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ALGEBRAIZATION OF CODIMENSION ONE WEBS

[after Trépreau, Hénaut, Pirio, Robert, ...]

by J. V. PEREIRA

Jean-Marie Trépreau, extending previous results by Bol and Chern-Griffiths, proved

recently that codimension one webs with sufficiently many abelian relations are after a

change of coordinates projectively dual to algebraic curves when the ambient dimension

is at least three.

In sharp contrast, Luc Pirio and Gilles Robert, confirming a guess of Alain Hénaut,

independently established that a certain planar 9-web is exceptional in the sense that

it admits the maximal number of abelian relations and is non-algebraizable. After that

a number of exceptional planar k-webs, for every k ≥ 5, have been found by Pirio and

others.

I will briefly review the subject history, sketch Trépreau’s proof, describe some of the

“new” exceptional webs and discuss related recent works.

Disclaimer: This text does not pretend to survey all the literature on web geometry but

to provide a bird’s-eye view over the results related to codimension one webs and their

abelian relations. For instance I do not touch the interface between web geometry and

loops, quasi-groups, Poisson structures, singular holomorphic foliations, complex dynam-

ics, singularity theory, . . . For more information on these subjects the reader should

consult [Blaschke and Bol 1938, Akivis and Goldberg 2000, Grifone and Salem 2001] and

references there within.
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[Beauville 1980, Chern and Griffiths 1978, Hénaut 2001] and specially [Pirio 2004]. With-
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1. INTRODUCTION

A germ of regular codimension one k-web W = F1 � · · · � Fk on (Cn, 0) is a

collection of k germs of smooth codimension one holomorphic foliations subjected to

the condition that for any number m of these foliations, m ≤ n, the corresponding

tangent spaces at the origin have intersection of codimension m. Two webs W and W ′ are

equivalent if there exists a germ of bihomolorphic map sending the foliations defining W

to the ones defining W ′. Similar definitions can be made for webs of arbitrary (and even

mixed) codimensions. Although most of the magic can be (and has already been) spelled

in the C∞
R

-category, throughout, we will restrict ourselves to the holomorphic category.

1.1. The Origins

According to the first lines of [Blaschke and Bol 1938] the web geometry had its birth

at the beaches of Italy in the years of 1926-27 when Blaschke and Thomsen realized that

the configuration of three foliations of the plane has local invariants, see Figure 1.

Figure 1. Following the leaves of fo-

liations one obtains germs of diffeomor-

phisms in one variable whose equivalence

class is a local invariant of the web. The

web is called hexagonal if all the possi-

ble germs are the identity.

A more easily computable invariant was later introduced by Blaschke and Dubourdieu.

If W = F1 � F2 � F3 is a planar web and the foliations Fi are defined by 1-forms ωi

satisfying ω1 + ω2 + ω3 = 0 then a simple computation shows that there exists a unique

1-form γ such that dωi = γ ∧ ωi for i = 1, 2, 3. Although the 1-form γ does depend on

the choice of the ωi its differential dγ is intrinsically attached to W, and is the so called

curvature κ(W) of W.

Some early emblematic results of the theory developed by Blaschke and his collaborators

are collected in the Theorem bellow.

Theorem 1.1. — If W = F1 � F2 � F3 is a 3-web on (C2, 0) then the following are

equivalent:

(1) W is hexagonal;

(2) the 2-form κ(W) vanishes identically;

(3) there exists closed 1-forms ηi defining Fi, i = 1, 2, 3, such that η1 + η2 + η3 = 0 .

(4) W is equivalent to the web defined by the level sets of the functions x, y and x− y.

Most of the results discussed in this text can be naively understood as attempts to

generalize Theorem 1.1 to the broader context of arbitrary codimension one k-webs.
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1.2. Abelian Relations

The condition (3) in Theorem 1.1 suggests the definition of the space of abelian

relations A(W) for an arbitrary k-web W = F1 � · · · � Fk. If the foliations Fi are

induced by integrable 1-forms ωi then

A(W) =

{
(
ηi

)k
i=1

∈ (Ω1(Cn, 0))k
∣∣∣ ∀i dηi = 0 , ηi ∧ ωi = 0 and

k∑

i=1

ηi = 0

}
.

If ui : (Cn, 0) → (C, 0) are local submersions defining the foliations Fi then, af-

ter integration, the abelian relations can be read as functional equations of the form∑k
i=1 gi(ui) = 0 for some germs of holomorphic functions gi : (C, 0) → (C, 0).

Clearly A(W) is a vector space and its dimension is commonly called the rank of W,

denoted by rk(W). It is a theorem of Bol that the rank of a planar k-web is bounded

from above by 1
2
(k − 1)(k − 2). This bound was later generalized by Chern in his thesis

(under the direction of Blaschke) for codimension one k-webs on Cn and reads

(1) rk(W) ≤ π(n, k) =

∞∑

j=1

max(0, k − j(n − 1) − 1) .

A k-web W on (Cn, 0) is of maximal rank if rk(W) = π(n, k). The integer π(n, k)

is the well-known Castelnuovo’s bound for the arithmetic genus of irreducible and non-

degenerated degree k curves on Pn.

To establish these bounds first notice that A(W) admits a natural filtration

A(W) = A0(W) ⊇ A1(W) ⊇ · · · ⊇ Aj(W) ⊇ · · · ,

where

Aj(W) = ker

{
A(W) −→

(
Ω1(Cn, 0)

mj · Ω1(Cn, 0)

)k
}

,

with m being the maximal ideal of C{x1, . . . , xn}.

If the submersions ui defining Fi have linear term `i then

(2) dim
Aj(W)

Aj+1(W)
≤ k − dim

(
C · `j+1

1 + · · ·+ C · `j+1
k

)
.

Since the right-hand side is controlled by the inequality, cf. [Trépreau 2006, Lemme 2.1],

k − dim
(
C · `j+1

1 + · · · + C · `j+1
k

)
≤ max(0, k − (j + 1)(n − 1) − 1)

the bound (1) follows at once. Note that this bound is attained if, and only if, the partial

bounds (2) are also attained. In particular,

(3) dimA(W) = π(n, k) =⇒ dim
A0(W)

A2(W)
= 2k − 3n + 1.

It will be clear at the end of the next section that the appearance of Castelnuovo’s

bounds in web geometry is far from being a coincidence.
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1.3. Algebraizable Webs and Abel’s Theorem

If C is a non-degenerated∗ reduced degree k algebraic curve on Pn then for every

generic hyperplane H0 a germ of codimension one k-web WC is canonically defined on

(P̌n, H0) by projective duality. This is the web induced by the levels of the holomorphic

maps pi : (P̌n, H0) → C characterized by

H · C = p1(H) + p2(H) + · · · + pk(H)

for every H sufficiently close to H0.

Figure 2. On the left

WC is pictured for a re-

duced cubic curve C formed

by a line and a conic. On

the right WC is drawn for a

rational quartic C.

Abel’s addition Theorem says that for every p0 ∈ C and every holomorphic† 1-form

ω ∈ H0(C, ωC) the sum

∫ p1(H)

p0

ω +

∫ p2(H)

p0

ω + · · ·+

∫ pk(H)

p0

ω

does not depend of H. One can reformulate this statement as

k∑

i=1

p∗i ω = 0 .

It follows that the 1-forms on C can be interpreted as abelian relations of WC . In par-

ticular dimA(WC) ≥ h0(C, ωC) and if C is an extremal curve — a non-degenerated

reduced curve attaining Castelnuovo’s bound — then WC has maximal rank.

The key question dealt with in the works reviewed here is the characterization of the

algebraizable codimension one webs. These are the webs equivalent to WC for a suitable

projective curve C.

∗Throughout, the term non-degenerated will be used in a stronger sense than usual, in order to ensure

that the dual web is smooth. It will be taken to mean that any collection of points in the intersection of

C with a generic hyperplane, but not spanning the hyperplane, is formed by linearly independent points.
†If C is singular then the holomorphy of ω means that it is a 1-form of first kind with respect to

system of hyperplanes, i.e., the expression
(∫ p1(H)

p0

ω +
∫ p2(H)

p0

ω + · · · +
∫ pk(H)

p0

ω
)
, seen as a holomorphic

function of H ∈ P̌n, has no singularities. It turns out that the holomorphic 1-forms on C are precisely

the sections of the dualizing sheaf ωC .
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1.4. A Converse to Abel’s Theorem

The ubiquitous tool for the algebraization of k-webs is the following Theorem.

Theorem 1.2. — Let C1, . . . , Ck be germs of curves on Pn all of them intersecting trans-

versely a given hyperplane H0 and write pi(H) = H ∩Ci for the hyperplane H sufficiently

close to H0. Let also ωi be germs of non-identically zero 1-forms on the curves Ci and

assume that the trace
k∑

i=1

p∗i ωi ,

vanishes identically. Then there exists a degree k reduced curve C ⊂ Pn and a holomorphic

1-form ω on C such that Ci ⊂ C and ω|Ci
= ωi for all i ranging from 1 to k.

Theorem 1.2 in the case of plane quartics was obtained by Lie in his investigations con-

cerning double translation surfaces, cf. Figure 3. The general case follows from Darboux’s

proof (following ideas of Poincaré) of Lie’s Theorem. The result has been generalized to

germs of arbitrary varieties carrying holomorphic forms of the maximum degree by Grif-

fiths, cf. [Griffiths 1976]. More recently Henkin and Henkin-Passare generalized the result

even further showing, in particular, that the rationality of the trace is sufficient to ensure

the algebraicity of the data, see [Henkin and Passare 1999] and references therein.

Figure 3. A double translation surface is a sur-

face S ⊂ R3 that admits two independent para-

meterizations of the form (x, y) 7→ f(x) + g(y).

S carries a natural 4-web W . The lines tangent to

leaves of W cut the hyperplane at infinity along 4

germs of curves. Lie’s Theorem says that these 4

curves are contained in a degree 4 algebraic curve.

This result was later generalized [Wirtinger 1938] to

arbitrary double translation hypersurfaces.

The relevance of Theorem 1.2 to our subject is evident once one translates it — as

Blaschke-Howe (n = 2) and Bol (n ≥ 3) did — to the dual projective space. We recall

that a linear web is a web for which all the leaves are pieces of hyperplanes.

Theorem 1.3. — A linear k-web W on (Cn, 0) carrying an abelian relation that is not

an abelian relation of any subweb extends to a global (but singular) web WC on P
n.

With Theorem 1.3 in hand the algebraization of 2n-webs on (Cn, 0) with n + 1 abelian

relations follows from a beautiful argument of Blaschke — inspired in Poincaré’s works

on double translation surfaces — that goes as follows.
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1.5. A First Algebraization Result

If W is a k-web on (Cn, 0) of maximal rank r then — mimicking the construction of

the canonical map for algebraic curves — one defines, for i = 1, . . . , k, the maps

Zi : (Cn, 0) −→ P
r−1

x 7→ [η1
i (x) : . . . : ηr

i (x)]

with
{
(ηλ

1 , . . . , ηλ
k)
}

λ=1,...,r
being a basis for A(W). Although the ηλ

i ’s are 1-forms the maps

Zi’s are well-defined since, for a fixed i, any two of these forms differ by the multiplication

of a meromorphic function constant along the leaves of Fi. It is an immediate consequence

that the image of the maps Zi are germs of curves. Note that the equivalence class under

Aut(Pr) of these germs are analytic invariants of W.

Since W has maximal rank then dim A0(W)/A1(W) = k − n. Therefore the points

Z1(x), . . . , Zk(x) span a projective space Pk−n−1 ⊂ Pr−1.

One can thus define the Poincaré map P : (Cn, 0) −→ Gk−n−1(P
r−1) by setting

P(x) = Span(Z1(x), . . . , Zk(x)). It is a simple matter to prove that P is an immersion.

If k = 2n then the Poincaré map takes values on Gn−1(P
n) = P̌n. The image of the

leaf through x of the foliation Fi lies on the hyperplane of P̌n determined by Zi(x). Thus

P∗W is a linear web and its algebraicity follows from Theorem 1.3. �

1.6. Bol’s Algebraization Theorem and Further Developments

Most of the material so far exposed can be found in [Blaschke and Bol 1938]. This

outstanding volume summarizes most of the works of Blaschke School written during

the period 1927-1938. One of its deepest result is Bol’s Hauptsatz für Flächengewebe

(main theorem for webs by surfaces) presented in §32–35 and originally published in

[Bol 1934]. It says that for k 6= 5, every codimension one k-web on (C3, 0) of maximal

rank is algebraizable.

For k ≤ 4 the result is an easy exercise and the case k = 6 has just been treated in

§1.5. Every 5-web on (C3, 0) of the form W(x, y, z, x + y + z, f(x) + g(y) + h(z))‡ has

maximal rank but for almost every choice of the functions f, g, h it is not algebraizable,

see for instance [Beauville 1980, Trépreau 2006].

In the remaining cases, k ≥ 2n + 1, Bol’s proof explores an analogy between the

equations satisfied by the defining 1-forms of maximal rank webs and geodesics on semi-

riemannian manifolds. Latter in [Chern and Griffiths 1978] Chern and Griffiths attempted

to generalize Bol’s result to arbitrary dimensions. Their strategy consists in defining a

path geometry in which the leaves of the web turn out to be totally geodesic hypersur-

faces. The linearization follows from the flatness of such path geometry. Unfortunately

there was a gap in the proof, cf. [Chern and Griffiths 1981], that forced the authors to

include an ad-hoc hypothesis in the web to ensure the algebraization.

‡W(u1, . . . , uk) is the k-web induced by the levels of the functions u1, . . . , uk.
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2. ALGEBRAIZATION OF CODIMENSION ONE WEBS ON (Cn, 0),

n ≥ 3

The purpose of this section is to sketch the proof of Trépreau’s algebraization Theorem

stated below. An immediate corollary is the algebraization of maximal rank k-webs on

dimension at least three for k ≥ 2n. One has just to combine Trépreau’s result with the

equation displayed in (3). In particular the ad-hoc hypothesis in Chern-Griffiths Theorem

is not necessary.

Theorem 2.1 ([Trépreau 2006]). — Let n ≥ 3 and k ≥ 2n or k ≤ n+1. If W is a k-web

on (Cn, 0) satisfying

dim
A0(W)

A2(W)
= 2k − 3n + 1

then W is algebraizable.

Like Bol’s Theorem the result is true for k ≤ n + 1 and false for n + 1 < k < 2n thanks

to fairly elementary reasons.

Trépreau pointed out [Trépreau 2006] that the general strategy has a high order of

contact with Bol’s proof and that [Blaschke and Bol 1938, §35.3] suggests that the result

should hold true for webs by surfaces on (C3, 0).

It has also to be remarked that Theorem 2.1 does not completely characterize the

algebraizable webs on (Cn, 0), n ≥ 3. In contrast with the planar case — where all the

algebraic webs have maximal rank — the algebraic webs on higher dimensions satisfying

the hypothesis of Theorem 2.1 are dual to rather special curves. One distinguished feature

of these curves is that they are contained in surfaces of minimal degree. For instance, in

the simplest case where the curve is a union of lines through a certain point x ∈ Pn then

the dual web satisfies the hypothesis if, and only if, the corresponding points in P(TxPn)

lie on a rational normal curve of degree n − 1.

Since Trépreau’s argument is fairly detailed and self-contained I will avoid the techni-

calities to focus on the general lines of the proof.

2.1. A field of rational normal curves on PT∗(Cn, 0)

When k = 2n the hypotheses of Theorem 2.1 imply that W has maximal rank. The

argument presented in §1.5 suffices to prove the Theorem in this particular case. Until

the end of the proof it will be assumed that k ≥ 2n + 1.

Lemma 2.2. — If W = F1�· · ·�Fk is a k-web on (Cn, 0), n ≥ 2 and k ≥ 2n+1 such that

dimA0(W)/A2(W) = 2k − 3n + 1 then there exists a basis ω0, . . . , ωn−1 of the O-module

Ω1
(Cn,0) such that the defining submersions u1, . . . , uk of W satisfy duα = kα

∑n−1
µ=0(θα)µωµ

for suitable functions kα, θα : (Cn, 0) → C.
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Geometrically speaking the Lemma says that for every x ∈ (Cn, 0) the points in

PT ∗
x (Cn, 0) determined by TxF1, . . . , TxFk lie on a degree (n − 1) rational normal curve

C(x) parameterized as [s : t] 7→
[∑n−1

i=0 sn−itiωi

]
. The basis ω0, . . . , ωn−1 as in the state-

ment of Lemma 2.2 is called an adapted basis for W.

The details are in [Trépreau 2006, Lemme 3.1] or [Chern and Griffiths 1978, p. 61-62].

Here I will just remark that once one realizes that

dim
A0(W)

A2(W)
= 2k − 3n + 1 =⇒ dim

A1(W)

A2(W)
= k − 2n + 1

and that the latter equality implies that the space of quadrics on PT∗
x(C

n, 0) containing

TxF1, . . . , TxFk has codimension (2n−1) then the proof of the lemma follows immediately

from the Lemma of Castelnuovo: If k ≥ 2(n − 1) + 3 points in general position on Pn−1

imposes just 2(n − 1) + 1 conditions on the space of quadrics then these points belong to

a rational normal curve of degree (n − 1).

2.2. Rational normal curves on P2k−3n

Let W be a k-web on (Cn, 0) satisfying the hypothesis of Lemma 2.2. Fix local sub-

mersions u1, . . . , uk : (Cn, 0) → (C, 0) defining W and (ηλ
1 , . . . , ηλ

k ), λ = 1, . . . , 2k−3n+1,

elements in A(W) with classes generating A0(W)/A2(W).

If zλ(x) = (zλ
1 (x), . . . , zλ

k (x)) are vector functions for which

ηλ(x) = zλ(x) · (du1(x), . . . , duk(x))T

then the maps Zi : (Cn, 0) → P2k−3n — natural variant of the maps under the same label

defined in §1.5 — can be explicitly written as the projectivization of the maps

Z̃i : (Cn, 0) −→ C
2k−3n+1 (i = 1, . . . , k)

x 7→ (z1
i (x), z2

i (x), . . . , z2k−3n+1
i (x)) .

For a fixed x ∈ (Cn, 0), like in §1.5, the span of Z1(x), . . . , Zk(x) has dimension k−n−1.

It will be denoted by Pk−n−1(x).

Using the notation of Lemma 2.2 one can introduce the map

Z̃∗ : (Cn, 0) × C → C
2k−3n+1

(x, t) 7→
k∑

i=1

(
∏

j 6=i

(t − θj(x))

)
kj(x)Z̃j(x) .

and its projectivization Z∗ : (Cn, 0) × P1 → P2k−3n. Expanding the entries of Z∗(x, t)

as polynomials on t one verifies that these have degree (k − n − 1). Thus the points

Z1(x), . . . , Zk(x) lie on a unique degree (k − n− 1) rational normal curve C(x) contained

in Pk−n−1(x), see [Trépreau 2006, Lemme 4.3].

It can also be shown that the Poincaré map x 7→ Pk−n−1(x) is an immersion. Moreover,

if x and x′ are distinct points then Pk−n−1(x) and Pk−n−1(x′) intersect along a Pn−2(x, x′).
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Since any number of distinct points in a degree (n − 1) rational normal curve contained

in Pn−1 are in general position it follows that the curves C(x) and C(x′) intersect in at

most (n − 1) points, cf. [Trépreau 2006, Lemme 4.2].

2.3. The rational normal curves C(x) define an algebraic surface S ⊂ P2k−3n

The main novelty of Trépreau’s argument is his elementary proof that, when n ≥ 3,

Z∗ : (Cn, 0) × P
1 → P

2k−3n has rank two for every (x, t) ∈ (Cn, 0) × P
1.

Besides ingenuity the key ingredient is [Trépreau 2006, Lemme 3.2] stated below. It is

deduced from a careful analysis of second order differential conditions imposed by the

maximality of the dimension of A0(W)/A2(W).

Lemma 2.3. — If we write a 1-form α as α =
∑

(α)µωµ and use the same hypothesis and

notations of Lemma 2.2 then for every µ ∈ {0, . . . , n − 2} there exists holomorphic func-

tions mµ0, . . . , mµ(n−1) satisfying (d(kαθα))µ − (dkα)µ+1 = kα

∑n−1
λ=0 mµλ(θα)λ. Moreover, if

n ≥ 3 then θα(dθα)µ − (dθα)µ+1 =
∑n

λ=0 nµλ(θα)λ for suitable functions nµ0, . . . , nµn.

Only in the proof of this lemma the hypothesis on the dimension of the ambient space

is used. In particular the algebraization of maximal rank planar webs for which the

conclusion of the lemma holds will also follow.

For every x ∈ (Cn, 0) the map t 7→ Z∗(x, t) is an isomorphism from P1 to C(x).

Combining this with the fact that Z∗ has rank two everywhere it follows that the image

of Z∗ is a smooth analytic open surface S0 ⊂ P2k−3n.

If x and x′ are distinct points laying on the same leaf of (n − 1) foliations defining W

then C(x) and C(x′) will intersect in exactly n − 1 points. This is sufficient to ensure

that the curve C(0) has self-intersection (in the surface S0) equal to n − 1.

To prove that S0 is an open subset of an (eventually singular) algebraic surface S ⊂

P2k−3n consider the subset X of Mork−n−1(P
1, P2k−3n)§ consisting of morphisms φ with

image contained in S0 and φ(0 : 1) = x0. It follows that X is algebraic — just expand

fi(φ(t : 1)) for every defining equations fi of S0 in a suitable neighborhood of x0. To

conclude one has just to notice that the Zariski closure of the natural projection to P2k−3n

— the evaluation morphism — sends X to an algebraic surface S of P2k−3n containing S0.

2.4. The curves C(x) belong to a linear system of projective dimension n

The proof presented in [Trépreau 2006] is based on a classical Theorem of Enriques

[Enriques 1893] concerning the linearity of families of divisors. For a modern proof and

generalizations of Enriques Theorem see [Chiantini and Ciliberto 2002, Theorem 5.10].

Here an alternative approach, following [Chern and Griffiths 1981, p. 82], is presented.

§This is just the set of morphisms from P1 to Pn of degree k − n− 1 which can be naturally identified

with a Zariski open subset of P
(
Ck−n−1[s, t]

2k−3n+1
)
.
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Since S0 ⊂ S is smooth we can replace S by one of its desingularizations in such a way

that S0 will still be an open subset. Moreover being the curves C(x) mutually homologous

in S0 the same will hold true for their strict transforms. Summarizing, for all that matters,

we can assume that S is itself a smooth surface.

Because S is covered by rational curves of positive self-intersection it is a rational

surface. Therefore H1(S,OS) = 0 and homologous curves are linearly equivalent. Conse-

quently if we set C = C(0) then all the curves C(x) belong to PH0(S,OS(C)).

The exact sequence 0 → OS → OS(C) → NC → 0 immediately implies that

h0(S,OS(C)) = 1 + h0(C, NC) = 1 + h0(P1,OP1(C2)) = n + 1.

Thus dim PH0(S,OS(C)) = n.

2.5. The Algebraization Map

The map x 7→ C(x) takes values on the projective space Pn = PH0(S,OS(C)). It is a

holomorphic map and the leaf through x of one of the defining foliations Fi is mapped

to the hyperplane contained in PH0(S,OS(C)) corresponding to the divisors through

Zi(x) ∈ S.

The common intersection of the hyperplanes corresponding to the leaves of W through

0 reduces to the point corresponding to C. Otherwise there would be an element in

PH0(S,OS(C)) intersecting C in at least n points contradicting C2 = n − 1. Therefore

the map is an immersion and the image of W is a linear web. Trépreau’s Algebraization

Theorem follows from Theorem 1.3. �

3. EXCEPTIONAL PLANAR WEBS I: THE HISTORY

The webs of maximal rank that are not algebraizable are usually called exceptional

webs. Trépreau’s Theorem says that on dimension n ≥ 3 there are no exceptional

codimension one k-webs for k ≥ 2n. The next three sections, including this one, discuss

the planar case. On the first I will draw the general plot of the quest for exceptional webs

on (C2, 0) — as I have learned from [Pirio 2004, Chapitre 8] and references therein. The

second will survey the methods to prove that a given web is exceptional while the third

will be completely devoted to examples.

3.1. Blaschke’s approach to the algebraization of planar 5-webs

In the five pages paper [Blaschke 1933] the proof that all 5-webs on (C2, 0) of maximal

rank are algebraizable is sketched. Although wrong Blaschke’s paper turned out to be a

rather influential piece of mathematics. For instance, the starting point of Bol’s proof of

the Hauptsatz für Flächengewebe can be found there.
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For a 5-web of maximal rank Blaschke defines a variation of the Poincaré map — the

Poincaré-Blaschke map — as follows

PB : (C2, 0) −→ G4(P
5) = P̌5

x 7→ Span
(
Z1(x), . . . , Z5(x), Z1

′(x), . . . , Z5
′(x)
)
,

where Zi is defined as in §1.5 and Zi
′ makes sense since the image of the map Zi has

dimension one. The fact that the spanned projective subspace has dimension 4 follows

from a reasoning similar to the one presented in §1.5.

The main mistake in loc. cit. is Satz 2 that, combined with a result of Darboux,

implies that the image of PB is contained in a Veronese surface. If this is the case then it

is indeed true that the 5-web is algebraizable. For a detailed proof of the latter statement

see [Pirio 2004, Proposition 8.4.6].

3.2. Bol’s counter-example and Blaschke-Segre surfaces on P5

Blaschke’s mistake was pointed out by Bol in [Bol 1936]. There he provided a coun-

terexample by proving that the 5-web B5 had rank 6, see Figure 4. Besides 5 linearly

independent obvious abelian relations coming from the hexagonal 3-subwebs he found an-

other one of the form
∑5

i=1

(
log 1−ti

ti
+ log ti

1−ti

)
dti = 0 , where t1 = y

x
, t2 = x+y−1

y
,t3 = x−y

1−y
,

t4 = 1−y
x

and t5 = x(1−x)
y(1−y)

are rational functions defining B5. The integration of this

expression leads to Abel’s functional equation

5∑

i=1

Li2(ti) + Li2(1 − ti) = 0 ,

for Euler’s dilogarithm Li2(z) =
∑

n≥1

zn

n2
.

Figure 4. Bol’s Exceptional 5-web B5 is the

web induced by four pencil of lines with base points

in general position and a pencil of conics through these

four base points. It is the unique non-linearizable web

for which all its 3-subwebs are hexagonal. For almost

70 years it remained the only known example of non-

algebraizable 5-web of maximal rank.

Bol studies the image of the Poincaré-Blaschke map for B5 and shows that it is a germ

of (transcendental) surface with the remarkable property: it is non-degenerated and has

five families of curves such that the tangent spaces of S along each of these curves lies on a

hyperplane of P5 that depends just on the curve. To easer the further reference let’s adopt

the (non-standard) terminology Blaschke-Segre surfaces to describe the surfaces with
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this property. The choice of terminology follows from the fact that the tangents of the

curves in the five families must coincide with Segre’s principal directions of S. We recall

that at a point p ∈ S (S non-degenerated and not contained in a Veronese surface) these

are the five directions (multiplicities taken into account) determined by the tangent cones

of the intersection of S with one of the five hyperplanes that intersects S in a tacnode (or

worst singularity) at p.

The relation between exceptional 5-webs and Blaschke-Segre surfaces was noticed by

Bol. In his own words: “Im übrigen sieht man, daß die Bestimmung von allen Fünfgeweben

höchsten Ranges hinausläuft auf die Angabe aller Flächen mit Segreschen Kurvenscharen,

und umgekehrt; (. . . )”, in [Bol 1936, pp. 392–393]

The beautiful underlying geometry of the Blaschke-Segre surfaces caught the eyes

of some Italian geometers including Bompiani, Buzano and Terracini. On the first

lines of [Bompiani and Bortolotti 1937] it is remarked that the exceptional 5-webs give

raise to Blaschke-Segre surfaces echoing the above quote by Bol. Buzano and Terracini

pursued the task of determining/classifying other germs of Blaschke-Segre surfaces in

[Terracini 1937, Buzano 1939]. Their approach was mainly analytic and quickly lead to

the study of certain non-linear system of PDEs. They were able to classify, under rather

strong geometric assumptions on the families of curves, some classes of Blaschke-Segre

surfaces. At the end they obtained a small number of previously unknown examples.

Apparently, the determination of the rank of the naturally associated 5-webs was not

pursued at that time, cf. [Blaschke and Bol 1938, page 261].

Buzano pointed out that two of his Blaschke-Segre surfaces induced quite remarkable

5-webs: both are of the form W(x, y, x + y, x − y, f(x, y)) and, moreover, the 3-subwebs

W(x, y, f(x, y)) and W(x+y, x−y, f(x, y)) are hexagonal. The complete classification of

5-webs with these properties is carried out in [Buzano 1939b]. Nevertheless he does not

wonder whether the obtained 5-webs come from Blaschke-Segre surfaces or if they are of

maximal rank.

After the 1940’s the study of webs of maximal rank seems to have been forgotten until

the late seventies when Chern and Griffiths — apparently motivated by Griffiths’ project

aiming at the understanding of rational equivalence of cycles in algebraic varieties —

pursued the task of extending Bol’s Theorem for dimensions greater than three, cf. §1.6.

In a number of different opportunities Chern emphasized that a better understanding

of the exceptional planar 5-webs, or more generally of the exceptional webs, should be

pursued. For instance, after a quick browsing of the recent papers by Chern on web

geometry and Blaschke’s work one collects the following quotes (see also [Chern 1982,

Unsolved Problems], [Chern 1985, Problem 6]):

. “At this low-dimensional level an important unsolved problem is whether there are

other 5-webs of rank 6, besides algebraic ones and Bol’s example.”, [Chern 1985b]
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. “In general, the determination of all webs of maximum rank will remain a funda-

mental problem in web geometry and the non-algebraic ones, if there are any, will

be most interesting.”, [Chern 1985]

. “(. . . ) we cannot refrain from mentioning what we consider to be the fundamental

problem on the subject, which is to determine the maximum rank non-linearizable

webs. The strong conditions must imply that there are not many. It may not be

unreasonable to compare the situation with the exceptional simple Lie groups.”,

[Chern and Griffiths 1981]

Chern’s insistence can be easily justified. The exceptional planar webs are, in a certain

sense, generalizations of algebraic plane curves and a better understanding of these objects

is highly desirable.

The questions of Chern had to wait around 20 years to receive a first answer. In

[Hénaut 2001], Hénaut recognizes that 9-web induced by the rational functions figuring in

Spence-Kummer 9-terms functional equation for the trilogarithm as a good candidate for

exceptionality. In 2002, Pirio and Robert independently settled that this 9-web is indeed

exceptional.

In [Griffiths 2004] Griffiths suggests that exceptionality is in strict relation with the

polylogarithms. In particular he asks if all the exceptional webs are somehow related to

functional equations for polylogarithms.

In face of all these questions, it was a surprise when Pirio showed that W(x, y, x+y, x−
y, x2 + y2) is an exceptional 5-web and its space of abelian relations is generated by the
elementary polynomial identities (cf. [Pirio 2004b] and also [Pirio 2004])

(x2 + y2) = x2 + y2 0 = x − y − (x − y)

6(x2 + y2)2 = 4x4 + 4y4 + (x + y)4 + (x − y)4 0 = (x − y)2 + (x + y)2 − 2x2 − 2y2

10(x2 + y2)3 = 8x6 + 8y6 + (x + y)6 − (x − y)6 0 = x + y − (x + y).

In loc. cit. other exceptional webs are determined, e.g. W(x, y, x + y, x − y, xy) and

W(x, y, x + y, x − y, x2 + y2, xy). In section §5 most of the exceptional webs found by

Pirio, Robert and others are described.

Figure 5. Three of the new examples of exceptional webs founded by Pirio. The

6-web in the middle is the superposition of the other two 5-webs.
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4. EXCEPTIONAL PLANAR WEBS II: THE METHODS

To put in evidence the exceptionality of a k-web on (C2, 0) one has to check that the

web is non-linearizable and that it has maximal rank. Here I will briefly survey some of

the methods to deal with both problems.

4.1. Linearization Conditions for Planar Webs

If W = F1 � · · ·� Fk is a k-web on (C2, 0) and the foliations Fi are induced by vector

fields Xi = ∂
∂x

+ pi(x, y) ∂
∂y

then there exists a unique polynomial

PW(x, y, p) = l1(x, y)pk−1 + l2(x, y)pk−2 + · · ·+ lk(x, y)

in C{x, y}[p] of degree at most (k − 1) such that Xi(pi) = ∂pi

∂x
+ pi

∂pi

∂y
= PW(x, y, pi(x, y))

for every i ∈ {1, . . . , k}.

One can verify that the leaves of the web W can be presented as the graphs of the

solutions of y′′ = PW(x, y, y′) . In [Hénaut 1993] (see also [Blaschke and Bol 1938, §29])

it is proven that a k-web W is linearizable if, and only if, there exists a local change of

the coordinates (x, y) that simultaneously linearizes all the solutions of the second order

differential equation above. A classical result of Liouville says that this is case if, and only

if, (a) degp PW ≤ 3; and (b) the coefficients (lk, lk−1, lk−2, lk−3) satisfy a certain (explicit)

system of differential equations, cf. [Hénaut 1993] for details.

Notice that all the computations involved can be explicitly carried out. Moreover, if

the web is given in implicit form F (x, y, y′) then the polynomial PW can also be explicitly

computed in function of the coefficients of F , see [Ripoll 2005, Chapitre 2].

For our purposes, a particularly useful consequence of this criterium is the following

corollary [Hénaut 1993], [Blaschke and Bol 1938, p. 247]: If W is a k-web on (C2, 0) with

k ≥ 4 then, modulo projective transformations, W admits at most one linearization.

As a side remark we mention a related result due to Nakai [Nakai 1987, Theorem 2.1.3]:

if WC and WC′ are two algebraic webs associated to irreducible curves on Pn of degree

at least n + 2 then every orientation preserving homeomorphisms of P̌n conjugating WC

and WC′ is an automorphism of Pn. An amusing corollary is in Nakai’s own words: “the

complex structure of a line bundle L → C on a Riemann surface is determined by the

topological structure of a net of effective divisors determining L.”

There are other criteria for linearizability of d-webs, d ≥ 4, cf. [Akivis et al. 2004].

Concerning the linearization of planar 3-webs there is Gronwall’s conjecture: a non-

algebraizable 3-web on (C2, 0) admits at most one linearization. Bol proved that the

number of linearizations is at most 16. In [Grifone et al. 2001] an approach suggested by

Akivis to obtain relative differential invariants characterizing the linearization of 3-webs

is followed. The authors succeeded in reducing Bol’s bound to 15. Similar results have

been recently reobtained in [Goldberg and Lychagin 2006].
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4.2. Detecting the maximality of the rank

The methods to check the maximality of the rank can be naturally divided in two types.

The ones of the first type —Methods 1, 2 and 3 below — aim at the determination of

the space of abelian relations. Methods 4,5 and 6 do not determine the abelian relations

explicitly but in turn characterize the webs of maximal rank by the vanishing of certain

algebraic functions on the data (and their derivatives) defining it. These characterizations

can be interpreted as generalizations of the equivalence (2) ⇐⇒ (3) in Theorem 1.1.

4.2.1. Method 1: Differential Elimination (Abel’s method). If a k-web W = W(u1, . . . , uk)

is defined by germs of submersions ui : (C2, 0) → (C, 0) then the determination of A(W)

is equivalent to find the germs of functions f1, . . . , fk : (C, 0) → (C, 0) satisfying

f1(u1) + f2(u2) + · · ·+ fk(uk) = 0.

Abel, in his first published paper — Méthode générale pour trouver des functions d’une

seule quantité variable lorsqu’une propriété de ces fonctions est exprimée par une équation

entre deux variables [Abel 1823] — furnished an algorithmic solution to it. The key idea

consists in eliminating the dependence in the functions u2, . . . , uk by means of successive

differentiations in order to obtain a linear differential equation of the form

f
(l)
1 (u1) + cl−1(u1)f

(l−1)
1 (u1) + · · · + c0(u1)f1(u1) = 0

satisfied by the f1. The coefficients ci are expressed as rational functions of u1, u2, . . . , uk

and their derivatives. After solving this linear differential equation and the similar ones

for f2, . . . , fk the determination of the abelian relations reduces to plain linear algebra.

Abel’s method has been revisited by Pirio — cf. [Pirio 2004, Chapitre 2], [Pirio 2005]

— and after implementing it he was able to determine the rank of a number of planar

webs including the ones induced by the Blaschke-Segre surfaces found by Buzano and

Terracini. They all turned out to be exceptional.

Notice that the computations involved tends to be rather lengthy and this, perhaps,

explains why the use of such method to determine new exceptional webs had to wait

until 2002.

4.2.2. Method 2: Polylogarithmic Functional Relations. Another approach to determine

some of the abelian relations of a given particular web was proposed by Robert in

[Robert 2002]. Instead of looking for all possible abelian relations he aims at the ones

involving polylogarithms. He uses a variant of a criterium due to Zagier [Zagier 1991]

that reduces the problem to linear algebra. In contrast with Abel’s method this one has

a narrower scope but tends to be more efficient since it bypass the solution of differential

equations.



974-16

More precisely, if u1, . . . , uk ∈ C(x, y) are rational functions on C2 and U ⊂ C2 is a

suitably chosen open subset then the existence of abelians relations of the form

k∑

i=1

λiLir(ui) +

k∑

i=1

r−1∑

l=1

Pi,l(log ui)Lir−l(ui) = 0 ,

with Pi,j ∈ C[x, y] and λi ∈ C, is equivalent to the symmetry of the tensor

k∑

i=1

λi

((
dui

ui

)⊗k−1

⊗
dui

1 − ui

)
.

in
r⊗

C

Ω1(U), cf. [Robert 2002, Théorème 1.3].

4.2.3. Method 3: Abelian relations in the presence of automorphisms. Let W = F1� · · ·�

Fk denotes a k-web in (C2, 0) which admits an infinitesimal automorphism X, regular and

transverse to the foliations Fi in a neighborhood of the origin.

Clearly the Lie derivative of LX acts on A(W) and an analysis of such action allows one

to infer that the abelian relations of W can be written in the form, cf. [Maŕın et al. 2006,

Proposition 3.1],

P1(u1) eλi u1 du1 + · · ·+ Pk(uk) eλi uk duk = 0

where P1, . . . , Pk are polynomials of degree less or equal than the size of the i-th Jordan

block of LX : A(W) 	, λi are the eigenvalues and ui =
∫

ωi

ωi(X)
.

The rank of the web W � FX obtained from W by superposing the foliation induced

by X is related to the rank of W [Maŕın et al. 2006, Theorem 1] by the formula

rk(W � FX) = rk(W) + (k − 1) .

In particular, W is of maximal rank if, and only if, W�FX is also of maximal rank. Once

one realizes that the Lie derivative LX induces linear operators on A(W) and A(W�FX)

then the proof of this result boils down to linear algebra.

4.2.4. Method 4: Pantazi’s Method. In [Pantazi 1938], Pantazi explains a method to de-

termine the rank of a k-web defined by k holomorphic 1-forms ω1, . . . , ωk. He introduced

N = (k − 1)(k − 2)/2 expressions — algebraically and explicitly constructed from the

coefficients of the ωi’s and their derivatives — which are identically zero if, and only if,

the web is of maximal rank.

Building on Pantazi’s method Mihăileanu obtains in [Mihăileanu 1941] a necessary con-

dition for the maximality of the rank: the sum of the curvatures of all 3-subwebs of W

must vanish.
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4.2.5. Method 5: The Implicit Approach (Hénaut’s Method [Hénaut 2004]). If W is a

regular k-web defined on (C2, 0) by an implicit differential equation f(x, y, y′) of degree

k on y′ then the contact 1-form dy − pdx on (C2, 0) × C defines a foliation FW on the

surface S cut out by f(x, y, p) such that π∗F = W, with π : S → (C2, 0) being the natural

projection.

On this implicit framework the abelian relations of W can be interpreted as 1-forms

η ∈ π∗Ω
1
S of the form η =

(
b3p

d−3 + · · · + bd

)
· dy−pdx

∂f
∂p

that are closed. It follows that there

exists a linear system of differential equations MW with space of solutions isomorphic to

A(W). The system MW is completely determined by f .

Using Cartan-Spencer theory, Hénaut builds a rank N = (k − 1)(k − 2)/2 vector bundle

E contained in the jet bundle Jk−2(O
k−2) and a holomorphic connection ∇ : E → E ⊗Ω1

such that the local system of solutions of ∇ is naturally isomorphic to MW . It follows

that W has maximal rank if, and only if, the curvature form of ∇ is identically zero.

Although not explicit in principle, this construction has been untangled by Ripoll, who

implemented in a symbolic computation system the curvature matrix determination for

3, 4 and 5-webs, cf. [Ripoll 2005].

An interpretation for the induced connection (det E, det∇) is provided by [Ripoll 2005,

Théorème 5.2] when k ≤ 6 and in [Hénaut 2006, p. 281],[Ripoll 2007] for arbitrary k.

After multiplying f by a suitable unit there exists a connection isomorphism

(det E, det∇) '




(d
3
)⊗

k=1

Lk,

(d
3
)⊗

k=1

∇k




where (Lk,∇k) are (suitably chosen) connections of all 3-subwebs of W. As a corollary

they reobtain Mihăileanu necessary condition for the rank maximality.

An extensive study of the connection ∇ and its invariants remains to be done. For a

number of interesting questions and perspectives see [Hénaut 2006]. Here I will just point

out that due to theirs complementary nature it would be interesting to clarify the relation

between Pantazi’s and Hénaut’s method.

4.2.6. Method 6: Goldberg-Lychagin’s Method. A variant of the previous two methods has

been proposed in [Goldberg and Lychagin 2006b]. The equations imposing the maximal-

ity of the rank are expressed in terms of relative differential invariants of the web.

5. EXCEPTIONAL PLANAR WEBS III: THE EXAMPLES

On this section I will briefly describe new exceptional webs that have come to light since

2002. The list below is not extensive. To the best of my knowledge all the other new

examples available in the literature can be found in [Pirio 2004] and [Maŕın et al. 2006].
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The non-linearizability of all the examples below can be inferred from the fact they are

non-linear webs but contain a linear k-subweb with k ≥ 4, see §4.1.

5.1. Polylogarithmics Webs

If Li3(z) =
∑

zn

n3 is the trilogarithm then the Spence-Kummer functional equation for
it is

2Li3(x) + 2Li3(y) − Li3

(
x

y

)
+ 2Li3

(
1 − x

1 − y

)
+ 2Li3

(
x(1 − y)

y(1 − x)

)

− Li3 (xy) + 2Li3

(
−

x(1 − y)

(1 − x)

)
+ 2Li3

(
−

1 − y

y(1 − x)

)
− Li3

(
x(1 − y)2

y(1 − x)2

)

= 2Li3 (1) − log(y)2 log

(
1 − y

1 − x

)
+

π2

3
log(y) +

1

3
log(y)3 .

The naturally associated 9-web, after the change (x, y) 7→
(

1+x
x

, 1+y
y

)
, is

WSK = W




x

1 + y
,

B6︷ ︸︸ ︷
1 + x

y
, x, y,

x

y
,
1 + x

1 + y
,
y(1 + x)

x(1 + y)︸ ︷︷ ︸
B5︸ ︷︷ ︸

B7

,
(1 + x)(1 + y)

xy
,
x(1 + x)

y(1 + y)




.

WSK was recognized as a good candidate for exceptionality in [Hénaut 2001]. It was

later shown to be exceptional by two different methods. Robert apparently developed

method 2 for this purpose and Pirio used Abel’s method. The subweb B5 is clearly an

isomorphic copy of Bol’s 5-web. The subwebs B6 and B7 (see displayed equation) are also

exceptional. Notice that B5 ⊂ B6 ⊂ B7 ⊂ WSK.

Due to the rich automorphism group of WSK one can easily recognize other subwebs

isomorphic to B5,B6 and B7 contained in WSK. Besides these there is one exceptional

5-subweb ( [Pirio 2004, Théorème 7.2.5]) and one exceptional 6-subweb ([Pirio 2004,

Théorème 7.2.5], [Robert 2002, §3.2]) of WSK that are non-isomorphic to B5 and B6

respectively.

Robert has also determined an exceptional 8-web B8 containing B7 but not isomorphic

to any 8-subweb of WSK. It is obtained from B7 by adding the the pencil of lines 2x−1
2y−1

,

[Robert 2002, Théorème 3.1].

WSK admits a description analogous to Bol’s 5-web. If one considers the configuration

of six points in P2 schematically represented in the left of Figure 6 then WSK is formed by

the six pencil of lines through the points and three pencil of conics through any four of the

six points that are in general position. If one considers exactly the same construction using

the other two configurations of five points represented in Figure 6 then the configuration

in the middle induces a 1-parameter family of 8-webs while the one in the right induces a

2-parameters family of 10-webs. The first turns out to be a family of exceptional 8-webs,
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Figure 6. The configuration in the left naturally induces WSK while the one in the

middle induces an 1-parameter family of exceptional webs.

cf. [Pirio 2004, Théorème 7.3.1]. The second remains a good candidate for a family of

exceptional 10-webs since all the members satisfy Mihăileanu necessary condition for the

rank maximality.

All the other possible configurations of five points in P2 induces exceptional webs. On

the other hand, see [Pirio 2004, p. 182], the web associated to a generic configuration of

6 points in P2 does not satisfy Mihăileanu condition and therefore is not exceptional.

Webs naturally associated to Kummer’s equations for the tetralogarithm and the pen-

talogarithm have also been studied in [Pirio 2004, Chapitre 7]. They do not satisfy

Mihăileanu condition and therefore are not exceptional. Nevertheless they do contain

some previously unknown exceptional 5 and 6-subwebs.

5.2. Quasi-Parallel Webs

In [Pirio 2004b] a number of 5-webs on (C2, 0) have been determined with the help of

Abel’s method. They are all of the form W(x, y, x + y, x − y, u(x, y)) for some germ of

holomorphic function u(x, y) = v(x) + w(y).

Latter in [Pirio and Trépreau 2005] the classification of the 5-webs of this particular

form was pursued. At the end they obtained that all 5-webs on (C2, 0) of the form

W[v(x) + w(y)] = W(x, y, z + y, x− y, v(x) + w(y)) are equivalent to one of the following

(a) W[log(sin(x) sin(y))] (b) W[x2 − y2] (c) W[x2 + y2]

(d) W[log(tanh(x) tanh(y))] (e) W[exp(x) + exp(y)]

(f)k W[log(snk(x)snk(y))]

with snk being the Jacobi’s elliptic functions of module k ∈ C \ {−1, 0, 1}. The webs

(a), (b), (c), (d) and (e) can all be interpreted as limits of the webs (f)k through suitable

renormalizations.

The abelian relations are either polynomial ones or follows from well-known identities

involving theta functions and classical functions.

Notice that all 3-webs of the form W(x, y, v(x) + w(y)) are hexagonal. In the course of

the classification it is proved that the maximality of the rank of W[v(x) + w(y)] implies

that the 3-subweb W(x + y, x− y, v(x) + w(y)) is hexagonal. Coincidentally this reduces

the problem to the one considered in [Buzano 1939b].
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5.3. Webs admitting Infinitesimal Automorphisms

Method 3 implies that every reduced curve C ⊂ P2 of degree k ≥ 4 left invariant by

an C∗-action induces, on the dual projective plane, an exceptional (k + 1)-web formed by

the superposition of WC and the orbits of the dual C∗-action [Maŕın et al. 2006].

If one considers the curves cutted out by polynomials of the form

bk/2c∏

i=1

(xy − λiz) , λi 6= λj ∈ C
∗,

then it follows that for every k ≥ 5 there exist a family of dimension at least bk/2c− 1 of

pairwise non-equivalent exceptional global k-webs on P2.

6. WEBS OF ARBITRARY CODIMENSION

There are a number of works dealing with webs of arbitrary codimension and their

abelian relations. On the next few lines I will try to briefly review some of the most

recent advances. Although, even more than in the previous paragraphs, I do not aim at

completeness and, probably, a number of important omissions are made.

A k-web W = F1 � · · ·�Fk of codimension r on (Cn, 0) is a collection of k foliations of

codimension r such that the tangent spaces T0F1, . . . , T0Fk are in general position, i.e.,

the intersection of any number m of these subspaces have the minimal possible dimension

while the union has the maximal possible dimension.

For every non-negative integer ` ≤ r one can define the space of degree ` abelian rela-

tions of W in terms of closed `-forms vanishing along the leaves of the defining foliations.

If V is a reduced non-degenerated¶ subvariety of Pn+r−1 of degree k and dimension r

and Π is a generic (n−1)-plan then, analogously to the case of curves, V induces a k-web

WV on (Gn−1(P
n+r−1), Π), where Gn−1(P

n+r−1) is the Grassmanian of (n − 1) planes on

Pn+r−1. Using a natural affine chart around Π one sees that (Gn−1(P
n+r−1), Π) ∼= (Cnr, 0)

and that WV is equivalent to a k-web of codimension r on (Cnr, 0) with linear leaves. The

k-webs of codimension r on (Cnr, 0) are denoted by Wk(n, r).

In [Chern and Griffiths 1978b] bounds for the dimension of the space of degree r abelian

relations for webs Wk(n, r) are obtained. These bounds are realized by webs WV where V

is an extremal subvariety of Pn+r−1 in the sense that the dimension of H0(V, ωV ) is maximal

among the non-degenerated varieties of same degree and codimension. Recently Hénaut

provided sharp bounds for the `-rank of webs Wk(n, r) for every ` ≤ r, cf. [Hénaut 2004b].

¶In a similar sense to the one used for curves, cf. §1.3.
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In view of the algebraization results for codimension one webs one is naturally lead to

wonder if the Wk(n, r) of maximal rank are algebraizable when k is sufficiently large. Alge-

braization results for the Wk(2, r) of maximal r-rank have been obtained by [Goldberg 1992]

(r = 2) and [Hénaut 1998] (every r ≥ 2). For ` < r or, r ≥ 2 and n ≥ 3, the characteri-

zation of the Wk(n, r) of maximal `-rank seems to be open.

The study of webs which have codimension not dividing the dimension of the ambient

space also leads to beautiful geometry. A prototypal result in this direction is Blaschke-

Walberer Theorem [Blaschke and Bol 1938, §35–36] for 3-webs by curves on (C3, 0) of

maximum 1-rank (proven by Blaschke to be 5). It says that these 3-webs can be obtained

from cubic hypersurfaces on P4 by means of an algebraic correspondence.

Concerning webs by curves there are also some interesting results by Damiano. He

provided a bound for the (n − 1)-rank of a web by curves on (Cn, 0) [Damiano 1983,

Proposition 2.4], found generalizations of Bol’s exceptional web B5 to non-linearizable

(n + 3)-webs by curves on Cn of maximum (n − 1)-rank [Damiano 1983, Theorem 5.5]

and linked the abelian relations of these webs to the Gabrielov-Gelfand-Losik work on the

first Pontrjagin class of a manifold, cf. [MacPherson 1978].

I could not find a better way to close this survey than recalling a few more words of

Chern [Chern 1982] about web geometry:

(. . . ) the subject is a wide generalization of the geometry of projective

algebraic varieties. Just as intrinsic algebraic varieties are generalized

to Kähler manifolds and complex manifolds, such a generalization to web

geometry seems justifiable.
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[Abel 1823] N. ABEL – Méthode générale pour trouver des functions d’une seule quantité
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variables. Oeuvres complètes de N.H. Abel, tome 1, Grondhal Son (1981) 1–10.

[Akivis et al. 2004] M. AKIVIS, V. GOLDBERG and V. LYCHAGIN – Linearizability

of d-webs, d ≥ 4, on two-dimensional manifolds. Selecta Math. 10 (4) (2004) 431–451.

[Akivis and Goldberg 2000] M. AKIVIS and V. GOLDBERG – Differential Geometry of

Webs. in “Handbook of differential geometry” 1 (2000) 1–152.

[Beauville 1980] A. BEAUVILLE – Tissus [d’après S. S. Chern et P. A. Griffiths].
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una superficie. I i II. Atti Accad. Naz. Lincei 26 (1937) 84–91 and 153–158.
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