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Normality and Modulability Indices.
Part II: Convex Cones in Hilbert Spaces
A.TUSEM! and A.SEEGER?

Abstract. Let K be a closed convex cone in a Hilbert space X. Let Bx be the closed unit ball

of X and K, = (Bx + K) N (Bx — K). The normality index
v(K)=sup{r >0: 1K, C Bx}

is a coefficient that measures to which extent the cone K is normal. We establish a formula that
relates v(K) to the maximal angle of K. A concept dual to normality is that of modulability. As
a by-product one obtains a formula for computing the modulability index

w(K)=sup{r >0: rBx C K*}

of K. The symbol K* stands for the absolutely convex hull of K N Bx. We show that pu(K) can
be expressed in terms of the smallest critical angle of K.

Mathematics Subject Classifications: 46B20, 52A05, 54B20.
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1 Introduction

This is a continuation of our paper [11] and therefore we keep the same notation and terminology. Given
a normed space X, the symbols Bx and Sx refer, respectively, to the closed unit ball and the unit sphere.
There are several metrics that serve to measure distances between elements of the set

[1]

(X)) = nontrivial closed convex cones in X.
In this work we consider the standard choice

o(K1, Ks) = haus(K; N Bx, K> N Bx), (1)
where

haus(Cq, C3) = max { sup dist[z, Cs], sup dist|z, C’l]}
z€Cy z€C>
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stands for the classical Pompeiu-Hausdorff distance between two bounded closed nonempty sets C, Cs3, and
dist[z, C] refers to the distance from z to the set C'. By a convex cone we understand a nonempty set K
satisfying K + K C K and Ry K C K. Saying that a convex cone K is nontrivial simply means that K is
different from {0} and different from the whole space X. For the sake of completeness, we recall also the
following two concepts:

Definition 1. Let K be a convex cone K in a normed space X. One says that

(a) K is normal if there is a constant 3 > 0 such that

Bl +lvll) < llw+oll - for all u,v € K. (2)

(b) K is modulable if there is a constant v > 0 such that

any z € X is expressible in the formz =u —v
with u,v € K satisfying v ||(u,v)| < ||z

We are taking [|(u,v)|| = {[lu]* + ||’U||2}1/2, but any equivalent norm in the Cartesian product X x X
is acceptable. Modulability is a fundamental concept of the theory of convex cones. Unfortunately, there is
no universal agreement with respect to the terminology. Other names for the concept of modulability can
be found for instance in [12, 14, 19, 22]. The concept of normality is also classical and doesn’t need further
justification; see for instance the books [4, 19, 22] or the pioneering works by Krein and collaborators [3, 15].

The next theorem is a combination of several sources. We take this result for granted.

Theorem 1. Let K be a convexr cone K in a normed space X. Then,
(a) K is normal if and only if K¢ = (Bx + K)N (Bx — K) is bounded.
(b) K is modulable if and only if K* = co[(K U—K) N Bx] is a neighborhood of the origin.
One of the main issues of this paper concerns the practical computation of the normality index
v(K)=sup{r >0: rK, C Bx} (3)

and the modulability index
uw(K)=sup{r >0: rBx C K*} (4)

of a nontrivial closed convex cone K. The meanings of these indices are explained in full length in our
previous work [11]. It is not always easy to compute the right-hand sides in (3) and (4). The evaluation of
the sets Ko and K*® is already a difficult task by itself. The main merit of the present paper is showing that
v(K) and pu(K) admit nice and simple characterization formulas when the underlying space X is Hilbert.
To be more precise, we show that v(K) can be expressed in terms of the maximal angle of K, whereas u(K)
is expressible in terms of the smallest critical angle of K.

Another theme discussed in this paper has to do with the link existing between pointedness and normal-
ity. The purpose of Section 4 is establishing the following topological results in the context of an infinite
dimensional Hilbert space:

i) With respect to the truncated Pompeiu-Hausdorff metric g, the pointed elements of Z(X) don’t form
open set. Equivalently, the unpointed elements of Z(X) don’t form a closed set.



ii) By contrast, the abnormal elements of Z(X) do form a closed set. In fact, the set of abnormal elements
is precisely the g-closure of the set of unpointed elements of Z(X).

To the best of our knowledge, the above density result is new. By using a duality argument, we establish
also a link between almost reproducibility and modulability.

2 A Preliminary Formula for Computing v(K)

As mentioned in the introduction, the practical computation of the coefficient v(K) offers sometimes a serious
challenge. All efforts in characterizing v(K) by means of alternative formulas are not to be despised. The
next theorem suggests considering the expression

X(K) = inf max{dist[z, K], dist[—z, K]} (5)

ll=1=1

as tool for evaluating v(K). Of course, the computation of the infimum (5) is greatly simplified if one knows
in advance the distance function dist[, K].

The term x(K) appears already in references [5] and [9], but no connection with v(K) has been made
insofar.

Theorem 2. For a nontrivial convex cone K in a normed space X, one has
v(K) = x(K). (6)

Proof. We start by proving the inequality x(K) < v(K). Assume that x(K) > 0, otherwise we are done.
We claim that
(Bx + K) N (Bx — K) C [x(K)] " Bx. (7)

Take a nonzero vector x in the above intersection. Since

z€Bx+ K = dist[z,K] <1,
r€Bx — K = dist[-2,K]<1,

one has max {dist[z, K], dist[—z, K]} < 1. In view of the positive homogeneity of the distance function
dist[-, K], one gets
T

X(K)Smax{dist[ ,K] ,dist [—L,K]} SL.
[l | [l

This proves that « belongs to the right-hand side of (7) as needed. We now take care of the reverse inequality
v(K) < x(K). Ab absurdo, suppose that

(Bx +K)N(Bx — K) C [x(K)+s] ! Bx (8)
for some s > 0. We must arrive to a contradiction. Take e €]0, s[ and find a vector z. € X such that

lzll = 1, ()
max {dist[z., K], dist[—z., K]} < x(K)+e. (10)



The condition (10) implies that

ze € (x(K)+e¢)Bx+K,

ze € (x(K)+e¢)Bx — K.
Since K is a convex cone, an elementary rearrangement yields

[X(K)+e] 'z € (Bx + K) N (Bx — K).

In view of (8) and (9), one gets in such a case

(K + ¢ < (K + 8] 7,
contradicting the fact that ¢ < s. O

An important merit of Theorem 2 is its great generality: X is any normed space and K is not necessarily
closed. Since x(cl(K)) = x(K), Theorem 2 confirms that the concept of normality is blind with respect to
topological closure, i.e., a nontrivial convex cone K is normal if and only if cI(K) is normal.

We state below some additional by-products of the representation formula (6). We start with a Lipschitz
continuity result for the function v(-). The notation

d(Kl,Kz) = inf |dISt[Z,K1] — dlSt[Z,Kz”

llzll<1
indicates another metric on Z(X) that is popular among convex analysts [21].
Corollary 1. Let K1 and K5 be nontrivial closed convex cones in a normed space X. Then,
[v(Ky) — v(K2)| < d(Ky, Kz).
Proof. It is immediate from (6) and the definition of the uniform metric d. O
We continue with a topological result taking place in our usual metric space (E(X), g).
Corollary 2. Let X be a normed space. Then,
Nor(X) ={K € E(X) : K s normal }
is an open set in (E(X), o).
Proof. A small adjustment in the proof of [1, Proposition 1.2] show that
d(Kq,K3) <20(Ky,K3) VK, Ko € Z(X). (11)

Thanks to (11) and Corollary 1, the function v : (E(X), ¢) — R turns out to be Lipschitz continuous. This
proves the announced result. O

In the same spirit as the radiuses of modulability, solidity, and sharpness, considered in our previous
work [11], we introduce now the radius of normality

Pror(K) = Qeig(fx) o(K,Q) (12)

Q abnormal



of a given of K € E(X). The least-distance problem (12) is of interest for itself and will be studied in detail
in Section 4.

The next corollary is recorded for the sake of later use. Notice, parenthetically, that pner : (E(X),0) — R
is the largest nonexpansive map that vanishes exactly over the abnormal elements of Z(X).

Corollary 3. If K is a nontrivial closed convex cone in a Hilbert space X, then v(K) < pnor(K).

Proof. If X is a Hilbert space, then d and p are in fact identical. It suffices then to apply Corollary 1 and
the pointwise maximality of py..(-) among all the nonexpansive maps on (£(X), o) that vanish exactly over
the abnormal elements of Z(X). O

3 The Best Normality Constant and the Angular Coefficient

3.1 Comparing (K) and o(K)

A number f > 0 satistying the inequality (2) is called a normality constant of K. The best possible
normality constant of K is of course

[[u+ vl

BK) = T T (13)

vkl ]
The number 5(K) € [0,1] can be used as a tool for quantifying the degree of normality of K.
The purpose of this section is to compare (13) with the much simpler expression

u+v

K)= inf 14

U( ) u,'uelII}F]SX 2 ( )

We have divided by 2 in the right-hand side of (14) just to make sure that o(K) € [0, 1]. We shall come in a
moment to the interpretation of the coefficient o(K). First, we state:

Proposition 1. Let K be a nontrivial conver cone in a normed space X. Then
o(K) < B(K) <o(K). (15)
Proof. 1If one adds the constraints ||u|| = 1 and ||v|]] = 1 in the feasible set of (13), then one arrives at

the minimization problem (14). This simple observation shows the second inequality in (15). The relation
o(K) < 2B(K) is obtained as a consequence of the Massera-Schéffer inequality [16] which asserts that
2z -yl

‘lel IIyIIH max{[], [y}

for all nonzero vectors x,y in a normed space X. O

In view of Proposition 1, the term o(K) is also an acceptable candidate as tool for measuring the degree
of normality of K. By the way, are we sure that 8(K) and o(K) are different numbers? The answer is yes,
but a difference can be observed only in a non-Hilbertian setting. We start with an easy example showing

that S(K) and o(K) may differ.



Example 1. Let the plane R? be equipped with the Manhattan norm ||z|| = |z1| + |z2|, and let K be the
nontrivial closed convex cone in R? given by K = {z € R? : 23 > 0, 1 + 3 > 0}. The set K N S is a union
of two segments, namely

KnSx =co{(-1/2,1/2),(0,1)} U co{(1,0),(0,1)}.

-~

I Iy

If v and v are on the same segment, say I';, then the midpoint (u+wv)/2 has unit length because it remains in
I';. Thus, for solving the minimization problem (14) one may suppose that v and v are on different segments,
say u € I'y and v € I'g. If one writes

w = t(=1/2,1/2)+(1-1)(0,1),
s (170) + (1 - 'S) (07 1)7

then one is lead to minimize
utvl |S—%|+2—%—5

2 | 2
with respect to t,s € [0,1]. The infimum is attained with ¢ = 1 and arbitrary s > 1/2. Thus, o(K) = 1/2.
On the other hand, by choosing v = (=1/3,1/3) and v = (1/3,0), one gets

[utoll _1/3
full + vl 1

BK) < < o(K).

Incidentally, Example 1 shows that the components of a pair (u,v) solving (14) don’t need to be in the
boundary of K, even if K is pointed and has nonempty interior. This phenomenon cannot occur in a Hilbert
space setting (cf. [7, Lemma 2.1]).

One can sharpen the lower estimate for G(K) if one has additional information on the geometry of the
normed space X. Let cx denote the sphericity defect of X, i.e., the infimum of all ¢ > 0 such that

1
2

T |z — yll

y
Il lyl ‘ [l ]l + Iyl

for all 2,y € X\{0}. The Massera-Schéffer inequality implies that that 0 < c¢x < 1. This observation and
the very definition of cx leads to

<(1+4¢)

1
o(K) <
1+cx

1
3 o(K) < B(K). (16)
Corollary 4. If K is a nontrivial convex cone in a Hilbert space X, then o(K) = [B(K).

Proof. It remains to check that ¢(K) < B(K), but this is a consequence of (16) and the fact that cx =0
whenever X is a Hilbert space. That a Hilbert space has no sphericity defect follows from the Dunkl-Williams
inequality [2] which asserts that

l‘fv_yH< [l = yll

2 (Hlll Ml Ml [yl

for all z,y € X\{0}. O

Remark 1. The Dunkl-Williams inequality doesn’t hold in a general normed space. In fact, the Dunkl-
Williams inequality characterizes the norms that derive from an inner product (cf. [13]).



3.2 Angular Interpretation of o(K)

If the norm || - || derives from an inner product (-, -), then the coefficient o(K) admits an interesting angular
interpretation. Indeed, one can write
gmax (K)
o(K) = cos 5 (17)
with
Omax(K) = sup  arccos (u,v) (18)
u,veEKNSx

denoting the maximal angle of K. The angle maximization problem (18) it of interest for itself and has been
extensively studied in [7] and [8]. The function 8.« () has found a large variety of applications as one can
see in [6, 9, 18], among other references.

By obvious reasons, we refer to o(K) as the angular coefficient® of K. Notice, incidentally, that

o(K)=0 ifand only if 6Ophax(K)=m.

Recall that a convex cone K in a normed space is said to be pointed if it doesn’t contain a line, that is
to say, K N —K = {0}. In a finite dimensional Hilbert space, pointedness of a nontrivial closed convex cone
K is equivalent to the condition 6,,,(K) = 7. This fact is no longer true if the Hilbert space is infinite
dimensional.

Example 2. Let ¢3(R) be the Hilbert space of square-summable real sequences. Notice that

n
K ={z e l(R): Zl‘k >0,Yn > 1}
k=1
is a closed convex cone because it is expressible as intersection of closed half-spaces. One can easily check
that K is pointed. Now, for each n > 1, we construct

1
w = = (L-L1-L..1,-10,0,...),
2n terms
L (0,1,-1,1,-1 1,-1,0,0...)
v = = yAy Ty Ty ey Ly T, U Ve
" Vn ~
2n terms
Notice that (u,,v,) is a pair of unit vectors in K and
1
OSU(K)S Up + Up _ )
2 2v/n

By letting n — oo one gets o(K) = 0. This infimum is not attained because otherwise K should contain a
unit vector and its opposite.

Example 2 shows that a pointed closed convex cone may well have a maximal angle equal to w. This is
what we call the degeneracy phenomenon. We insist on the fact that the degeneracy phenomenon cannot
occur in a finite dimensional setting.

3Inspired by the relation (17), one could use the equality Omax (/) = 2 arccos[o(K)] as definition of the maximal angle of a
nontrivial convex cone K contained in a general normed space. Such definition is however purely formal.



3.3 Lipschitz Behavior of the Angular Coefficient

We start with a useful lemma on the nonexpansiveness of the angular coefficient o(-) with respect to the

metric

19(K1,K2) = haus(K1 n Sx,Kz n Sx).

The definition of ¥ bears a strong resemblance with the definition (1) that we gave of p. Be aware, however,

that ¥ and p are not the same metric.

Lemma 1. Let K, and K5 be nontrivial closed conver cones in a normed space X. Then,

|O’(K1) - U(K2)| S ’0(K1,K2).
Proof. Consider an arbitrary € > 0. Pick up u.,v. € Ko N Sx such that

L-'_UE S U(K2)+E.

Select then a couple of vectors ii., 7. in K1 N Sx such that

lue —ac|l < distlue, K10 Sx] +e,
loe =0 < distfee, Ky 1 Sx] + e

One gets
2[o(K1) —o(Kz)] < [lthe + Del| — [Jue + ve]| + 2¢
< e = ue|| + [|9e — el + 2¢
< dist[ue, K1 N Sx] + dist[ve, K1 N Sx] +4e
< 2 sup dist{w, Ky N Sx]| +4e

weKoNSx
By letting ¢ — 0 one arrives at

O'(Kl) — O'(Kz) S sup dist[w,Kl n Sx] S 19(K1,K2).
weKoNSx

The proof of the inequality o(K2) — 0(K1) < J(K3, K3) is analogous.

O

Remark 2. The metric ¢ is majorized by 2p, so the angular coefficient o(+) varies in a Lipschitz continuous

manner also with respect to the metric p.

4 Antipodality and Distance to Abnormality

We are interested in better understanding the minimization problem (12) that defines the radius of normality

of a given nontrivial closed convex cone K.

This section takes place in a Hilbert space setting. Recall that in such a context, the truncated Pompeiu-

Hausdorff distance g admits the equivalent formulation

Q(Kl,KQ)ZHIaX{ sup dist[z, Ks], sup dist[a:,Kl]}.
ze€K1NSx r€KoNSx

(19)



The expression on the right-hand side of (19) is sometimes referred to as the gap distance between K; and
K. For computational purposes, it is preferable to work with (19) and not with the original definition (1)
of o.

As explained next, the least-distance problem (12) turns out to be related to the the angle maximization
problem (18). For the sake of convenience, we reformulate (18) in the equivalent form

€OS[Omax (K)] = inf  (u,v). (20)

u,vEKNSx
As in reference [7], one says that (ug,vo) € X x X is an antipodal pair of K if
up,v0 € KNSy and (ug,vp) = cos[Opax(K)]. (21)

Since the infimum in (20) is not necessarily attained, it is helpful to introduce also a suitable concept of
approximate antipodality.

Definition 2. Let K be a nontrivial convex cone in a Hilbert space X. An antipodal pair of K within
a tolerance level € > 0 is a pair (ug,v.) € X x X such that

U, Ve € KNSx and (uc,v.) < cos[fmax(K)] + €. (22)

Antipodality in the sense (21) is recovered by setting ¢ = 0. Example 2 nicely illustrates the fact that
antipodal pairs may not exist for nontrivial closed convex cones in infinite dimensional Hilbert spaces.

In the sequel, Rw = {tw : t € R} denotes the line generated by a nonzero vector w € X and w= indicates
the hyperplane that is orthogonal to this line.

Lemma 2. Let K be a nontrivial closed convex cone in a Hilbert space X. Let (ue,ve) be an antipodal
pair of K within a tolerance level £ > 0. Assume that u. # v. and define

Q- = (K N (us - UE)J_> 'HR(UE - Us)-

Then, Q. is an unpointed closed conver cone such that

1
dist[z, K] < # Vo € Q. N Sy, (23)
. € 1+ (ue, ve)
< .
dist[z, Qc] < [1 +1o <Us,vs>] 5 Vo e KNSy (24)

Proof. This result was obtained in [10] for the particular case ¢ = 0 and under the additional assumption
that X is finite dimensional. Important adjustments in the proof are needed in order to take care of the
general case. For convenience, we introduce the notation

We = “us - "’6“71(“6 — ;)

and divide the proof in three steps.

Step 1. The convex cone (). is closed because it is expressible as sum of a line Rw. and a closed set
contained in w. Observe that ). is unpointed because Q. N —@Q. contains the unit vector w..



Step 2. We establish the inequality (23). Take any « € Q. N Sx, so that = z + tw., with z € K Nwt
and t € R. Clearly t = (z,w,.), and therefore |t| < 1 by the Cauchy-Schwarz inequality. Consider the point
y defined as

)2+ (t/2) llue — vel| we if t >0,
2= (t/2) lue —ve| ve if <O,

Note that in both cases y belongs to K, because z, u.,v. € K. We proceed to estimate the distance between
x and y. Consider first the case of £ > 0. One has

2
1— (ug,v
o=yl = ¢u. R
1-—- 1-—
— t2 1+ <;’E»’Ua> _2 <1;€1'U€> <u5,w5>]

Plugging in the above line the definition of w., one ends up with

2 1+<UE,’U€>
ool = |2,

Hence, dist[z, K] < ||z — y|| £ /(1 + {us,v:))/2 . The case of t < 0 is dealt in a similar way.
Step 3. We prove the inequality (24). Take 2 € K N Sx and consider the vector

|{z, we)|
y=x+ i—— (uc +v.). (25)
[[ue — vel|

We decompose y in the form

w? w€

Ki_ﬂ(us +v.) + (z,w)w. .
||1.L6 ’UE“ \_\f—,
~~ 9

g

y=x— <£L‘, ’U)€>’LU€ +

Clearly § € Rw.. We claim that j € K NwZ. For checking that § € wl, note that

|, we)|

- 2
(G, we) = (w,w:) — (w,we) |we||” + “2 (e + ve, ue — ve)

llue — ve

[, we)l

2 us+vsaus_vs> = 07
[lue — vl

using the fact that |w.|| = ||uc|| = ||ve]| = 1. For checking that § € K, rewrite § as

-~ <£L’,’U)6> |<£L‘, ws)l
y:w_gus_vs)'i'i(us'i'vs)
“ua - 'Us“ ||u€ - USH
_ w+2”us_7}6”_1|<w»ws>|vs if (z,w;) >0,

S )z+2 |lue — vE||_1 [z, w)|ue if (z,w.) <O0.

10



In both cases, y € K because z,u. and v. belong to K. We conclude that y = y + ¢ belongs to Q.. We
estimate next the distance between z and y. Directly from (25) one gets

|z, ue — ve) [z, ue — ve)|

s 4 0] =

lz =yl = e Sl /2(1 + (u, )
||1.L€ - ’UE“2 2(1 - <u87v6>)
In other words,
1+ (ue,ve) . [{z, ue — v.)|
— = L LS th = 2>0.
lz =yl =n 5 with n="mmi N 2

To complete the proof of (24) we must check that 7 < 1+ (1 — (u.,v.))71e, ie.,
(2, ue —ve)| <1 — (ue,ve) +e. (26)
Since (ue, v, ) satisfies the approximate antipodality condition (22), it is clear that

<usvvs> < <l’, Us> +s,

(Uev) < (muc)+e.
and, a posteriori,

(z,ve) + e+ (1 = (z,u:)),
(Tyus) + e+ (1 — (z,v.)).

=

°

<

<

IA A

The combination of the last two inequalities can be written in the compact form
max{{z,u.) — (z,v.), (z,v.) — (z,u)} <1— (ue,v.) +¢,
but this is precisely (26). O

Keeping in mind the characterization (19) of g, one sees that (23) and (24) produce

dK@mF+ : ] 1+ (e, ve)

1 — {ue,ve) 2 ’

i.e., one gets an upper estimate for the truncated Pompeiu-Hausdorff distance between K and Q.. This ob-
servation has some noteworthy consequences. For example, it allows us to establish the following topological
result relating the sets

Abn(X) = {K €Z(X): K is abnormal },
UX) = {KeZ(X): K is unpointed }.

Theorem 3. Let X be a Hilbert space. Then,

nor K) = inf K, VK € =(X).
puaK) = inf  0(K.Q) (X)

Q unpointed

In particular, Abn(X) is the closure with respect to the metric o of the set U(X).

11



Proof. The set Abn(X) is closed because its complement is open (cf. Corollary 2). Since U(X) is contained
in Abn(X), one gets cl,[/(X)] C Abn(X) and

Pnor(K) < Qeig(fx) o(K,Q). (27)

Q unpointed

‘We claim that

Qeig(fx) o(K,Q) < o(K). (28)

Q unpointed

If K is aray, then o(K) = 1 and (28) holds trivially. Assume then that K is not a ray. Consider a minimizing
sequence {(u,,vn)}n>1 for the antipodality problem (20), i.e., upn, v, € K NSx are such that

En = <u7“ ’U»,-,,> — COS[emax(K)]

goes to 0 as n — oo. Since K is not a ray, there is no loss of generality in assuming that u, # v,. In view
of Lemma 2, the set

Qn = (KN (un — vn)") + Rluy, — vy) (29)

belongs to U(X) and

Qelél(fX) Q(K’ Q) < Q(Kv Qn) < |:1 +

Q unpointed

En :| 1+ <un7 Un>
1- <una Un> 2 ’

But ¢, — 0 and (u,,v,) — cos[fmax(K)] # 1. Hence,

[1 - <€n ] \/1 + (U, vy, . \/1 + c0o8[fmax (K)] = o(K).

Un, Un> 2 2

This takes care of (28). By-the-way, if K is abnormal, then o(K) = 0 and o(K,@,) — 0. In other words,
Abn(X) C cl,[U(X)]. Hence, U(X) is dense in Abn(X) and (27) is in fact an equality. O

Remark 3. Let K and {(u,,v,)}nen be as in Example 2. We know that K is abnormal. Let @, be defined
by (29). Since {(un,v,)}nen is a minimizing sequence for (20), it follows that o(K, @, ) — 0. Observe that
each @), is unpointed but the limit K is pointed! This confirms that ¢/(X) is not a closed set in the metric
space (E(X), o).

5 Relating v(K) to the Maximal Angle of K

The computation of x(K) is not always as easy as one may thing at first sight, so we consider now an
alternative characterization of the normality index v(K). This time our analysis is restricted to a Hilbert
space setting.

Theorem 4. For a nontrivial closed convex cone K in a Hilbert space X, one has

V(K) = U(K) = pnor(K)' (30)

12



Proof. Most of the heavy work has been done already. From the proof of Theorem 3 we know already that
Pnor(K) < 0(K). On the other hand, Theorem 2 and Corollary 3 yield v(K) = x(K) and v(K) < ppor(K),
respectively. So, we just need to prove that

o(K) < x(K). (31)

The inequality (31) is established in [9, Proposition 1], but only in a finite dimensional Hilbert space setting.
In a general Hilbert space the proof follows a similar pattern, except that now the infimum in the definition
of x(K) is not necessarily attained. One works then with an approximate solution z. as in (9)-(10), and,
of course, at the very end of the proof one lets ¢ — 0. It is not worthwhile writing down all the details
again. O

That || - || derives from an inner product is an essential assumption in Theorem 4. The following two
examples show that the equality v(K) = o(K) is not necessarily true in a general normed space.

Example 3. Counsider the space C([a, b], R) of continuous functions z : [a,b] — R equipped with the uniform
(or Chebyshev) norm ||z|| = max,<;<p [£(t)|. As indicated in [11, Example 6], for the closed convex cone

K ={ueC([a,b],R) : u(t) > 0Vt € [a,b]}

one has v(K) = 1. We claim that o(K) = 1/2. To see this, take any pair of vectors u,v € K N Sx. Let
t* € [a,b] be such that u(t*) = 1. Then, ||u+ v|| > w(t*) + v(¢*) > 1, getting in this way o(K) > 1/2. This
lower bound is attained by choosing for instance

uw(t)=(b—a)*t—a), o(t)=((b—-a) (b-1t).

In the above example one gets v(K) > o(K), but obtaining the reverse inequality v(K) < o(K) is also
possible.

Example 4. Suppose now that C([a, b],R) is equipped with the norm ||z|| = f: |z(t)|dt. Let K be the same
cone as in Example 3. This time one has o(K) = 1 because ||u + v|| = ||u|| + ||v|| for all u,v € K. On the
other hand, v(K) =1/2 (cf. [11, Example 7]).

6 Dualization

We continue working in a Hilbert space setting and “dualize” some of the results established in the previous
sections. What we do basically is exploiting the involutory relation between a closed convex cone K C X
and its dual cone

Kt={yeX:(y,x) >0Vz € K}.
Of course, one can recover the original cone K starting from K, to wit
K={zeX:(yz) >0Vye Kt}.

Modulability and normality are dual concepts. There are two ways of expressing this fact in a more
precise manner: either in terms of the indices p(-) and v(-), or in terms of the radiuses ppor(-) and pmod(-)-

Theorem 5. Let K be a closed convexr cone in a Hilbert space X. Then,
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(a) B(K) = v(K+) and o(K) = u(K*).
(b) pmod(K) = pllor(K+) and pnor(K) = pmod(K+)-

Proof. Part (a) is established in [11, Theorem 6]. Part (b) is obtained by exploiting the Walkup-Wets
Isometry Theorem (cf. [23]) which asserts that @ — Q7 is a distance-preserving operation on (2(X), ). The
proof of the first formula in (b) runs as follows:

mod () = inf K, = inf K+, +
punoa(K) odily, elEQ) = - e(KT.Q7)
@ not modulable @ not modulable
- inf Kt P) = puor(EK7T).
paf o(K™,P) Pror(K™)

P abnormal
The second formula in (b) is proven in a similar way. O
A convex cone K in a normed space X is called almost reproducing if span(K) = K — K is a dense
subspace of X. Recall that a closed convex cone K in a reflexive Banach space X is almost reproducing if

and only if KT is pointed.
The next theorem relates the sets

Nar(X) = {K € ZE(X): K is not almost reproducing },
Nmod(X) = {K € ZE(X): K is not modulable },
as well as the functions pyeq(-) and w(-).
Theorem 6. Let X be a Hilbert space. Then,
(a) For all K € Z(X) one has
pmoa(K) = | nf o(K, Q).

In particular, Nmod(X) is the closure with respect to the metric ¢ of the set Nar(X).

(b) The radius of modulability of K € Z(X) admits also the representation
pmod(K) = /’L(K)

Proof. Part (a) is a matter of rephrasing Theorem 3. We just need to keep in mind the duality formulas of
Theorem 5(b) and the fact that

Nar(X) = {K €Z(X): K7 is not pointed },
Nmod(X) = {K € Z(X): K is abnormal }.

Part (b) is also a matter of using duality arguments. By recalling Theorems 5(b) and 4, in that order, one
gets the equalities

Pmod(K) = pnor(K+) = V(K+)'
Theorem 5(a) yields v(K*) = u(K) and completes the proof of the theorem. O
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6.1 Relating u(K) to the Smallest Critical Angle of K

What means such a thing as the smallest critical angle of K7 What is a critical angle anyway? These
questions need to be clarified before formulating the dual version of Theorem 4.

The concept of critical angle derives from the first-order stationarity (or criticality) conditions for the
antipodality problem (20). It reads as follows (cf.[7, 8]):

Definition 3. Let K be a nontrivial closed convex cone in a Hilbert space X. A critical pair of K 1is
any pair (u,v) € X x X of vectors satisfying
u,v € KNSy,
v—{u,v)u € KT,
u— (u,v)v € KT.

The angle O(u,v) = arccos{u,v) formed by a critical pair is called a critical angle. The adjective
proper is added when v and v are not collinear, that is to say, |{u,v)| # 1.

Improper critical angles are irrelevant and usually left aside from the discussion. The proper critical
angles of K and those of K are related by a certain reflexion principle whose formulation is astonishingly
simple:

6 is a proper critical angle of K <= 7 —  is a proper critical angle of K.

This principle was established in [8, Theorem 3] in a finite dimensional Hilbert space, but the finite dimen-
sionality asssumption can be dropped.

In an infinite dimensional context there is no guarantee about the attainability of critical angles because
the unit sphere Sx is no longer compact. Despite this fact, it makes sense to refer to the number

gmin(K> =m — gmavx(K—i—)
as the smallest (proper) critical angle of K. We are perhaps abusing of language, but not too seriously.

Theorem 7. For a nontrivial convex cone K in a Hilbert space X, one has

u(K) = sin (9"‘2(K)> . (32)

Proof. By combining Theorems 4 and 5(a), one gets

W(K) = v(K+) = o(K*) = cos (%(Kﬂ) = cos (%(M) = sin (97(1{)) .

O

Formula (32) applies even if K doesn’t admit a critical pair (u,v) forming the angle 6, (K). The lack
of attainability of the smallest critical angle is not a problem at all.
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7 By Way of Conclusion

Theorems 3 and 4, and their dual counterparts, are perhaps the most significant contributions of this paper.
It is not the intention here to display a full list of conclusions that can be drawn from these results, but at
least two corollaries deserve to be properly recorded.

The first corollary concerns the modulability and normality indices of infra-dual cones. Recall that a
closed convex cone K in a Hilbert space X is said to be

infra-dual if K C KT,
supra-dual if K D KT,
self-dual if K=KT.
That K is infra-dual amounts to saying that (z,y) > 0 for all z,y € K.
Corollary 5. Let K be a nontrivial closed convex cone K in a Hilbert space X.
(a) If K is infra-dual, then p(K) < v/2/2 < v(K).
(b) If K is supra-dual, then v(K) </2/2 < p(K).
(c) If K is self-dual, then p(K) = v(K) = /2/2.

Proof. Part (a). Infra-duality of K implies that 6, (K) < /2. Formula (30) yields then v(K) > v/2/2.
The proof of the inequality p(K) < V2 /2 is a bit more delicate. We suppose that K is modulable, otherwise
we are done. According to [11, Proposition 2|, one has

1
——— = sup inf ul| + ||v 33
T = P, o U 1ol (33)

¢(t¢)

with Dg (z) = {(u,v) € X x X 1 u,v € K,u — v = z} denoting the set of all decompositions of a given z as
difference of two vectors in K. We claim that

(u,v) € Dg(z) = |u|| > dist[z,—K] and |jv| > dist[z, K].

Indeed, if £ = u — v with u,v € K, then

ol = llz = (=v)| > dist[e, K],
o] = llz —w| > dist[z, K].
Since K is assumed to be infra-dual, one has —K C K—, with K~ = —K* indicating the negative dual of

K. Hence, dist[z, —K] > dist[z, K] and

inf {llu]l + lv||} > dist[z, K] + dist[z, K~].
(u,v)€D K (x)

We now take on both sides the supremum with respect to z € Bx. By positive homogeneity, this produces
the same result as taking the supremum over the unit sphere Sy . Hence,

C(K) > sup {dist[z, K] + dist[z, K |}.

lloll=1
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In view of (33), we just need to prove that

sup {dist[z, K] + dist[z, K ]} > V2.
ll=1

To check this inequality it suffices to guarantee the existence of a vector x such that

dist[z, K| = g, dist[z, K7] = g, |lz|| = 1. (34)

To see that this system is solvable, we start with a vector w of length /2 /2 lying in the boundary of K. We
take then a unit vector h € X such that

(hyw" —w) <0 Vu' € K. (35)

Geometrically speaking, the inequality (35) means that h is normal to K at w. The collection of all such
h is usually refered to as the normal cone to K at w (cf.[20, Section 2]). By taking w' = 2w and then
w' = (1/2)w, one sees that (h,w) = 0, i.e., h is orthogonal to w. Another useful observation is this: w is a
point in K at minimal distance from w + (v/2/2) h. So, it is not difficult to check that = = w + (v/2/2) h
solves the system (34). Indeed,

l2]* = llw + (V2/2) hl|* = [[w|® + (V2/2)* ||1]* = 1,

distle, K] = o — wl = [(VZ/2) Bl = V3/2,

distle, K] = /[l — (distle, K] = /1 — (vV2/2)° = V32, (36)
the first equality in (36) being a known Pythagorean formula that relates the distance functions dist[-, K]
and dist[-, K~] (cf. [17]).

Part (b). If K is supra-dual, then K is infra-dual. Part (a) yields u(K*) < ﬁ/Z < v(K™). Theorem 5(a)
does the rest of the job.

Part (c). It is obtained by combining (a) and (b). O

Our last corollary concerns a practical algorithm for solving the least-distance problem (12).

Corollary 6. Suppose that K € Z(X) is not a ray. The following statements hold true:

(a) If {(un,vn) }nen, with u, # vy, is a minimizing sequence for the antipodality problem (20), then
the sequence {Qp}tnen defined by (29) is minimizing for the least-distance problem (12).

(b) If K admits an antipodal pair, say (ug,vo), then
QO == (K N (UO - ’Uo)J_) + R(UO — ’Uo)

is an “exact” solution to (12), i.e., an abnormal element of E(X) lying at minimal distance

from K.

Proof. Combine Theorem 4 and the argument developed in the proof of Theorem 3. O
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