
To appear in JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONSNormality and Modulability Indices.Part II: Convex Cones in Hilbert SpacesA. IUSEM1 and A. SEEGER2Abstract. Let K be a closed convex cone in a Hilbert space X. Let BX be the closed unit ballofX and K� = (BX +K) \ (BX � K) . The normality index�(K) = supfr � 0 : rK� � BXgis a coe�cient that measures to which extent the cone K is normal. We establish a formula thatrelates �(K) to the maximal angle ofK . A concept dual to normality is that of modulability. Asa by-product one obtains a formula for computing the modulability index�(K) = supfr � 0 : rBX � K�gofK. The symbol K� stands for the absolutely convex hull ofK \ BX . We show that �(K) canbe expressed in terms of the smallest critical angle ofK .Mathematics Subject Classi�cations: 46B20, 52A05, 54B20.Key Words: Convex cones, normality index, modulability index.1 IntroductionThis is a continuation of our paper [11 ] and therefore we keep the same notation and terminology. Givena normed space X, the symbols BX and SX refer, respectively, to the closed unit ball and the unit sphere.There are several metrics that serve to measure distances between elements of the setÌ(X) � nontrivial closed convex cones in X:In this work we consider the standard choice%(K1 ; K2) = haus(K1 \ BX ; K2 \ BX ) ; (1 )where haus(C1 ; C2) = max� supz2C1 dist[z; C2 ] ; supz2C2 dist[z; C1 ]�1 Instituto de Matem�atica Pura e Aplicada, Estrada Dona Castorina 110 - Jardim Bot
anico, Rio de Janeiro, Brazil (e-mail:iusp@impa. br)2University of Avignon, Department of Mathematics, 33 rue Louis Pasteur, 84000 Avignon, France (e-mail:alberto. seeger@univ-avignon. fr)



stands for the classical Pompeiu-Hausdor� distance between two bounded closed nonempty sets C1 ; C2 , anddist[x; C] refers to the distance from x to the set C. By a convex cone we understand a nonempty set Ksatisfying K +K � K and R+K � K. Saying that a convex cone K is nontrivial simply means that K isdi�erent from f0g and di�erent from the whole space X. For the sake of completeness, we recall also thefollowing two concepts:De�nition 1. Let K be a convex cone K in a normed space X. One says that(a) K is normal if there is a constant � > 0 such that� ( k uk + k vk ) � k u+ vk for all u; v 2 K: (2)(b) K is modulab le if there is a constant  > 0 such that� any x 2 X is expressib le in the form x = u � vwith u; v 2 K satisfying  k (u; v) k � k xk :We are taking k (u; v) k = � k uk 2 + k vk 2	 1=2 ; but any equivalent norm in the Cartesian product X � Xis acceptable. Modulability is a fundamental concept of the theory of convex cones. Unfortunately, there isno universal agreement with respect to the terminology. Other names for the concept of modulability canbe found for instance in [12, 14, 19, 22] . The concept of normality is also classical and doesn't need furtherjusti�cation; see for instance the books [4, 19, 22] or the pioneering works by Krein and collaborators [3, 15] .The next theorem is a combination of several sources. We take this result for granted.Theorem 1. Let K be a convex cone K in a normed space X. Then,(a) K is normal ifand only ifK� = (BX +K) \ (BX � K) is bounded.(b) K is modulab le ifand only ifK� = co[(K [ �K) \ BX ] is a neighborhood of the origin.One of the main issues of this paper concerns the practical computation of the normality index�(K) = supfr � 0 : rK� � BXg (3)and the modulability index �(K) = supfr � 0 : rBX � K�g (4)of a nontrivial closed convex cone K. The meanings of these indices are explained in full length in ourprevious work [11 ] . It is not always easy to compute the right-hand sides in (3) and (4) . The evaluation ofthe sets K� and K� is already a di�cult task by itself. The main merit of the present paper is showing that�(K) and �(K) admit nice and simple characterization formulas when the underlying space X is Hilbert.To be more precise, we show that �(K) can be expressed in terms of the maximal angle ofK, whereas �(K)is expressible in terms of the smallest critical angle ofK .Another theme discussed in this paper has to do with the link existing between pointedness and normal-ity. The purpose of Section 4 is establishing the following topological results in the context of an in�nitedimensional Hilbert space:i) With respect to the truncated Pompeiu-Hausdor� metric %, the pointed elements of Ì(X) don't formopen set. Equivalently, the unpointed elements of Ì(X) don't form a closed set.2



ii) By contrast, the abnormal elements of Ì(X) do form a closed set. In fact, the set of abnormal elementsis precisely the %-closure of the set of unpointed elements of Ì(X) .To the best of our knowledge, the above density result is new. By using a duality argument, we establishalso a link between almost reproducibility and modulability.2 A Preliminary Formula for Computing �(K)As mentioned in the introduction, the practical computation of the coe�cient �(K) o�ers sometimes a seriouschallenge. All e�orts in characterizing �(K) by means of alternative formulas are not to be despised. Thenext theorem suggests considering the expression�(K) = infk zk=1 max fdist[z; K] ; dist[�z; K ]g (5)as tool for evaluating �(K) . Of course, the computation of the in�mum (5) is greatly simpli�ed if one knowsin advance the distance function dist[ � ; K] .The term �(K) appears already in references [5] and [9] , but no connection with �(K) has been madeinsofar.Theorem 2. For a nontrivial convex cone K in a normed space X, one has�(K) = �(K) : (6)Proof. We start by proving the inequality �(K) � �(K) . Assume that �(K) > 0, otherwise we are done.We claim that (BX +K) \ (BX � K) � [�(K) ]� 1 BX : (7)Take a nonzero vector x in the above intersection. Sincex 2 BX +K =) dist[x; K ] � 1 ;x 2 BX � K =) dist[�x; K ] � 1 ;one has max fdist[x; K ] ; dist[�x; K ]g � 1 : In view of the positive homogeneity of the distance functiondist[ � ; K ] , one gets �(K) � max� dist � xk xk ; K� ; dist � � xk xk ; K� � � 1k xk :This proves that x belongs to the right-hand side of (7) as needed. We now take care of the reverse inequality�(K) � �(K) . Ab absurdo, suppose that(BX +K) \ (BX � K) � [�(K) + s ]� 1 BX (8)for some s > 0. We must arrive to a contradiction. Take " 2 ]0; s [ and �nd a vector z" 2 X such thatk z"k = 1 ; (9)max fdist[z"; K] ; dist[�z"; K]g < �(K) + ": (10)3



The condition (10) implies that z" 2 (�(K) + ")BX +K;z" 2 (�(K) + ")BX � K:Since K is a convex cone, an elementary rearrangement yields[�(K) + "]� 1 z" 2 (BX +K) \ (BX � K) :In view of (8) and (9) , one gets in such a case[�(K) + "]� 1 � [�(K) + s ]� 1 ;contradicting the fact that " < s .An important merit of Theorem 2 is its great generality: X is any normed space and K is not necessarilyclosed. Since �(cl(K) ) = �(K) , Theorem 2 con�rms that the concept of normality is blind with respect totopological closure, i.e. , a nontrivial convex cone K is normal if and only if cl(K) is normal.We state below some additional by-products of the representation formula (6) . We start with a Lipschitzcontinuity result for the function �( �) . The notationd(K1 ; K2) = infk zk � 1 j dist[z; K1 ] � dist[z; K2 ] jindicates another metric on Ì(X) that is popular among convex analysts [21 ] .Corollary 1. Let K1 and K2 be nontrivial closed convex cones in a normed space X. Then,j �(K1 ) � �(K2) j � d(K1 ; K2) :Proof. It is immediate from (6) and the de�nition of the uniform metric d.We continue with a topological result taking place in our usual metric space (Ì(X) ; %) .Corollary 2. Let X be a normed space. Then,Nor(X) = fK 2 Ì(X) : K is normal gis an open set in (Ì(X) ; %) .Proof. A small adjustment in the proof of [1 , Proposition 1 .2] show thatd(K1 ; K2) � 2 %(K1 ; K2) 8K1 ; K2 2 Ì(X) : (1 1 )Thanks to (1 1 ) and Corollary 1 , the function � : (Ì(X) ; %) ! R turns out to be Lipschitz continuous. Thisproves the announced result.In the same spirit as the radiuses of modulability, solidity, and sharpness, considered in our previouswork [1 1 ] , we introduce now the radius ofnormality�nor(K) = infQ2Ì(X)Q abnorma l %(K; Q) ( 12)4



of a given ofK 2 Ì(X) . The least-distance problem (12) is of interest for itself and will be studied in detailin Section 4.The next corollary is recorded for the sake of later use. Notice, parenthetically, that �nor : (Ì(X) ; %) ! Ris the largest nonexpansive map that vanishes exactly over the abnormal elements of Ì(X) .Corollary 3. IfK is a nontrivial closed convex cone in a Hilbert space X, then �(K) � �nor(K) .Proof. If X is a Hilbert space, then d and % are in fact identical. It su�ces then to apply Corollary 1 andthe pointwise maximality of �nor( �) among all the nonexpansive maps on (Ì(X) ; %) that vanish exactly overthe abnormal elements of Ì(X) .3 The Best Normality Constant and the Angular Coe�cient3. 1 Comparing �(K) and �(K)A number � > 0 satisfying the inequality (2) is called a normality constant of K . The best possiblenormality constant ofK is of course �(K) = infu; v2K(u; v )6=(0 ; 0) k u+ vkk uk + k vk : (13)The number �(K) 2 [0; 1 ] can be used as a tool for quantifying the degree of normality ofK .The purpose of this section is to compare (13) with the much simpler expression�(K) = infu; v2K\SX  u+ v2  : (14)We have divided by 2 in the right-hand side of (14) just to make sure that �(K) 2 [0; 1 ] : We shall come in amoment to the interpretation of the coe�cient �(K) . First, we state:Proposition 1. Let K be a nontrivial convex cone in a normed space X. Then12 �(K) � �(K) � �(K) : (15)Proof. If one adds the constraints k uk = 1 and k vk = 1 in the feasible set of (13) , then one arrives atthe minimization problem (14) . This simple observation shows the second inequality in (15) . The relation�(K) � 2�(K) is obtained as a consequence of the Massera-Sch�a�er inequality [16] which asserts that xk xk � yk yk  � 2 k x � ykmaxf k xk ; k yk gfor all nonzero vectors x; y in a normed space X:In view of Proposition 1 , the term �(K) is also an acceptable candidate as tool for measuring the degreeof normality of K. By the way, are we sure that �(K) and �(K) are di�erent numbers? The answer is yes,but a di�erence can be observed only in a non-Hilbertian setting. We start with an easy example showingthat �(K) and �(K) may di�er. 5



Example 1. Let the plane R2 be equipped with the Manhattan norm k xk = j x1 j + j x2 j , and let K be thenontrivial closed convex cone in R2 given by K = fx 2 R2 : x2 � 0; x1 +x2 � 0g : The set K \ SX is a unionof two segments, namely K \ SX = co f (�1=2; 1=2) ; (0; 1 )g| {z }È1 [ co f (1 ; 0) ; (0; 1 )g| {z }È2 :If u and v are on the same segment, say Èi, then the midpoint (u+v)=2 has unit length because it remains inÈi. Thus, for solving the minimization problem (14) one may suppose that u and v are on di�erent segments,say u 2 È1 and v 2 È2 . If one writesu = t (�1=2; 1=2) + (1 � t) (0; 1 ) ;v = s (1 ; 0) + (1 � s) (0; 1 ) ;then one is lead to minimize  u+ v2  = �� s � t2 �� + 2 � t2 � s2with respect to t; s 2 [0; 1 ] . The in�mum is attained with t = 1 and arbitrary s � 1=2. Thus, �(K) = 1=2:On the other hand, by choosing u = (�1=3; 1=3) and v = (1=3; 0) , one gets�(K) � k u+ vkk uk + k vk = 1=31 < �(K) :Incidentally, Example 1 shows that the components of a pair (u; v) solving (14) don't need to be in theboundary ofK, even ifK is pointed and has nonempty interior. This phenomenon cannot occur in a Hilbertspace setting (cf. [7, Lemma 2.1 ]) .One can sharpen the lower estimate for �(K) if one has additional information on the geometry of thenormed space X. Let cX denote the sphericity defect ofX, i.e. , the in�mum of all c � 0 such that12  xk xk � yk yk  � (1 + c) k x � ykk xk + k ykfor all x; y 2 Xnf0g : The Massera-Sch�a�er inequality implies that that 0 � cX � 1 : This observation andthe very de�nition of cX leads to 12 �(K) � 11 + cX �(K) � �(K) : (16)Corollary 4. IfK is a nontrivial convex cone in a Hilbert space X, then �(K) = �(K) :Proof. It remains to check that �(K) � �(K) , but this is a consequence of (16) and the fact that cX = 0whenever X is a Hilbert space. That a Hilbert space has no sphericity defect follows from the Dunkl-Williamsinequality [2] which asserts that 12  xk xk � yk yk  � k x � ykk xk + k ykfor all x; y 2 Xnf0g :Remark 1 . The Dunkl-Williams inequality doesn't hold in a general normed space. In fact, the Dunkl-Williams inequality characterizes the norms that derive from an inner product (cf. [1 3]) .6



3. 2 Angular Interpretation of �(K)If the norm k � k derives from an inner product h � ; � i , then the coe�cient �(K) admits an interesting angularinterpretation. Indeed, one can write �(K) = cos � �max(K)2 � (17)with �max(K) = supu; v2K\SX arccos hu; vi (18)denoting the maximal angle ofK. The angle maximization problem (18) it of interest for itself and has beenextensively studied in [7] and [8] . The function �max( �) has found a large variety of applications as one cansee in [6, 9, 18] , among other references.By obvious reasons, we refer to �(K) as the angular coe�cient 3 ofK. Notice, incidentally, that�(K) = 0 if and only if �max(K) = �:Recall that a convex cone K in a normed space is said to be pointed if it doesn't contain a line, that isto say, K \ �K = f0g : In a �nite dimensional Hilbert space, pointedness of a nontrivial closed convex coneK is equivalent to the condition �max(K) = �. This fact is no longer true if the Hilbert space is in�nitedimensional.Example 2. Let 2̀(R) be the Hilbert space of square-summable real sequences. Notice thatK = fx 2 2̀(R) : nXk=1 xk � 0; 8n � 1gis a closed convex cone because it is expressible as intersection of closed half-spaces. One can easily checkthat K is pointed. Now, for each n � 1 , we constructun = 1p2n (1 ; �1 ; 1 ; �1 ; : : : ; 1 ; �1| {z }2n terms ; 0; 0; : : :) ;vn = 1p2n (0; 1 ; �1 ; 1 ; �1 ; : : : ; 1 ; �1| {z }2n terms ; 0; 0 : : :) :Notice that (un ; vn) is a pair of unit vectors in K and0 � �(K) �  un + vn2  = 12pn :By letting n ! 1 one gets �(K) = 0. This in�mum is not attained because otherwise K should contain aunit vector and its opposite.Example 2 shows that a pointed closed convex cone may well have a maximal angle equal to �. This iswhat we call the degeneracy phenomenon. We insist on the fact that the degeneracy phenomenon cannotoccur in a �nite dimensional setting.3Inspired by the relation (17), one could use the equality �max(K) = 2 arccos[�(K)] as de�nition of the maximal angle of anontrivial convex cone K contained in a general normed space. Such de�nition is however purely formal.7



3. 3 Lipschitz Behavior of the Angular Coe�cientWe start with a useful lemma on the nonexpansiveness of the angular coe�cient �( �) with respect to themetric #(K1 ; K2) = haus(K1 \ SX ; K2 \ SX ) :The de�nition of # bears a strong resemblance with the de�nition (1 ) that we gave of %. Be aware, however,that # and % are not the same metric.Lemma 1. Let K1 and K2 be nontrivial closed convex cones in a normed space X. Then,j �(K1 ) � �(K2) j � #(K1 ; K2) :Proof. Consider an arbitrary " > 0. Pick up u"; v" 2 K2 \ SX such that u" + v"2  � �(K2) + ":Select then a couple of vectors 
u"; 
v" in K1 \ SX such thatk u" � 
u"k � dist[u"; K1 \ SX ] + ";k v" � 
v"k � dist[v"; K1 \ SX ] + ":One gets 2[�(K1 ) � �(K2) ] � k 
u" + 
v"k � k u" + v"k + 2"� k 
u" � u"k + k 
v" � v"k + 2"� dist[u"; K1 \ SX ] + dist[v"; K1 \ SX ] + 4"� 2 � supw2K2\SX dist[w; K1 \ SX ]� + 4"By letting "! 0 one arrives at�(K1 ) � �(K2) � supw2K2\SX dist[w; K1 \ SX ] � #(K1 ; K2) :The proof of the inequality �(K2) � �(K1 ) � #(K1 ; K2) is analogous.Remark 2. The metric # is majorized by 2%, so the angular coe�cient �( � ) varies in a Lipschitz continuousmanner also with respect to the metric %.4 Antipodality and Distance to AbnormalityWe are interested in better understanding the minimization problem (12) that de�nes the radius of normalityof a given nontrivial closed convex cone K .This section takes place in a Hilbert space setting. Recall that in such a context, the truncated Pompeiu-Hausdor� distance % admits the equivalent formulation%(K1 ; K2) = max� supx2K1\SX dist[x; K2 ] ; supx2K2\SX dist[x; K1 ]� : (19)8



The expression on the right-hand side of (19) is sometimes referred to as the gap distance between K1 andK2 . For computational purposes, it is preferable to work with (19) and not with the original de�nition (1 )of %.As explained next, the least-distance problem (12) turns out to be related to the the angle maximizationproblem (18) . For the sake of convenience, we reformulate (18) in the equivalent formcos[�max(K) ] = infu; v2K\SXhu; vi : (20)As in reference [7] , one says that (u0 ; v0) 2 X � X is an antipodal pair ofK ifu0 ; v0 2 K \ SX and hu0 ; v0i = cos[�max(K) ] : (21 )Since the in�mum in (20) is not necessarily attained, it is helpful to introduce also a suitable concept ofapproximate antipodality.De�nition 2. Let K be a nontrivial convex cone in a Hilbert space X. An antipodal pair ofK withina tolerance level " � 0 is a pair (u"; v") 2 X � X such thatu"; v" 2 K \ SX and hu"; v"i � cos[�max(K) ] + ": (22)Antipodality in the sense (21 ) is recovered by setting " = 0. Example 2 nicely illustrates the fact thatantipodal pairs may not exist for nontrivial closed convex cones in in�nite dimensional Hilbert spaces.In the sequel, Rw = f tw : t 2 Rg denotes the line generated by a nonzero vector w 2 X and w? indicatesthe hyperplane that is orthogonal to this line.Lemma 2. Let K be a nontrivial closed convex cone in a Hilbert space X. Let (u"; v") be an antipodalpair ofK within a tolerance level " � 0. Assume that u" 6= v" and de�neQ" = (K \ (u" � v")? ) +R(u" � v") :Then, Q" is an unpointed closed convex cone such thatdist[x; K ] � r 1 + hu"; v"i2 8x 2 Q" \ SX ; (23)dist[x; Q"] � � 1 + "1 � hu"; v"i � r 1 + hu"; v"i2 8x 2 K \ SX : (24)Proof. This result was obtained in [10] for the particular case " = 0 and under the additional assumptionthat X is �nite dimensional. Important adjustments in the proof are needed in order to take care of thegeneral case. For convenience, we introduce the notationw" = k u" � v"k � 1 (u" � v")and divide the proof in three steps.Step 1 . The convex cone Q" is closed because it is expressible as sum of a line Rw" and a closed setcontained in w?" . Observe that Q" is unpointed because Q" \ �Q" contains the unit vector w".9



Step 2. We establish the inequality (23) . Take any x 2 Q" \ SX , so that x = z + tw", with z 2 K \ w?"and t 2 R. Clearly t = hx; w"i , and therefore j tj � 1 by the Cauchy-Schwarz inequality. Consider the pointy de�ned as y = ( z + (t=2) k u" � v"k u" if t � 0;z � (t=2) k u" � v"k v" if t � 0:Note that in both cases y belongs to K , because z; u"; v" 2 K . We proceed to estimate the distance betweenx and y. Consider �rst the case of t � 0. One hask x � yk 2 = t2  w" � r 1 � hu"; v"i2 u" 2= t2 " 1 + 1 � hu"; v"i2 � 2r 1 � hu"; v"i2 hu"; w"i# :Plugging in the above line the de�nition of w", one ends up withk x � yk 2 = t2 � 1 + hu"; v"i2 � :Hence, dist[x; K ] � k x � yk � p(1 + hu"; v"i )=2 : The case of t � 0 is dealt in a similar way.Step 3. We prove the inequality (24) . Take x 2 K \ SX and consider the vectory = x+ j hx; w"i jk u" � v"k (u" + v") : (25)We decompose y in the formy = x � hx; w"iw" + j hx; w"i jk u" � v"k (u" + v")| {z }�y + hx; w"iw"| {z }
y :Clearly 
y 2 Rw". We claim that �y 2 K \ w?" . For checking that �y 2 w?" , note thath �y; w"i = hx; w"i � hx; w"i k w"k 2 + j hx; w"i jk u" � v"k 2 hu" + v"; u" � v"i= j hx; w"i jk u" � v"k 2 hu" + v"; u" � v"i = 0;using the fact that k w"k = k u"k = k v"k = 1. For checking that �y 2 K, rewrite �y as�y = x � hx; w"ik u" � v"k (u" � v") + j hx; w"i jk u" � v"k (u" + v")= ( x+ 2 k u" � v"k � 1 j hx; w"i j v" if hx; w"i � 0;x+ 2 k u" � v"k � 1 j hx; w"i j u" if hx; w"i � 0:10



In both cases, �y 2 K because x; u" and v" belong to K. We conclude that y = �y + 
y belongs to Q". Weestimate next the distance between x and y. Directly from (25) one getsk x � yk = j hx; u" � v"i jk u" � v"k 2 k u" + v"k = j hx; u" � v"i j2(1 � hu"; v"i )p2(1 + hu"; v"i ) :In other words, k x � yk = � r 1 + hu"; v"i2 with � = j hx; u" � v"i j1 � hu"; v"i � 0:To complete the proof of (24) we must check that � � 1 + (1 � hu"; v"i )� 1 "; i.e. ,j hx; u" � v"i j � 1 � hu"; v"i + ": (26)Since (u"; v") satis�es the approximate antipodality condition (22) , it is clear thathu"; v"i � hx; v"i + ";hu"; v"i � hx; u"i + ":and, a posteriori, hu"; v"i � hx; v"i + "+ (1 � hx; u"i ) ;hu"; v"i � hx; u"i + "+ (1 � hx; v"i ) :The combination of the last two inequalities can be written in the compact formmaxf hx; u"i � hx; v"i ; hx; v"i � hx; u"ig � 1 � hu"; v"i + ";but this is precisely (26) .Keeping in mind the characterization (19) of %, one sees that (23) and (24) produce%(K; Q") � � 1 + "1 � hu"; v"i � r 1 + hu"; v"i2 ;i.e. , one gets an upper estimate for the truncated Pompeiu-Hausdor� distance between K and Q". This ob-servation has some noteworthy consequences. For example, it allows us to establish the following topologicalresult relating the sets Abn(X) = fK 2 Ì(X) : K is abnormal g ;U(X) = fK 2 Ì(X) : K is unpointed g :Theorem 3. Let X be a Hilbert space. Then,�nor(K) = infQ2Ì(X)Q unpointed %(K; Q) 8K 2 Ì(X) :In particular, Abn(X) is the closure with respect to the metric % of the set U(X) .1 1



Proof. The set Abn(X) is closed because its complement is open (cf. Corollary 2) . Since U(X) is containedin Abn(X) , one gets cl% [U(X) ] � Abn(X) and�nor(K) � infQ2Ì(X)Q unpointed %(K; Q) : (27)We claim that infQ2Ì(X)Q unpointed %(K; Q) � �(K) : (28)IfK is a ray, then �(K) = 1 and (28) holds trivially. Assume then that K is not a ray. Consider a minimizingsequence f (un ; vn)gn� 1 for the antipodality problem (20) , i.e. , un ; vn 2 K \ SX are such that"n = hun ; vni � cos[�max(K) ]goes to 0 as n ! 1. Since K is not a ray, there is no loss of generality in assuming that un 6= vn . In viewof Lemma 2, the set Qn = (K \ (un � vn)? ) +R(un � vn) (29)belongs to U(X) and infQ2Ì(X)Q unpointed %(K; Q) � %(K; Qn) � � 1 + "n1 � hun ; vni � r 1 + hun ; vni2 :But "n ! 0 and hun ; vni ! cos[�max(K) ] 6= 1. Hence,� 1 + "n1 � hun ; vni � r 1 + hun ; vni2 ! r 1 + cos[�max(K) ]2 = �(K) :This takes care of (28) . By-the-way, if K is abnormal, then �(K) = 0 and %(K; Qn) ! 0. In other words,Abn(X) � cl% [U(X) ] : Hence, U(X) is dense in Abn(X) and (27) is in fact an equality.Remark 3. Let K and f (un ; vn)gn2N be as in Example 2. We know that K is abnormal. Let Qn be de�nedby (29) . Since f (un ; vn)gn2N is a minimizing sequence for (20) , it follows that %(K; Qn) ! 0. Observe thateach Qn is unpointed but the limit K is pointed ! This con�rms that U(X) is not a closed set in the metricspace (Ì(X) ; %) .5 Relating �(K) to the Maximal Angle of KThe computation of �(K) is not always as easy as one may thing at �rst sight, so we consider now analternative characterization of the normality index �(K) . This time our analysis is restricted to a Hilbertspace setting.Theorem 4. For a nontrivial closed convex cone K in a Hilbert space X, one has�(K) = �(K) = �nor(K) : (30)12



Proof. Most of the heavy work has been done already. From the proof of Theorem 3 we know already that�nor(K) � �(K) : On the other hand, Theorem 2 and Corollary 3 yield �(K) = �(K) and �(K) � �nor(K) ,respectively. So, we just need to prove that �(K) � �(K) : (31 )The inequality (31 ) is established in [9, Proposition 1 ] , but only in a �nite dimensional Hilbert space setting.In a general Hilbert space the proof follows a similar pattern, except that now the in�mum in the de�nitionof �(K) is not necessarily attained. One works then with an approximate solution z" as in (9)-(10) , and,of course, at the very end of the proof one lets " ! 0. It is not worthwhile writing down all the detailsagain.That k � k derives from an inner product is an essential assumption in Theorem 4. The following twoexamples show that the equality �(K) = �(K) is not necessarily true in a general normed space.Example 3. Consider the space C( [a; b] ; R) of continuous functions x : [a; b] ! R equipped with the uniform(or Chebyshev) norm k xk = maxa� t� b j x(t) j : As indicated in [1 1 , Example 6] , for the closed convex coneK = fu 2 C( [a; b] ; R) : u(t) � 0 8t 2 [a; b]gone has �(K) = 1 : We claim that �(K) = 1=2. To see this, take any pair of vectors u; v 2 K \ SX . Lett� 2 [a; b] be such that u(t�) = 1 . Then, k u+ vk � u(t�) + v(t�) � 1 ; getting in this way �(K) � 1=2. Thislower bound is attained by choosing for instanceu(t) = (b � a)� 1 (t� a) ; v(t) = (b � a)� 1 (b � t) :In the above example one gets �(K) > �(K) , but obtaining the reverse inequality �(K) < �(K) is alsopossible.Example 4. Suppose now that C( [a; b] ; R) is equipped with the norm k xk = Rba j x(t) j dt. Let K be the samecone as in Example 3. This time one has �(K) = 1 because k u + vk = k uk + k vk for all u; v 2 K: On theother hand, �(K) = 1=2 (cf. [1 1 , Example 7]) .6 DualizationWe continue working in a Hilbert space setting and �dualize� some of the results established in the previoussections. What we do basically is exploiting the involutory relation between a closed convex cone K � Xand its dual cone K+ = fy 2 X : hy; xi � 0 8x 2 Kg :Of course, one can recover the original cone K starting from K+ , to witK = fx 2 X : hy; xi � 0 8y 2 K+g :Modulability and normality are dual concepts. There are two ways of expressing this fact in a moreprecise manner: either in terms of the indices �( �) and �( �) , or in terms of the radiuses �nor( �) and �mod ( �) .Theorem 5. Let K be a closed convex cone in a Hilbert space X. Then,13



(a) �(K) = �(K+) and �(K) = �(K+) .(b) �mod (K) = �nor(K+) and �nor(K) = �mod (K+) .Proof. Part (a) is established in [11 , Theorem 6]. Part (b) is obtained by exploiting the Walkup-WetsIsometry Theorem (cf. [23]) which asserts that Q 7! Q+ is a distance-preserving operation on (Ì(X) ; %) . Theproof of the �rst formula in (b) runs as follows:�mod (K) = infQ2Ì(X)Q not modulable %(K; Q) = infQ2Ì(X)Q not modulable %(K+ ; Q+)= infP2Ì(X)P abnormal %(K+ ; P) = �nor(K+) :The second formula in (b) is proven in a similar way.A convex cone K in a normed space X is called almost reproducing if span(K) = K � K is a densesubspace of X. Recall that a closed convex cone K in a reexive Banach space X is almost reproducing ifand only ifK+ is pointed.The next theorem relates the setsNar(X) = fK 2 Ì(X) : K is not almost reproducing g ;Nmod(X) = fK 2 Ì(X) : K is not modulable g ;as well as the functions �mod ( �) and �( �) .Theorem 6. Let X be a Hilbert space. Then,(a) For all K 2 Ì(X) one has �mod (K) = infQ2Nar(X) %(K; Q) :In particular, Nmod(X) is the closure with respect to the metric % of the set Nar(X) .(b) The radius ofmodulability ofK 2 Ì(X) admits also the representation�mod (K) = �(K) :Proof. Part (a) is a matter of rephrasing Theorem 3. We just need to keep in mind the duality formulas ofTheorem 5(b) and the fact thatNar(X) = fK 2 Ì(X) : K+ is not pointed g ;Nmod(X) = fK 2 Ì(X) : K+ is abnormal g :Part (b) is also a matter of using duality arguments. By recalling Theorems 5(b) and 4, in that order, onegets the equalities �mod (K) = �nor(K+ ) = �(K+) :Theorem 5(a) yields �(K+ ) = �(K) and completes the proof of the theorem.14



6. 1 Relating �(K) to the Smallest Critical Angle of KWhat means such a thing as the smallest critical angle of K? What is a critical angle anyway? Thesequestions need to be clari�ed before formulating the dual version of Theorem 4.The concept of critical angle derives from the �rst-order stationarity (or criticality) conditions for theantipodality problem (20) . It reads as follows (cf. [7, 8]) :De�nition 3. Let K be a nontrivial closed convex cone in a Hilbert space X. A critical pair ofK isany pair (u; v) 2 X � X ofvectors satisfyingu; v 2 K \ SX ;v � hu; viu 2 K+ ;u � hu; viv 2 K+ :The angle �(u; v) = arccoshu; vi formed by a critical pair is called a critical angle. The adjectiveproper is added when u and v are not collinear, that is to say, j hu; vi j 6= 1 .Improper critical angles are irrelevant and usually left aside from the discussion. The proper criticalangles of K and those of K+ are related by a certain reexion principle whose formulation is astonishinglysimple: � is a proper critical angle ofK () � � � is a proper critical angle ofK+ :This principle was established in [8, Theorem 3] in a �nite dimensional Hilbert space, but the �nite dimen-sionality asssumption can be dropped.In an in�nite dimensional context there is no guarantee about the attainability of critical angles becausethe unit sphere SX is no longer compact. Despite this fact, it makes sense to refer to the number�min (K) = � � �max(K+)as the smallest (proper) critical angle ofK. We are perhaps abusing of language, but not too seriously.Theorem 7. For a nontrivial convex cone K in a Hilbert space X, one has�(K) = sin� �min (K)2 � : (32)Proof. By combining Theorems 4 and 5(a) , one gets�(K) = �(K+) = �(K+) = cos � �max(K+)2 � = cos � � � �min (K)2 � = sin� �min (K)2 � :Formula (32) applies even if K doesn't admit a critical pair (u; v) forming the angle �min (K) . The lackof attainability of the smallest critical angle is not a problem at all.
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7 By Way of ConclusionTheorems 3 and 4, and their dual counterparts, are perhaps the most signi�cant contributions of this paper.It is not the intention here to display a full list of conclusions that can be drawn from these results, but atleast two corollaries deserve to be properly recorded.The �rst corollary concerns the modulability and normality indices of infra-dual cones. Recall that aclosed convex cone K in a Hilbert space X is said to be8<: infra-dual if K � K+ ;supra-dual if K � K+ ;self-dual if K = K+ :That K is infra-dual amounts to saying that hx; yi � 0 for all x; y 2 K:Corollary 5. Let K be a nontrivial closed convex cone K in a Hilbert space X.(a) IfK is infra-dual, then �(K) � p2=2 � �(K) .(b) IfK is supra-dual, then �(K) � p2=2 � �(K) .(c) IfK is self-dual, then �(K) = �(K) = p2=2.Proof. Part (a) . Infra-duality of K implies that �max(K) � �=2. Formula (30) yields then �(K) � p2=2.The proof of the inequality �(K) � p2=2 is a bit more delicate. We suppose that K is modulable, otherwisewe are done. According to [11 , Proposition 2] , one has1�(K) = supk xk � 1 inf(u; v)2DK(x ) f k uk + k vk g| {z }�(K) (33)with DK (x) = f (u; v) 2 X � X : u; v 2 K; u � v = xg denoting the set of all decompositions of a given x asdi�erence of two vectors in K. We claim that(u; v) 2 DK (x) =) k uk � dist[x; �K] and k vk � dist[x; K ] :Indeed, if x = u � v with u; v 2 K , thenk uk = k x � (�v) k � dist[x; �K] ;k vk = k x � uk � dist[x; K ] :Since K is assumed to be infra-dual, one has �K � K� , with K� = �K+ indicating the negative dual ofK. Hence, dist[x; �K ] � dist[x; K� ] andinf(u; v)2DK(x ) f k uk + k vk g � dist[x; K ] + dist[x; K� ] :We now take on both sides the supremum with respect to x 2 BX . By positive homogeneity, this producesthe same result as taking the supremum over the unit sphere SX . Hence,�(K) � supk xk=1fdist[x; K ] + dist[x; K� ]g :16



In view of (33) , we just need to prove thatsupk xk=1fdist[x; K ] + dist[x; K� ]g � p2 :To check this inequality it su�ces to guarantee the existence of a vector x such thatdist[x; K ] = p22 ; dist[x; K� ] = p22 ; k xk = 1 : (34)To see that this system is solvable, we start with a vector w of length p2=2 lying in the boundary ofK. Wetake then a unit vector h 2 X such that hh; w 0 � wi � 0 8w 0 2 K: (35)Geometrically speaking, the inequality (35) means that h is normal to K at w . The collection of all suchh is usually refered to as the normal cone to K at w (cf. [20, Section 2]) . By taking w 0 = 2w and thenw 0 = (1=2)w , one sees that hh; wi = 0, i.e. , h is orthogonal to w . Another useful observation is this: w is apoint in K at minimal distance from w + (p2=2) h. So, it is not di�cult to check that x = w + (p2=2) hsolves the system (34) . Indeed,k xk 2 = k w + (p2=2) hk 2 = k wk 2 + (p2=2)2 k hk 2 = 1 ;dist[x; K ] = k x � wk = k (p2=2) hk = p2=2;dist[x; K� ] =pk xk 2 � (dist[x; K ] )2 =q1 � (p2=2)2 = p2=2; (36)the �rst equality in (36) being a known Pythagorean formula that relates the distance functions dist[ � ; K]and dist[ � ; K� ] ( cf. [1 7]) .Part (b) . IfK is supra-dual, then K+ is infra-dual. Part (a) yields �(K+ ) � p2=2 � �(K+) : Theorem 5(a)does the rest of the job.Part (c) . It is obtained by combining (a) and (b) .Our last corollary concerns a practical algorithm for solving the least-distance problem (12) .Corollary 6. Suppose that K 2 Ì(X) is not a ray. The following statements hold true:(a) If f (un ; vn)gn2N , with un 6= vn , is a minimizing sequence for the antipodality problem (20), thenthe sequence fQngn2N de�ned by (29) is minimizing for the least-distance problem (1 2).(b) IfK admits an antipodal pair, say (u0 ; v0) , thenQ0 = (K \ (u0 � v0)? ) +R(u0 � v0)is an � exact� solution to (1 2), i. e. , an abnormal element of Ì(X) lying at minimal distancefrom K.Proof. Combine Theorem 4 and the argument developed in the proof of Theorem 3.Acknowledgements . This research was carried out within the framework of the Brazil-France CooperationAgreement in Mathematics. 17
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