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Abstract

For the solution of non-symmetric or indefinite linear systems arising from dis-
cretizations of elliptic problems, two-level additive Schwarz preconditioners are
known to be optimal in the sense that convergence bounds for the preconditioned
problem are independent of the mesh and the number of subdomains. These bounds
are based on some kind of energy norm. However, in practice, iterative methods
which minimize the Euclidean norm of the residual are used, despite the fact that
the usual bounds are non-optimal, i.e., the quantities appearing in the bounds may
depend on the mesh size; see [X.-C. Cai and J. Zou, Numer. Linear Algebra Appl.,
9:379–397, 2002]. In this paper, iterative methods are presented which minimize the
same energy norm in which the optimal Schwarz bounds are derived, thus maintain-
ing the Schwarz optimality. As a consequence, bounds for the Euclidean norm mini-
mization are also derived, thus providing a theoretical justification for the practical
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derived. Numerical experiments illustrate the theoretical developments.
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1 Introduction

We consider minimal residual methods for the solution of non-symmetric or
indefinite large systems of linear equations of the form

Bx = f, (1)

where B is the discretization of a partial differential operator; see Section 2 for
a description of the class of operators we consider. GMRES [26] is a popular
Krylov subspace method for the iterative solution of non-symmetric linear
systems, where at each step the norm of the residual is minimized over nested
affine spaces of increasing dimension. The norm used in this minimization is
usually taken to be the l2 norm, i.e., the Euclidean norm associated with the
standard inner product (x, y) = xT y. For references on discussions of other
inner products in this context, see Section 4.

Additive Schwarz (AS) refers to a class of extensively used preconditioners
for (1); we describe them in Section 2. There are two main components to
their appeal. First, they are easily parallelizable, since several smaller linear
systems need to be solved: one system for each of the subdomains, usually
corresponding to the restriction of the differential operator to that subdo-
main. These are called local problems. Second, if a coarse problem is intro-
duced, they are optimal in the sense that bounds on the convergence rate of
the preconditioned iterative method are independent (or slowly dependent)
on the finite element mesh size and the number of subproblems; see, e.g.,
[24], [30], [32]. These bounds are given using some kind of energy norm (or
equivalent Sobolev H1 norm), i.e., the norm induced by the A-inner product
(x, y)A = xT Ay, for some appropriate symmetric positive definite matrix A.
Usually A is taken to be the symmetric part of B, i.e., (B + BT )/2, if it is
positive definite (i.e., if B is positive real), or some other symmetric positive
definite matrix related to B; see further Section 2 for the operators we consider
here.

Cai and Zou [13] pointed out that when using AS with GMRES minimizing
the l2 norm of the residual, the optimality results of AS may be lost. They show
explicit examples in which the quantities used in the GMRES convergence
bounds depend on the mesh size. Nevertheless, this AS/GMRES method is
widely used, e.g., it is standard in PETSc [4]; see also [24], [32]. In this paper,
we present a version of GMRES where the minimization is done using some
energy norm. In this form, we preserve the optimality of the preconditioner.
Thus, both the bounds for the minimal residual method and those providing
the independence of the mesh are in the same energy norm. By using the
same energy norm in the minimization as that used to obtained the optimal
bounds, one avoids the possible pitfalls of the mesh dependence in the bounds
highlighted by Cai and Zou [13]. In particular we mention that while Cai and
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Zou [13] found that certain operators cease to be positive real (in the l2 norm),
we show that they become positive real in the energy norm; cf. the discussion
in [20, p. 32].

The iterative methods using the energy norm are more expensive at each step,
and thus we do not advocate their use in practice in all cases; see Remark 7.1
for cases when it might be computationally advantageous to use the energy
norm minimization methods. As it turns out, the analysis of the energy norm
based methods do provide the theoretical justification for the use of the Eu-
clidean norm based methods; see Section 6. We show that asymptotically, for
a fixed mesh, the two behave in the same manner. Therefore, we say that
the standard AS/GMRES is asymptotically optimal. We show experimentally
that for many problems the asymptotic regime occurs rather rapidly, and thus,
the number of iterations to achieve a desired small tolerance is the same using
either method; see Section 7.

We consider both left and right preconditioning. We show relations between
these two situations, both in the Euclidean and the energy norm; see Re-
mark 3.1 and Proposition 5.1. These relations provide us with optimality re-
sults in both left and right preconditioning.

2 Additive Schwarz methods for a class of non-symmetric problems

In this section, we follow the description of a class of non-symmetric problems
from [32, chapter 11]; see also [11], [12], [24], [30, section 5.4].

Let Ω ⊂ R
d be a region of interest which is polygonal and an open bounded

domain, and let Th(Ω) be a regular shaped and quasi-uniform triangulation
of Ω. Let V be the traditional finite element space formed by piecewise linear
and continuous functions vanishing on the boundary of Ω; for details about
finite elements formulations, see, e.g., [7], [8]. Consider the following discrete
partial differential equation. Find u ∈ V such that

b(u, v) = f(v) for all v ∈ V,

where

b(u, v)= a(u, v) + s(u, v) + c(u, v), (2)

a(u, v)=
∫

Ω
∇u · ∇v dx, (3)

s(u, v) =
∫

Ω
(b · ∇u)v +(∇ · bu)v dx, b ∈ R

d,

c(u, v) =
∫

Ω
c uv dx, and f(v) =

∫

Ω
f v dx.
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We note that a(·, ·) is positive definite, s(·, ·) is antisymmetric, and c(·, ·) is
an L2 inner product with a weight function c ∈ L∞ smooth enough. Hence, if
the mesh size is small enough, this problem has a unique solution [32].

Let A and B be the matrix representations of vT Au = a(u, v) and vT Bu =
b(u, v), respectively. We mention that these matrix representations depend
on the type of boundary conditions, but not on the values of the bound-
ary conditions. Since there is a one-to-one correspondence between functions
in the finite element space and nodal values, sometimes we abuse the no-
tation and do not distinguish between them. Let ‖v‖a = (a(v, v))1/2, and
‖v‖A = (vTAv)1/2 be the corresponding norms in V and in R

n, respectively.
Considering zero Dirichlet boundary conditions and using elementary results
we have:

(1) Continuity: there is a constant C, such that

|b(u, v)| ≤ C‖u‖a‖v‖a, u, v ∈ H1
0(Ω).

(2) A G̊arding inequality: there is a constant C, such that

‖u‖2
a − C‖u‖2

L2(Ω) ≤ b(u, u), u ∈ H1
0(Ω).

(3) There is a constant C, such that

|s(u, v)| ≤ C‖u‖a‖v‖L2(Ω), u, v ∈ H1
0(Ω),

and

|c(u, v)| ≤ C‖u‖L2(Ω)‖v‖L2(Ω), u, v ∈ H1
0(Ω).

(4) Regularity (valid for polygonal and smooth domains): there is a constant
C, independent of g, where the solution w of the adjoint equation

b(φ, w) = (g, φ), φ ∈ H1
0(Ω),

satisfies

‖w‖H1+γ (Ω) ≤ C‖g‖L2(Ω),

for some γ > 1/2.

We introduce a decomposition of V into a sum of N +1 subspaces RT
i Vi ⊂ V ,

and

V = RT
0 V0 + RT

1 V1 + · · ·+ RT
NVN . (4)

Here we denote by RT
i : Vi → V the extension operator from Vi to V . We

note that the decomposition (4) is not necessarily a direct sum of subspaces.
Often, the subspaces RT

i Vi, i = 1, . . . , N , are related to a decomposition of
the domain Ω into overlapping subregions Ωδ

i of size O(H) covering Ω. Here δ
refers to the amount of overlap between the subregions. The subspace RT

0 V0
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is the coarse space. For ui, vi ∈ Vi define

bi(ui, vi) = b(RT
i ui, R

T
i vi), ai(ui, vi) = a(RT

i ui, R
T
i vi).

Let

Bi = RiBRT
i , Ai = RiART

i

be the matrix representations of these local bilinear forms. For i = 0, . . . , N ,
we define P̃i : V → Vi, by

bi(P̃iu, vi) = b(u, RT
i vi), vi ∈ Vi,

and Q̃i : V → Vi by

ai(Q̃iu, vi) = a(u, RT
i vi), vi ∈ Vi.

It is possible to show that the matrices Q̃i are well-defined (since the matrices
Ai are invertible) and for H small enough the matrices P̃i are well-defined
(since the matrices Bi are invertible for small H); see [12], [32]. We now set

Pi = RT
i P̃i = RT

i B−1
i RiB, Qi = RT

i Q̃i = RT
i A−1

i RiB,

and we introduce the additive operators

P (1) =
N
∑

i=0

Pi =

(

N
∑

i=0

RT
i B−1

i Ri

)

B, (5)

P (2) = P0 +
N
∑

i=1

Qi =

(

RT
0 B−1

0 R0 +
N
∑

i=1

RT
i A−1

i Ri

)

B. (6)

The following result can be found, e.g., in [12], [32].

Theorem 2.1 There exist constants H0 > 0, c(H0) > 0, C(H0) > 0, and
C0(δ), such that if H ≤ H0, then for i = 1, 2, and u ∈ V ,

a(u, P (i)u)

a(u, u)
≥ cp, (7)

and

‖P (i)u‖a ≤ Cp‖u‖a, (8)

where Cp = C(H0) and cp = C0(δ)
−2c(H0).

We mention that similar bounds also hold for hybrid versions of the precon-
ditioners [32].
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3 Preconditioned GMRES

In this section we first review the standard preconditioned GMRES [26] (min-
imizing the Euclidean norm of the residual), which we use later as a model for
other versions. We begin with left preconditioned GMRES.

It follows from the form of the preconditioners (5) and (6) that we can write
generically P (i) = M−1B. The first factor is indeed non-singular, so this nota-
tion is consistent; see [6], [18], [23]. The left preconditioned problem is therefore
given by

M−1Bx = M−1f. (9)

Let x0 be an initial approximation, r0 = f − Bx0 the corresponding initial
residual, and s0 = M−1r0. The left preconditioned GMRES minimizes the
residual norm

‖M−1f − M−1Bx‖2 = ‖M−1r0 − M−1B(x − x0)‖2 , (10)

among all vectors x from the affine subspace

x0 + KL
m = x0 + span{s0, M

−1Bs0, . . . , (M
−1B)m−1s0},

where KL
m is the Krylov subspace generated by M−1B and s0.

Let Zm = [z1, . . . , zm] be a matrix whose columns are an orthonormal basis
of KL

m, such that the Arnoldi relation

M−1BZm = Zm+1H̄
L
m (11)

holds, where H̄L
m is (m + 1) × m upper Hessenberg and z1 = s0/β. Let H̄m =

H̄L
m. It follows that since we are looking for x − x0 = Zmy for some y ∈ R

m,
minimizing (10) is equivalent to finding the minimizer of the smaller problem

ym = argminy∈Rm‖βe1 − H̄my‖2 , (12)

and setting xm = x0 +Zmym; see , e.g., [5], [25], for further algorithmic details.

We present next an algorithm to compute the m-th approximation xm with
left preconditioned GMRES. This algorithm correspond to full GMRES; for
restarted GMRES one sets x0 := xm and restarts the iteration.

Algorithm 3.1

1. Compute r0 = f − Bx0, s0 = M−1r0, β = (s0, s0)
1/2, and z1 = s0/β

2. For j = 1, . . . , m, Do:
3. Compute w := Bzj, and z := M−1w
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4. For i = 1, . . . , j, Do:
5. hi,j := (z, zi)
6. z := z − hi,jzi

7. EndDo
8. Compute hj+1,j = (z, z)1/2 and zj+1 = z/hj+1,j

9. EndDo
10. Define Zm := [z1, . . . , zm], H̄m = {hi,j}1≤i≤j+1;1≤j≤m

11. Compute ym = argminy‖βe1 − H̄my‖2, and xm = x0 + Zmym

Observe that the main storage requirements of Algorithm 3.1 are the vectors
z1, . . . , zm ∈ R

n.

Consider now the right preconditioned problem given by

BM−1u = f, (13)

where x = M−1u. Let u0 = Mx0. The right preconditioned GMRES minimizes
the residual norm ‖f−BM−1u‖2, among all vectors u from the affine subspace

u0 + KR
m = u0 + span{r0, BM−1r0, . . . , (BM−1)m−1r0}.

That is, um = u0 + Vmym, where here Vm is a matrix whose columns are an
orthonormal basis of KR

m. The Arnoldi relation in this case is

BM−1Vm = Vm+1H̄
R
m. (14)

Thus xm = M−1um = x0 + M−1Vmym, so that xm can be computed directly
from ym, and in fact

xm ∈ x0 + M−1KR
m. (15)

A standard algorithm for right preconditioned GMRES would be similar to
Algorithm 3.1, with the appropriate changes, with one set of m vectors in R

n

as main storage requirement.

Remark 3.1 We point out that there is a close relationship between left and
right preconditioned GMRES; see, e.g., [25, Section 9.3.4]. In fact, it can be
seen that M−1KR

m = KL
m (cf. (15)), and therefore the columns of both Zm

and M−1Vm are bases of the same space KL
m. Since the columns of Zm+1 are

orthogonal, there exists a non-singular upper triangular matrix

Um+1 =







Um

0T

∣

∣

∣

∣

∣

∣

∣

um+1







such that
M−1Vm+1 = Zm+1Um+1 = [Zm|zm+1]Um+1. (16)
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Thus from (14), premultiplying by M−1, and using (16) we obtain
M−1BZmUm = Zm+1Um+1H̄

R
m. Comparing this with the Arnoldi relation for

left preconditioning (11), we conclude that

H̄L
m = Um+1H̄

R
mU−1

m ;

cf. [17] where a similar relation is found in a different context.

4 Convergence bounds for minimal residual methods

GMRES is in fact an implementation of the generalized conjugate residual
method (GCR) [15] where the same minimization

‖rm‖2 = min
x∈x0+Km

‖f − Bx‖2, (17)

is sought, where

Km = Km(B, r0) = span{r0, Br0, B
2r0, . . . , B

m−1r0}.

The difference is that while in GMRES, as we have seen, the basis used for
Km has orthogonal vectors, in GCR one constructs a basis of Km which is
BT B-orthogonal. There are also implementation differences. For example, as
we have seen, in GMRES, the minimization problem is transformed into one
of reduced size. This is performed with the QR factorization of H̄m, where the
orthogonal matrix Q is not explicitly computed.

Thus, convergence analysis of GCR and GMRES is the same assuming ex-
act arithmetic. We only mention GCR here to apply the convergence bounds
developed for it to GMRES. There are two classical convergence bounds for
these methods given in [16], [15, Theorem 3.3]. We present these bounds as-
suming the linear system (1) with no preconditioning, i.e., M = I. The first of
these bounds assumes that (B + BT )/2, the symmetric part of B, is positive
definite, i.e., that B is positive real. In this case, one has that

‖rm‖2 ≤

(

1 −
c2

C2

)m/2

‖r0‖2 , (18)

where for each real vector x,

c = min
x6=0

(x, Bx)

(x, x)
and C = max

x6=0

‖Bx‖2

‖x‖2

. (19)

The bound (18) has been mentioned in conjunction with Schwarz precondi-
tioners; see, e.g., [24], [32], [36], although Cai and Zou [13] present an example

8



where the operator is not positive real (in the l2 norm), and therefore, this
bound is not applicable.

Our aim is to consider a different norm in the minimization (17). Several
authors explored the theory of such a different norm, either explicitly or im-
plicitly, and mostly in a formal manner for the classification of Krylov subspace
methods; see [2], [3, Chapter 12] [14], [21], [22], [33], [34], [35], and also [17] for
a weighted norm, and [1] for a recent use of these ideas in a different context.

While the bound (18) and the constants (19) where originally derived using the
Euclidean inner product and the associated norm, they are valid for minimal
residual methods using any inner product and its induced norm; see, e.g.,
[14, Section 6.1], [20], [31], [24, Section 4.2], [36]. In other words, as long as
c > 0 and C is bounded, as defined in (19) with the proper inner product
and norm, then, the bound (18) applies to a minimal residual method where
the minimization is taken in the same norm. In the next section we provide
an appropriate inner product and corresponding energy norm for the left and
right preconditioned generalized minimal residual method.

5 Preconditioned GMRES minimizing some energy norm

In this section, we derive GMRES versions minimizing the energy norm of the
residual. We discuss first the left preconditioned problem (9) minimizing the
A-norm of the residual, where A is a symmetric positive definite matrix. The
right preconditioned problem is treated later in the section.

In terms of implementation of left preconditioned GMRES with the A-inner
product, it suffices to replace appropriately each inner product in Algorithm 3.1,
i.e., in steps 1, 5, and 8. For example, in step 5, we would have

hi,j := (z, zi)A = zT Azi. (20)

In this manner, the vectors z1, . . . , zm are A-orthonormal, i.e.,

ZT
mAZm = I. (21)

Note that this is different than the situation in [1] where an orthogonal basis
(with respect to the Euclidean inner product) is kept. We point out that the
usual Arnoldi relation (11) still holds here, but the basis matrix Zm and the
upper Hessenberg matrix H̄m = H̄L

m here are different than in (11).

If x − x0 = Zmy, y ∈ R
m, i.e., writing x ∈ x0 + Km(M−1B, M−1r0) using the

A-orthonormal basis, because of (21), we have that
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‖M−1f − M−1Bx‖A = ‖M−1r0 − M−1BZmy‖A = (22)

= ‖Zm+1βe1 − Zm+1H̄my‖A = ‖βe1 − H̄my‖2 , (23)

and this is why we maintain the minimization in step 11 of Algorithm 3.1 in
the l2 norm also here. In summary, by replacing the inner products, we have
a GMRES version minimizing the companion norm, i.e., the A-norm, but the
smaller minimization problem (12) is still performed in the l2 norm, in the
same usual manner, e.g., using the QR factorization of H̄m. Let us denote
by yA

m the minimizer in (23), xA
m = x0 + ZmyA

m, and rA
m = f − BxA

m, so we
can distinguish the iterates and residuals of the method which minimizes the
energy norm.

We observe that this algorithm, i.e., preconditioned GMRES minimizing the
A-norm, can be implemented with only one matrix-vector product with A
and one solution of the form Mz = v per iteration, and by storing a set of
additional vectors z̃i = Azi.

The preceding discussion holds for any symmetric positive definite matrix A.
In the particular case where A is the discretization of (3), and B is the dis-
cretization of (2), we can use the results of Section 2 to obtain bounds on
the operators used here. Specifically, Theorem 2.1 implies that there exist
constants Cp and cp such that for all real vectors x,

(x, M−1Bx)A

(x, x)A
≥ cp and ‖M−1Bx‖A ≤ Cp‖x‖A. (24)

These bounds are the counterparts to (7) and (8). The bound (18) is valid
for the A-norm, and the minimization in (22) is also in the same A-norm.
Thus, the combination of AS with this version of GMRES has the following
convergence bound independent of the finite element mesh size and the number
of local problems

‖M−1rA
m‖A ≤

(

1 −
c2
p

C2
p

)m/2

‖M−1r0‖A . (25)

We remark that this convergence bound points to the interplay between the
choice of the energy norm used in the minimal residual method, i.e., the sym-
metric positive definite matrix A, and the choice of preconditioner M−1. The
idea is that the matrix M−1B must be positive real in the A-inner product,
i.e., cp > 0. In general, A should be chosen as the elliptic highest order term
derivative of B. By selecting a coarse mesh and local problems sufficiently
small, local Poincaré inequalities force the positiveness of M−1B in the A-
norm. Note that from (24), cp/Cp ≤ 1. The closer the ratio cp/Cp is to 1, the
smaller is the factor in parenthesis in the convergence bound (25).

Consider now the right preconditioned system (13) where, as before, x =
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M−1u. Simple calculations give

(x, x)A = (u, u)M−T AM−1 , (x, M−1Bx)A = (u, BM−1u)M−T AM−1 , (26)

and (M−1Bx, M−1Bx)A =(BM−1u, BM−1u)M−T AM−1 . (27)

Let G = M−T AM−1. It follows then, that we can rewrite the bounds (24) as

(u, BM−1u)G

(u, u)G
≥ cp, and ‖BM−1u‖G ≤ Cp‖u‖G

with the same constants cp and Cp. Consequently, M is an optimal right pre-
conditioner for a minimal residual method using the energy norm associated
with the symmetric positive definite matrix G = M−T AM−1, i.e., minimizing

‖r0 − BM−1u‖M−T AM−1 . (28)

A right preconditioned GMRES such that it minimizes (28) can be imple-
mented from the standard right preconditioned GMRES by using instead the
M−T AM−1-inner product. For example, in the construction of the upper Hes-
senberg matrix one would have

hi,j := (w, vi)M−T AM−1 = (M−1w)TAM−1vi. (29)

In this manner, the vectors v1, . . . , vm are M−T AM−1-orthonormal, and in a
manner similar to the left preconditioning case, we have that

‖r0 − BM−1u‖M−T AM−1 = ‖r0 − BM−1Vmy‖M−T AM−1

‖Vm+1(βe1 − H̄my)‖M−T AM−1 = ‖βe1 − H̄my‖2 . (30)

Therefore, in the implementation of the right preconditioned GMRES which
minimizes the M−T AM−1-norm, the smaller least squares problem remains in
the l2 norm. Let us denote by yG

m the minimizer in (30), xG
m = x0 +ZmyG

m, and
rG
m = f − BxG

m.

Let Zm = M−1Vm = [z1, . . . , zm], then using identities (26)–(27), we can write

‖r0 − BM−1Vmy‖M−T AM−1 = ‖M−1r0 − M−1BM−1Vmy‖A

= ‖βz1 − M−1BZmy‖A .

In other words, for any fixed preconditioner M , using right preconditioning
and minimizing the M−T AM−1-norm of the residual, produces (in exact arith-
metic) the same approximations than if one uses left preconditioning and min-
imizes the A-norm of the appropriately transformed residual. Furthermore,
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from (20) and (29) one can see that the upper Hessenberg matrices H̄m in
(23) and (30) are the same matrix, cf. Remark 3.1. We summarize this in the
following result.

Proposition 5.1 For every preconditioner M and every symmetric positive
definite matrix A, the minimal residual method for the left preconditioned
problem M−1Bx = M−1b using the A-inner product is completely equiva-
lent (in exact arithmetic) to a minimal residual method for the right pre-
conditioned problem BM−1u = b, M−1u = x, using the G-inner product,
with G = M−T AM−1. In particular this holds for A = I, i.e., for the Eu-
clidean inner product. Conversely, if we have a right preconditioned problem
BM−1u = b, M−1u = x, with the Euclidean inner product, it is completely
equivalent to the left preconditioned problem M−1Bx = M−1b using the A-
inner product where A = MT M , so that M−T AM−1 = I.

We remark that here we have the same upper Hessemberg matrix H̄m for both
left and right preconditioning, but with different norms, while in Remark 3.1
we have the same norm, but different upper Hessemberg matrices.

From Proposition 5.1 it follows that for the right preconditioned GMRES with
M−T AM−1-norm, we have the same convergence bound (25), with the same
constants, i.e.,

‖rG
m‖G ≤

(

1 −
c2
p

C2
p

)m/2

‖r0‖G . (31)

In terms of implementation, one can then use Algorithm 3.1 with the A-inner
product. It goes without saying that while optimality of AS with GMRES is
assured, there is the cost of one matrix-vector product with the symmetric
positive definite matrix A in each iteration.

6 Bounds for AS/GMRES in Euclidean norm

We begin this section by discussing the constants of equivalency between an
energy norm and the Euclidean norm.

Proposition 6.1 Let H be a symmetric positive definite matrix, and the as-
sociated inner product (x, y)H = xT Hy and norm ‖x‖H = (x, x)

1/2
H . Then for

any vector x one has

‖x‖2 ≤ cH‖x‖H and ‖x‖H ≤ CH‖x‖2,

where cH = 1/
√

λmin(H), CH =
√

λmax(H), and λmin(H), λmax(H) represent
the minimum and maximum eigenvalues of H, respectively.
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Proof. Let

c2
H = sup

x6=0

‖x‖2
2

‖x‖2
H

=

(

inf
x6=0

‖x‖2
H

‖x‖2
2

)−1

=

(

inf
x6=0

xT Hx

xT x

)−1

=
1

λmin(H)
,

and the first inequality follows. The proof of the second inequality is analo-
gous.

We relate now the norm of the residual rL
m of the usual left preconditioned

GMRES method minimizing the Euclidean norm, i.e., obtained using Algo-
rithm 3.1, with rA

m obtained from the left preconditioned GMRES minimizing
the energy norm defined by the symmetric positive definite matrix A. We use

the constants cA = 1/
√

λmin(A), CA =
√

λmax(A), and κ(A) = c2
AC2

A, the
condition number of A. Then we have that

‖M−1rL
m‖2 ≤ ‖M−1rA

m‖2 ≤ cA‖M
−1rA

m‖A (32)

≤ cA

(

1 −
c2
p

C2
p

)m/2

‖M−1r0‖A

≤ cACA

(

1 −
c2
p

C2
p

)m/2

‖M−1r0‖2

=
√

κ(A)

(

1 −
c2
p

C2
p

)m/2

‖M−1r0‖2 ,

where the first inequality follows from the fact that rm is the minimizing
residual (in the Euclidean norm), the second from Proposition 6.1, the third
from (18), and the constants cp and Cp come from (24).

In a similar fashion, we obtain bounds for the residual norm of rR
m obtained

using right preconditioned AS/GMRES minimizing the Euclidean norm and
relate these to those of rG

m obtained using right preconditioned AS/GMRES
minimizing the G-norm. Using the same arguments, and (31), we have

‖rR
m‖2 ≤ ‖rG

m‖2 ≤ cG‖r
G
m‖G ≤ cG

(

1 −
c2
p

C2
p

)m/2

‖r0‖G

≤ cGCG

(

1 −
c2
p

C2
p

)m/2

‖r0‖2 =
√

κ(G)

(

1 −
c2
p

C2
p

)m/2

‖r0‖2 , (33)

where cG = 1/
√

λmin(G), CG =
√

λmax(G), and κ(G) = c2
GC2

G is the condition
number of G.

Several observations regarding the bounds (32)–(33) are in order. These bounds
show that the (left and right preconditioned) AS/GMRES (using Euclidean
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norm minimization) is asymptotically optimal, in the sense that other than

the factor
√

κ(A) or
√

κ(G) (which do depend on the mesh size) the conver-
gence is independent of the mesh size or the number of subdomains. These
fixed factors are eventually overtaken by the other factor being reduced with
each iteration. The positive definite matrix A defining the energy norm needs
to be sufficiently far from being singular, i.e., λmin(A) sufficiently far from zero,
so that the asymptotic behavior takes hold. This is usually the case in prac-
tice, and it is illustrated with examples in the next section, where one has
that λmin(A) = O(1), and κ(A) = O(1/h2). Note that the constants cp and Cp

depend on the existence of the positive definite matrix A (or operator a(u, v))
for which (24) hold. In other words, we have derived the asymptotic optimality
of AS/GMRES (using Euclidean norm minimization) through the optimality
of the method using an energy norm.

We also see from the above bounds that the 2-norm of the usual GMRES
residual differs from that of the energy norm GMRES residual by no more than
a factor cA or cG (which is fixed for all x0 and all m). Thus, asymptotically,
as the residuals go to zero, their norms behave in the same manner. This fact
is well illustrated in some examples in the next section.

7 Numerical Experiments

We present numerical experiments associated to partial differential equations
of the form −∆u+ b.∇u+ku = 1, with zero Dirichlet boundary conditions on
the two-dimensional unit square; these are particular cases of (2). The three
cases we investigate are:

• A. The Helmholtz equation where we take bT = [0, 0], and two different
values k = −5 and k = −120, the latter being indefinite.

• B. The implicit one-step time discretization of an advection-diffusion equa-
tion, where bT = [10, 20], k = 1, and upwind discretization is used.

We consider the following four mesh and domain decomposition configurations:
Mesh 64 × 64 elements decomposed on 4 × 4 subdomains; Mesh 128 × 128
decomposed on 4×4 or 8×8 subdomains; and Mesh 256×256 decomposed on
8×8 subdomains. For each of these cases, we consider three different amounts
of overlap δ = 0, δ = 1, or δ = 2. An overlap of δ = 0 indicates one layer
of overlapping nodes, i.e., the interface nodes, while δ = 1 or 2 correspond
to three or five layers of overlapping nodes, respectively. The coarse space
is based on partition of unity with one degree of variables per subdomains
[9], [27], [28], [29]. We consider the additive preconditioner P (1) of (5). We
show results using right preconditioning. In the figures we plot the either
Euclidean norm or the G-norm the residual using the two strategies: using
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the right GMRES with G-norm minimization (plotted with (∗)) and using the
standard right GMRES with Euclidean norm minimization (plotted with (o)).
In all cases our tolerance for the relative residual norm is ε = 10−8. Recall that
the right GMRES with G-norm minimization is equivalent to the left GMRES
with A-norm minimization; see Proposition 5.1.
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Fig. 1. Problem A. Helmholtz equation with k = −5. Relative residual norms for
GMRES minimizing the l2 norm (o), and the G-norm (*). 64×64 grid, 4×4 subdo-
mains, δ = 0. Left: Residuals measured in the G-norm. Right: Residuals measured
in the l2 norm.
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Fig. 2. Problem A. Helmholtz equation with k = −120. Relative residual norms for
GMRES minimizing the l2 norm (o), and the G-norm (*). 128×128 grid, 8×8 sub-
domains, δ = 1. Left: Residuals measured in the G-norm. Right: Residuals measured
in the l2 norm.

We present in Figures 1–3 representative runs for the Helmholtz equation,
and in Figures 4–6 representative runs for the advection-diffusion equation. In
each figure, we show the same problem solved with the standard AS/GMRES
minimizing the Euclidean norm, and with the method minimizing the G-norm.
We present the same results in two different graphs, one, on the left measuring
the two residuals rR

m and rG
m in the G-norm, and the second, on the right, mea-

suring them in the Euclidean norm. It can be appreciated from these figures
that, as expected, ‖rG

m‖G ≤ ‖rR
m‖G (left plots), and that ‖rR

m‖2 ≤ ‖rG
m‖2 (right

plots). It can also been clearly seen how asymptotically the two sequences of
residual norms are very close to each other, and that the asymptotic regime
begins well before the method reaches the desired tolerance.
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Fig. 3. Problem A. Helmholtz equation with k = −120. Relative residual norms for
GMRES minimizing the l2 norm (o), and the G-norm (*). 256×256 grid, 8×8 sub-
domains, δ = 0. Left: Residuals measured in the G-norm. Right: Residuals measured
in the l2 norm.
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Fig. 4. Problem B. Advection-diffusion equation. Relative residual norms for GM-
RES minimizing the l2 norm (o), and the G-nor m (*). 64×64 grid, 4×4 subdomains,
δ = 0. Left: Residuals measured in the G-norm. Right: Residuals measured in the
l2 norm.

Remark 7.1 Depending on the problem, and especially if a low tolerance de-
sired, it may turn out to be less expensive to reach the desired tolerance in
the energy norm than in the l2 norm. In addition, the energy norm may be
more meaningful. We call the reader’s attention to Figure 6 where ‖M−1rA

m‖A

falls below 10−4 after 22 iterations, while it takes 40 iterations for ‖M−1rL
m‖2

to fall below the same tolerance. Thus, in this case the additional cost of one
matrix-vector product with the SPD matrix A per step is more than offset by
the savings in number of iterations.

We report in Tables 1 and 2 results on runs with the usual AS/GMRES
(l2 norm minimization) with the two cases of the Helmholtz problem consid-
ered here, and in Table 3 with the advection-diffusion problem already men-
tioned. We show the number of iterations to reach a relative residual norm
below 10−8 for all the meshes described, and three different levels of overlap.
In the tables, n stands for the number of points in one side of the mesh, and
nsub, in parenthesis, the numbers of subdomains in each side of the square
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Fig. 5. Problem B. Advection-diffusion equation. Relative residual norms for GM-
RES minimizing the l2 norm (o), and the G-nor m (*). 128× 128 grid, 4× 4 subdo-
mains, δ = 2. Left: Residuals measured in the G-norm. Right: Residuals measured
in the l2 norm.
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Fig. 6. Problem B. Advection-diffusion equation. Relative residual norms for GM-
RES minimizing the l2 norm (o), and the G-nor m (*). 256× 256 grid, 8× 8 subdo-
mains, δ = 0. Left: Residuals measured in the G-norm. Right: Residuals measured
in the l2 norm.

considered.

n (nsub) 64 (2) 128 (4) 128 (8) 256 (8)

δ = 0 23 34 30 49

δ = 1 16 23 20 33

δ = 2 13 18 16 27

Table 1
Problem A. Helmholtz equation with k = −5. Number of iterations for AS/GMRES
convergence

As it can be appreciated in these tables, while the number of iterations is
not constant across each row, i.e., for each preconditioner considered, they do
not grow unbounded; indeed they only about double when the value of h is
reduced by a factor of four, i.e., when the cell size is reduced by a factor of
sixteen.
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n (nsub) 64 (2) 128 (4) 128 (8) 256 (8)

δ = 0 29 41 50 68

δ = 1 21 28 33 49

δ = 2 18 23 26 39

Table 2
Problem A. Helmholtz equation with k = −120. Number of iterations for
AS/GMRES convergence

n (nsub) 64 (2) 128 (4) 128 (8) 256 (8)

δ = 0 35 51 52 73

δ = 1 24 35 38 52

δ = 2 20 28 32 42

Table 3
Problem B. Advection-diffusion equation. Number of iterations for AS/GMRES
convergence

8 Conclusion

We make the case, both theoretically and experimentally, that the two-level
additive Schwarz preconditioning is asymptotically optimal when combined
with a minimal residual iterative method such as GMRES. The key here is that
the methods are optimal when the minimal residual iterative method uses the
same energy norm as that used to derive the optimal Schwarz bounds, and the
asymptotic optimality of the usual method (minimizing the Euclidean norm)
is obtained as a consequence. We also developed an equivalence between left
and right preconditioned methods.
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