Homogeneous commuting vector fields on \mathbb{C}^{2}

by A. Lins Neto ${ }^{1}$

Abstract

In the main result of this paper we give a method to construct all pairs of homogeneous commuting vector fields on \mathbb{C}^{2} of the same degree $d \geq 2$ (theorem 1). As an application, we classify, up to linear transformations of \mathbb{C}^{2}, all pairs of commuting homogeneous vector fields on \mathbb{C}^{2}, when $d=2$ and $d=3$ (corollaries 1 and 2). We obtain also necessary conditions in the cases of quasi-homogeneous vector fields and when the degrees are different (theorem 2).

Contents

1 Introduction 1
2 Preliminary results. 5
3 Proofs. 7
3.1 Proof of Theorem 2. 7
3.2 Proof of Corollary 3. 9
3.3 Proof of Theorem 1. 10
3.4 Proof of Corollary 1 12
3.5 Proof of Corollary 2. 12

1 Introduction

A. Guillot in his thesis and in [G], gave a non-trivial example of a pair of commuting homogeneous vector fields of degree two on \mathbb{C}^{3}. The example is non-trivial in the sense that it cannot to be reduced to two vector fields in separated variables, like in the pair $X:=P(x, y) \partial_{x}+Q(x, y) \partial_{y}$ and $Y:=R(z) \partial_{z}$. This suggested me the problem of classification of pairs of polynomial commuting vector fields on \mathbb{C}^{n}. This problem, in this generality, seems very difficult, even for $n=2$. Even the restricted problem of classification of pairs of commuting vector fields, homogeneous of degree d, seems very dificult for $n \geq 3$ and $d \geq 2$ (see problem 3). However, for $n=2$ and $d \geq 2$ it is possible to give a complete classification, as we will see in this paper.

Let X and Y be two homogeneous commuting vector fields on \mathbb{C}^{2}, where $d g(X)=k$ and $d g(Y)=\ell$, and $R=x \partial_{x}+y \partial_{y}$ be the radial vector field.

Definition 1.1. We will say that X and Y are colinear if $X \wedge Y=0$. In this case, we will use the notation $X / / Y$. When $d g(X)=d g(Y)$, we will consider the 1-parameter family $\left(Z_{\lambda}\right)_{\lambda \in \mathbb{P}^{1}}$ given by $Z_{\lambda}=X+\lambda . Y$ if $\lambda \in \mathbb{C}$ and $Z_{\infty}=Y$. It will be called the pencil generated by X and Y. The pencil will be called trivial, if $Y=\lambda . X$ for some $\lambda \in \mathbb{C}$. Otherwise, it will be called non-trivial.

[^0]From now on, we will set :

$$
\left\{\begin{array}{l}
X \wedge Y=f \partial_{x} \wedge \partial_{y} \tag{1}\\
R \wedge X=g \partial_{x} \wedge \partial_{y} \\
R \wedge Y=h \partial_{x} \wedge \partial_{y}
\end{array}\right.
$$

Since $d g(X)=k$ and $d g(Y)=\ell$, the polynomials f, g and h are homogeneous and $d g(f)=k+\ell, d g(g)=k+1$, $d g(h)=\ell+1$. Moreover, $f \not \equiv 0$ iff X and Y are non-colinear.

Our main result concerns the case where $k=\ell \geq 2$. In this case, if $g, h \not \equiv 0$, we will consider the meromorphic function $\phi=g / h$ as a holomorphic function $\phi: \mathbf{P}^{1} \rightarrow \mathbf{P}^{1}$:

$$
\phi[x: y]=\frac{g(x, y)}{h(x, y)}
$$

Theorem 1. Let $\left(Z_{\lambda}\right)_{\lambda}$ be a non-trivial pencil of homogeneous commuting vector fields of degree $d \geq 2$ on \mathbb{C}^{2}. Let X and Y be two generators of the pencil and f, g, h and ϕ be as before. If the pencil is colinear then $X=\alpha . R$ and $Y=\beta . R$, where α and β are homogeneous polynomials of degree $d-1$. If the pencil is non-colinear then:
(a). $f, g, h \not \equiv 0$.
(b). f / g (resp. f / h) is a non-constant meromorphic first integral of X (resp. Y).
(c). Let s be the (topological) degree of $\phi: \mathbf{P}^{1} \rightarrow \mathbf{P}^{1}$. Then $1 \leq s \leq d-1$.
(d). The decompositions of f, g and h into irreducible linear factors are of the form :

$$
\left\{\begin{array}{c}
f=\Pi_{j=1}^{r} f_{j}^{2 k_{j}+m_{j}} \tag{2}\\
g=\Pi_{j=1}^{r} f_{j}^{k_{j}} \cdot \Pi_{i=1}^{s} g_{i} \\
h=\Pi_{j=1}^{r} f_{j}^{k_{j}} \cdot \Pi_{i=1}^{s} h_{i}
\end{array}\right.
$$

where $s+\sum_{j=1}^{r} k_{j}=d+1$ and $\sum_{j=1}^{r} m_{j}=2 s-2$. Moreover, we can choose the generators X and Y in such a way that $g_{1}, \ldots, g_{s}, h_{1}, \ldots, h_{s}$ are two by two relatively primes.
(e). Considering the direction $\left(f_{j}=0\right) \subset \mathbb{C}^{2}$ as a point $p_{j} \in \mathbf{P}^{1}$, then

$$
\begin{equation*}
m_{j}=\operatorname{mult}\left(\phi, p_{j}\right)-1, j=1, \ldots, r \tag{3}
\end{equation*}
$$

where $\operatorname{mult}(\phi, p)$ denotes the ramification index of ϕ at $p \in \mathbf{P}^{1}$.
(f). The generators X and Y can be choosen as :

$$
\left\{\begin{array}{l}
X=g \cdot\left[\sum_{j=1}^{r}\left(k_{j}+m_{j}\right) \frac{1}{f_{j}}\left(f_{j x} \partial_{y}-f_{j y} \partial_{x}\right)-\sum_{i=1}^{s} \frac{1}{g_{i}}\left(g_{i x} \partial_{y}-g_{i y} \partial_{x}\right)\right] \tag{4}\\
Y=h \cdot\left[\sum_{j=1}^{r}\left(k_{j}+m_{j}\right) \frac{1}{f_{j}}\left(f_{j x} \partial_{y}-f_{j y} \partial_{x}\right)-\sum_{i=1}^{t} \frac{1}{h_{i}}\left(h_{i x} \partial_{y}-h_{i y} \partial_{x}\right)\right]
\end{array} .\right.
$$

Conversely, given a non-constant map $\phi: \mathbf{P}^{1} \rightarrow \mathbf{P}^{1}$ of degree $s \geq 1$ and a divisor D on \mathbf{P}^{1} of the form

$$
\begin{equation*}
D=\sum_{p \in \mathbf{P}^{1}}(2 k(p)+\operatorname{mult}(\phi, p)-1) \cdot[p] \tag{5}
\end{equation*}
$$

where $k(p) \geq \min (1, \operatorname{mult}(\phi, p)-1)$ and $\sum_{p} k(p)<+\infty$, there exists an unique pencil $\left(Z_{\lambda}\right)_{\lambda}$ of homogeneous commuting vector fields of degree $d=\sum_{p} k(p)+s-1$ with generators X and Y given by (4), and the $f_{j^{\prime} s}, g_{i^{\prime} s}$ and
$h_{i^{\prime} s}$ given in the following way: let $\left\{p_{1}=\left[a_{1}: b_{1}\right], \ldots, p_{r}=\left[a_{r}: b_{r}\right]\right\}=\left\{p \in \mathbf{P}^{1} \mid 2 k(p)+\operatorname{mult}(\phi, p)-1>0\right\}$. Set $k_{j}=k\left(p_{j}\right), m_{j}=\operatorname{mult}\left(\phi, p_{j}\right)-1$ and $f_{j}(x, y)=a_{j} y-b_{j} x$. Set $\phi[x: y]=G_{1}(x, y) / H_{1}(x, y)$, where G_{1} and H_{1} are homogeneous polynomials of degree s. Then the $g_{i^{\prime} s}$ and $h_{i^{\prime} s}$ are the linear factors of G_{1} and H_{1}, respectively.

Definition 1.2. Let $X, Y, g=\Pi_{j=1}^{r} f_{j}^{k_{j}} . \Pi_{i=1}^{s} g_{i}$ and $h=\Pi_{j=1}^{r} f_{j}^{k_{j}} . \Pi_{i=1}^{s} h_{i}$ be as in theorem 1. We call $\left(f_{j}=0\right)$, $j=1, \ldots, r$, the fixed directions of the pencil.

Given $\lambda \in \mathbb{C}$, the polynomial $g_{\lambda}=g+\lambda . h$ plays the same role for the vector field $Z_{\lambda}=X+\lambda . Y$ than g and h for X and Y. Its decomposition into irreducible factors is of the form

$$
g_{\lambda}=\Pi_{j=1}^{r} f_{j}^{k_{j}} . \Pi_{i=1}^{s} g_{i, \lambda}
$$

Definition 1.3. The directions given by $\left(g_{i, \lambda}=0\right)$ are called the movable directions of the pencil.
In particular, the number s of movable directions coincides with the degree of the map $\phi=g / h: \mathbf{P}^{1} \rightarrow \mathbf{P}^{1}$.
As an application of theorem 1, we obtain the classification of the pencils of homogeneous commuting vector fields of degrees two and three.

Corollary 1. Let $\left(Z_{\lambda}\right)_{\lambda}$ be a pencil of commuting homogeneous of degree two vector fields on \mathbb{C}^{2}. Then, after a linear change of variables on \mathbb{C}^{2}, the generators X and Y of the pencil can be written as :
(a). $X=g . R$ and $Y=h . R$, where g and h are homogeneous polynomials of degree one and $R=x . \partial_{x}+y . \partial_{y}$.
(b). $X=x^{2} \partial_{x}$ and $Y=y^{2} \partial_{y}$. In this case, the pencil has two fixed directions.
(c). $X=y^{2} \partial_{x}$ and $Y=2 x y \partial_{x}+y^{2} \partial_{y}$. In this case, the pencil has one fixed direction.

Corollary 2. Let $\left(Z_{\lambda}\right)_{\lambda}$ be a pencil of commuting homogeneous of degree three vector fields on \mathbb{C}^{2}. Then, after a linear change of variables on \mathbb{C}^{2}, the generators X and Y of the pencil can be written as :
(a). $X=g . R$ and $Y=h . R$, where g and h are homogeneous polynomials of degree two and $R=x \cdot \partial_{x}+y . \partial_{y}$.
(b). $X=y^{3} \partial_{x}$ and $Y=3 x y^{2} \partial_{x}+y^{3} \partial_{y}$. In this case, the pencil has one movable and one fixed direction.
(c). $X=x^{2} y \partial_{x}$ and $Y=x y^{2} \partial_{x}-y^{3} \partial_{y}$. In this case, the pencil has one movable and two fixed directions.
(d). $X=\left(2 x^{2} y+x^{3}\right) \partial_{x}-x^{2} y \partial_{y}$ and $Y=-x y^{2} \partial_{x}+\left(2 x y^{2}+y^{3}\right) \partial_{y}$. In this case, the pencil has one movable and three fixed directions.
(e). $X=x^{3} \partial_{x}$ and $Y=y^{3} \partial_{y}$. In this case, the pencil has two movable and two fixed directions.

Some of the preliminary results that we will use in the proof of theorem 1 are also valid for quasi-homogeneous vector fields.

Definition 1.4. Let S be a linear diagonalizable vector field on \mathbb{C}^{n} such that all eigenvalues of S are relatively primes natural numbers. We say that a holomorphic vector field $X \not \equiv 0$ is quasi-homogeneous with respect to S if $[S, X]=m X, m \in \mathbb{C}$.

It is not difficult to prove that, in this case, we have the following :
(I). $m \in \mathbb{N} \cup\{0\}$.
(II). X is a polynomial vector field.

Our next result concerns two commuting vector fields which are quasi-homogeneous with respect to the same linear vector field S. Let X and Y be two commuting vector fields on \mathbb{C}^{2}, quasi-homogeneous with respect to the same vector field S with eigenvalues $p, q \in \mathbb{N}$ (relatively primes), where $[S, X]=m X$ and $[S, Y]=n Y$. Since S is diagonalizable, after a linear change of variables, we can assume that $S=p x \partial_{x}+q y \partial_{y}$. Set $X \wedge Y=f \partial_{x} \wedge \partial_{y}$, $S \wedge X=g \partial_{x} \wedge \partial_{y}$ and $S \wedge Y=h \partial_{x} \wedge \partial_{y}$. We will always assume that $X, Y \not \equiv 0$

Remark 1.0.1. We would like to observe that f, g and h are quasi-homogeneous with respect to S, that is, we have $S(f)=(m+n+\operatorname{tr}(S)) f, S(g)=(m+\operatorname{tr}(S)) g$ and $S(h)=(n+\operatorname{tr}(S)) h$, where $\operatorname{tr}(S)=p+q$. It is known that in this case, any irreducible factor of f, g or h, is the equation of an orbit of S, that is, x, y or a polynomial of the form $y^{p}-c x^{q}$, where $c \neq 0$.

Theorem 2. In the above situation, suppose that $f, h \not \equiv 0$ and $n \neq 0$. Then :
(a). $g \not \equiv 0$ and f / g is a non-constant meromorphic first integral of X.
(b). Suppose that $m, n \neq 0$. Then f, g and h satisfy the two equivalent relations below:

$$
\begin{align*}
& m n f^{2} d x \wedge d y=f d g \wedge d h+g d h \wedge d f+h d f \wedge d g \tag{6}\\
& (m-n) \frac{d f}{f}+n \frac{d h}{h}-m \frac{d g}{g}=\frac{m n f}{g h}(q y d x-p x d y) \tag{7}
\end{align*}
$$

(c). Suppose that $m, n \neq 0$. Then any irreducible factor of f divides g and h. Conversely, if $p=g c d(g, h)$ then any irreducible factor of the p divides f. Moreover, the decompositions of f, g and h into irreducible factors, are of the form

$$
\left\{\begin{array}{c}
f=\Pi_{j=1}^{r} f_{j}^{\ell_{j}} \tag{8}\\
g=\Pi_{j=1}^{r} f_{j}^{m_{j}} \cdot \Pi_{i=1}^{s} g_{i}^{a_{i}} \\
h=\Pi_{j=1}^{r} f_{j}^{n_{j}} \cdot \Pi_{i=1}^{t} h_{i}^{b_{i}}
\end{array}\right.
$$

where $r>0, m_{j}, n_{j}>0, \ell_{j} \geq m_{j}+n_{j}-1$, for all j, and any two polynomials in the set $\left\{f_{1}, \ldots, f_{r}, g_{1}, . ., g_{s}, h_{1}, \ldots, h_{t}\right\}$ are relatively primes.
(d). Suppose that f, g and h are as in (8). Then vector fields X and Y can be written as

$$
\left\{\begin{array}{l}
X=\frac{1}{n} g \cdot\left[\sum_{j=1}^{r}\left(\ell_{j}-m_{j}\right) \frac{1}{f_{j}}\left(f_{j x} \partial_{y}-f_{j y} \partial_{x}\right)-\sum_{i=1}^{s} a_{i} \frac{1}{g_{i}}\left(g_{i x} \partial_{y}-g_{i y} \partial_{x}\right)\right] \tag{9}\\
Y=\frac{1}{m} h \cdot\left[\sum_{j=1}^{r}\left(\ell_{j}-n_{j}\right) \frac{1}{f_{j}}\left(f_{j x} \partial_{y}-f_{j y} \partial_{x}\right)-\sum_{i=1}^{t} b_{i} \frac{1}{h_{i}}\left(h_{i x} \partial_{y}-h_{i y} \partial_{x}\right)\right]
\end{array}\right.
$$

As an application, we have the following result :
Corollary 3. Let X and Y be germs of holomorphic commuting vector fields at $0 \in \mathbb{C}^{2}$. Let

$$
X=\sum_{j=d}^{\infty} X_{j}
$$

be the Taylor series of X at $0 \in \mathbb{C}^{2}$, where X_{j} is homogeneous of degree $j \geq d$. Assume that $d \geq 2$ and that the vector field X_{d} has no meromorphic first integral and that 0 is an isolated singularity of X_{d}. Then $Y=\lambda . X$, where $\lambda \in \mathbb{C}$.

We would like to recall a well-known criterion for a homogeneous vector field of degree d on \mathbb{C}^{2}, say X_{d}, to have a meromorphic first integral (see [C-M]). Since the radial vector field $R=x \partial_{x}+y \partial_{y}$ has the meromorphic first integral y / x, we can assume that $R \wedge X_{d}=g \partial_{x} \wedge \partial_{y} \not \equiv 0$. Let $\omega=i_{X_{d}}(d x \wedge d y)$, where i denotes the interior product. Then the form $\omega_{1}=\omega / g$ is closed. In this case, if $g=\Pi_{j=1}^{r} g_{j}^{k_{j}}$ is the decomposition of g into linear irreducible factors, then we have

$$
\omega_{1}=\sum_{j=1}^{r} \lambda_{j} \frac{d g_{j}}{g_{j}}+d\left(h / g_{1}^{k_{1}-1} \ldots g_{r}^{k_{r}-1}\right)
$$

where $\lambda_{j} \in \mathbb{C}$, for all $1 \leq j \leq r$ and h is homogeneous of degree $d+1-r=d g\left(X_{d}\right)+1-r=d g\left(g / g_{1} \ldots g_{r}\right)$. In this case, X_{d} has a meromorphic first integral if, and only if, either $\lambda_{1}=\ldots=\lambda_{r}=0$, or $\lambda_{j} \neq 0$ for some $j \in\{1, \ldots, r\}, h \equiv 0$ and $\left[\lambda_{1}: \ldots: \lambda_{r}\right]=\left[m_{1}: \ldots: m_{r}\right]$, where $m_{1}, \ldots, m_{r} \in \mathbb{Z}$. In particular, we obtain that the set of homogeneous vector fields of degree $d \geq 1$ with a meromorphic first integral is a countable union of Zariski closed sets.

Let us state some natural problems related to the above results.
Problem 1. Classify the pencils of commuting homogeneous vector fields of degree $d \geq 2$ on $\mathbb{C}^{n}, n \geq 3$.
Problem 1 seems dificult even in dimension three.
Problem 2. Let \mathcal{X}_{2} be the set of germs at $0 \in \mathbb{C}^{2}$ of holomorphic vector fields. Given $X \in \mathcal{X}_{2}, X \neq 0$, to determine the set

$$
C(X)=\{Y \mid[X, Y]=0\}
$$

Under which conditions is $C(X)$ of finite dimension?
Problem 3. Classify all pairs of commuting polynomial vector fields on \mathbb{C}^{2}.
Observe that problem 3 has the following relation with the so called Jacobian conjecture : let f and g be two polynomials on \mathbb{C}^{2} such that $f_{x} . g_{y}-f_{y} \cdot g_{x} \equiv 1$. Then their hamiltonians $X=f_{y} \partial_{x}-f_{x} \partial_{y}$ and $Y=g_{y} \partial_{x}-g_{x} \partial_{y}$ commute. By this reason, problem 3 seems very difficult.

2 Preliminary results.

In this section we prove some general results that will be used in the next sections. Let S, X and Y be holomorphic vector fields defined in some domain U of \mathbb{C}^{2}. Assume that :
(I). $[S, X]=m \cdot X,[S, Y]=n . Y$ and $[X, Y]=0$, where $m, n \in \mathbb{C}$.
(II). $X \wedge Y=f . \partial_{x} \wedge \partial_{y}, S \wedge X=g . \partial_{x} \wedge \partial_{y}$ and $S \wedge Y=h . \partial_{x} \wedge \partial_{y}$, where $f, g, h \not \equiv 0$.

We consider also the holomorphic 1-forms $\omega=i_{X}(d x \wedge d y)$ and $\eta=i_{Y}(d x \wedge d y)$, where i denotes the interior product.

Lemma 2.0.1. In the above situation we have :
(a). The meromorphic functions f / g and f / h are first integrals of X and Y, respectively. Moreover, f / g (resp. $f / h)$ is constant if, and only if, $n=0$ (resp. $m=0$).
(b). If $n \neq 0$ (resp. $m \neq 0$) then

$$
\begin{equation*}
\omega=\frac{g}{n}\left[\frac{d g}{g}-\frac{d f}{f}\right]\left(\text { resp. } \eta=\frac{h}{m}\left[\frac{d h}{h}-\frac{d f}{f}\right]\right) . \tag{10}
\end{equation*}
$$

(c). The polynomials f, g and h satisfy the relation :

$$
\begin{equation*}
m n f^{2} d x \wedge d y=f d g \wedge d h+g d h \wedge d f+h d f \wedge d g \tag{11}
\end{equation*}
$$

Proof. Let us prove (a). Assume that $n \neq 0$. First of all, note that

$$
L_{X}(S \wedge X)=[X, S] \wedge X+S \wedge[X, X]=-m \cdot X \wedge X=0
$$

and simillarly $L_{X}(X \wedge Y)=0$, where L denotes the Lie derivative. Since $X \wedge Y=(f / g) . S \wedge Y$, we get

$$
\begin{aligned}
0=L_{X}(X \wedge Y)=L_{X}((f / g) \cdot S \wedge X)= & X(f / g) \cdot S \wedge X+(f / g) \cdot L_{X}(S \wedge X)=X(f / g) \cdot S \wedge X \Longrightarrow \\
& \Longrightarrow X(f / g)=0 .
\end{aligned}
$$

Therefore, f / g is a first integral of X. It remains to prove that f / g is a constant if, and only if $n=0$. Since $L_{S}(X \wedge Y)=(m+n) X \wedge Y$ and $L_{S}(S \wedge X)=m S \wedge X$, we get

$$
(m+n) X \wedge Y=L_{S}((f / g) \cdot S \wedge X)=S(f / g) \cdot S \wedge X+(f / g) \cdot L_{S}(S \wedge X)=(S(f / g)+m \cdot(f / g)) S \wedge X
$$

which implies that $S(f / g)=n .(f / g)$. Hence, if f / g is a constant then $n=0$.
Conversely, if $n=0$ then $S(f / g)=0$ and f / g is a first integral of S and X simultaniously. If f / g was not constant then the vector fields X and S would be colinear in the non-empty open subset of U defined by $d(f / g) \neq 0$. This would imply that $S \wedge X \equiv 0$, and so $g \equiv 0$, a contradiction. Therefore, f / g is a constant.

Now, let $\omega=i_{X}(d x \wedge d y)$ and suppose that $n \neq 0$. Since f / g is a non-constant first integral of X, we get $\omega \wedge d(f / g)=0$, which implies that

$$
\omega=k\left(\frac{d g}{g}-\frac{d f}{f}\right)
$$

where k is meromorphic on U. On the other hand, we have

$$
g=-i_{S}\left(i_{X}(d x \wedge d y)\right)=-i_{S}(\omega)=k\left(\frac{S(f)}{f}-\frac{S(g)}{g}\right)=k \frac{S(f / g)}{f / g}=n . k \quad \Longrightarrow \quad k=g / n .
$$

This proves (10).
Let us prove (c). Note first that $\omega \wedge \eta=f . d x \wedge d y$. We leave the proof of this fact to the reader. If $n=0$ (or $m=0$) then (11) follows from $f / g=c \neq 0$ (or $f / h=c \neq 0$), where c is a constant. We leave the proof to the reader in this case. On the other hand, if $m, n \neq 0$ then

$$
f . d x \wedge d y=\omega \wedge \eta=\frac{g}{n}\left[\frac{d g}{g}-\frac{d f}{f}\right] \wedge \frac{h}{m}\left[\frac{d h}{h}-\frac{d f}{f}\right]=\frac{g \cdot h}{m \cdot n}\left[\frac{d h \wedge d f}{h \cdot f}+\frac{d f \wedge d g}{f \cdot g}+\frac{d g \wedge d h}{g \cdot h}\right],
$$

which implies (11).
In the next result we prove a kind of converse of (11).

Lemma 2.0.2. Let f, g and h be holomorphic functions on a domain $U \subset \mathbb{C}^{2}$. Suppose that f / g and f / h are non-constant meromorphic functions on U. Define meromorphic vector fields X and Y by $i_{X}(d x \wedge d y)=$ $g\left[\frac{d g}{g}-\frac{d f}{f}\right]$ and $i_{Y}(d x \wedge d y)=h\left[\frac{d h}{h}-\frac{d f}{f}\right]$. Suppose that

$$
f d g \wedge d h+g d h \wedge d f+h d f \wedge d g=\lambda f^{2} d x \wedge d y
$$

where $\lambda \neq 0$. Then $[X, Y]=0$.
Proof. The idea is to prove that $d(f / g) \wedge d(f / h) \not \equiv 0$ and $[X, Y](f / g)=[X, Y](f / h)=0$. This will imply that f / g and f / h are two independent meromorphic first integrals of $[X, Y]$, and so $[X, Y]=0$.

Proof of $d(f / g) \wedge d(f / h) \not \equiv 0$. Note that

$$
d(f / g) \wedge d(f / h)=\frac{f}{g^{2} h^{2}}[f d g \wedge d h+h d f \wedge d g+g d h \wedge d f]=\lambda \cdot \frac{f^{3}}{g^{2} h^{2}} d x \wedge d y \neq 0 \quad \Longrightarrow
$$

$\Longrightarrow d(f / g) \wedge d(f / h) \neq 0$.
Proof of $[X, Y]=0$. We have

$$
[X, Y](f / g)=X(Y(f / g))-Y(X(f / g))=X(Y(f / g))
$$

because $X(f / g)=0$. On the other hand, a straightforward computation shows that

$$
\begin{equation*}
Y(f / g) d x \wedge d y=d(f / g) \wedge \eta \tag{12}
\end{equation*}
$$

where $\eta=i_{Y}(d x \wedge d y)$. Since $\eta=h\left[\frac{d h}{h}-\frac{d f}{f}\right]=-\frac{h^{2}}{f} d(f / h)$, we get from (12) that

$$
d(f / g) \wedge \eta=-\frac{h^{2}}{f} d(f / g) \wedge d(f / h)=-\frac{\lambda f^{2}}{g^{2}} d x \wedge d y \quad \Longrightarrow \quad Y(f / g)=-\lambda(f / g)^{2} \Longrightarrow
$$

$\Longrightarrow X(Y(f / g))=0$. In a similar way, we get $[X, Y](f / h)=0$.

3 Proofs.

3.1 Proof of Theorem 2.

Assume that $n \neq 0, f, h \not \equiv 0$ and $g \equiv 0$. Since S has an isolated singularity at $0 \in \mathbb{C}^{2}$ and $S \wedge X=g . \partial_{x} \wedge \partial_{y}=0$, we get $X=\psi \cdot S$, where $\psi \neq 0$ is a polynomial. It follows that

$$
0=[Y, X]=[Y, \psi \cdot S]=Y(\psi) \cdot S-\psi \cdot[S, Y]=Y(\psi) \cdot S-n \cdot \psi \cdot Y \quad \Longrightarrow \quad Y(\psi) \not \equiv 0
$$

and $S \wedge Y=0$, which implies $h \equiv 0$, a contradiction. Hence, $g \not \equiv 0$. It follows from lemma 2.0.1 that f / g is a non-constant meromorphic first integral of X. This proves (a) of theorem 2.

Lemma 2.0.1 implies also that f, g and h satisfy relation (6). Let us prove that (6) is equivalent to (7). We will use the following fact : let μ be a 2 -form in \mathbb{C}^{2} such that $L_{S}(\mu)=\lambda . \mu$, where $\lambda \in \mathbb{C}$. Then

$$
\begin{equation*}
d\left(i_{S}(\mu)\right)=L_{S}(\mu)=\lambda \cdot \mu \tag{13}
\end{equation*}
$$

Set $\mu=f d g \wedge d h+g d h \wedge d f+h d f \wedge d g$ and $\mu_{1}=m n f^{2} d x \wedge d y$. We have seen in remark 1.0.1 that $S(f)=(m+n+\operatorname{tr}(S)) \cdot f, S(g)=(m+\operatorname{tr}(S)) \cdot g$ and $S(h)=(n+\operatorname{tr}(S)) \cdot h$. As the reader can check, this implies that $L_{S}(\mu)=\lambda . \mu$ and $L_{S}\left(\mu_{1}\right)=\lambda . \mu_{1}$, where $\lambda=2 m+2 n+3 \operatorname{tr}(S) \neq 0$.

On the other hand, we have

$$
\left\{\begin{array}{c}
i_{S}\left(\mu_{1}\right)=m n f^{2}(p x d y-q y d x) \\
i_{S}(\mu)=-n f g d h+m f h d g+(n-m) g h d f
\end{array}\right.
$$

as the reader can check. If we assume (6), we have $\mu_{1}=\mu$, so that $i_{S}(\mu)=i_{S}\left(\mu_{1}\right)$ and

$$
m n f^{2}(p x d y-q y d x)=-n f g d h+m f h d g+(n-m) g h d f \quad \Longrightarrow \quad(7)
$$

If we assume (7), then we have

$$
(7) \Longrightarrow i_{S}\left(\mu_{1}-\mu\right)=0 \quad \stackrel{(13)}{\Longrightarrow} \lambda\left(\mu_{1}-\mu\right)=d\left(i_{S}\left(\mu_{1}-\mu\right)\right)=0 \quad \Longrightarrow \quad(6) \text {. }
$$

This proves (b) of theorem 2.
Let us prove (c). We will use (7) in the form

$$
\begin{equation*}
(m-n) g . h d f+n f . g d h-m f . h d g=m n f^{2}(q y d x-p x d y) \tag{14}
\end{equation*}
$$

It follows from (14) that, if k is an irreducible factor of both polynomials g and h, then k divides f^{2}, and so it divides f.

Let us prove that any factor of f is a factor of both polynomials g and h. Here we use that f / g is a first integral of X. This implies that

$$
\begin{equation*}
f \cdot X(g)=g \cdot X(f) \tag{15}
\end{equation*}
$$

Recall that any irreducible factor of f or g is the equation of an orbit of S (remark 1.0.1). Let $f=\Pi_{j=1}^{r} f_{j}^{\ell_{j}}$ $\left(r, \ell_{j}>0\right)$, be the decomposition of f into irreducible factors and set $F=\Pi_{j} f_{j}$. It follows from (15) that

$$
\begin{equation*}
F \cdot X(g)=F \frac{X(f)}{f} g=g \cdot k, \text { where } k=F \frac{X(f)}{f}=\sum_{j=1}^{r} \ell_{j} \cdot f_{1} \ldots f_{j-1} \cdot X\left(f_{j}\right) \cdot f_{j+1} \ldots f_{r} \tag{16}
\end{equation*}
$$

On the other hand, (16) implies that for any $j=1, \ldots, r, f_{j}$ divides g or $X\left(f_{j}\right)$. If f_{j} divides g, we are done. If f_{j} divides $X\left(f_{j}\right)$ then $\left(f_{j}=0\right)$ is invariant for X. Since $\left(f_{j}=0\right)$ is also invariant for S, it is a common orbit of X and S. This implies that f_{j} divides $S \wedge X$, and so it divides g. Similarly, any irreducible factor of f divides h.

Now, we can assume that the decompositions of f, g and h into irreducible factors are as in (8) :

$$
\left\{\begin{array}{c}
f=\Pi_{j=1}^{r} f_{j}^{\ell_{j}} \\
g=\Pi_{j=1}^{r} f_{j}^{m_{j}} \cdot \Pi_{i=1}^{s} g_{i}^{a_{i}} \\
h=\Pi_{j=1}^{r} f_{j}^{n_{j}} \cdot \Pi_{i=1}^{t} h_{i}^{b_{i}}
\end{array}\right.
$$

where $\ell_{j}, m_{j}, n_{j}>0$ and any two polynomials in the set $\left\{f_{1}, \ldots, f_{r}, g_{1}, \ldots, g_{s}, h_{1}, \ldots, h_{t}\right\}$ are relatively primes. Let us prove that $\ell_{j} \geq m_{j}+n_{j}-1$. As the reader can check, it follows from (14) that $f_{j}^{m_{j}+n_{j}+\ell_{j}-1}$ divides f^{2}. This implies that $m_{j}+n_{j}+\ell_{j}-1 \leq 2 \ell_{j}$, and we are done.

It remains to prove (d). Let $\omega=i_{X}(d x \wedge d y)$. We have seen in lemma 2.0.1 that

$$
\omega=\frac{g}{n}\left[\frac{d g}{g}-\frac{d f}{f}\right]=\frac{g}{n}\left[\sum_{i=1}^{s} a_{i} \frac{d g_{i}}{g_{i}}-\sum_{j=1}^{r}\left(\ell_{j}-m_{j}\right) \frac{d f_{j}}{f_{j}}\right]
$$

As the reader can check, this implies that X is like in (9). Similarly, Y is also as in (9).

3.2 Proof of Corollary 3.

Let $X=\sum_{j=d}^{\infty} X_{j}$ and $Y \not \equiv 0$ be germs of holomorphic vector fields at $0 \in \mathbb{C}^{2}$ such that $[X, Y]=0$. Assume that $d \geq 2$ and X_{d} has an isolated singularity at $0 \in \mathbb{C}^{2}$ and no meromorphic first integral. Set $Y=\sum_{i=r}^{\infty} Y_{j}$, where Y_{j} is homogeneous of degree $j, r \geq 0$, and $Y_{r} \neq 0$. We have $\left[R, X_{d}\right]=m X_{d},\left[R, Y_{r}\right]=n Y_{r}$, where $m=d-1 \neq 0$ and $n=r-1$. Note also that $\left[X_{d}, Y_{r}\right]=0$.

Claim 3.2.1. $r=d$ and $Y_{d}=\lambda . X_{d}$, where $\lambda \neq 0$.
Proof. As before, set $X_{d} \wedge Y_{r}=f . \partial_{x} \wedge \partial_{y}, R \wedge X_{d}=g . \partial_{x} \wedge \partial_{y}$ and $R \wedge Y_{r}=h . \partial_{x} \wedge \partial_{y}$. Observe that $g \not \equiv 0$. Indeed, if $g \equiv 0$ then $R \wedge X_{d}=0$. Since 0 is an isolated singularity of R, it follows from De Rham's division theorem (cf. [DR]) that $X_{d}=\phi \cdot R$, where ϕ is a homogeneous polynomial of degree $d-1>0$. But, this implies that $\operatorname{sing}\left(X_{d}\right) \supset(\phi=0)$, and so 0 is not an isolated singularity of X_{d}.

Suppose by contradiction that $r \neq d$. Let us prove that in this case we have $f, h \not \equiv 0$. Suppose by contradiction that $f \equiv 0$. This implies that $X_{d} \wedge Y_{r} \equiv 0$. Since X_{d} has an isolated singularity at $0 \in \mathbb{C}^{2}$, it follows from De Rham's division theorem that $Y_{r}=\phi \cdot X_{d}$, where ϕ is a homogeneous polynomial of degree $r-d>0$. Therefore,

$$
0=\left[X_{d}, Y_{r}\right]=\left[X_{d}, \phi \cdot X_{d}\right]=X_{d}(\phi) \cdot X_{d} \quad \Longrightarrow \quad X_{d}(\phi)=0 \quad \Longrightarrow
$$

that ϕ is a non-constant first integral of X_{d}, a contradiction. Hence, $f \not \equiv 0$. Suppose by contradiction that $h \equiv 0$. This implies that $R \wedge Y_{r} \equiv 0$, so that $Y_{r}=\phi \cdot R$, where $\phi \neq 0$ is a homogeneous polynomial of degree $k=r-1$. From this we get

$$
\begin{gathered}
0=\left[X_{d}, Y_{r}\right]=\left[X_{d}, \phi \cdot R\right]=X_{d}(\phi) \cdot R+\phi \cdot\left[X_{d}, R\right]=X_{d}(\phi) \cdot R-(d-1) \cdot \phi \cdot X_{d} \Longrightarrow \\
X_{d}(\phi) \cdot R=(d-1) \cdot \phi \cdot X_{d}
\end{gathered}
$$

If $\phi \neq 0$ is a constant then $d=1$, a contradiction. If ϕ is not a constant then $X_{d}(\phi) \neq 0$, for otherwise ϕ would be a non-constant first integral of X_{d}. In this case, we get $R \wedge X_{d}=0$, and so $g \equiv 0$, a contradiction. Hence, $f, g, h \not \equiv 0$. Now, we can apply (a) of lemma 2.0.1.

If $r \neq 1$ then $n=r-1 \neq 0$ and f / g is a non-constant meromorphic first integral of X_{d}, a contradiction. If $r=1$ then $n=0$ and (a) of lemma 2.0.1 implies that $f=c . g$, where $c \in \mathbb{C}$. Therefore,

$$
0=(f-c g) \partial_{x} \wedge \partial_{y}=X_{d} \wedge\left(Y_{1}+c . R\right) \Longrightarrow Y_{1}=-c . R \neq 0
$$

by the division theorem and the fact that $d=d g\left(X_{d}\right)>1$. But, this implies that $0=\left[X_{d}, Y_{1}\right]=c(d-1) . X_{d} \neq 0$, a contradiction. Hence, $r=d$.

Now, $r=d$ implies that $n=m=d-1>0$ and $f \equiv 0$, for otherwise, f / g would be a non-constant meromorphic first integral of X_{d}. It follows that $X_{d} \wedge Y_{d}=0$, and so $Y_{d}=\lambda . X_{d}$, where $\lambda \neq 0$ is a constant. This proves the claim.

Let us finish the proof of corollary 3 . Let $Z=Y-\lambda . X$. Then $[X, Z]=0$. If $Z \not \equiv 0$, then we could write $Z=\sum_{j=r}^{\infty} Z_{j}$, where $r>d, Z_{j}$ is homogeneous of degree j and $Z_{r} \neq 0$. But, this contradicts claim 3.2.1 and proves the corollary.

3.3 Proof of Theorem 1.

Let $\left(Z_{\lambda}\right)_{\lambda \in \mathbf{P}^{1}}$ be a non-trivial pencil of homogeneous of degree $d \geq 2$ commuting vector fields on \mathbb{C}^{2}. Fix two generators of the pencil, X and Y, and set as before $X \wedge Y=f . \partial_{x} \wedge \partial_{y}, R \wedge X=g . \partial_{x} \wedge \partial_{y}$ and $R \wedge Y=h . \partial_{x} \wedge \partial_{y}$.

Suppose first that the pencil is colinear, that is, $f \equiv 0$. In this case, we can write $X=\alpha . Z$, where α is the greatest common divisor of the components of X and Z has an isolated singularity at $0 \in \mathbb{C}^{2}$. Since $Y \wedge X=0$, we get $Y \wedge Z=0$, and so $Y=\beta . Z$, where β is a homogeneous polynomial with $d g(\beta)=d g(\alpha)$, by De Rham's division theorem. Now,

$$
0=[X, Y]=[\alpha \cdot Z, \beta \cdot Z]=(\alpha Z(\beta)-\beta Z(\alpha)) \cdot Z \quad \Longrightarrow \quad Z(\beta / \alpha)=0
$$

Since the pencil is non-trivial, β / α is non-constant. On the other hand, we can write $\frac{\beta(x, y)}{\alpha(x, y)}=\phi(y / x)$, where $\phi(t)=\frac{\beta(1, t)}{\alpha(1, t)}$, because α and β are homogeneous of the same degree. Therefore,

$$
0=Z(\phi(y / x))=\phi^{\prime}(y / x) \cdot Z(y / x) \Longrightarrow Z(y / x)=0
$$

because $\phi^{\prime} \not \equiv 0$. This implies that $y Z(x)=x Z(y)$. If we set $Z=A \partial_{x}+B \partial_{y}$, then we get $y A=x B$, and so $A=\lambda . x$ and $B=\lambda . y$, where λ is a homogeneous polynomial. Since 0 is an isolated singularity of Z, it follows that λ is a constant. Hence, $X=\alpha_{1} . R$ and $Y=\beta_{1} . R$, where $\alpha_{1}=\lambda . \alpha$ and $\beta_{1}=\lambda . \beta$ are homogeneous polynomials of degree $d-1$. This proves the first part of theorem 1.

Suppose now that the pencil is non-colinear. In this case, we have $f \not \equiv 0$. Let us prove that $g, h \not \equiv 0$. If $g \equiv 0$, for instance, then $X=\phi . R$, where $\phi \neq 0$ is a homogeneous polynomial of degree $m=n=d-1>0$, by the division theorem. Therefore,

$$
0=[Y, \phi \cdot R]=Y(\phi) \cdot R-m \cdot \phi \cdot Y
$$

Since $m . \phi . Y \neq 0$, the above relation implies that Y and R are colinear. Hence, $X / / Y$, a contradiction. This proves (a) of theorem 1.

Since $m=n \neq 0$, it follows from (a) of theorem 2 that f / g and f / h are non-constant meromorphic first integrals of X and Y, respectively, which proves (b) of theorem 1. Recall that f, g and h are homogeneous polynomials, where $d g(f)=2 d, d g(g)=d g(h)=d+1$.

It follows from (c) of theorem 2 that we can write the decomposition of f, g and h into irreducible linear factors as $f=\Pi_{j=1}^{r} f_{j}^{\ell_{j}}, g=\Pi_{j=1}^{r} f_{j}^{m_{j}} . \Pi_{i=1}^{a} g_{i}^{a_{i}}$ and $h=\Pi_{j=1}^{r} f_{j}^{n_{j}} \cdot \Pi_{i=1}^{b} h_{i}^{b_{i}}$, where $r>0, m_{j}, n_{j}>0, \ell_{j} \geq$ $m_{j}+n_{j}-1$ and any two polynomials of the set $\left\{f_{1}, \ldots, f_{r}, g_{1}, \ldots, g_{a}, h_{1}, \ldots, h_{b}\right\}$ are relatively primes. Set $k_{j}=$ $\min \left(m_{j}, n_{j}\right)$.

Claim 3.3.1. The generators of the pencil can be choosen in such a way that :
(a). $m_{j}=n_{j}=k_{j}$ for all $j=1, \ldots, r$.
(b). $a=b$ and $a_{i}=b_{i}=1$ for all $i=1, \ldots, a$.

Proof. Set $X_{\lambda}=X+\lambda . Y$ and $R \wedge X_{\lambda}=g_{\lambda} . \partial_{x} \wedge \partial_{y}$, where $g_{\lambda}=g+\lambda . h$. It follows from Bertini's theorem that for a generic set of $\lambda \in \mathbb{C}$ the decomposition of g_{λ} into linear irreducible factors is of the form :

$$
\begin{equation*}
g_{\lambda}=\Pi_{j=1}^{r} f_{j}^{k_{j}} \cdot \Pi_{i=1}^{s} g_{i \lambda} \tag{17}
\end{equation*}
$$

where $s+\sum_{j} k_{j}=d+1$ and any two polynomials in the set $\left\{f_{1}, \ldots, f_{r}, g_{1 \lambda}, \ldots, g_{s \lambda}\right\}$ are relatively primes. Now, it is sufficient to take $\lambda_{1} \neq \lambda_{2} \in \mathbb{C}$ such that $g_{\lambda_{1}}$ and $g_{\lambda_{2}}$ are as in (17). Set $X_{1}=X_{\lambda_{1}}, Y_{1}=X_{\lambda_{2}}, g=g_{\lambda_{1}}$ and $h=g_{\lambda_{2}}$. Then X_{1} and Y_{1} are generators of the pencil with the properties required in claim 3.3.1.

From now on, we will suppose that the generators X and Y of the pencil satisfy claim 3.3.1. Let us prove that the decomposition of f into irreducible linear factors is of the form

$$
\begin{equation*}
f=\Pi_{j=1}^{r} f_{j}^{2 k_{j}+m_{j}}, \text { where } m_{j} \geq 0 \tag{18}
\end{equation*}
$$

Since $m=n=d-1>0$, relation (14) implies that

$$
g d h-h d g=m f(y d x-x d y), m \neq 0
$$

Set $g=\psi \cdot G_{1}$ and $h=\psi \cdot H_{1}$, where $\psi=\Pi_{j=1}^{r} f_{j}^{k_{j}}$. As the reader can check, we have

$$
g d h-h d g=\psi^{2} \cdot\left(G_{1} d H_{1}-H_{1} d G_{1}\right)=m f(y d x-x d y) \quad \Longrightarrow \quad \psi^{2} \mid f .
$$

Hence, the decomposition of f is like in (18) and we get

$$
G_{1} d H_{1}-H_{1} d G_{1}=m \Pi_{j=1}^{r} f_{j}^{m_{j}}(y d x-x d y)
$$

Now, consider the map $\phi: \mathbf{P}^{1} \rightarrow \mathbf{P}^{1}$ given by

$$
\phi[x: y]=\frac{g(x, y)}{h(x, y)}=\frac{G_{1}(x, y)}{H_{1}(x, y)}
$$

Since G_{1} and H_{1} are relatively primes, the degree of ϕ is $s=d g\left(G_{1}\right)=d g\left(H_{1}\right)$. Let $\left\{p_{1}, \ldots, p_{t}\right\} \subset \mathbf{P}^{1}$ be the critical set of ϕ and $\phi\left(p_{j}\right)=c_{j} \in \mathbf{P}^{1}$. If $c_{j} \neq \infty$ set $K_{j}=G_{1}-c_{j} . H_{1}$, and if $c_{j}=\infty$ set $K_{j}=H_{1}$. Suppose that p_{j} is a critical point with $\operatorname{mult}\left(\phi, p_{j}\right)=\ell_{j} \geq 2$. This implies that we can write $K_{j}=\psi_{j}^{\ell_{j}} . A$, where ψ_{j} is a linear polynomial, A a homogeneous polynomial and ψ_{j} does not divide A. We claim that $\psi_{j}^{\ell_{j}-1} \mid \Pi_{i} f_{i}^{m_{i}}$. Indeed, if $c_{j} \neq \infty$, we get

$$
\begin{equation*}
K_{j} d H_{1}-H_{1} d K_{j}=G_{1} d H_{1}-H_{1} d G_{1}=m \Pi_{i=1}^{r} f_{i}^{m_{i}}(y d x-x d y) \tag{19}
\end{equation*}
$$

Since $\psi_{j}^{\ell_{j}-1}$ divides $K_{j} d H_{1}-H_{1} d K_{j}$, relation (19) implies the claim. If $c_{j}=\infty$ then $\psi_{j}^{\ell_{j}-1}$ divides $G_{1} d H_{1}-$ $H_{1} d G_{1}$ and we get also the claim. Therefore, $\psi_{j}=\lambda_{j} . f_{i(j)}, \lambda_{j} \in \mathbb{C}^{*}$, for some $i(j) \in\{1, \ldots, r\}$ and $\ell_{j}-1 \leq m_{i(j)}$. In particular, we get $t \leq r$. By reordering the $f_{i^{\prime} s}$, if necessary, we can suppose without lost of generality that $i(j)=j, j=1, \ldots, t$. Set $\ell_{j}=1$ for $t<j \leq r$. With these conventions, we have $m_{j}-\left(\ell_{j}-1\right) \geq 0$ for all $j=1, \ldots, r$.

Let us prove that $m_{j}=\ell_{j}-1$ for all $j=1, \ldots, r$. Recall that $s+\sum_{i} k_{i}=d+1$. Since $f=\Pi_{i} f_{i}^{2 k_{i}+m_{i}}$ and $d g(f)=2 d$, we get

$$
\sum_{i} m_{i}=d g\left(\Pi_{i} f_{i}^{m_{i}}\right)=2 d-2 \sum_{i} k_{i}=2 d-2(d+1-s)=2 s-2
$$

On the other hand, it follows from Riemann-Hurwitz formula (cf. [F-K]) and $m_{i}-\left(\ell_{i}-1\right) \geq 0$ that

$$
\sum_{i}\left(\ell_{i}-1\right)=2 s-2=\sum_{i} m_{i} \Longrightarrow 0 \leq \sum_{i=1}^{m}\left[m_{i}-\left(\ell_{i}-1\right)\right]=0 \quad \Longrightarrow \quad m_{i}=\ell_{i}-1, \forall i
$$

This proves (d) and (e) of theorem 1. Note that (f) follows from (d) of theorem 2.
Let us prove that $1 \leq s \leq d-1$ and $1 \leq r \leq d$. First of all note that

$$
k_{j} \geq 1 \quad \Longrightarrow \quad 2 r \leq \sum_{j=1}^{r}\left(2 k_{j}+m_{j}\right)=2 d \quad \Longrightarrow \quad 1 \leq r \leq d
$$

Moreover,

$$
s=d+1-\sum_{j=1}^{r} k_{j} \Longrightarrow s \leq d+1-r \leq d \quad \Longrightarrow \quad 0 \leq s \leq d
$$

Suppose by contradiction that $s=0$. This implies that the map ϕ is constant, and so $g=\lambda . h$, where $\lambda \in \mathbb{C}^{*}$. It follows that

$$
R \wedge(X-\lambda . Y)=0 \quad \Longrightarrow \quad X-\lambda . Y=\psi \cdot R
$$

where ψ is homogeneous of degree $d-1$. Therefore, the first part of theorem implies that X and Y are colinear with the radial vector field, a contradiction. Hence, $s \geq 1$. It remains to prove that $s \leq d-1$. Suppose by contradiction that $s=d$. In this case, we get $g=f_{1} . g_{1} \ldots g_{d}, h=f_{1} . h_{1} \ldots h_{d}$ and $f=f_{1}^{2 d}$. It follows that the $\operatorname{map} \phi=\left(g_{1} \ldots g_{d}\right) /\left(h_{1} \ldots h_{d}\right)$ has degree $d \geq 2$ and just one ramification point, $\left(f_{1}=0\right)$, with multiplicity $2 d-1$. However, this is not possible, because this would imply that

$$
\operatorname{mult}\left(\phi,\left(f_{1}=0\right)\right)=2 d-1>d
$$

It remains to prove that in the converse construction the vector fields X and Y defined by (9) in theorem 1 commute. But, this is a consequence of lemma 2.0.2 and the fact that f, g and h satisfy (b) of theorem 2. This finishes the proof of theorem 1.

3.4 Proof of Corollary 1.

Let X_{1} and Y_{1} be generators of a pencil of commuting of degree two homogeneous vector fields on \mathbb{C}^{2}. As before, define f_{1}, g_{1} and h_{1} by $X_{1} \wedge Y_{1}=f_{1} \partial_{x} \wedge \partial_{y}, R \wedge X_{1}=g_{1} \partial_{x} \wedge \partial_{y}$ and $R \wedge Y_{1}=h_{1} \partial_{x} \wedge \partial_{y}$, respectively. If $g_{1} \equiv h_{1} \equiv 0$ then X_{1} and Y_{1} are multiple of the radial vector field, and so we are in case (a) of corollary 1 . If not, then $f_{1}, g_{1}, h_{1} \not \equiv 0$, by (a) of theorem 1 . Moreover, the rational map $\phi=g_{1} / h_{1}$ has degree $s=1$, by (c) of theorem 1. Therefore, the pencil has one movable direction and one or two fixed directions, because g_{1} has degree $d+1=3$.

Suppose that it has two fixed directions. In this case, we can suppose that they are $(x=0)$ and $(y=0)$. This implies that $g_{1}=x . y . g_{2}, h_{1}=x . y . h_{2}$ and $f_{1}=x^{2} . y^{2}$, where g_{2} and h_{2} correspond to the movable direction. Since g_{2} and h_{2} are relatively primes, there exist $(a, b),(c, d)$ such that $a g_{2}+b h_{2}=x$ and $c g_{2}+d h_{2}=y$. If we set $g:=x^{2} . y=x . y\left(a g_{2}+b h_{2}\right)$ and $h:=x . y^{2}=x . y\left(c g_{2}+d h_{2}\right)$, then we can apply lemma 2.0.2 to $f=x^{2} . y^{2}, g$ and h. We get the first integrals $f / g=\left(x^{2} \cdot y^{2}\right) /\left(x^{2} . y\right)=y, f / h=\left(x^{2} \cdot y^{2}\right) /\left(x . y^{2}\right)=x$, the forms $\omega:=g \frac{d(f / g)}{f / g}=x^{2} d y, \eta:=h \frac{d(f / h)}{f / h}=y^{2} d x$, and the vector fields $X=x^{2} \partial_{x}, Y=y^{2} \partial_{y}$. So, we are in case (b) of corollary 1 .

Suppose that it has one fixed direction. We can suppose that it is $(y=0)$. In this case, we have $g_{1}=y^{2} . g_{2}$, $h_{1}=y^{2} . h_{2}$ and $f=y^{4}$. Consider linear combinations $a g_{2}+b h_{2}=x$ and $c g_{2}+d h_{2}=y$. So, we have just to apply lemma 2.0 .2 to the polynomials $f=y^{4}, g=x . y^{2}$ and $h=y^{3}$. By doing this, we obtain case (c) of corollary 1 , as the reader can check.

3.5 Proof of Corollary 2.

Let f, g and h be as in theorem 1. If $g \equiv h \equiv 0$ then we are in case (a) of corollary 2 . If not, then $f, g, h \not \equiv 0$ and $\phi=g / h$ has degree s, where $s \in\{1,2\}$.

Let us consider the case where $s=2$. Let $\phi: \mathbf{P}^{1} \rightarrow \mathbf{P}^{1}$ be a map of degree two. It follows from RiemannHurwitz formula that $\sum_{p}(\operatorname{mult}(\phi, p)-1)=2 s-2=2$, and so the map must have two ramification points, both
of multiplicity two. After composing the map in both sides with Moëbius transformations, we can suppose that $\phi[x: y]=y^{2} / x^{2}$. This implies that $(x=0)$ and $(y=0)$ are fixed directions of the pencil, so that $x . y$ divides g and h. Since $d g(g)=d g(h)=4$ and $s=2$, we get $g=x \cdot y \cdot g_{1} \cdot g_{2}$ and $h=x \cdot y \cdot h_{1} \cdot h_{2}$, and so $k_{1}=k_{2}=1$ in (2) of theorem 1. Since $d g(f)=6$ and $\operatorname{mult}(\phi,(x=0))=\operatorname{mult}(\phi,(y=0))=2$, we must have $m_{1}=m_{2}=1$ and $f=x^{3} \cdot y^{3}$. In this case, we have

$$
\phi=\frac{g}{h}=\frac{(g / x \cdot y)}{(h / x \cdot y)}=\frac{y^{2}}{x^{2}} \Longrightarrow g=x \cdot y^{3} \text { and } h=x^{3} \cdot y
$$

So, when we apply lemma 2.0 .2 , we get $f / g=x^{2}, f / h=y^{2}, \omega=2 y^{3} d x$ and $\eta=2 x^{3} d y$. Hence, we can set $X=x^{3} \partial_{x}$ and $Y=y^{3} \partial_{y}$. In this case we get case (e) of corollary 2.

Suppose now that $s=1$. In this case, we have just one movable direction and the map ϕ has no ramification points, which implies that $m_{j}=0$ for all $j=1, \ldots, r$. This implies that $f=\Pi_{j=1}^{r} f_{j}^{2 k_{j}}$. Since $d g(f)=6$, we have three possibilities : (1). $r=1$ and $k_{1}=3$. (2). $r=2, k_{1}=1$ and $k_{2}=2$. (3). $r=3$ and $k_{1}=k_{2}=k_{3}=1$.

Case (1). In this case, we have just one fixed direction f_{1}. After a linear change of variables in \mathbb{C}^{2}, we can suppose that it is $f_{1}=y$. This implies that $f=y^{6}, g=y^{3} . g_{1}$ and $h=y^{3} . h_{1}$. Since g_{1} and h_{1} are relatively primes, there exist $a, b, c, d \in \mathbb{C}$ such that $a . d-b . c \neq 0$ and $a . g_{1}+b . h_{1}=x$ and $c . g_{1}+d . h_{1}=y$. Therefore, we can apply the construction of lemma 2.0.2 to $f=y^{6}, g=y^{4}$ and $h=x . y^{3}$. This gives the first integrals $f / g=y^{2}$ and $f / h=y^{3} / x$. Moreover,

$$
\left\{\begin{array}{c}
\omega=i_{X}(d x \wedge d y)=2 y^{4} \frac{d y}{y}=2 y^{3} d y \quad \Longrightarrow \quad X=2 y^{3} \partial_{x} \\
\eta=i_{Y}(d x \wedge d y)=x \cdot y^{3}\left(3 \frac{d y}{y}-\frac{d x}{x}\right)=3 x y^{2} d y-y^{3} d x \quad \Longrightarrow \quad Y=3 x y^{2} \partial_{x}+y^{3} \partial_{y}
\end{array}\right.
$$

Therefore, we get case (b) of corollary 2.
Case (2). In this case, we have two fixed directions, that we can suppose to be $f_{1}=x$ and $f_{2}=y$. Since $k_{1}=1$ and $k_{2}=2$, we get $g=x \cdot y^{2} \cdot g_{1}, h=x \cdot y^{2} \cdot h_{1}$ and $f=x^{2} \cdot y^{4}$. After taking linear combinations, we can suppose that $g=x^{2} \cdot y^{2}$ and $h=x . y^{3}$. This gives the first integrals y^{2} and $x . y$ and so $\omega=2 x^{2} y d y$ and $\eta=x y^{2} d y+y^{3} d x$ and we are in case (c).

Case (3). In this case, we have three fixed directions. After a linear change of variables we can suppose that they are $f_{1}=x, f_{2}=y$ and $f_{3}=x+y$. This gives $g=x y(x+y) . g_{1}, h=x y(x+y) \cdot h_{1}$ and $f=x^{2} y^{2}(x+y)^{2}$. After taking linear combinations of g_{1} and h_{1}, we can suppose that $g=x^{2} y(x+y)$ and $h=x y^{2}(x+y)$. Therefore we get the first integrals are $f / g=y(x+y), f / h=x(x+y)$ and

$$
\left\{\begin{array}{l}
\omega=x^{2} y(x+y)\left[\frac{d y}{y}+\frac{d x+d y}{x+y}\right]=x^{2} y d x+\left(2 x^{2} y+x^{3}\right) d y \quad \Longrightarrow \quad X=\left(2 x y^{2}+x^{3}\right) \partial_{x}-x^{2} y \partial_{y} \\
\eta=x y^{2}(x+y)\left[\frac{d x}{x}+\frac{d x+d y}{x+y}\right]=\left(2 x y^{2}+y^{3}\right) d x+x y^{2} d y \quad \Longrightarrow \quad Y=-x y^{2} \partial_{x}+\left(2 x y^{2}+y^{3}\right) \partial_{y}
\end{array}\right.
$$

Therefore, we are in case (d) of corollary 2.

References

[C-M] D. Cerveau, J.-F. Mattei : "Formes intégrables holomorphes singulières"; Astérisque, vol.97(1982).
[DR] G. de Rham : "Sur la division des formes et des courants par une forme linéaire"; Comm. Math. Helvetici, 28 (1954), pp. 346-352.
[F-K] H.M.Farkas \& I.Kra: "Riemann Surfaces"; Springer-Verlag, NY 1980.
[G] A. Guillot : "Sur les exemples de Lins Neto de feuilletages algébriques"; C. R. Math. Acad. Sci. Paris 334 (2002), no. 9, pp. 747-750.
A. Lins Neto

Instituto de Matemática Pura e Aplicada
Estrada Dona Castorina, 110
Horto, Rio de Janeiro, Brasil
E-Mail - alcides@impa.br

[^0]: ${ }^{1}$ This research was partially supported by Pronex.

