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Abstract

Let C be a general connected, smooth, projective curve of positive
genus g. For each integer i ≥ 0 we give formulas for the number of
pairs (P,Q) ∈ C×C off the diagonal such that (g + i−1)Q− (i+1)P
is linearly equivalent to an effective divisor, and the number of pairs
(P,Q) ∈ C × C off the diagonal such that (g + i + 1)Q − (i + 1)P is
linearly equivalent to a moving effective divisor.

1 Introduction

Let C be a general connected, smooth, projective curve of genus g > 0. Put
C2 := C×C, and let ∆ ⊂ C2 be the diagonal. For each integer i ≥ 0 consider
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the following loci on C2:

Di := {(P,Q) ∈ C2 −∆ |h0(OC((g + i− 1)Q− (i+ 1)P )) > 0},
Ei := {(P,Q) ∈ C2 −∆ |h0(OC((g + i+ 1)Q− (i+ 1)P )) > 1}.

Our Proposition 5.4 claims that Di and Ei are finite, and our main result,
Theorem 5.6, gives formulas for the number of points in Di and Ei.

A formula for the number of points in Di appeared already as Lemma 6.3
on page 24 of the seminal work by Diaz [6], where the unnecessary extra
hypotheses that g ≥ 2 and i ≥ 2 are made. Diaz used this formula to
compute the class in the moduli space of genus-g stable curves Mg of the
closure Dg of the locus of smooth curves C having a Weierstrass point P of
type g − 1, i.e. such that h0(OC((g − 1)P )) ≥ 2.

Later on, Cukierman [4] gave a formula for the class in Mg of the closure
Eg of the locus of smooth curves C containing a Weierstrass point P of type
g + 1, i.e. such that h0(OC((g + 1)P )) ≥ 3. He did not follow in Diaz’s
footsteps for this formula, but rather observed that the union Dg ∪ Eg is the
branch locus of the Weierstrass divisor on the “universal” curve over Mg,
and used a Hurwitz formula with singularities to compute the class of this
branch divisor.

Had Cukierman followed in Diaz’s footsteps, he would probably have
found he needed a formula for the number of points in Ei. We give this
formula here.

In fact, in a sense to be explained below, it is slightly easier to obtain the
number of points in Ei than in Di, though we obtain both in a quite inte-
grated form here. To obtain these numbers, the natural procedure is to use
Porteous formula to compute the virtual classes of certain natural ramifica-
tion schemes D+

i and E+
i of maps of vector bundles on C2; see Subsection 5.2.

Set-theoretically, D+
i and E+

i are given exactly as Di and Ei, but without
the restriction that the pair (P,Q) lies off ∆.

The problem is that D+
i and E+

i are both larger than Di and Ei. Indeed,
E+

i is the union of Ei with the set of points (P, P ) such that P is a Weierstrass
point of C and, worse, D+

i is the union of Di and the whole diagonal ∆.
Since E+

i is finite, Porteous formula does give an expression for the number
of points in E+

i , with weights, and thus at least an upper bound for the
number of points in Ei. But it does not a priori give any information on Di.

To compute the number of points in Di and Ei, we use the fact that, by
the Riemann-Roch Theorem, the union of Di and Ei is the locus SWi of pairs
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(P,Q) ∈ C2 −∆ such that Q is a special ramification point of the complete
linear system H0(ωC((i+ 1)P )), where ωC is the canonical bundle of C.

We give SWi a scheme structure as follows. First, we consider the ram-
ification divisor Zi ⊂ C2 of the family of linear systems H0(ωC((i + 1)P ))
parameterized by P ∈ C. Our Proposition 2.2 implies that Zi contains ∆
with multiplicity exactly g. Set Wi := Zi − g∆. Our Proposition 4.3 gives
an expression for the cycle [Wi], and our Proposition 4.4 claims that Wi is
nonsingular. Furthermore, in Subsection 5.2 we observe that the branch di-
visor of Wi with respect to the projection p1: C

2 → C over the first factor
has support SWi. We give SWi the structure of this branch divisor.

The advantage of considering SWi is that it is quite easy to compute its
degree. Indeed, [SWi] is the second Chern class of the bundle of first-order
relative jets of p1 with coefficients in OC2(Wi). Having an expression for [Wi]
we derive very quickly an expression for

∫
C2 [SWi] in Proposition 5.5

Now, giving Di and Ei the subscheme structures induced from D+
i and

E+
i , our Proposition 5.4 shows that, as 0-cycles,

[Di] + [Ei] = [SWi].

Actually, Di and Ei are reduced. Indeed, in the proof of Theorem 5.6 we
show that the weight of (P,Q) in [SWi] is at most 2, and the maximum
weight is achieved if and only if (P,Q) ∈ Di ∩ Ei.

Now, as we already know
∫
C2 [SWi], it is enough to compute either

∫
C2 [Di]

or
∫
C2 [Ei]. As mentioned above, we compute the latter. In fact, we can get∫

C2 [E+
i ] using Porteous formula, and a local analysis, done in Proposition 5.4,

shows that the weight of (P, P ) in [E+
i ] is equal to g+1 for each Weierstrass

point of C. Thus
∫
C2 [Ei] follows.

In a second article [5], we show how the knowledge of the number of points
in Ei can be used to compute the class of Eg in Mg. This computation is
not straightforward as, following in Diaz’s footsteps, we have to determine
the limits of special Weierstrass points of type g + 1 on stable curves with
just one node. This is the main result of [5].

The limits of special Weierstrass points of type g − 1 were computed by
Diaz, using admissible covers. However, the same method does not apply to
points of type g+1. For those we apply in [5] the theory of limit linear series
in a rather new way, using 2-parameter families. Actually, as in the present
article, we use an integrated approach in [5] that yields simultaneously the
limits of special Weierstrass points of both types, and also formulas for the
classes of both Dg and Eg.
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Here is a layout of the article. In Section 2 we review the theory of
linear systems and ramification on a smooth curve C, introduce the linear
systems we will consider in the remainder of the article, H0(ωC((i+1)P )) for
P ∈ C, and prove a preliminary result about them. In Section 3, assuming
C is general, we obtain through degeneration methods results that bound
the order sequence of H0(ωC((i + 1)P )) at any point of C. In Section 4,
we describe the structure of the ramification divisor Zi ⊂ C2 of the family
of linear systems H0(ωC((i + 1)P )) parameterized by P ∈ C. Finally, in
Section 5 we define the loci Di and Ei and compute their number of points,
through the study of the locus SWi of special ramification points of the family
H0(ωC((i+ 1)P )) for P ∈ C.

We thank Nivaldo Medeiros for discussions on related topics. Also, we
acknowledge the use of CoCoA[3] for some of the computations.

2 Setup

2.1 (Linear systems and ramification) Let C be a smooth curve, that is, a
projective, connected, smooth scheme of dimension 1 over C. Denote by ωC

its canonical sheaf. Let g := h0(C, ωC), the genus of C.
Let V be a C-vector space of sections of a line bundle L on C. We call V

a linear system. The linear system is called complete if V = H0(C,L). Let
r := dimV − 1 and d := degL. We call r the rank of V and d its degree. We
say as well that dimV is the dimension of V .

For each point P of C, and each integer j ≥ 0, let V (−jP ) denote the
vector subspace of V of sections of L that vanish with order at least j at P .
We say that j is an order of V at P if V (−jP ) 6= V (−(j + 1)P ). There are
r + 1 orders, which, in an increasing sequence, will be denoted by

ε0(V, P ), ε1(V, P ), . . . , εr(V, P ).

For each integer ` ≥ 0 and each line bundle M on C, let J `
C(M) be the

bundle of jets, or principal parts, of M truncated in order `. Consider the
map of rank-r bundles,

V ⊗OC −→ J r
C(L),

locally obtained by differentiating up to order r the sections of L in V . The
wronskian wV of V is the (nonzero) section of

L⊗r+1 ⊗ ω
⊗r(r+1)/2
C
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induced by taking determinants in the above map of bundles.
For each point P of C, the weight wtV (P ) of P in V is the order of

vanishing of wV at P . We call P a ramification point of V if wtV (P ) > 0;
otherwise we call P ordinary. A local analysis yields the formula

wtV (P ) =
r∑

j=0

(εj(V, P )− j).

We call P a simple ramification point if wtV (P ) = 1; otherwise we call P
special. The point P is special if and only if the section

DwV ∈ H0
(
C,J 1

C(L⊗r+1 ⊗ ω
⊗r(r+1)/2
C )

)
,

locally obtained from wV by differentiating, vanishes at P .
The total weight of the ramification points of V is the (finite) sum

wtV :=
∑
P∈C

wtV (P ).

It is equal to the degree of the line bundle of which wV is a section, that is,

wtV = (r + 1)(d+ (g − 1)r),

a formula usually referred to as the Brill–Segre or Plücker formula.
The canonical system is the complete linear system of sections of ωC . Its

rank is g−1, and its degree is 2(g−1). For each point P of C, its Weierstrass
weight wt(P ) is its weight in the canonical system, and the Weierstrass order
sequence at P is the increasing sequence of orders at P of the canonical
system.

For each integer i ≥ −1 and each P ∈ C, let VC(i, P ) denote the complete
linear system of sections of ωC((i+ 1)P ).

2.2 Proposition. Let C be a smooth curve of genus g. For each integer
i ≥ 0 and each P ∈ C, the following two statements hold for V := VC(i, P ):

1. The weight wtV (P ) of P as a ramification point of V satisfies

wtV (P ) = g + wt(P ), (1)

where wt(P ) is the Weierstrass weight of P .
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2. The total weight wtV of the ramification points of V satisfies

wtV = g(g + i)2. (2)

Proof. From the Riemann–Roch theorem, for each j = 0, . . . , i,

dimV (−jP ) = g + i− j.

In particular, comparing dimensions, we get

V (−iP ) = V (−(i+ 1)P ) = H0(C, ωC).

Hence, the order sequence of V at P is

0, 1, . . . , i− 1, (i+ 1) + ε0, (i+ 1) + ε1, . . . , (i+ 1) + εg−1,

where ε0, ε1, . . . , εg−1 is the Weierstrass order sequence at P . Thus

wtV (P ) =
g−1∑
k=0

(i+ 1 + εk − i− k) = g + wt(P ).

The second statement is a direct application of the Brill–Segre formula,
using that the rank of V is g + i− 1 and its degree is 2g − 2 + (i+ 1).

3 The general curve

3.1 Proposition. Fix an integer i0 ≥ 0. Let C be a general smooth curve
of genus g ≥ 1. Then the following two statements hold for each nonnegative
integer i ≤ i0:

1. For a general point P of C, the linear system VC(i, P ) ramifies at P
with weight g, and has otherwise at most simple ramification points.

2. For any two points P and R of C,

h0(C, ωC((i+ 1)P − (g + i)R)) ≤ 1 (3)

h0(C, ωC((i+ 1)P − (g + i+ 2)R) = 0. (4)
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Proof. Let us first observe that the property required of C is open. In-
deed, let f : X → S be any family of smooth curves, that is, a projective,
smooth map with connected fibers of dimension 1. Consider the fibered prod-
uct X(2) := X×SX of two copies of f , and denote by p1 and p2 the projection
maps. Denote by ∆ the diagonal subscheme of X(2). Let ωf denote the rela-
tive canonical bundle of f . Then ω := p∗2ωf is the relative canonical bundle
of p1. Let

V := p1∗(ω((i+ 1)∆)).

A fiberwise analysis shows that V is a bundle of rank g + i with formation
commuting with base change. For each integer ` ≥ 0, denote by J ` the
bundle of rank ` + 1 of p1-relative jets of ω((i + 1)∆) truncated in order `,
and denote by ψ`: p

∗
1V → J ` the map locally obtained by differentiating the

sections of ω((i + 1)∆) up to order ` along the fibers of p1. Let Wi,1 (resp.
Wi,2) be the closed subset of X(2) where ψg+i−1 (resp. ψg+i+1) has rank at
most g + i − 2 (resp. g + i − 1). Also, let Wi be the closed subset of X(2)

where ψg+i−1 has rank at most g+ i− 1. By Proposition 2.2, Wi contains ∆
with multiplicity g. Let W ′

i := Wi− g∆ and Zi := ∆∩W ′
i . Let W ′′

i ⊂ W ′
i be

the ramification scheme of the map p1|W ′
i
. Let Ui ⊆ S be the intersection of

S− f(p1(Wi,1 ∪Wi,2)) with f(X − p1(W
′′
i ∪Zi)). Since p1 is proper, and f is

both proper and open, Ui is an open subscheme of S. Let U := U0∩· · ·∩Ui0 .
The formation of U commutes with base change. Thus a fiberwise analysis
reveals that U consists of the set of points s ∈ S such that the proposition
holds for C := X(s).

Now, keeping in mind the existence of a versal family of smooth curves,
it is enough to exhibit a single curve C for which the statement holds. We
will actually show a somewhat stronger existence result:

3.2 Lemma. Fix nonnegative integers i0 and j0. Let g be a positive integer.
Then there is a smooth pointed curve (C,Q) of genus g for which the following
three statements hold for each nonnegative integers i ≤ i0 and j ≤ j0:

1. The linear system VC(j,Q) ramifies at Q with weight g, and has oth-
erwise at most simple ramification points.

2. For each P ∈ C distinct from Q, either Q is an ordinary point or a
simple ramification point of VC(i, P ).

3. For each P ∈ C distinct from Q, the linear system V of sections of
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ωC((i+ 1)P + (j + 1)Q) given by

V := H0(ωC((i+ 1)P )) +H0(ωC((j + 1)Q))

satisfies

dimV (−(g + i+ j)R) ≤ 1 and V (−(g + i+ j + 2)R) = 0

for each R ∈ C distinct from P and Q.

We will first see how the lemma implies the proposition. Set j0 = i0,
and consider the pointed curve (C,Q) given by the lemma. Then the two
statements of Proposition 3.1 hold for C. Indeed, the first statement holds
for P = Q, whence for P in a neighborhood of Q, that is, for a general P .

As for the second statement, first notice that (3) and (4) hold for P = Q
and every R ∈ C, a consequence of the first statement of the lemma for j := i.
They hold as well for R = Q and every P ∈ C distinct from Q, a consequence
of the second statement of the lemma. Furthermore, they hold for R = P
and any P ∈ C. Indeed, the first statement of the lemma for j := 0 implies
that the canonical linear system has at most simple ramification points. Thus
h0(ωC((1− g)P )) ≤ 1 and h0(ωC(−(g + 1)P )) = 0.

Finally, fix a point P ∈ C distinct from Q and a point R ∈ C distinct
from P and Q. For j := 0, the linear system V defined in the lemma is the
system of sections of ωC((i+ 1)P +Q) that are zero on Q. Since R 6= Q, the
third statement of the lemma yields (3) and (4).

It is thus enough to prove the lemma, what we do below.

Proof. (Lemma 3.2) We will do induction on g. The initial step is taken
care of below.

Let C be any elliptic curve and Q ∈ C any point. Then the ramification
points of the complete linear system of sections of ωC((j + 1)Q) are simple.
(These are the (j + 1)2 points R for which Q − R is (j + 1)-torsion, what
includes Q.) In fact, it follows from the Riemann–Roch theorem that every
complete linear system has only simple ramification points. Thus State-
ments 1 and 2 of the lemma hold. Now, given P ∈ C distinct from Q, since
the vector subspace V of H0(ωC((i+1)P +(j+1)Q)) defined in Statement 3
has codimension 1, the order sequence of V at a point R is obtained either
from

0, 1, . . . , g + i+ j − 1, g + i+ j or 0, 1, . . . , g + i+ j − 1, g + i+ j + 1
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by removing an order. In any case, there is at most one order of V at R
above g + i+ j − 1, that is dimV (−(g + i+ j)R) ≤ 1, and all orders are at
most g + i+ j + 1, that is V (−(g + i+ j + 2)R) = 0.

Assume from now on that g > 1, and that the claim holds for smaller
genera and any integers i0 and j0. We will employ a degeneration technique
in order to apply the induction hypothesis.

Let (Y,A) and (Z,B) be nonrational smooth pointed curves of genera gY

and gZ , with gY + gZ = g. From the induction hypothesis, we may assume
that the statements of the lemma hold for (C,Q) replaced by (Y,A) and all
nonnegative integers i ≤ i0 and j ≤ gZ + i0 + j0 + 1, and for (C,Q) replaced
by (Z,B) and all nonnegative integers i ≤ i0 and j ≤ gY + i0 + j0 + 1.

Let C0 be the curve of compact type that is the union of Y , of Z, and of
a chain of rational curves E1, . . . , En−1 connecting A to B, where n ≥ 2. Our
convention is that E1 contains A and En−1 contains B. Let v be any integer
such that 0 < v < n, and let Q0 be any point of Ev that is not a node of C0.

Let S := Spec(C[[t]]), and denote its special point by 0 and generic point
by η. Since there are no obstructions to deforming pointed nodal curves,
there are a projective, flat map f : X → S and a section λ: S → X of f such
that (X(0), λ(0)) = (C0, Q0) and (X(η), λ(η)) is a smooth pointed curve over
the field of formal Laurent series C[[t]][1/t].

Let C be the base extension of X(η) to the algebraic closure of C[[t]][1/t].
Set Q := λ(η). It is enough to see that the statements of the lemma hold for
(C,Q). Indeed, the argument is quite standard, and is summarized below.
Though the pointed curve (C,Q) is not defined over C, it is defined over a
finitely generated extension L of Q. If the statements of the lemma hold for
(C,Q), they also hold for the base extension of (C,Q) over any algebraically
closed field containing L. But, since C has many transcendentals over Q,
there is an algebraically closed field containing L which is isomorphic to C.
So, if the statements of the lemma hold for (C,Q), they hold as well for some
pointed curve over C.

Now, any finite set of points of C is defined over a finite field extension
of C[[t]][1/t]. Replacing S by its normalization in this field extension, we
may assume that these are rational points of X(η), and thus that there are
sections of f intersecting X(η) at them. By making a further base extension,
if necessary, and a sequence of blowups at the singular points of the special
fiber, we may assume that the total spaceX is regular, and that these sections
factor through the smooth locus of f . The compensation for this is a change
of the special fiber. However, the special fiber will have the same specification
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as the C0 we described above. Thus, no confusion will ensue if we keep calling
by C0 this new fiber. Also, the section λ can be extended to a section of this
new family.

Now, let P and R be points of C with P distinct from Q and R distinct
from P and Q. As we mentioned above, we may assume there are sections
γ: S → X and ρ: S → X through the smooth locus of f such that γ(η) = P
and ρ(η) = R. Set P0 := γ(0) and R0 := ρ(0). Let Γ and Λ be the images of
γ and λ, respectively.

Fix nonnegative integers i ≤ i0 and j ≤ j0. Let ω be the relative dualizing
bundle of f : X → S. Let Vη be the linear system of sections of the line bundle
ω(η)((i+ 1)P + (j + 1)Q) given by

Vη := H0(ω(η)((i+ 1)P )) +H0(ω(η)((j + 1)Q)).

Assume that R is a ramification point of Vη. To prove the statements of the
lemma hold for (C,Q), it is enough to prove the following three statements:

1. For i = 0, the system Vη ramifies at Q with weight g, and R is a simple
ramification point of Vη.

2. For j = 0, the point Q is a ramification point of Vη of weight g + i or
g + i+ 1.

3. dimVη(−(g + i+ j)R) ≤ 1 and Vη(−(g + i+ j + 2)R) = 0.

We will employ techniques of limit linear series, from [7], to show the
above three statements. There are two cases to consider:

Case 1: Assume that P0 ∈ Eu for some u.

Since C0 is of compact type, there is an effective divisor D of X supported
on C0 such that, letting

L := ω((i+ 1)Γ + (j + 1)Λ +D),

we have L|Em
∼= OEm for each m = 1, . . . , n− 1,

L|Z ∼= ωZ((gY + i+ j + 3)B) and L|Y ∼= ωY ((1− gY )A).

Since, from the induction hypothesis, A is a ramification point of weight
gY of the complete linear system of sections of ωY (A), the point A is not a
Weierstrass point of Y . Then V := H0(X,L)∩Vη restricts to a linear system
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VZ of dimension g + i + j of sections of ωZ((gY + i + j + 3)B). Also from
the induction hypothesis, B is not a Weierstrass point of Z. So the order
sequence of B in the complete linear system of sections of ωZ((gY +i+j+3)B)
is

0, 1, . . . , gY + i+ j + 1, gY + i+ j + 3, . . . , g + i+ j + 2.

As a consequence, the weight wB of B as a ramification point of the linear
system VZ satisfies

wB ≤ 2(gY + i+ j) + 3gZ , (5)

with equality if and only if VZ = H0(ωZ((gY + i+ j + 1)B)).
Analogously, choosing an appropriate D, we obtain a linear system VY of

dimension g + i+ j of sections of ωY ((gZ + i+ j + 3)A), and the weight wA

of A as a ramification point of VY satisfies

wA ≤ 2(gZ + i+ j) + 3gY , (6)

with equality if and only if VY = H0(ωY ((gZ + i+ j + 1)A)).
Let r := g + i + j − 1. Using the Plücker formula, the number N of

ramification points of VY and VZ on (Y − A) ∪ (Z − B), counted with their
respective weights, satisfies

N = (r + 1)
(
(2gZ + gY + i+ j + 1) + r(gZ − 1)

)
− wB

+ (r + 1)
(
(2gY + gZ + i+ j + 1) + r(gY − 1)

)
− wA

= N ′ + 5g + 4(i+ j)− wA − wB,

where
N ′ := (r + 1)

(
(2g + i+ j) + r(g − 1)

)
− 2g − i− j.

Now, from the theory of limit linear series, each one of the ramification
points of VY or VZ on (Y − A) ∪ (Z −B) is a limit of ramification points of
Vη, and its weight as a ramification point is the sum of the weights of the
ramification points of Vη converging to it. Besides those, since P and Q are
ramification points of Vη with weights at least g+j and g+i, respectively, the
points P0 and Q0 appear as limits of ramification points of Vη with weights
summing up to at least 2g + i + j. Thus, from the Plücker formula, at
most N ′ ramification points of Vη, counted with their weights, converge to
(Y − A) ∪ (Z −B). So

5g + 4(i+ j)− wA − wB ≤ 0.
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However, Inequalities (5) and (6) for wB and wA yield the opposite in-
equality:

5g + 4(i+ j)− wA − wB ≥ 0.

Thus, equalities hold, and hence

VY = H0(ωY ((gZ + i+ j + 1)A)) and VZ = H0(ωZ((gY + i+ j + 1)B)).

In addition, P and Q are ramification points of Vη of weights g + j and
g + i, respectively, and all the other ramification points of Vη converge to
(Y −A)∪(Z−B). In particular, Statement 2 and the first part of Statement 1
are shown.

Now, since R is a ramification point of Vη, and R is distinct from P and Q,
we have R0 ∈ (Y −A)∪(Z−B). So R0 is a ramification point of either VY or
VZ . From the induction hypothesis, the complete linear systems of sections of
ωY ((gZ+i+j+1)A) and ωZ((gY +i+j+1)B) have at most simple ramification
points, other than A or B. Thus R is the unique ramification point of Vη

converging to R0 and its weight is 1. So the remainder of Statement 1 is
shown.

As for Statement 3, assume, without loss of generality, that R0 ∈ Z.
Set n := dimVη(−(g + i + j)R), and let σ1, . . . , σn form a C[[t]]-basis of
V ∩Vη(−(g+i+j)R). Their restrictions to Z are sections of VZ vanishing with
multiplicity at least g + i + j on R0. Assume, by contradiction, that n ≥ 2.
Since R0 is a simple ramification point of VZ , the sections σ1|Z , . . . , σn|Z are
linearly dependent. Thus, there is a nonzero n-tuple (c1, . . . , cn) ∈ Cn such
that c1σ1 + · · ·+ cnσn vanishes on Z, and hence on the whole C0. Thus

c1σ1 + · · ·+ cnσn = tσ (7)

for some σ ∈ H0(X,L). Also σ ∈ Vη(−(g + i+ j)R), and hence σ is a C[[t]]-
linear combination of σ1, . . . , σn. Plugging this linear combination in (7) we
obtain a nontrivial C[[t]]-linear relation among the sections σi, a contradic-
tion. Thus n ≤ 1. A similar analysis, using that VZ(−(g+ i+ j+ 2)R0) = 0,
shows that Vη(−(g + i+ 2)R) = 0, finishing the proof of Statement 3.

Case 2: Assume P0 belongs to either Y or Z.

Without loss of generality, we may assume that P0 ∈ Z. Again, since C0

is of compact type, there is an effective divisor D of X supported on C0 such
that, letting

L := ω((i+ 1)Γ + (j + 1)Λ +D),
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we have L|Em
∼= OEm for each m = 1, . . . , n− 1,

L|Z ∼= ωZ((i+ 1)P0 + (gY + j + 2)B) and L|Y ∼= ωY ((1− gY )A).

As before, V := H0(X,L) ∩ Vη restricts to a linear system VZ of dimension
g + i+ j of sections of ωZ((i+ 1)P0 + (gY + j + 2)B).

Now,

V ⊇ H0(X,ω((i+ 1)Γ)) +H0(X,ω((j + 1)Λ +D)).

Reasoning as in Case 1, we can show that H0(X,ω((j + 1)Λ +D)) restricts
to H0(ωZ((gY + j + 1)B)). On the other hand, the exact sequence

0 → H0(ωZ((i+ 1)P0)) → H0(ω((i+ 1)Γ)|C0) → H0(ωY (A))

shows that h0(ω((i + 1)Γ)|C0) = g + i, and hence that H0(X,ω((i + 1)Γ))
restricts to a vector subspace ofH0(ωZ((i+1)P0+B)) containing the subspace
H0(ωZ((i+ 1)P0)). Thus

VZ ⊇ H0(ωZ((i+ 1)P0)) +H0(ωZ((gY + j + 1)B)),

and a dimension count shows that equality holds.
The weight wB of B as a ramification point of VZ depends on its weight

as a ramification point of VZ(i, P0). Now, from the induction hypothesis, B
is either an ordinary point or a simple ramification point of VZ(i, P0). Hence,
the order sequence at B of the linear system VZ is either

1, 2, . . . , gY + j, gY + j + 2, gY + j + 3, . . . , g + i+ j, g + i+ j + 1

or

1, 2, . . . , gY + j, gY + j + 2, gY + j + 3, . . . , g + i+ j, g + i+ j + 2.

At any rate,
wB ≤ gY + j + 2(gZ + i) + 1. (8)

Notice that, if i = 0, then B is an ordinary point of VZ(0, P0), as it is an
ordinary point of Z, and thus Inequality (8) is strict.

On the other hand, let D′ be an effective divisor of X supported on C0

such that, letting

M := ω((i+ 1)Γ + (j + 1)Λ +D′),

13



we have M|Em
∼= OEm for each m = 1, . . . , n− 1,

M|Y ∼= ωY ((gZ + i+ j + 3)A) and M|Z ∼= ωZ((i+ 1)P0 − (gZ + i)B).

Since, as mentioned above, B is either an ordinary point or a simple rami-
fication point of VZ(i, P0), we have that H0(X,M) ∩ Vη restricts to a linear
system VY of dimension g + i+ j of sections of ωY ((gZ + i+ j + 3)A).

Since A is not a Weierstrass point of Y , the sequence of orders at A of
the complete linear system of sections of ωY ((gZ + i+ j + 3)A) is

0, 1, . . . , gZ + i+ j + 1, gZ + i+ j + 3, gZ + i+ j + 4, . . . , g + i+ j + 2.

Since VY has codimension 2 in H0(ωY ((gZ + i+ j + 3)A)), the weight wA of
VY at A satisfies

wA ≤ 2(gZ + i+ j) + 3gY , (9)

with equality if and only if VY = H0(ωY ((gZ + i+ j + 1)A)).
As in Case 1, using the Plücker formula, the number N of ramification

points of VY and VZ on (Y − A) ∪ (Z − B), counted with their respective
weights, satisfies

N = N ′ + 4g + 4i+ 3j − wA − wB,

where

N ′ := (g + i+ j)(2g + i+ j) + (g + i+ j)(g + i+ j − 1)(g − 1)− g − i.

As in Case 1, since Q is a ramification point of Vη with weight at least g+ i,
there are at most N ′ ramification points of Vη, counted with their respective
weights, converging to (Y − A) ∪ (Z −B). So

4g + 4i+ 3j − wA − wB ≤ 0.

On the other hand, Inequalities (8) and (9) yield

wA + wB ≤ 4g + 4i+ 3j + 1.

In particular, wA ≥ 2(gZ + i+ j) + 3gY − 1, whence

VY ⊂ H0(ωY ((gZ + i+ j + 2)A)).
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Also, Q has weight g + i or g + i + 1 in Vη. Thus Statement 2 is shown.
Furthermore, if i = 0 we have wA + wB = 4g + 4i + 3j. In this case,
VY = H0(ωY ((gZ + i+ j + 1)A)) and Q has weight g + i in Vη, showing the
first part of Statement 1.

If Q has weight g + i+ 1 in Vη, all other ramification points converge to
(Y − A) ∪ (Z − B). If Q has weight g + i, there is at most one ramification
point of Vη, other than Q, converging outside (Y − A) ∪ (Z − B), and that
point is simple. If R is that point, then dimVη(−(g + i + j)R) ≤ 1 and
Vη(−(g + i+ j + 2)R) = 0 because of the simplicity of R.

Assume now that R0 ∈ (Y − A) ∪ (Z − B). Let us first consider the
case R0 ∈ Y − A. In this case, since, from the induction hypothesis, the
complete linear system of sections of ωY ((gZ + i + j + 2)A) has at most
simple ramification points, other than A, we have

h0(ωY ((gZ + i+ j + 2)A− (g + i+ j)R0) ≤ 1,

h0(ωY ((gZ + i+ j + 2)A− (g + i+ j + 2)R0) = 0.

Thus dimVY (−(g+ i+ j)R0) ≤ 1 and VY (−(g+ i+ j+ 2)R0) = 0 as well. It
follows, as in Case 1, that

dimVη(−(g + i+ j)R) ≤ 1 and Vη(−(g + i+ j + 2)R) = 0.

Furthermore, if i = 0, since in this case VY = H0(ωY ((gZ + i+ j + 1)A)), all
the ramification points of VY distinct from A are simple. Thus R0 is simple
in VY , and hence R is simple in Vη.

Assume now that R0 ∈ Z − B. There are two cases to consider. First,
assume R0 = P0. Since, by induction hypothesis, the complete linear system
of sections of ωZ((gY + j+1)B) has at most simple ramification points other
than B, the weight of P0 as a ramification point of VZ is either g + j or
g + j + 1. Since P has at least weight g + j in Vη, and R 6= P , the latter
must hold, and R must be a simple ramification point of Vη. In particular,
dimVη(−(g + i+ j)R) ≤ 1 and Vη(−(g + i+ j + 2)R) = 0.

Finally, assume R0 6= P0. Then

dimVZ(−(g + i+ j)R0) ≤ 1 and VZ(−(g + i+ j + 2)R0) = 0

from the induction hypothesis, and hence dimVη(−(g + i + j)R) ≤ 1 and
Vη(−(g + i + j + 2)R) = 0. Thus Statement 3 is shown. Also, if i = 0,
then VZ = H0(ωZ((gY + j + 1)B)), and, since R0 6= P0, the weight of R0
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in VZ is equal to its weight in the complete linear system of sections of
ωZ((gY + j + 1)B). By induction hypothesis, this weight is one, and thus R
is a simple ramification point of Vη. So Statement 1 is shown.

3.3 Corollary. If C is a general smooth curve of genus g ≥ 1, then all its
Weierstrass points are simple.

Proof. Apply Statement 1 of Proposition 3.1 for i0 := 0 and i := 0.

3.4 Proposition. Fix an integer i0 ≥ 0. Let C be a general smooth curve
of genus g ≥ 1. Then for any two distinct points P and R of C, and any
nonnegative integer i ≤ i0,

h0(C, ωC((i+ 1)P − (g + i− 2)R)) = 2.

Proof. A line bundle of degree 2 on an elliptic curve has (at most) 2
linearly independent sections. Thus we may assume g ≥ 2. Also, for i = 0,

h0(C, ωC((i+ 1)P − (g + i− 2)R) = h0(C, ωC(−(g − 2)R)) = 2,

since R is at most a simple Weierstrass point of C, a consequence of Corol-
lary 3.3. So we need only show the stated equality for integers i > 0.

For each integer j ≥ 2 (resp. j ≥ 1), let Mj be the moduli space of
smooth curves (resp. let Mj,1 be the moduli space of smooth pointed curves)
of genus j. Let M j and M j,1 denote their respective compactifications by
stable (resp. stable, pointed) curves. For each positive integer i ≤ i0, let
D(i) ⊆ Mg+i be the subset parameterizing curves admitting a covering of
degree at most g+ i− 2 of the projective line totally ramified at a point. By
[1], Thm. 3.11, p. 333, the subvariety D(i) is irreducible of codimension 2.

Let D
(i) ⊂M g+i be the closure of D(i).

Let µi: Mg,1 ×Mi,1 → M g+i be the natural map, associating to a pair
of smooth pointed curves the stable uninodal curve which is the union of

these curves identified at the marked points. Let E(i) := µ−1
i (D

(i)
). Let

ρi: E
(i) → Mg be the natural map, forgetting the second pointed curve and

the marked point on the first curve. Since C is general, we may assume that,
for each i = 1, . . . , i0, the curve C is parameterized by a point of Mg over
which the fiber of ρi has minimum dimension. We claim this dimension is
at most 3i − 3, whence less than dimMi,1. Indeed, if the dimension were
larger, then E(i) would have codimension at most 1 in Mg,1 × Mi,1, and
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hence would dominate D
(i)

under µi. So D
(i)

would be contained in the
boundary M g+i −Mg+i, an absurd. From the claim, for each i = 1, . . . , i0,
the general smooth pointed curve (Yi, Bi) of genus i is such that, for any
P ∈ C, the pair of pointed curves ((C,P ), (Yi, Bi)) is not parameterized by
E(i). Consequently, the stable uninodal curve Xi, union of C and Yi with

P and Bi identified, is parameterized by a point of M g+i off D
(i)

, for each
i = 1, . . . , i0.

Suppose, by contradiction, that for certain distinct points P and Q of C,
and a certain positive integer i ≤ i0, we have

h0(C, ωC((i+ 1)P − (g + i− 2)Q) ≥ 3.

Put g′ := g + i. Since, by Riemann–Roch, h0(C, ωC((i + 1)P − iQ)) = g,
there is an integer j with 2 ≤ j < g such that

h0(C, ωC((i+ 1)P − (g′− j)Q) = h0(C, ωC((i+ 1)P − (g′− j − 1)Q) = j + 1.

Again by Riemann–Roch,

h0(C,OC((g′− j)Q− (i+1)P )) > h0(C,OC((g′− j−1)Q− (i+1)P )). (10)

Thus, there is a map φ: C−→P1 of degree g′− j such that φ∗(0) = (g′− j)Q
and φ∗(∞) ≥ (i+1)P . Let i′ be the integer such that i′+1 is the multiplicity
of P in φ∗(∞). Then i′ ≥ i.

Set Y := Yi and B := Bi. Since B is general, B is not a Weierstrass point
of Y . Thus, since i′ ≥ i, we have h0(Y,OY (i′B)) < h0(Y,OY ((i′ + 1)B)). So,
there is a map ψ: Y−→P1 of degree i′ + 1 such that ψ∗(∞) = (i′ + 1)B.

Putting together the maps φ and ψ, we may construct the covering with
source Xi depicted in Figure 1 below,

Figure 1: The covering.
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which can be represented by a point [Xi] of the (compactification of the)
Hurwitz scheme parameterizing (pseudo)admissible coverings of the projec-
tive line of degree (g′ − j) totally ramified at a point; see Remark 3.5. Since
coverings of P1 form a dense open subscheme of this compactification, the
curve Xi is limit of smooth curves equipped with a degree-(g′ − j) map to
the projective line totally ramified at a point. Since j ≥ 2, it follows that
[Xi] lies on the boundary of D(i), a contradiction.

3.5 Remark. The Hurwitz scheme we used in the proof of Proposition 3.4
is mentioned in [6], Section 5. It can be constructed following the same
reasoning used in the construction of the Hurwitz scheme of (simple) admis-
sible coverings, given in the proof of [10], Thm. 4, p. 58. Also, the local
descriptions of both schemes are the same, given on [10], p. 62. From this
description we see that the Hurwitz scheme is equidimensional. Now, there is
a natural forgetful map from the Hurwitz scheme to a corresponding moduli
space of pointed genus-0 curves, taking a covering to its target. This map is
finite and surjective, also by [10], Thm. 4, p. 58. Since the moduli spaces of
pointed genus-0 curves are irreducible (see [12] or [11]), it follows that each
irreducible component of the Hurwitz scheme covers the target. So coverings
of P1 form a dense open subscheme of the Hurwitz scheme, a fact used in the
proof of Proposition 3.4.

3.6 Remark. We tried to prove Proposition 3.4 using the same induction
argument used in the proof of Lemma 3.2. However, we could not prove
the initial step, that is, the following statement: Let C be a general elliptic
curve, Q ∈ C a general point, and P ∈ C − {Q} any point. Let i and j be
nonnegative integers. Then the linear system V of sections of the line bundle
ωC((i+1)P +(j+1)Q) generated by H0(ωC((i+1)P )) and H0(ωC((j+1)Q))
satisfies dimV (−(i+ j − 1)R) = 2 for each R ∈ C − {P,Q}.

4 Weierstrass divisors

4.1 (Wronski maps) Let C be a smooth curve of genus g. For each integer
j ≥ 0, consider the family of linear systems VC(j, P ) for P varying on C.
More precisely, let p1 and p2 denote the projections of C × C onto the first
and second factors, and ∆ ⊂ C × C the diagonal. The relative canonical
bundle of p1 is simply the pullback p∗2ωC of the canonical bundle ωC of C.
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For each integer j ≥ 0, let

Lj := p∗2ωC((j + 1)∆), Ej := p1∗Lj.

Notice that, for each point P of C, identifying {P}×C with C in the natural
way, Lj|{P}×C = ωC((j + 1)P ). Also, as h0(ωC((j + 1)P )) = g + j for every
P ∈ C, the sheaf Ej is a bundle of rank g + j and Ej|P = H0(ωC((j + 1)P )).

For each integer ` ≥ 0 and each line bundle M on C ×C, let J `
p1

(M) be
the bundle of rank `+ 1 of p1-relative jets of M truncated in order `. Let

ρj,`: p
∗
1Ej → J `

p1
(Lj)

be the map of bundles locally obtained by differentiating up to order ` along
the fibers of p1 the sections of Lj. We call ρj,` a Wronski map.

The map ρj,g+j−1 is a map of bundles of the same rank. Taking determi-
nants, we get a section zj of the line bundle

g+j∧
J g+j−1

p1
(Lj)⊗

g+j∧
p∗1E∨j ,

which is naturally isomorphic, using the truncation sequence of the bundles
of jets, to

p∗2ωC((j + 1)∆)⊗g+j ⊗ p∗2ω
⊗(g+j)(g+j−1)/2
C ⊗

g+j∧
p∗1E∨j ,

or more simply to

p∗2ω
⊗(g+j)(g+j+1)/2
C

(
(g + j)(j + 1)∆

)
⊗

g+j∧
p∗1E∨j .

4.2 (Weierstrass divisors.) Keep the notation used in Subsection 4.1. Let
Zj ⊆ C × C denote the zero scheme of zj. The section zj is a relative
wronskian. More precisely, for each P ∈ C, on {P}×C, identified with C in
the natural way, the section zj restricts to the wronskian of the linear system
VC(j, P ). Hence, Zj consists of the pairs (P,Q) ∈ C × C such that VC(j, P )
ramifies at Q. Now, since zj is nonzero, being so on each fiber, Zj is a Cartier
divisor. By Proposition 2.2, the divisor Zj intersects each fiber {P} × C at
(P, P ) with multiplicity g + wt(P ), where wt(P ) is the weight of P in the
canonical system of C. Thus Zj contains ∆ with multiplicity exactly g. Let

Wj := Zj − g∆.
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Then Wj is, set-theoretically, the locus of pairs (P,Q) ∈ C × C such that
either P = Q and P is a Weierstrass point of C, or P 6= Q and Q is a
ramification point of VC(j, P ). We call Wj the j-th Weierstrass divisor of C.

4.3 Proposition. Let C be a smooth curve of genus g ≥ 1 and j a nonneg-
ative integer. Let ∆ be the diagonal of C ×C, and p1 and p2 the projections
of C × C onto the indicated factors. Let ωC be the canonical bundle of C,
and set K` := c1(p

∗
`ωC) for ` = 1, 2. Let Wj ⊆ C×C be the j-th Weierstrass

divisor of C. Then its class [Wj] in the Chow group of C × C satisfies

[Wj] =
1

2
(g + j)(g + j + 1)K2 + j(g + j + 1)[∆] +

1

2
j(j + 1)K1. (11)

Proof. Use the notation in Subsections 4.1 and 4.2. Since Wj = Zj−g∆,
and Zj is the zero scheme of a section of the line bundle

p∗2ω
⊗(g+j)(g+j+1)/2
C

(
(g + j)(j + 1)∆

)
⊗

g+j∧
p∗1E∨j ,

we get

[Wj] =
1

2
(g + j)(g + j + 1)K2 + j(g + j + 1)[∆]− p∗1c1(Ej). (12)

To finish, we need only show that

c1(Ej) = −1

2
j(j + 1)c1(ωC). (13)

We show (13) by induction on j. First of all,

E0 = p1∗p
∗
2ωC = H0(ωC)⊗OC .

Since E0 is free, c1(E0) = 0.
Assume now that j > 0 and c1(Ej−1) = −(j(j − 1)/2)c1(ωC). Consider

the natural short exact sequence

0 → p∗2ωC(j∆) → p∗2ωC((j + 1)∆) → p∗2ωC((j + 1)∆)|∆ → 0.

Since H1(ωC(jP )) = 0 for each P ∈ C, applying p1∗ to the sequence above,
we get the exact sequence

0 → Ej−1 → Ej → p1∗p
∗
2ωC((j + 1)∆)|∆ → 0.
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Now, p`|∆ is an isomorphism for ` = 1, 2. So p1∗p
∗
2ωC |∆ = ωC . In addition,

p1∗OC×C(−∆)|∆ = ωC . Thus

c1(Ej) = c1(Ej−1) + c1(p1∗p
∗
2ωC((j + 1)∆)|∆)

= −(j(j − 1)/2)c1(ωC) + (1− (j + 1))c1(ωC)

= −(j(j + 1)/2)c1(ωC),

as claimed.

4.4 Proposition. Let C be a general smooth curve of genus g ≥ 1 and j a
nonnegative integer. Let Wj ⊆ C × C be the j-th Weierstrass divisor of C.
Then Wj is nonsingular and intersects the diagonal ∆ transversally, at the
pairs (P, P ) such that P is a Weierstrass point of C.

Proof. Let us show first that Wj intersects ∆ transversally. As pointed
out in Subsection 4.2, the intersection Wj ∩ ∆ is, set-theoretically, the set
of pairs (P, P ) such that P is a Weierstrass point of C. As C is general, by
Corollary 3.3, all its Weierstrass points are simple, and number g3 − g by
Plücker Formula. Now, since the intersection Wj ∩∆ is finite, the number of
points of intersection, weighted by their intersection multiplicities, is equal
to the degree of the product [Wj][∆]. Using the notation and Formula (11)
of Proposition 4.3, and using the Formulas∫

C×C
K2[∆] =

∫
C×C

K1[∆] = −
∫

C×C
[∆]2 = 2g − 2 (14)

and ∫
C×C

K1K2 = 4(g − 1)2, (15)

we get∫
C×C

[Wj][∆] = (g+j)(g+j+1)(g−1)−2j(g+j+1)(g−1)+j(j+1)(g−1),

which is exactly g3 − g. Thus the intersection multiplicities are all one.
As a corollary of the transversal intersection, Wj is nonsingular at its

points on ∆. So, let now (P,Q) ∈ Wj for P and Q distinct, and let us show
that Wj is nonsingular at (P,Q) as well.

Let J := Picg−1(C), the component of the Picard scheme of C param-
eterizing line bundles of degree g − 1. Let Θ ⊂ J be the theta divisor,
parameterizing line bundles with nontrivial global sections. Let

µ: C × C → J
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be the map taking a pair (R,S) to the point of J representing the bundle
ωC((j + 1)R− (g + j)S).

We claim that µ(Wj) ⊆ Θ. Indeed, let C(3) := C ×C ×C, and denote by
p1,2 and p3 the projection maps of C(3) onto the indicated factors. Let ∆1,3

and ∆2,3 be the indicated diagonals of C(3). Set

F := p∗3ωC((j + 1)∆1,3 − (g + j)∆2,3).

Recall the notation of Subsection 4.1. From the construction of Θ, to show
that µ(Wj) ⊆ Θ, it is enough to show that the Wronski map ρj,g+j−1 repre-
sents universally the cohomology of F or, put more simply, that ρj,g+j−1 can
be viewed as a presentation of the right derived image R1(p1,2)∗F .

Let G := p∗3ωC((j + 1)∆1,3). Then F ⊆ G. From the definition of the
Wronski map ρj,g+j−1, we get that ρj,g+j−1 is the image under (p1,2)∗ of the
quotient map G → G/F . Thus, the map ρj,g+j−1 is the first map in the
following piece of the long derived sequence of 0 → F → G → G/F → 0
under (p1,2)∗:

(p1,2)∗G → (p1,2)∗(G/F) → R1(p1,2)∗F → R1(p1,2)∗G.

Now, a fiberwise analysis shows that R1(p1,2)∗G = 0. Thus ρj,g+j−1 is a
presentation for R1(p1,2)∗F , finishing the proof that µ(Wj) ⊆ Θ.

Let L := ωC((j + 1)P − (g + j)Q), and denote by [L] the point of J
representing L. Since (P,Q) ∈ Wj, we have [L] ∈ Θ. By Proposition 3.1,
h0(C,L) = 1. Thus, it follows from [2], Prop. (4.2), p. 189, that [L] is a
nonsingular point of Θ. Furthermore, identifying the cotangent space of J
at [L] with H0(C, ωC), the cotangent space of Θ at [L] is the quotient by the
subspace H0(C, ωC(−F )), where F is the unique effective divisor of C such
that L = OC(F ).

Identifying the cotangent space of C×C at (P,Q) with ωC |P ⊕ωC |Q, the
induced map of cotangent spaces dµ∗: T ∗

J,[L] → T ∗
C×C,(P,Q) is equivalent to the

evaluation map,
ε: H0(C, ωC) → ωC |P ⊕ ωC |Q.

We claim that ε(H0(C, ωC(−F ))) 6= 0. Indeed, if that were not the case, we
would have H0(C, ωC(−F )) = H0(C, ωC(−F − P −Q)), that is,

h0(C,OC((g + j − 1)Q− (j + 2)P )) = h0(C,OC((g + j)Q− (j + 1)P )).

By the Riemann–Roch theorem,

h0(C,OC((g + j)Q− (j + 1)P )) = h0(C,L) = 1,
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and thus, also by the Riemann–Roch theorem,

h0(C, ωC((j + 2)P − (g + j − 1)Q)) = 3.

However, this contradicts Proposition 3.4.
Since µ(Wj) ⊆ Θ, the image of ε(H0(C, ωC(−F ))) in the cotangent space

of Wj at (P,Q) is zero. Since ε(H0(C, ωC(−F ))) 6= 0, that cotangent space
is a proper quotient of the cotangent space of C ×C at (P,Q), and thus has
dimension at most 1. Since Wj is a divisor, it follows that Wj is nonsingular
at (P,Q).

5 Special ramification classes

5.1 (Special ramification loci.) Let C be a smooth curve of genus g ≥ 1. For
each nonnegative integer i, consider the following loci in C × C:

1. The locus D+
i of pairs (P,Q) ∈ C × C such that

(g + i− 1)Q− (i+ 1)P

is linearly equivalent to an effective divisor.

2. The locus E+
i of pairs (P,Q) ∈ C × C such that

(g + i+ 1)Q− (i+ 1)P

is linearly equivalent to a moving effective divisor.

3. The locus SW+
i of pairs (P,Q) ∈ C × C such that Q is a special

ramification point of VC(i, P ).

We claim that, set-theoretically,

SW+
i = D+

i ∪ E+
i . (16)

Indeed, by the Riemann–Roch Theorem, for a pair (P,Q) ∈ C × C, the
divisor (g+ i− 1)Q− (i+1)P is linearly equivalent to an effective one if and
only if

h0(ωC((i+ 1)P − (g + i− 1)Q)) ≥ 2, (17)
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while (g+i+1)Q−(i+1)P is linearly equivalent to a moving effective divisor
if and only if

h0(ωC((i+ 1)P − (g + i+ 1)Q)) ≥ 1. (18)

At any rate, if (P,Q) ∈ D+
i ∪ E+

i , then Q is a special ramification point of
VC(i, P ), that is, (P,Q) ∈ SW+

i

On the other hand, let (P,Q) ∈ C × C − (D+
i ∪ E+

i ). Then

h0(ωC((i+ 1)P − (g + i− 1)Q)) = 1,

h0(ωC((i+ 1)P − (g + i+ 1)Q)) = 0.

So, either Q is an ordinary or a simple ramification point of VC(i, P ), that
is, (P,Q) 6∈ SW+

i .
Let ∆ be the diagonal subscheme of C ×C. Notice that E+

i ∩∆ consists
of the pairs (P, P ) such that P is a Weierstrass point of C. However, if g > 1,
both D+

i and SW+
i contain ∆. (If g = 1, then D+

i = E+
i = SW+

i = ∅.)
Let Di, Ei and SWi be the loci of points in D+

i , E+
i and SW+

i that lie off
∆. Of course, Expression (16) implies SWi = Di ∪ Ei. Our Proposition 5.4
claims that, if C is general, then SWi = Di ∪Ei holds in a more refined way,
in the cycle group of C ×C. Before stating it, we need to endow Di, Ei and
SWi with natural subscheme structures.

5.2 (Special ramification schemes) Keep the notation of Subsection 5.1, and
recall that of Subsections 4.1 and 4.2. Notice that the subsets D+

i and E+
i

are the supports of the degeneracy schemes of ρi,g+i−2 and ρi,g+i, respectively.
So we may give D+

i and E+
i the corresponding scheme structures. Give Di

and Ei the corresponding open subscheme structures. We say that Di and
Ei are the i-th special ramification schemes of type Diaz and Cukierman,
respectively. Call E+

i the i-th expanded special ramification scheme of type
Cukierman.

In addition, differentiating along the fibers of p1 a section of OC×C(Zi)
defining Zi, we obtain a section of J 1

p1
(OC×C(Zi)), well-defined modulo C∗.

By functoriality, its zero scheme contains a pair (P,Q) if and only if Q is a
special Weierstrass point of VC(i, P ). Thus the zero scheme gives a scheme
structure for SW+

i . Give SWi the induced open subscheme structure. We
say that SWi is the i-th special ramification scheme of C.

Now, Zi = Wi+g∆. As done for Zi, we can differentiate along the fibers of
p1 a section of OC×C(Wi) defining Wi to obtain a section of J 1

p1
(OC×C(Wi)).

Its zero scheme S coincides with the scheme SWi off ∆, because Zi coincides
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with Wi there. Moreover, if C is general, then S does not intersect ∆, and
hence S = SWi scheme-theoretically. Indeed, let P be a point of C. If
(P, P ) ∈ Wi, then P is a Weierstrass point of C. Moreover, as C is general,
by Corollary 3.3, the point P is a simple Weierstrass point. So, it follows
from Proposition 2.2 that Wi intersects the fiber {P} × C transversally at
(P, P ). Thus the derivative along {P}×C of a section defining Wi does not
vanish at (P, P ). So S ∩∆ = ∅.

5.3 Lemma. Let O be a local ring, and r a nonnegative integer. Let M
be a matrix with r + 2 rows and r + 1 columns and entries in O. Let M1

and M2 be the submatrices obtained from M by removing the last row, and
the last two rows, respectively. Assume that the matrix obtained from M1

by taking residues has rank at least r. Let z denote the determinant of M1.
Then there are u, v ∈ O such that

1. (z, u) is the ideal of all maximal minors of M2,

2. (z, v) is the ideal of all maximal minors of M ,

3. (z, uv) is the ideal generated by the two maximal minors of M obtained
by removing each of the last two rows.

Proof. We may write M in the form

M =


A a b
c f1 f2

d g1 g2

e h1 h2

 ,
where A is a square matrix of size r − 1, where a and b are column vectors
of size r− 1, where c, d and e are row vectors of size r− 1, and where f1, f2,
g1, g2, h1 and h2 are elements of O.

Let I and J be the ideals of O generated, respectively, by all maximal
minors of the submatrices

M2 =
[
A a b
c f1 f2

]
and M =


A a b
c f1 f2

d g1 g2

e h1 h2

 .
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Also, let K ⊆ O be the ideal generated by the determinants of the square
submatrices

M1 =

A a b
c f1 f2

d g1 g2

 and M ′
1 :=

A a b
c f1 f2

e h1 h2

 .
Notice that the determinant of the first matrix is z.

From the hypothesis, the matrix obtained from M2 by taking residues
has rank at least r− 1. Thus, performing row and column operations on M ,
including column and row exchanges, we may, without changing the ideals I,
J and K, assume that A is the identity matrix, a = b = 0 and c = d = e = 0.
Then z = f1g2 − f2g1 and

I = (f1, f2),

J = (f1g2 − f2g1, f1h2 − f2h1, g1h2 − g2h1),

K = (f1g2 − f2g1, f1h2 − f2h1).

Now, since the matrix obtained from M1 by taking residues has rank at
least r, at least one among f1, f2, g1, g2 is invertible.

If f1 is invertible, then

g1h2 − g2h1 = (g1/f1)(f1h2 − f2h1)− (h1/f1)(f1g2 − f2g1).

Thus, the lemma holds for u = 1 and v = f1h2 − f2h1. The case where f2 is
invertible is similar.

If g1 is invertible, then

(f1h2 − f2h1) = (f1/g1)(g1h2 − g2h1) + (h1/g1)(f1g2 − f2g1),

f2 = (g2/g1)f1 − (1/g1)(f1g2 − f2g1).

Thus the lemma holds for u = f1 and v = g1h2 − g2h1. A similar analysis
holds if g2 is invertible.

5.4 Proposition. Let C be a general smooth curve of genus g ≥ 1 and
i a nonnegative integer. Let ∆ be the diagonal of C × C and Wi the i-th
Weierstrass divisor. Let SWi be the i-th special ramification scheme, and Di

and Ei the i-th special ramification schemes of type Diaz and Cukierman,
respectively. Let E+

i be the i-th expanded special ramification scheme of
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type Cukierman. Then these ramification schemes are finite and satisfy, in
the cycle group of C × C:

[SWi] = [Di] + [Ei] and [E+
i ] = [Ei] + (g + 1)[Wi ∩∆].

Proof. Since C is general, by Statement 1 of Proposition 3.1, the set
SWi is finite for each i ≥ 0. Thus, so are Di and Ei by Expression (16). It
follows that E+

i is finite, because E+
i ∩∆ is the set of points (P, P ) such that

P is Weierstrass, whence is finite.
Recall the notation of Subsections 4.1, 4.2, 5.1 and 5.2. Set r := g+ i−1.

Both equalities can be proved locally. Thus, let (P,Q) ∈ C × C and O be
the local ring of C ×C at (P,Q). As a map of O-modules, ρi,r+1 is given by
a matrix M of the form described in the proof of Lemma 5.3. Let us use the
notation described in the statement of that lemma.

Let K ⊆ O define SW+
i . Then K = (z, z′), where z (resp. z′) is the

maximal minor obtained from M by removing the last (resp. last but one)
row. Notice that, from the nature of M as a “wronskian matrix”, z′ is also
the derivative of z along p1. Let I and J be the ideals of O defining D+

i and
E+

i , respectively. Then I and J are the ideals of all the maximal minors of
M2 and M , respectively.

Now, since C is a general curve, by Statement 2 of Proposition 3.1,

h0(ωC((i+ 1)P − (g + i)Q)) ≤ 1.

This translates in the matrix obtained fromM1 by evaluating at (P,Q) having
rank at least r. Applying Lemma 5.3, there are u, v ∈ O such

I = (z, u), J = (z, v), K = (z, uv).

Now, since E+
i is finite-dimensional and C × C is smooth, the sequence z, v

is regular. The same holds for the sequence z, u if P 6= Q. It follows that
[SWi] = [Di] + [Ei].

The second equality in the statement of the proposition is obvious off ∆.
Thus, assume Q = P . Since E+

i ∩∆ = Wi ∩∆, we may also assume that P
is a Weierstrass point of C.

Let s be a local parameter of C at P , and denote by t1, t2 ∈ O its pullbacks
with respect to the projections p1 and p2. Then t := t2−t1 is a local equation
for ∆. As we saw in Subsection 4.2, we have z = tgw, where w ∈ O defines
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Wi, and is not divisible by t. Letting ∂ denote the derivative with respect to
t2, we have

z′ = ∂z = ∂(tgw) = gtg−1w + tg∂w.

Thus tg−1 divides z and z′, and hence each element of K, in particular uv.
Since E+

i is finite, t does not divide v, and hence tg−1|u. Let L := t1−gK.
Then there are two expressions for L:

L = (tw, uv/tg−1) and L = (tw, gw + t∂w). (19)

Since Wi ∩∆ is finite, the sequences gw + t∂w, t and w, t are regular. Thus,
from the second expression for L above, we get

`(O/L) = 2`(O/(t, w)) + `(O/(w, ∂w)).

Now, `(O/(w, ∂w)) = 0 because w and ∂w cut out SWi, and SWi does
not meet ∆. Also, by Lemma 4.4, Wi intersects ∆ transversally. Thus
`(O/(t, w)) = 1, and hence `(O/L) = 2.

Now, since the sequence z, v is regular, and z = tgw, also the sequence
tw, v is regular. Thus, from the first expression for L in (19), we get

`(O/L) = `(O/(tw, u/tg−1)) + `(O/(tw, v)),

and whence `(O/(tw, v)) ≤ 2. Since O is regular, and the sequence tw, v is
regular, so is the sequence v, w. Thus

`(O/(tw, v)) = `(O/(t, v)) + `(O/(w, v)).

Since E+
i contains (P, P ), the function v is zero on (P, P ). Thus, since also

t and w vanish on (P, P ), we get `(O/(t, v)) = `(O/(w, v)) = 1. So, the
multiplicity of E+

i at (P, P ) is

`(O/(z, v)) = g`(O/(t, v)) + `(O/(w, v)) = (g + 1).

Since, by Lemma 4.4, the multiplicity of Wi ∩∆ at (P, P ) is 1, we are done.

5.5 Proposition. Let C be a general smooth curve of genus g ≥ 1 and i a
nonnegative integer. Let SWi be the i-th special ramification scheme of C.
Then ∫

C×C
[SWi] = 2ig(g − 1)

(
(i+ 2)(g + i)2 + 2(g + i) + 2

)
. (20)
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Proof. Recall the notation of Subsections 4.1, 4.2, 5.1 and 5.2. Since C
is general, SWi is finite. Also, SWi is the zero scheme of a section of the
rank-2 bundle J 1

p1
(OC×C(Wi)). Thus its class in the Chow group of C × C

satisfies
[SWi] = c2(J 1

p1
(OC×C(Wi))).

Using the truncation sequence for bundles of jets, we get

[SWi] = [Wi](c1(p
∗
2ωC) + [Wi]).

Now, c1(p
∗
2ωC) = K2. Using Expression (11) for j = i, and taking into

account that K2
` = 0 for ` = 1, 2, we get

[SWi] = i(g + i+ 1)
(
(g + i)2 + g + i+ 1

)
K2[∆]

+
1

2
i(i+ 1)

(
(g + i)2 + g + i+ 1

)
K1K2

+ i2(g + i+ 1)2[∆]2 + i2(g + i+ 1)(i+ 1)K1[∆].

Using Formulas (14) and (15), we get∫
C×C

[SWi] = i(g + i+ 1)
(
(g + i)2 + g + i+ 1

)
(2g − 2)

+
1

2
i(i+ 1)

(
(g + i)2 + g + i+ 1

)
4(g − 1)2

− i2(g + i+ 1)2(2g − 2) + i2(g + i+ 1)(i+ 1)(2g − 2).

Simplifying, we get the claimed formula.

5.6 Theorem. Let C be a general smooth curve of genus g ≥ 1, and i a
nonnegative integer. Let Di and Ei be the i-th special ramification schemes
of type Diaz and Cukierman, respectively. Then Di and Ei are reduced, and∫

C×C
[Di] = g(g − 1)

(
(g + i− 1)2(i+ 1)2 − (g − 1)2

)
(21)

and ∫
C×C

[Ei] = g(g − 1)
(
(g + i+ 1)2(i+ 1)2 − (g + 1)2

)
. (22)

Proof. Recall the notation of Subsections 4.1, 4.2, 5.1 and 5.2. We will
first compute the degrees of Di and Ei. First of all, since E+

i is finite, and is
the degeneracy scheme of ρi,g+i, applying Porteous formula ([8], Thm. 14.4,
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p. 254), we get the following expression for the class [E+
i ] in the Chow group

of C × C:
[E+

i ] = c2(J g+i
p1

(Li)− p∗1Ei).

Now, c2(Ei) = c1(Ei)
2 = 0, since C is one-dimensional. Thus

[E+
i ] = c2(J g+i

p1
(Li))− c1(J g+i

p1
(Li))c1(p

∗
1Ei).

Using the truncation sequence of the bundles of jets, we get

c1(J g+i
p1

(Li)) =
g+i+1∑
`=1

(`K2 + (i+ 1)[∆]);

c2(J g+i
p1

(Li)) =
g+i+1∑
m=2

m−1∑
`=1

(`K2 + (i+ 1)[∆])(mK2 + (i+ 1)[∆]).

Expanding, and using that K2
2 = 0, we get

c1(J g+i
p1

(Li)) =
1

2
(g + i+ 1)(g + i+ 2)K2 + (i+ 1)(g + i+ 1)[∆];

c2(J g+i
p1

(Li)) =
1

2
(i+ 1)(g + i)(g + i+ 1)(g + i+ 2)K2[∆]

+
1

2
(i+ 1)2(g + i)(g + i+ 1)[∆]2.

Finally, using Formula (13) for j = i, and Formulas (14) and (15), we get∫
C×C

[E+
i ] = (i+ 1)2g(g − 1)(g + i+ 1)2.

Now, it follows from Proposition 4.4 that Wi meets ∆ transversally at
g3 − g points. Thus, using Proposition 5.4, we get∫

C×C
[Ei] =

∫
C×C

[E+
i ]− (g + 1)(g3 − g)

= g(g − 1)
(
(g + i+ 1)2(i+ 1)2 − (g + 1)2

)
,

the stated formula for the degree of [Ei].
Now, the expression for the degree of [Di] follows now from the equality

[SWi] = [Di]+[Ei] proved in Proposition 5.4 and Formula (20) for the degree
of [SWi] proved in Proposition 5.5.
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Let us now show that Di and Ei are reduced. Let (P,Q) ∈ SWi. Let Ô
be the completion of the local ring of C ×C at (P,Q). Let t1 and t2 be local
equations in Ô for {P}×C and C ×{Q}, respectively. Then Ô = C[[t1, t2]].
Let w ∈ O be a local equation for Wi. Since (P,Q) ∈ SWi, and since Wi

is nonsingular by Proposition 4.4, we may assume that w = t1 + u, where
u ∈ C[[t2]]. Now, let w′ and u′ be the derivatives of w and u with respect to
t2. Then the ideal defining SWi at (P,Q) is (w,w′), and the multiplicity of
the cycle [SWi] at (P,Q) is `(Ô/(w,w′)). Notice that w′ = u′, and

Ô
(w,w′)

∼=
C[[t2]]

(u′)
=

C[[t2]]

(u, u′)
∼=

C[[t1, t2]]

(t1, w, w′)
.

Thus the multiplicity of the cycle [SWi] at (P,Q) is the multiplicity m of
SWi ∩ ({P} × C) at (P,Q).

Since the formation of SWi commutes with base change, this multiplicity
m satisfies

m = wtV (Q)− 1,

where V is the complete linear system of sections of ωC((i+ 1)P ). Now, by
Propositions 3.1 and 3.4, the order sequence of V at Q satisfies

εj(V,Q) = j (j = 0, 1, . . . , g + i− 3),

εg+i−2(V,Q) ≤ g + i− 1,

εg+i−1(V,Q) ≤ g + i+ 1.

Thus m ≤ 2, with equality if and only if

h0(ωC((i+1)P−(g+i−1)Q)) = 2 and h0(ωC((i+1)P−(g+i+1)Q)) = 1,

that is, if and only if (P,Q) ∈ Di ∩ Ei. Since [SWi] = [Di] + [Ei] by Propo-
sition 5.4, it follows that Di and Ei are reduced at (P,Q).
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