + 1},

D1 ≤ ‖ζ̇(j)
i+1(a∗)‖ ·

‖w0(a∗)‖
‖wi(a∗)‖ ≤ D2.

7.3. Proof of Proposition 7.1.2. An idea in the proof is the same as the classical
ones. We show that the critical orbits share essentially the same itineraries up to ν,
that is, they return and then become free simultaneously, being bound to essentially
the same binding points. Hence it makes sense to speak abount bound and free
states uniformly on the parameter interval in question. We split the time interval
[0, ν] accordingly and estimate the contribution to distortion bounds one by one.

Put Zi(a) = ζ
(j)
i+1(a).

Claim 7.3.1. For all a ∈ J(a∗, ζ0, ν, 0),

‖Ż0(a)‖ ≤ Kδ, ‖Z̈0(a)‖ ≤ Kδ, ‖Ż1(a)‖ ≈ 2a and slope(Z ′
1(a)) ≤ K0b.
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Proof. The first and the second inequalities follows from (35). The third one follows
from the first one and the fact that Z0(a) ∈ H(Cδ). The last one follows from the
third one and (1). ¤

By the claim and the fact that ∂2
afa ≡ 0, we have ‖Z̈1(a)‖ ≤ Kδ. Consequently,

J1 is an admissible curve. (41) and (43) for i = 0 follow from the claim. (42) for
i = 0 follows from |Z0(a∗) − Z0(a)| ≤ K|a∗ − a| and Lemma 2.5.1. This completes
the proof of the assertion for i = 1.

Let i ∈ [1, min{ν,m + 1}] be a free iterate. If i is a return, then let q denote
the corresponding binding period. Otherwise, let q = 0. We prove the assertion for
i = i + q + 1, assuming that they hold for i.

We prove (41). Define

D(a, i) =

∣∣∣∣log
‖Z ′

i+q+1(a)‖
‖Z ′

i(a)‖ − log
‖wi+q+1‖
‖wi‖

∣∣∣∣ .

If Z ′
i+q+1(a) = 0 (as it really never does), we define D(a, i) = +∞. By the chain rule

it is enough to prove thefollowing for all a ∈ J(a∗, ζ0, ν, 0):

(44) 2D(a, i) ≤ Φ(Πν
0w) ·Θ(Πν

0w, i)−1 +

(‖w0‖
‖wi‖

) 1
2

.

Split D(a, j) ≤ A + B, where

A =

∣∣∣∣log
‖DHq+1

a (Zi(a))Z ′
i(a)‖

‖Z ′
i(a)‖ − log

‖wi+q+1‖
‖wi‖

∣∣∣∣ ,

B =

∣∣∣∣log
‖DHq+1

a (Zi(a))Z ′
i(a)‖

‖Z ′
i(a)‖ − log

‖Z ′
i+q+1(a)‖
‖Z ′

i(a)‖

∣∣∣∣ .

7.3.2. Estimate of A. Split

A :=

∣∣∣∣
‖DHq+1

a (Zi(a))Z ′
i(a)‖

‖Z ′
i(a)‖ − ‖wi+q+1‖

‖wi‖

∣∣∣∣ ≤ I + II + III + IV + V + VI,

where

I =

∣∣∣∣
‖DHq+1

a∗ (Zi(a))Z ′
i(a)‖

‖Z ′
i(a)‖ − ‖DHq+1

a∗ (Zi(a∗))Z ′
i(a∗)‖

‖Z ′
i(a∗)‖

∣∣∣∣ ,

II = 2 · ‖DHq+1
a∗ (Zi(a))‖

∥∥∥∥
Z ′

i(a∗)
‖Z ′

i(a∗)‖
− Z ′

i(a)

‖Z ′
i(a)‖

∥∥∥∥ ,

III = ‖DHq+1
a∗ (Zi(a∗))‖

∥∥∥∥
Z ′

i(a∗)
‖Z ′

i(a∗)‖
− Z ′

i(a)

‖Z ′
i(a)‖

∥∥∥∥ ,

IV = 2 · ‖DHq+1
a∗ (Zi(a))‖

∥∥∥∥
Z ′

i(a∗)
‖Z ′

i(a∗)‖
− wi

‖wi‖

∥∥∥∥ ,

V = ‖DHq+1
a∗ (Zi(a∗))‖

∥∥∥∥
Z ′

i(a∗)
‖Z ′

i(a∗)‖
− wi

‖wi‖

∥∥∥∥ ,

VI = ‖DHq+1
a∗ (Zi(a))−DHq+1

a (Zi(a))‖.
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Suppose that q = 0. Using (41),

I, II, III, VI ≤ K|Zi(a∗)− Zi(a)| ≤ e|a∗ − a||Z ′
i(a∗)|.

Using Lemma 7.2.3 and (36),

I, II, III, VI ≤ Φ(Πν
0w)Θ(Πν

0w, i)−1Θ(Πν
0w, i)

‖wi‖
‖w0‖

≤ Φ(Πν
0w)Θ(Πν

0w)−1‖wi+q+1‖
‖wi‖ .

Lemma 7.3.3. ([WY01] Lemma 6.3) We have z′i(a∗) 6= 0, ∀i ≥ 0.

(45) angle(ζ̇
(j)
i+1(a), wi(a)) ≤ ‖w0(a)‖

‖wi(a)‖

(
i∑

s=1

‖ws(a)‖
‖wi(a)‖ bi−s +

‖w0(a)‖
‖wi(a)‖ bi

)
.

Using (45),

IV, V ≤ K
‖w0‖
‖wi‖ ≤

‖wi+q+1‖
‖wi‖

(‖w0‖
‖wi‖

) 1
2

.

Hence we obtain

(46) A ≤ ‖wi+q+1‖
‖wi‖

[
Φ(Πν

0w)Θ(Πν
0w)−1 +

(‖w0‖
‖wi‖

) 1
2

]
.

Suppose that q 6= 0. Let ζ̃0 denote a binding point at the free return i and
w̃ = {w̃i}q

i=0 the corresponding foward vector orbit. Let p denote the folding period.

By Remark 7.1.4, there exists a smooth continuation a ∈ J(a∗, ζ0, ν, 0) → ζ̃0(a) such
that the corresponding forward vector orbits w̃(a) obey (42).

Lemma 7.3.4. Let a, b ∈ J(a∗, ζ0, ν, 0). The tangent vector (Zi(a), Z ′
i(a)) is in

admissible position relative to ζ̃0(b). In particular, HbZi(a) ⊂ Γ(q−1)(w̃(b)) holds.

Proof. The second half of the assertion follows from the definition of admissible
position and Lemma 3.3.3. To show the first half, we begin by claiming that
(Zi(a), Z ′

i(a)) is in admissible position relative to ζ̃0. Using Lemma 7.2.3,

|Zi(a∗)− Zi(a)| ≤ ‖wi‖
‖w0‖Φ(Πν

0w) ≤ ‖wi‖
‖w0‖Θ(Πν

0w, i)

≤
( ‖wi‖
‖wi+p‖

)2

≤ L2|ζ̃0 − ζi+1|2(1−α̃) ¿ |ζ̃0 − ζi+1|.

This and the fact that Ji is an admissible curve together imply the claim, provided
that (Zi(a∗), Z ′

i(a∗)) is in admissible position relative to ζ̃0. This is indeed the case
by (45). On the other hand, by (26) and (35),

|ζ̃0 − ζ̃0(b)| ≤ |ζ̃0 − ζ̃0(a∗)|+ |ζ̃0(a∗)− ζ̃0(b)| ¿ |ζ̃0 − ζi+1|.
This yields the claim. ¤
Lemma 7.3.5. For all a ∈ J(a∗, ζ0, ν, 0) we have

I ≤ ‖wi+q+1‖
‖wi‖

( ‖wi‖
‖wi+p‖

)2

|Zi(a∗)− Zi(a)|
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Proof. By Lemma 7.3.4 we have Ha∗(Zi(a)) ∈ Γ(q−1)(w̃(a∗)), and hence the con-
tractive directions ei (i = 1, · · · , q) under the interations of Ha∗ are well-defined at
Ha∗(Zi(a)). Split

DHa∗(Zi(a∗))Z ′
i(a∗)

‖Z ′
i(a∗)‖

= ξeq(Zi+1(a∗)) + ηfq(Zi+1(a∗))

and
DHa∗(Zi(a))Z ′

i(a)

‖Z ′
i(a)‖ = ξ̃eq(Ha∗Zi(a)) + η̃fq(Ha∗Zi(a)).

Then I ≤ A + B + C + D, where

A = |ξ − ξ̃|‖DHq
a∗eq(Ha∗Zi(a))‖,

B = |η − η̃|‖DHq
a∗fq(Zi+1(a∗))‖,

C = |ξ|‖DHq
a∗eq(Zi+1(a∗))−DHq

a∗eq(Ha∗Zi(a))‖,
D = |η|‖DHq

a∗fq(Zi+1(a∗))−DHq
a∗fq(Ha∗Zi(a))‖.

We estimate A, B, C, D one by one. It can be read out from the proof of Lemma
3.3.3 that the Lipschitz continuity of the first order derivatives of H and the fact
that Ji is an admissible curve together imply

A ≤ |ξ − ξ̃| ≤ K|Zi(a∗)− Zi(a)|.
Applying the capture argument, we can find an admissible curve γ which contains
Zi(a∗) and a critical point in its boundary. Applying the argument in the proof of
Lemma 3.3.3 to γ ∪ Ji, we have |η − η̃| ≤ K|Zi(a∗)− Zi(a)|, and thus

B ≤ K|Zi(a∗)− Zi(a)|‖w̃q‖
‖w̃0‖ .

Let z ∈ S(w̃). By the chain rule and Lemma 7.2.1,

‖D(DHq
a∗(z)) · eq(z)‖ ≤ e∆

q∑
s=1

‖DHq−s
a∗ (zs)‖‖DHs−1

a∗ (z)eq(z)‖ ≤ ‖w̃q‖
‖w̃0‖ .

‖DHq
a∗(z) ·Deq(z)‖ = ‖DHq

a∗(z)fq(z)‖ ≤ K
‖w̃q‖
‖w̃0‖ .

Using these and the mean value theorem,

C ≤ K|Zi(a∗)− Zi(a)|‖w̃q‖
‖w̃0‖ .

Claim 7.3.6. Let ∂ = ∂x, ∂y, or ∂a. For every 1 ≤ k ≤ q, a ∈ J(a∗, ζ0, ν, 0), and
z ∈ Γ(q−1)(w(a)), we have

‖∂(DHq
a(z))‖ ≤ Keασk ‖w̃k‖2

‖w̃0‖2
.

Proof. By the strong regularity of w̃(a) and that q is free, we have

‖DHs−1
a (z)‖ ≤ K

‖w̃s−1(a)‖
‖w̃0(a)‖ ≤ e−(λ−α)(q−s+1)eασq ‖w̃q(a)‖

‖w̃0(a)‖ ≤ e−(λ−α)(q−s+1)eασq ‖w̃q‖
‖w̃0‖
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for 1 ≤ s ≤ k. Using this and Lemma 7.2.1,

‖∂(DHk
a (z))‖ ≤ K

k∑
s=1

‖DHk−s
a (zs)‖‖DHs−1

a (z)‖

≤ K

k∑
s=1

‖DHk−s
a (zs)‖ ·

k∑
s=1

‖DHs−1
a (z)‖

≤ Keασk ‖w̃k‖2

‖w̃0‖2
.

¤

(11) in Proposition 3.3.2 implies

(47)
‖w̃q‖
‖w̃0‖ ≤ K|ζ̃0 − ζi+1|−1‖wi+q+1‖

‖wi‖ .

Using this and Claim 7.3.6 for k = q, and then (47) and (11) (13) in Proposition
3.3.2,

‖∂(DHq
a(z))‖ ≤ |ζi+1 − ζ̃0|−1‖wi+q+1‖

‖wi‖
( ‖wi‖
‖wi+p‖

)2−10α̃

.

By the mean value theorem and |η| = |ζi+1 − ζ̃0|,
D ≤ |η|‖D(DHq

a∗fq(·))‖|Zi+1(a∗)−Ha∗Zi(a)|
≤ |η| (‖D(DHq

a∗)(·)‖+ ‖DHq
a∗eq(·)‖

)
e∆|Zi(a∗)− Zi(a)|

≤ ‖wi+q+1‖
‖wi‖

‖wi‖2

‖wi+p‖2
|Zi(a∗)− Zi(a)|.

Consequently we obtain the desired upper estimate of I. ¤

Lemma 7.3.5 gives

I ≤ ‖wi+q+1‖
‖wi‖

‖wi‖2

‖wi+p‖2

‖wi‖
‖w0‖Φ(Πν

0w)Θ(Πν
0w, i)Θ(Πν

0w, i)−1

≤ ‖wi+q+1‖
‖wi‖ Φ(Πν

0w)Θ(Πν
0w, i)−1.

Regarding II and III, we have ‖DHq+1
a∗ (Zi(a))‖ ≤ ‖DHq

a∗(Zi+1(a))‖ ≤ ‖w̃q‖ for all
a ∈ J(a∗, ζ0, ν, 0), by Lemma 7.3.4. This yields

II, III ≤
( ‖wi‖
‖wi+p‖

)1+α̃ ‖wi+q+1‖
‖wi‖ ‖wi‖Φ(Πν

0w)Θ(Πν
0w, i)Θ(Πν

0w, i)−1

≤ ‖wi+q+1‖
‖wi‖ Φ(Πν

0w)Θ(Πν
0w, i)−1.

Moreover, using Lemma 7.3.3,

IV, V ≤ ‖wi+q+1‖
‖wi‖

( ‖wi‖
‖wi+p‖

)1+α̃ ‖w0‖
‖wi‖ ≤

‖wi+q+1‖
‖wi‖

(‖w0‖
‖wi‖

) 1
2

.
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Now it is left to consider VI. Fix a, and consider the matrix valued function ϕ : b →
DHq+1

b (Zi(a)). Denote by Db the b-derivative. The chain rule gives

‖Dbϕ(b)‖ = ‖Db(DHq
b (Hb(Zi(a))) ·DHb(Zi(a)))‖

≤ K‖(DbDHq
b )(Hb(Zi(a)))‖+ e∆‖DHq

b (Hb(Zi(a)))‖.
Let z ∈ S(w̃(b)). Using Claim 7.3.6,

‖Db(DHq
b )(z)‖ ≤ ‖wi+q+1‖

‖wi‖
‖wi‖3

‖wi+p‖3
.

By the mean value theorem,

VI ≤ ‖wi+q+1‖
‖wi‖

‖wi‖3

‖wi+p‖3
Φ(Πν

0w)Θ(Πν
0w, i)Θ(w, i)−1

≤ ‖wi+q+1‖
‖wi‖ Φ(Πν

0w)Θ(Πν
0w, i)−1,

where the last inequality follows from ‖w0‖ ≤ ‖wi+p‖. Consequently, (46) follows in
this case as well.

We are in position to complete the estimate of A. Since the number in the biggest
parenthesis in (46) is much smaller than 1, we have

(48)
‖DHq+1

a (Zi(a))Z ′
i(a)‖

‖Z ′
i(a)‖ ≥ 9

10

‖wi+q+1‖
‖wi‖ > 0.

Hence we obtain

(49) A ≤ 10

9

(
Φ(Πν

0w)Θ(Πν
0w, i)−1 +

(‖w0‖
‖wi‖

) 1
2

)
.

Estimate of B. In view of (33) we have

(50) ‖Z ′
i+q+1(a)−DHq+1

a (Zi(a))Z ′
i(a)‖ ≤ e∆q.

Dividing both sides by ‖Z ′
i(a)‖ and using q ≤ αi the inductive assumption,

∣∣∣∣
‖Z ′

i+q+1(a)‖
‖Z ′

i(a)‖ − ‖DHq+1
a (Zi(a))Z ′

i(a)‖
‖Z ′

i(a)‖

∣∣∣∣ ≤ e∆q ‖w0‖
‖wi‖ ≤

(‖w0‖
‖wi‖

)1/2

.

This and (48), and the strong regularity of w together imply

‖Z ′
i+q+1(a)‖
‖Z ′

i(a)‖ ≥ ‖wi+q+1‖
‖wi‖ −

(‖w0‖
‖wi‖

) 1
2

≥ 1

2

‖wi+q+1‖
‖wi‖ .

Taking logs and rearranging gives

(51) B ≤ ‖wi‖
‖wi+q+1‖

(‖w0‖
‖wi‖

)1/2

≤
(‖w0‖
‖wi‖

) 1
2

.

Since a ∈ J(a∗, ζ0, ν, 0) is arbitrary, (49) (51) yield (44). This completes the proof
of (41).

A proof of (42) for i = i + q + 1 goes analogously, with

D̃(a, i) =

∣∣∣∣
‖wi+q+1(a)‖
‖wi(a)‖ − ‖wi+q+1‖

‖wi‖

∣∣∣∣
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in the place of D(a, i). It holds that

D̃(a, i) ≤
∣∣∣∣
‖DHa∗(Zi(a))wi(a)‖

‖wi(a)‖ − ‖wi+q+1‖
‖w0‖

∣∣∣∣ + VI,

and the first term can be estimated similarly to the case of I.
We now prove (43) for i = i + q + 1. Let 1 ≤ k ≤ i. Then by 41 and Lemma

7.2.3, ‖Żi+q+1(a)‖ ≥ ‖Żi(a)‖. Hence, it is enough to prove ‖Z̈j(a)‖ ≤ ‖Żi+q+1(a)‖
for i + 1 ≤ j ≤ i + q + 1. Let k ∈ [1, q + 1]. We compute Z ′′

i+k in view of (33), and
split ‖Z ′′

i+k‖/‖Z ′
i+q+1‖3 ≤ A + B + C + D, where

A = ‖Z ′
i+q+1‖−3‖DHk

a (Zi)Z
′′
i ‖,

B = ‖Z ′
i+q+1‖−3

∥∥∥∥∥
k−1∑
s=0

DHs
a(Zi+k−s)

(
∂2

aH + ∂a(∂aH)Z ′
i+k−s−1

)
∥∥∥∥∥ ,

C = ‖Z ′
i+q+1‖−3‖∂a(DHk

a (Zi))Z
′
i‖

D = ‖Z ′
i+q+1‖−3

∥∥∥∥∥
k−1∑
s=0

∂a(DHs
a(Zi+k−s))∂aH

∥∥∥∥∥
where all the partial derivatives of H inside the two sums are taken at (a, Zi+k−s−1).

Using the previous inequality and the strong regularity of w̃ gives

‖DHk−1
a (Zi+1)‖ ≤ K

‖w̃k−1‖
‖w̃0‖ ≤ ‖w̃q‖1+1/3

‖w̃0‖1+1/3
≤

[‖wi+q+1‖
‖wi‖

‖wi‖1+α̃

‖wi+p‖1+α̃

]1+1/3

.

Using this and ‖Z ′′
i ‖ ≤ ‖Z ′

i‖3, which is part of the assumption of the induction,

A ≤ ‖DHk−1
a (Zi+1)Z

′′
i ‖

‖Z ′
i+q+1‖3

≤ ‖Z ′
i‖3‖DHk−1

a (Zi+1)‖
‖Z ′

i+q+1‖3

≤ ‖Z ′
i‖3

‖Z ′
i+q+1‖3

[‖wi+q+1‖
‖wi‖

‖wi‖1+α̃

‖wi+p‖1+α̃

]1+1/3

≤ 1/4.

Claim 7.3.7. For every ` ∈ [1, q + 1], we have

‖Z ′
i+`‖ ≤ ‖wi‖1+ 1

3 .

Proof. We have

‖Z ′
i+`‖ ≤ ‖Z ′

i+` −DH i+`−χ(i+`)
a Z ′

χ(i+`)‖+ ‖DH i+`−χ(i+`)
a Z ′

χ(i+`)‖.
By (50), the first term is ≤ e∆ασ(i+`). To estimate the second term, we use the fact
that χ(i + `) is a free iterate before i, (41), and Lemma 7.2.3. Then

‖Z ′
i+`‖ ≤ e∆ασ(i+`)(1 + ‖Z ′

χ(i+`)‖) ≤ ‖wχ(i+`)‖1+ 1
10 ≤ eασi‖wi‖ ≤ ‖wi‖1+ 1

3 .

¤
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Using this claim,

B ≤ e∆q ‖Z ′
i‖2+2/3

‖Z ′
i+q+1‖3

≤ e∆q 1

‖Z ′
i+q+1‖1/3

≤ 1

4
.

We estimate C. By the chain rule,

‖∂a(DHk
a (Zi(a)))‖ ≤ K‖DHk−1

a (Zi+1)‖+ K‖∂a(DHk−1
a (Zi+1))‖.

Using Claim 7.3.6 and ‖Żi+1‖ ≤ K‖Żi‖,

‖∂a(DHk
a (Zi(a)))‖ ≤ ‖w̃k‖

‖w̃0‖ + eασq ‖w̃k‖2

‖w̃0‖2
‖Z ′

i‖

≤ e−(λ−α)(q−k)+ασq(1 + eασq‖Z ′
i‖)
‖w̃q‖2

‖w̃0‖2
.

Using (47) and q ≤ αi, we obtain

‖∂a(DHk
a (Zi(a)))‖ ≤ e3αi‖Z ′

i‖
‖wi+q+1‖2

‖wi‖2
≤ ‖wi+q+1‖2,

and therefore C ≤ 1/4.
We estimate D. By the chain rule and Claim 7.3.7, we have

‖∂aDHs
a(Zi+k−s)‖ ≤ Kse∆s‖Z ′

i+k−s‖ ≤ e2∆s‖wi‖1+1/3.

This yields

D ≤ e∆q ‖wi‖1+1/3

‖wi+q+1‖3
≤ 1

4
.

Altogether these yield (41) for i = i + q + 1.
It is left to prove that Ji+q+1 is an admissible curve. For an arbitrary i and

a ∈ J(a∗, ζ0, hj, 0), let κi(a) denote the curvature of Ji at Zi(a). Split κi+1(a) ≤
κ′i+1(a) + κ′′i+1(a), where

κ′i+1 =
‖DHa(Zi(a))Z ′

i(a)× Z ′′
i (a)‖

‖Z ′
i+1(a)‖3

,

κ′′i+1 =
‖Z ′′

i+1(a)‖
‖Z ′

i+1(a)‖3
.

Sublemma 7.3.8. For every i ≥ 0,

κ′i+1 ≤ Kb · ‖Z
′
i‖3

‖Z ′
i+1‖3

(κ′i + κ′′i + 1).

Proof. Split κ′i+1 ≤ I + II + III, where

I = ‖Z ′
i+1‖−3‖DHa(Zi)Z

′
i × ∂2

aH‖,
II = ‖Z ′

i+1‖−3‖DHa(Zi)Z
′
i × ∂a(∂aH) · Z ′

i‖,
III = ‖Z ′

i+1‖−3‖DHa(Zi)Z
′
i ×DHa(Zi)Z

′′
i ‖.



CRITICAL POINTS FOR SURFACE MAPS AND THE BENEDICKS-CARLESON THEOREM51

where all the partial derivatives are taken at (a, Zi). Since H is a small perturbation
of (x, y) → (1− ax2, 0), the C0 norm of ∂2

aH(a, Zi) is close to zero. In particluar we
have

I ≤ Kb
‖Z ′

i‖
‖Z ′

i+1‖3
.

Clearly, ‖∂a(∂aH(a, Zi))‖ ≤ K‖Z ′
i‖ holds, and thus the numerator of II is defree

three homogeneour in ‖Z ′
i(a)‖. Moreover, it is easy to see that the second compo-

nents of the two vectors involved in the product is smaller than Kb in norm. Hence
we obtain

II ≤ Kb
‖Z ′

i‖3

‖Z ′
i+1‖3

.

Meanwhile we have

III ≤ Kb

( ‖Z ′
i(a)‖

‖Z ′
i+1(a)‖

)3

(κ′i + κ′′i ).

Putting these three inequalities together we obtain the desired one.
¤

A recursive use of this inequality in Sublemma 7.3.8, we have

κ′i+q+1 ≤ (Kb)i+q ‖Z ′
0‖3

‖Z ′
i+q+1‖3

κ′0 +

i+q∑

`=0

(Kb)`+1
‖Z ′

i+q−`‖3

‖Z ′
i+q+1‖3

(κ′′i+q−` + 1).

Using 43 for i = i + q + 1,

‖Z ′
i+q−`‖3

‖Z ′
i+q+1‖3

κ′′i+q−` ≤ 1.

The inductive assumption, Lemma 7.2.3, gives

‖Z ′
0(a)‖

‖Z ′
i+q+1(a)‖ ≤ e

‖w0‖
‖wi+q+1‖ ≤ e2K−1

0 δ−1.

Substituting these into the above inequality, we obtain κ′i+q+1 ¿ 1. Hence we
obtain κi+q+1 ≤ 1. Regarding the slope, recall that q is a free iterate of w(a) for all
a ∈ J(a∗, ζ0, hj, 0). Thus slope(wq(a)) ≤ K0b holds. This and Lemma 7.3.3 together
yield slope(Z ′

i+q+1(a)) ≤ K0b. Hence Ji+q+1 is an admissible curve. This completes
the proof of Proposition 7.1.2. ¤

7.4. Expansion at essential returns. We fix some assumptions and notation for
the rest of this section. Let a∗ ∈ RRn−1, and suppose that ζ0 is a critical point of
order ξ ≥ n of Ha∗ . Let {hi}s

i=1 denote the sequence of hyperbolic times associated
with the backward orbit of ζ0. Let 0 < ν1 < ν2 < · · · < νt ≤ βn denote the
maximal sequence of essential returns. For i ∈ [0, t], let s(i) ∈ [1, s] denote the

smallest integer such that νi ≤ βhs(i) holds. Let ζ̃0 denote a binding point to which
wνi

(ζνi+1) is in admissible position. Define

d(νi) = − log |ζ̃0 − ζνi+1|.
We call d(νi) an essential return depth.
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Proposition 7.4.1. The secondary quasi critical point ζ
(s(i))
0 has a smooth contin-

uation on J(a∗, ζ0, νi, 0). Moreover, for all a ∈ J(a∗, ζ0, νi, 0) \ J(a∗, ζ0, νi, d(νi)),

|ζ(s(i))
νi+1 (a∗)− ζ

(s(i))
νi+1 (a)| ≥ |ζ̃0 − ζνi+1|1−α0/2.

Proof. We prove the first half of the assertion. By Proposition 7.1.2 it is enough to
prove βhs(i)/4 ≤ νi ≤ βhs(i). The right hand side is obvious by definition. Regarding
the left hand side, since νi ≥ ν1 > βh1 we have s(i) ≥ 2. Thus βhs(i)/4 ≤ βhs(i)−1 <
νi holds, by Lemma 2.12.1.

Lemma 7.4.2. We have

Φ(Πνi
0 w) · ‖wνi

‖
‖w0‖ ≥ |ζ̃0 − ζνi+1|1−α0 .

The second half of the assertion is an immediate consequence of this lemma. To
see this, recall that νi is an essential return and hence it is free. Thus Jνi

is an
admissible curve. By (41) and Lemma 7.2.3,

|ζ(s(i))
νi+1 (a∗)− ζ

(s(i))
νi+1 (a)| ≥ e−3‖wνi

‖
‖w0‖ |a∗ − a| ≥ e−3‖wνi

‖
‖w0‖ Φ(Πνi

0 w)e−α0d(νi).

Therefore, Lemma 7.4.2 yields the desired inequality.

Proof of Lemma 7.4.2. Put νi = ν. Let 0 < m0 < m1 < · · · < mt < ν denote the
set of all free returns which take place before ν. Let ps, qs (0 ≤ s ≤ t) denote the
corresponding folding and binding periods.

Sublemma 7.4.3. For every 0 ≤ s ≤ t and ms ≤ i ≤ ms + qs + 1,

min
i≤j≤ν

‖wj‖
‖wi‖ ≥ min

s≤u≤t

‖wmu+pu‖3

‖wmu‖3
.

Proof. There are three cases: j ≤ ms + qs + 1; j > ms + qs + 1 and j is free;
j > ms + qs +1 and j is bound. In the first case, the desired inequality immediately
follows from (17). In the second case, split

‖wj‖
‖wi‖ =

‖wj‖
‖wms+qs+1‖

‖wms+qs+1‖
‖wi‖ .

The first term is ≥ K0δ, because ms + qs + 1 and j are free. Applying (17) to the
second term,

‖wj‖
‖wi‖ ≥ K0δ

(‖wms+ps‖
‖wms‖

)1+ 3ασ
λ(1+α̃)

≥ ‖wms+ps‖3

‖wms‖3
.

In the last case, there exists u ∈ [s + 1, t] such that j ∈ [mu + 1,mu + qu + 1]. Split

‖wj‖
‖wi‖ =

‖wj‖
‖wmu‖

‖wmu‖
‖wi‖ .

Using (17) again and ‖wmu‖ ≥ K0e
−1δ‖wi‖,

‖wj‖
‖wi‖ ≥ K0e

−1δ

(‖wmu+pu‖
‖wmu‖

)1+ 3ασ
λ(1+α̃)

≥ ‖wmu+pu‖3

‖wmu‖3
.

¤
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Sublemma 7.4.4. For every 0 ≤ s ≤ t,
ms∑

i=ms−1+qs−1+1

Θ(Πν
0w, i)−1 ≤ 1

1− e−λ

‖wms‖
‖w0‖ max

s≤u≤t

‖wms‖6

‖wms+ps‖6
.

Proof. Let j ∈ [i, ν]. Suppose that j ≥ ms. By Sublemma 7.4.3,

(52)
‖wj‖
‖wi‖ =

‖wms‖
‖wi‖

‖wj‖
‖wms‖

≥ ‖wj‖
‖wms‖

≥ min
s≤u≤t

‖wmu+pu‖3

‖wmu‖3
.

Suppose that j < ms. Then ‖wj‖ ≥ K0δ‖wi‖ holds because i is free and no re-
turn takes place until j. Hence the inequality in (52) holds in this case as well.
Substituting (52) and ‖wi‖ ≤ ‖wms‖e−λ(ms−i) into the definition of Θ(Πν

0w, i),

Θ(Πν
0w, i)−1 ≤ e−λ(ms−i)‖wms‖

‖w0‖ max
s≤u≤t

‖wmu‖6

‖wmu+pu‖6
.

Summing up this for every i ∈ [ms−1 +qs−1 +q, ms] yields the desired inequality. ¤
Sublemma 7.4.5. We have

ν−1∑

i=µ(t)+q(t)+1

‖w0‖
‖wν‖ ·Θ(Πν

0w, i)−1 ≤ −λ−1 log(K0δ) · δ αλσ
100∆

−1.

Proof. Put s0 = −2λ−1 log(K0δ) À 1. Since no return takes place from i to ν,

‖wν‖
‖w0‖Θ(Πν

0w, i) = min
i≤j≤ν

‖wν‖
‖wi‖

(‖wj‖
‖wi‖

)2

≥ (K0δ)
2eλ(ν−i) ≥ eλ(ν−i−s0),

and thus

(53)
∑

mt+qt+1≤i≤ν−1

i≤ν−s0

‖w0‖
‖wν‖ ·Θ(Πν

0w, i)−1 ≤
∞∑
i=0

e−λi =
1

1− e−λ
.

Suppose that i ≥ ν − s0. Let j ∈ [i, ν] denote an integer such that

Θ(Πν
0w, i) =

‖w0‖
‖wi‖

‖wj‖2

‖wi‖2
.

Let xi denote the x-coordinate of zi, and suppose that |xj0| = mini≤k≤j−1 |xk| ≥
δ1/100. Using (ii) in Lemma 2.5.1 successively we have

‖wν‖
‖w0‖ ·Θ(Πν

0w, i) ≥ |xj0|2
‖wν‖
‖wj0‖

≥ |xj0|2 ≥ δ1/50.

Suppose that δ ≤ |xj0| ≤ δ1/100. In this case, although j0 is not a return time, we
can consider a binding period q initiated at j0, and it is easy to show that the same
estimates as in Lemma 3.3.2 holds. In particular, |xj0|‖wj0+q+1‖ ≥ ‖wj0‖ holds.
Moreover, |xj0+q+2 + 1| ≤ δ

ασ
100 holds, by (15) in Proposition 3.3.2 and the fact that

f 2
2 (0) = −1 = f2(−1). Since xν ∈ (−δ, δ), we have ν− j0− q− 1 ≥ − ασ

100∆
log δ. This

yields |xj0|‖wν‖ ≥ δ1− αλσ
100∆‖wj0+q+1‖, and thus

‖wν‖
‖w0‖ ·Θ(Πν

0w, i) ≥ |xj0|2
‖wν‖

‖wj0+q+1‖
‖wj0+q+1‖
‖wj0‖

≥ δ1−2α0 .
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Therefore
∑

mt+qt+1≤i≤ν−1

i≥ν−s0

‖w0‖
‖wν‖Θ(Πν

0w, i)−1 ≤ s0δ
2α0−1.

This and (53) yield the desired inequality because s0δ
2α0−1 → +∞ as δ → 0. ¤

We are now in position to conclude a proof of the lemma. It is enough to show
that for every 0 ≤ s ≤ t,

(54)
‖wν‖
‖w0‖




ms∑
i=ms−1+qs−1+1

Θ(Πν
0w, i)−1



−1

≥ |ζ̃0 − ζν+1|3/5δ−(t−s)/1000.

Indeed, taking reciprocals of both sides and summing up for all 0 ≤ s ≤ t we obtain

‖w0‖
‖wν‖Φ(Πν

0w)−1 =
∑

1≤i≤ν−1

free

‖w0‖
‖wν‖Θ(Πν

0w, i)−1

=
t∑

s=0




ms∑
i=ms−1+qs−1+1


 +

ν−1∑
i=mt+qt+1

≤ − log δ · δ2α0−1 + |c0 − zν+1|−3/5 ·
t∑

s=0

δ(t−s)/1000

≤ |ζ̃0 − ζν+1|α0−1.

Taking the reciprocals of both sides we obtain the desired inequality.
It is left to prove (54). Using this and Sublemma 7.4.4,

(55)
‖wν‖
‖w0‖




ms∑
i=ms−1+qs−1+1

Θ(Πν
0w, i)−1



−1

≥ ‖wν‖
‖wms‖

‖wms+ps‖6

‖wms‖6
.

Suppose that t = s. Since ν is an essential return, we have

log |ζ̃0 − ζν+1| ≤ 10 · log
‖wmt+pt‖
‖wmt‖

.

Substituting this into (55) we obtain (54).
Suppose that 0 ≤ s ≤ t− 1. On the first term of the right hand side of (55),

‖wν‖
‖wms‖

=
‖wν‖

‖wmt+qt+1‖
‖wmt+qt+1‖
‖wµt‖

· · · ‖wms+1‖
‖wms+qs+1‖

‖wms+qs+1‖
‖wms‖

≥
∏

s≤u≤t

‖wmu+qu+1‖
‖wmu‖

.

Since ν is an essential return, for every 0 ≤ s ≤ t− 1,

log |ζ̃0 − zν+1|+
∑

s+1≤u≤t

log
‖wmu+pu‖
‖wmu‖

≤ 10 · log
‖wms+ps‖
‖wms‖

.
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Therefore

‖wν‖
‖w0‖




ms∑
i=ms−1+qs−1+1

Θ(Πν
0w, i)−1



−1

≥
∏

s+1≤u≤t

‖wmu+qu+1‖
‖wmu‖

(‖wmu+pu‖
‖wmu‖

)3/5

× |ζ̃0 − ζν+1| 35 .
By Lemma 3.3.2,

‖wmu+qu+1‖
‖wmu‖

(‖wmu+pu‖
‖wmu‖

)3/5

≥
(‖wmu+pu‖

‖wmu‖
)−1/100

≥ δ−
1

100 .

Sustituting this into the right hand side we obtain (54). This completes the proof
of Lemma 7.4.2 and hence that of Proposition 7.4.1. ¤

7.5. Binding points for critical values. We keep the same assumptions and
notations as in Sect. 7.4. The following lemma asserts that one can find binding
points for all critical values at any essential return or at the last free return m + 1
at which the reluctant recurrence condition is violated.

Lemma 7.5.1. Suppose that νi is an essential return and wνi
(ζνi+1) is in admissible

position relative to a critical point ζ̃0. For all a ∈ J(a∗, ζ0, νi, 0) \ J(a∗, ζ0, νi, d(νi))

such that ζ
(s(i))
νi+1 (a) ∈ Cδ, there exists a precritical point ζ0(a) of Ha relative to which

ζ
(s(i))
νi+1 (a) is in admissible position. Moreover we have

(56) − log |ζ0(a)− ζ
(s(i))
νi+1 (a)| ≤ (1− α0)d(νi).

If wm+1 is in critical position, then the same thing holds with νi and d(νi) replaced
by m + 1, α(m + 1).

Proof. Let {h̃i}s̃
i=1 denote the sequence of hyperbolic times associated with the back-

ward orbit of ζ̃0. Let ζ̃
(j)
0 (j = 1, · · · , s̃) denote the associated secondary quasi criti-

cal points, with smooth continuations a ∈ J(a∗, ζ̃0, βh̃j/2, 0) → ζ̃
(j)
0 (a). By Remark

7.1.4, J(a∗, ζ0, νi, 0) ⊂ J(a∗, ζ̃0, βh̃j/2, 0) holds for every j. Corollary 7.4.1 permits

us to apply Lemma 2.10.2 to yield a precritical point ζ
[h̃s̃]
0 (a) of Ha of order h̃s̃ on

Jνi
, whose x-coordinate is roughly equal to that of ζ

(h̃s̃)
0 (a∗). We apply Lemma

2.10.1 to construct a sequence of precritical points of lower order. There are two

cases: ζ
[h̃s̃−1]
0 (a), · · · , ζ

[β−1h̃s̃]
0 (a) are constructed on Jνi

, or else there exists some

k ∈ [β−1h̃s̃ + 1, h̃s̃] such that ζ
[k]
0 (a) is so close to the boundary of Jνi

that there is

no room on Jνi
for ζ

[k−1]
0 (a) to be created. In the first case, we stop further con-

struction. In the second case, take s′ to be the smallest integer such that hs′ ≥ β−1s̃,

and apply Lemma 2.10.2 with respect to ζ
(s′)
0 (a) to create a precritical point of order

hs′ on Jνi
. Since any admissible curve admits only one precritical point of the same

order, ζ
[s′]
0 (a) coincides with the one which was constructed at the previous step.

We repeat the same construction using ζ
(s′)
0 (a) instead of ζ

(s̃)
0 (a).

Sublemma 7.5.2. Suppose that Zνi
(a) ∈ Cδ. If |ζ [k]

0 (a)−ζ
[h̃s̃]
0 (a)| ≥ 1/3·length(Jνi

∩
Cδ), then (Z ′

νi
(a), Zνi

(a)) is related to ζ
[k]
0 (a).
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Proof. By Lemma 2.10.1 we have |ζ [k]
0 (a)− ζ

[h̃s̃]
0 (a)| ≤ (Kb)k. Thus the assmuption

implies

k ≤ log (1/3 · length(Jνi
∩ Cδ))

log(Kb)
=: c.

Suppose that (Z ′
νi

(a), Zνi
(a)) is not related to ζ

[k]
0 (a). Then

|Zνi
(a)− ζ

[k]
0 (a)| ≥ e−c∆β ≥ K · (length(Jνi

∩ Cδ))
1
2 .

This yields a contradiction because Zνi
(a), ζ

[k]
0 (a) ∈ Jνi

∩ Cδ and length(Jνi
∩ Cδ) <

1. ¤
Let k0 = k0(a) < h̃s̃ denote the largest integer such that ζ

[k0]
0 is well-defined and

(Z ′
νi

(a), Zνi
(a)) is related to ζ

[k0]
0 . We claim that k0 exists. To see this it is enough

to show that there exists a precritical point to which (Z ′
νi

(a), Zνi
(a)) is related. This

is indeed the case when the sequence of all precritical points are contained in the

1/3 · length(Jνi
)-neighborhood of ζ

[h̃s̃]
0 (a). Otherwise, we appeal to the sublemma,

and the claim follows.
Suppose that (Z ′

νi
(a), Zνi

(a)) is in critical position relative to ζ
[k0]
0 . Then it is

related to ζ
[k0+1]
0 , by Sublemma 4.2.6. By the maximality of of k0, it follows that

k0 = h̃s̃ − 1. On the other hand, by Corollary 7.4.1, (Z ′
νi

(a), Zνi
(a)) is not related

to ζ
[h̃s̃]
0 for all a ∈ J(a∗, ζ0, νi, 0) \ J(a∗, ζ0, νi, d(νi)). This yields a contradiction.

Therefore, (Z ′
νi

(a), Zνi
(a)) is in admissible position relative to ζ

[k0]
0 . (56) readily

follows from Proposition 7.4.1.
The argument in the other case is almost identical, with m + 1 in the place of νi.

The only one difference is the way to show that (Z ′
m+1(a), Zm+1(a)) is not related

to ζ
[h̃s̃]
0 for all a ∈ J(a∗, ζ0,m + 1, 0) \ J(a∗, ζ0,m + 1, α(m + 1)). This follows from

the fact that the order of ζ̃0 is m + 1 in this case and

|Zνi
(a∗)− Zνi

(a)| ≥ ‖wν‖
‖w0‖Φ(Πν

0w)e−d(νi)

≥ ‖wm‖
‖w0‖ e−d(νi)Ξ(Πν

0w) ≥ K0e
−1δe−3ασν ≥ e−4ασν .

¤

8. Proof of Theorem B

In this last section we prove that the set of a ∈ Ω(0) such that Ha satisfies (EG)n

for all n ≥ N has positive Lebesgue measure.

8.1. Definition of bad parameter sets. Let n ≥ N . We define a subset of Ω(0)

which contains RRn−1 −RRn. Fix two integers r, R such that r ∈ [1,−∆βn/ log δ]
and R ≥ αβ(n− 1)/100. Define Nr to be the set of all strictly monotone sequences
of integers n = {νi}r

i=1 in [0, βn]. Define DR to be the set of all sequences of integers
d = {di}r

i=1 such that

− log δ ≤ di and
r∑

i=1

di = R.
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For a triple (n,d, u) ∈ Nr × DR × S(n), define Ω(n)(n,d, u) to be the set of all
a ∈ RRn−1 such that:

(a) there exists a critical point ζ0 of order > n whose forward orbit is not reluc-
tantly recurrent up to time β(n + 1)− 1.

(b) the forward orbit of ζ0 makes essential returns exactly at ν1 < ν2 < · · · < νr <
βn, and νr−1 is the largest integer up to which it is reluctantly recurrent. For every
1 ≤ i ≤ r,

di = d(νi),

where d(νi) is the essential return depth at νi.
(c) the associated secondary quasi critical point of order ξ is linked to u ∈ S(n).
Fix m ∈ [βn, β(n + 1) − 1]. Define Ω̃(n)(h,u,m) to be the set of all a ∈ RRn−1

such that
(d) there exists a critical point ζ0 of order ξ ≥ n such that m − 1 is the largest

integer up to which the forward orbit w = {wi(ζi+1)}βξ
i=0 of ζ0 is reluctantly recurrent.

(c) the associated secondary quasi critical point of order ξ is linked to u ∈ S(n).
(e) there is NO precritical point of order ≤ n − 1 relative to which wm is in

admissible position.
Define

Ω(n) =
⋃
R,r

⋃

n,d,u

Ω(n)(n,d, u),

where, the unions run over all possible combinations of the subscripts. Analogously
we define

Ω̃(n) =
⋃
u,m

Ω̃(n)(u,m).

The following lemma is more or less automatic from the above definition.

Lemma 8.1.1. For every n ≥ N + 1,

RRn−1 −RRn ⊂ Ω(n) ∪ Ω̃(n).

Proof. Suppose that a ∈ RRn−1 − RRn. By definition, there exists a critical point
ζ0 of Ha of order ξ ≥ n whose forward orbit w = {wi(ζi+1)}βξ

i=0 is not reluctantly
recurrent up to time β(n + 1) − 1. Take u ∈ S(n) so that the condition (c) is met
with respect to ζ0. Let m−1 denote the largest integer up to which w is reluctantly
recurrent. By (RR)n−1, we have βn − 1 ≤ m − 1. Clearly, m is a free return.
There are two cases: wm in critical position, or in admissible position. In the first
case, it is straightforward to see a ∈ Ω̃(n)(u,m). In the second case, m is clearly
an essential return. Let n = {ν1 < ν2 < · · · < νr = m} denote all the essential
returns up to time m, with d = {di}r

i=1 the corresponding sequence of essential
return depths. By Sublemma 6.2.4, two consecutive essential returns are separated
by at least ∆−1 log δ−1 iterates. Hence r ≤ ∆βn/ log δ−1 holds. Since w is not
reluctantly recurrent up to time m, we have

R :=
r∑

i=1

di ≥ αm

100
.

Hence we obtain a ∈ Ω(n)(n,d, u). ¤
Let | · | denote the one-dimensional Lebesgue measure.
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Proposition 8.1.2. There exists a large integer R such that

Ω(n) ∪ Ω̃(n) = ∅
holds for every N ≤ n ≤ R, and

|Ω(n) ∪ Ω̃(n)| ≤ |Ω(0)| · e−α0αβn/3

holds for every n ≥ R.

As a corollary we obtain∣∣∣∣∣
⋃

n≥N

(Ω(n) ∪ Ω̃(n))

∣∣∣∣∣ < |Ω(0)|
∑
n≥R

e−α0αβn/3 < |Ω(0)|.

Hence, the set
⋂

n≥N RRn contains a positive measure subset. By Proposition 6.2.3,
this implies Theorem B.

A proof of Proposition 8.1.2 needs some preliminary considerations and thus we
postpone it to the end of this section. In what follows, we write Ω(n)(n,d, u) =
Ω(n)(·), once (n,d, u) is fixed. The meaning of Ω̃(n)(·) is analogous.

8.2. Structure in parameter space. Let a ∈ Ω(n)(·) (resp. a ∈ Ω̃(n)(·) ). We say
a critical point ζ0 of Ha of order ≥ n is responsible for a if ζ0 satisfies (a), (b), (c)
(resp. (d), (c), (e)).

Lemma 8.2.1. Suppose that ζ0, ζ̃0 are critical points of order n. If their backward
orbits are linked to the same sample point in S(n), then they share the same sequence
of hyperbolic times and the associated sequence of sample points in S(n).

Lemma 8.2.2. Let a, ã ∈ Ω(n)(n,d, u), or a, ã ∈ Ω̃(n)(u,m). Suppose that ζ0,

ζ̃0 are critical points of the same order which are responsible for a and ã respec-

tively. Let {hi}s
i=1 denote the associated sequence of hyperbolic times, and let ζ

(i)
0 (·),

ζ̃
(i)
0 (·) denote the smooth continuations of order hi of ζ0 and ζ̃0. If J(a, ζ0, ν, 0) ∩

J(ã, ζ̃0, ν, 0) 6= ∅ holds for some ν ∈ [βhi/2, βhi], then ζ
(i)
0 (b) = ζ̃

(i)
0 (b) holds for all

b ∈ J(a, ζ0, ν, 0) ∩ J(ã, ζ̃, ν, 0).

Proof. Recall the construction of smooth continuations in Section 5 and use the fact
that one admissible curve does not admit more than two precritical points of the
same order (Remark 2.9.2). ¤
Lemma 8.2.3. Let a∗ ∈ Ω(n)(n,d, u), and let ζ0 denote a critical point which is
responsible for a∗. For every i ∈ [1, r], the set J(a∗, ζ0, νi, 0) − J(a∗, ζ0, νi, di) does
not intersect Ω(n)(n,d, u).

Proof. Consider the smooth continuation ζ
(s(i))
0 (·) of the quasi critical point of order

s(i) associated with ζ0. Take a ∈ J(a∗, ζ0, νi, 0) − J(a∗, ζ0, νi, di), and suppose that

a ∈ Ω(n)(·). Let ζ̃0 denote any critical point which is responsible for a. Consider

the smooth continuation ζ̃
(s(i))
0 (·) of the quasi critical point of order s(i) associated

with ζ̃0. By Lemma 8.2.2, ζ
(s(i))
0 (a) coincides with ζ̃

(s(i))
0 (a), which is exactly the

secondary quasi critical point of order s(i) associated with ζ̃0. By Lemma 7.5.1 and

the assumption on a, ζ
(s(i))
νi+1 (a) = ζ̃

(s(i))
νi+1 (a) is in admissible position. By (24) and

(26), it follows that ζ̃νi+1 is in admissible position as well.
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Sublemma 8.2.4. Suppose that v0(z0) is in admissible position relative to two crit-

ical points ζ0 and ζ̃0. Then

− log |ζ0 − z0| ≤ −(1 + α0) log |ζ̃0 − z0|.
Proof. Let η denote the x-component of DH(z0)v0. By Lemma 3.3.3, we have (1−
θ)|η| ≤ |ζ0 − z0| ≤ (1 + θ)|η|, and the same for |ζ̃0 − z0|. Therefore |ζ0 − z0| ≥
(1− θ)(1 + θ)−1|ζ̃0 − z0| ≥ |ζ̃0 − z0|1+α0 . ¤

By Sublemma 8.2.4 and Proposition 7.4.1, the essential return depth d(νi) of the

forward orbit of ζ̃0 at time νi is strictly smaller than di. Thus (b) does not hold.

This yields a contradiction to the assumption that ζ̃0 is responsible for a. ¤

Lemma 8.2.5. Let a∗ ∈ Ω̃(n)(u,m), and let ζ0 denote a critical point which is
responsible for a∗. Then the set J(a∗, ζ0,m, 0)− J(a∗, ζ0,m, αm) does not intersect
Ω̃(n)(h,u, m).

Proof. Consider the smooth continuation ζ
(s)
0 (·) of the secondary quasi critical point

of order n associated with ζ0. Take a ∈ J(a∗, ζ0,m, 0) − J(a∗, ζ0,m, αm), and sup-

pose that a ∈ Ω̃(n)(·). Let ζ̃0 denote any critical point which is responsible for a.

Consider the smooth continuation ζ̃
(s)
0 (·) of the quasi critical point of order n asso-

ciated with ζ̃0. By Lemma 8.2.2, ζ
(s)
0 (a) coincides with ζ̃

(s)
0 (a), which is exactly the

secondary quasi critical point of order n associated with ζ̃0. By Lemma 7.5.1 and

the assumption on a, ζ̃
(s)
m+1(a) is in admissible position. By (24) and (26), ζ̃m+1 is in

admissible position as well, and thus (e) does not hold. This yields a contradiction

to the assumption that ζ̃0 is responsible for a. ¤

Lemma 8.2.6. Let a, ã ∈ Ω(n)(n,d, u). Suppose that ζ0, ζ̃0 are critical points of
the same order which are responsible for a and ã respectively. Let νi, νj ∈ n and

suppose that νi < νj. If J(a, ζ0, νi, di)∩J(ã, ζ̃0, νj, d) 6= ∅ holds for some d ≥ − log δ,

then J(ã, ζ̃0, νj, 0) ⊂ J(a, ζ0, νi, di − α−1
0 ).

Proof. By Proposition 7.1.2, the critical curve {ζ(s(i))
νi+1 (b) : b ∈ J(a, ζ0, νi, di)} is an

admissible curve. By Lemma 7.4.2, there exists â ⊂ J(a, ζ0, νi, di) such that ζ
(s(i))
νi+1 (â)

is a critical point of order νi of Hâ. We claim that â /∈ J(ã, ζ̃0, νj, 0) holds. This

implies that one of the connected components of J(ã, ζ̃0, νj, 0) − J(ã, ζ̃0, νj, d) is
contained in J(a, z0, νi, di). This implies

2−1(1− e−α0d/2)|J(ã, ζ̃0, νj, 0)| ≤ |J(a, ζ0, νi, di)|.
Using d ≥ − log δ and the fact that δ is chosen after α0, we obtain the inclusion.

It is left to prove the claim. Suppose that â ∈ J(ã, ζ̃0, νj, 0). Consider the smooth

continuation ζ̃
(s(i))
0 (·) of order s(i) of the secondary quasi critical point associated

with ζ̃0. By Lemma 8.2.2, we have ζ
(s(i))
0 (â) = ζ̃

(s(i))
0 (â), and thus ζ̃

(s(i))
νi+1 (â) is a

critical point of order s(i). This yields a contradiction to the fact that points on
the critical curve is in admissible position relative to some critical point, which was
already proved in the proof of Lemma 7.3.5. ¤
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Lemma 8.2.7. Let a, ã ∈ Ω(n)(n,d, u). Suppose that ζ0, ζ̃0 are critical points of
the same order which are respectively responsible for a and ã. If J(a, ζ0, νi, 0) ∩
J(ã, ζ̃0, νi, 0) 6= ∅ and ã /∈ J(a, ζ0, νi, 0), then J(a, ζ0, νi, α

−1
0 ) ∩ J(a′, ζ̃0, νi, di) = ∅.

Proof. Without loss of generality we may assume a < ã. Put 2` = length(J(a, ζ0, νi, 0))

and 2˜̀= length(J(ã, ζ̃0, νi, 0)). Since ã /∈ J(a, ζ0, νi, 0), we have h = ã− a− ` > 0.

By Lemma 8.2.3 we have a /∈ J(ã, ζ̃0, νi, 0), that is ã−a ≥ ˜̀, or equivalently h+` ≥ ˜̀.

Suppose that h ≥ `. Then ã− ˜̀e−α0di ≥ ã− (` + h)e−α0di > ã− (ã− a)/2 > a + `.

This implies J(a, ζ0, νi, 0) ∩ J(ã, ζ̃0, νi, di) = ∅. Next, suppose that h ≤ `. Then
˜̀≤ 2`, and therefore ã− ˜̀e−α0di ≥ a + `− ˜̀e−α0di ≥ a + `(1− 2e−α0di) ≥ a + `e−1.

This implies J(a, ζ0, νi, α
−1
0 ) ∩ J(ã, ζ̃0, νi, di) = ∅. ¤

Analogously one can prove the following, which is left as an exercise.

Lemma 8.2.8. Let a, ã ∈ Ω̃(n)(u,m). Suppose that ζ0, ζ̃0 are critical points of
the same order which are respectively responsible for a and ã. If J(a, ζ0,m, 0) ∩
J(ã, ζ̃0,m, 0) 6= ∅ and ã /∈ J(a, ζ0,m, 0), then J(a, ζ0,m, αm) ∩ J(ã, ζ̃0,m, αm) = ∅.
8.3. Total number of combinations.

Lemma 8.3.1.

card(DR) ≤ e
α0R
10 and card(Nr) ≤ e

α0βn
10 .

Proof. The cardinality of DR is smaller than the total number of combinations of
dividing R balls into r groups, which is smaller than the total number of combi-
nations of aligning R + r balls in a row, Card(DR) ≤ ( R+r

r ). The same argument
applies to Nr and we have Card(Nr) ≤ ( βn+r

r )

Sublemma 8.3.2. For every c > 0, there exists s0 > 0 such that
(

n + s
s

)
≤ e3cn

holds for all positive integers n, s such that s ≤ s0n.

Proof. Choose s0 > 0 such that s0 ≤ c, s0
−s0 ≤ ec, and (1 + s0)

s0 ≤ ec. The Stirling

formula for factorials k! ∈ [1 + 1/4k]
√

2πkkke−k gives
(

n + s
s

)
=

(n + s)!

n!s!
≤ (n + s)n+s

nnss
≤

(
n + s

n

)n (
n + s

s

)s

.

Regarding the first term,
(

n + s

n

)n

=
(
1 +

s

n

)n

= en log(1+ s
n) ≤ es ≤ es0n ≤ ecn.

Regarding the second term,

(
n + s

s

)s

=

[(
s

n(1 + s/n)

)−s/n
]n

≤
[( s

n

)−s/n (
1 +

s

n

)s/n
]n

≤ e2cn.

¤
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We use this sublemma with c = α0/10. Since s0 depends only on α0, and by
the relation 1 ≤ r ≤ R/ log δ−1 and 1 ≤ r ≤ ∆βn/ log δ−1, the requirement in
the sublemma is satisfied for sufficiently small δ. Hence we obtain the desired
inequalities. ¤
8.4. Proof of Proposition 8.1.2. The first half of the assertion follows from
f2(0) = −1 = f2(−1), because this implies that the first time at which parame-
ter selection takes place can be made arbitrarily large.

We prove the second half of the assertion. We firstly estimate the measure of Ω(n).
For a ∈ Ω(n)(·) and d ≥ 0, denote by J(a, νi, d) any parameter interval of the form
J(a, ζ0, νi, d), where ζ0 is a critical point which is responsible for a.

Consider the following operation. Choose some a1 ∈ Ω(n)(·). If Ω(n)(·) ⊂ J(a1, ν1, 0),
then stop the operation. If not, which can occur due to the presence of multi-
ple critical points, choose a2 ∈ Ω(n)(·) − J(a1, ν1, 0) and ask whether Ω(n)(·) ⊂
J(a1, ν1, 0) ∪ J(a2, ν1, 0) or not. If so, then stop the operation. If not, choose
a3 ∈ Ω(n)(·) − J(a1, ν1, 0) − J(a2, ν1, 0) and ask whether Ω(n)(·) ⊂ J(a1, ν1, 0) ∪
J(a2, ν1, 0) ∪ J(a3, ν1, 0) or not. Repeat this. Since the length of intervals of the
form J(a∗, ν1, 0) are bounded from below, this operation stops sooner or later and
we end up with a finite set of parameters S1 = {a1, · · · , a`1} ⊂ Ω(n)(·) such that

Ω(n)(·) ⊂ ∪`1
j1=1J(aj1 , ν1, 0).

We extend this operation in the following way. Let i ≥ 1, and denote by j(i) =
(j1, j2 · · · , ji) the multi index. Suppose that we are given a finite set of parameters
Si = {aj(i)} ⊂ Ω(n)(·) which are indexed by j(i) and satisfy Ω(n)(·) ⊂ ∪j(i)J(aj(i), νi, 0).

Take aj(i) ∈ Si. Applying the above operation to J(aj(i), νi, 0) ∩ Ω(n)(·) in the place

of Ω(n)(·), we define a finite set of parameters Si+1 = {aj(i),1, aj(i),2, · · · , aj(i),`i+1
} ⊂

Ω(n)(·) such that

J(aj(i), νi, 0) ∩ Ω(n)(·) ⊂ ∪`i+1

ji+1=1J(aj(i),ji+1
, νi+1, 0).

In particular, Ω(n)(·) ⊂ ∪j(i+1)J(aj(i+1), νi+1, 0) holds. We repeat this construction
up to i = r.

Claim 8.4.1.
`1∑

j1=1

|J(aj1 , ν1, d1)| ≤ |Ω(0)| · e−α0d1/2.

Proof. It holds that
`1∑

j1=1

|J(aj1 , ν1, d1)| ≤ e−α0d1+1

`1∑
j1=1

|J(aj1 , ν1, α
−1
0 )|.

By Lemma 8.2.7, the intervals {J(aj1 , ν1, α
−1
0 )}`1

j1=1 are two by two disjoint. Since

they are contained in Ω(0), we get the claim. ¤
Claim 8.4.2. For every 1 ≤ i ≤ r − 1 and aj(i) ∈ Si,

`i+1∑
ji+1=1

|J(aj(i),ji+1
, νi+1, di+1)| ≤ e−α0di+1/2 · |J(aj(i), νi, di)|.
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Proof. It holds that

`i+1∑
ji+1=1

|J(aj(i),ji+1
, νi+1, di+1)| ≤ e−α0di+1+1

`i+1∑
ji+1=1

|J(aj(i),ji+1
, νi+1, α

−1
0 )|.

By Lemma 8.2.7, the intervals {J(aj(i),ji+1
, νi+1, α

−1
0 )}`i+1

ji+1=1 are two by two disjoint.

Hence it is enough to show that they are contained in J(aj(i), νi, di − α−1
0 ). This

follows from Lemma 8.2.6 and J(aj(i),ji+1
, νi+1, di+1) ∩ J(aj(i), νi, di) 6= ∅ for every

ji+1, by construction. ¤

We are now in position to estimate the measure of Ω(n)(·). Lemma 8.2.3 gives
Ω(n)(·) ⊂ ∪j(r)J(aj(r), νr, dr), and thus

|Ω(n)(·)| ≤
∑

j(r)

|J(aj(r), νr, dr)| =
∑

j(r−1)

`r∑
jr=1

|J(aj(r−1),jr , νr, dr)|.

Notice the nested nature of the expression of the right hand side: `r depends on
j(r − 1). Using Lemma 8.4.2,

∑

j(r)

|J(aj(r), νr, dr)| ≤ e−α0dr
∑

j(r−1)

|J(aj(r−1), νr−1, dr−1)|.

Using this recursively we obtain
∑

j(r)

|J(aj(r), νr, dr)| ≤ |Ω(0)|e−α0R/2.

Using Lemma 8.3.1 and r ≤ R,

|Ω(n)| ≤
∑
R,r

∑

n,d,u

|Ω(n)(n,d, u)|

≤ Card(Nr ×DR × S(n)) · |Ω(0)| ·
∑

R≥αβ(n−1)
100

Re−α0R/2

≤ |Ω(0)|e1000∆n
∑

R≥αβ(n−1)
100

e−α0R/3

≤ |Ω(0)|e−αα0βn/4.

The estimate of the measure of Ω̃(n) is analogous and much simpler. Fix u ∈ S(n)
and m ∈ [β(n − 1), βn]. By the same reasoning as before, one can find a finite
number of parameters a1, · · · , a` ∈ Ω̃(n)(·) such that Ω̃(n)(·) ⊂ ∪`

j=1J(aj,m, 0). The

intervals {J(aj,m, α−1
0 )} are two by two disjoint, and Ω̃(n)(·) ⊂ ∪`

j=1J(aj,m, αm).
Hence we obtain

|Ω̃(n)(·)| ≤ e−α0αm
∑̀
j=1

|J(aj,m, α−1
0 )| ≤ e−α0αm|Ω(0)| ≤ e−α0αβ(n−1).
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Therefore

|Ω̃(n)| ≤ |Ω(0)|m · Card(S(n)) · e−α0αβ(n−1)

≤ |Ω(0)|βne100∆ne−αα0β(n−1) ≤ |Ω(0)|e−αα0βn/2.

This finishes the proof of Proposition 8.1.2, and hence that of Theorem B. ¤
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