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1 Introduction

More than half a century ago, André Weil proved a formula for the number
N = #C(F,) of rational points on a smooth geometrically irreducible projec-
tive curve C of genus g defined over a finite field F,. This formula provides
upper and lower bounds on the number of rational points possible. It states
that:

g+1-29/G<N <q+1+29/4.

In general, this bound is sharp. In fact if q is a square, there exist several
curves that attain the above upper bound (see [4], [5], [14] and [23]). We
say a curve is mazimal (resp. minimal) if it attains the above upper (resp.
lower) bound.

There are however situations in which the bound can be improved. For
instance, if ¢ is not a square there is a non-trivial improvement due to Serre

(see [17, Section V.3]):

q+1—g[2y/q] <N < q+1+g2/4q],

where [a] denotes the integer part of the real number a.
Ihara showed that if a curve C is maximal over F 2 then its genus satisfies

g<L 9 (1.1)
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There is a unique maximal curve over F, which attains the above genus
bound, and it can be given by the affine equation (see [14])

Yl 4y =ttt (1.2)

This is the so-called Hermitian curve over F .

In this paper, we consider maximal (and also minimal) curves over a
finite field with ¢? elements. We give a characterization of certain maximal
and minimal curves of types: Fermat, Artin-Schreier or hyperelliptic. The
main tool is the Cartier operator, which is a nilpotent operator in the case
of maximal (or minimal) curves over finite fields. We give generalizations of
results from [1], [7], [9], [22] and [23].

In Section 2 we review some important properties of these curves. Of
special interest is Proposition 2.9 which is used to prove in Section 3 that
¢" = 0 for a maximal or a minimal curve over F, with ¢ = p", where ¢
denotes the Cartier operator (see Theorem 3.3). In Section 4 we consider the
Fermat curve C(m) over 2, defined by the affine equation y™ =1 —2". We
show that C(m) is maximal over Fgp. if and only if we have that m divides
(¢ + 1). This generalizes [1, Corollary 3.5] which deals with the particular
case when m belongs to the set of values of the polynomial 72 — T + 1, and
it also generalizes [9, Corollary 1] which deals with the case ¢ = p prime (see
Remark 4.3).

In Section 5 we consider maximal curves C over . given by an affine
equation y? — y = f(z), where f(z) is a polynomial in F,[z] with degree d
prime to the characteristic p. We show that d is a divisor of g+ 1 and that the
maximal curve C is isomorphic to the curve given by y4+y = 2 (see Theorem
5.4). In particular this result shows that the hypothesis d is a divisor of g+ 1
in Proposition 5.2 is superfluous and that the maximal curves C in Theorem
5.4 are covered by the Hermitian curve over F . given by Equation (1.2) (see
Remark 5.5). The main ideas here come from [7] which deals with the case
q = p prime. In Section 6 we deal with maximal hyperelliptic curves C over
[F 2 in characteristic p > 2. The genus of C satisfies g(C) < (¢ —1)/2 and we
show that the curve C given by the affine equation

v =24z

is the unique maximal hyperelliptic curve over I with genus given by g =
(¢—1)/2 (see Theorem 6.1). The main ideas here come from [22] which deals
with hyperelliptic curves with zero Hasse-Witt matrix (see Remark 6.2).

In this paper the word curve will mean a projective nonsingular and
geometrically irreducible algebraic curve defined over a perfect field of char-
acteristic p > 0.



2 Maximal curves

In this section we review some well-known properties of maximal curves.
Let C be a curve of genus g > 0 over the finite field £ = F, with ¢
elements. The zeta function of C is a rational function of the form

L(t)
(1—8)(1 —qt)

where L(t) € Z[t] is a polynomial of degree 2g with integral coefficients. We
call this polynomial the L—polynomial of C over k.

Let K/k be the function field of C over k. Then the divisor class group
C°(K) is finite and it is isomorphic to the group of k—rational points of the
Jacobian J of C,

Z(C/k) =

CYUK) = J(k).

It is well-known that the class number h = ord (C°(K)) of K/k is given by
h = L(1). We have that

2g
L(t) =1 —+ alt 4+ ...+ a2g,1t2971 + qthQ = H(l — Oéit),
i=1
where ag,; = ¢9"‘a;, for i = 1,..., g, and moreover the «;’s are complex

numbers with absolute value | a; |= /g for 1 <7 < 2g.

We recall the following fact about maximal curves (see [21]):

Proposition 2.1. Suppose q is square. For a smooth projective curve C of
genus g, defined over k =F,, the following conditions are equivalent:

e C is mazximal(minimal, respectively)

o L(t) = (1+/qt)* (L(t) = (1 — \/qt)*, respectively)

e Jacobian of C is k—isogenous to the g-th power of a supersingular el-
liptic curve, all of whose endomorphisms are defined over k.

Remark 2.2. As J. P. Serre has shown, if there is a morphism defined over
the field k between two curves f : C — D, then the L—polynomial of D
divides the one of C. Hence a subcover D of a maximal curve C is also
maximal (see [10]). So one way to construct explicit maximal curves is to
find equations for subcovers of the Hermitian curve (see [1] and [4]).



Let h(t) = t29L(t71). Then h(t) is the characteristic polynomial of the
Frobenius action on the Jacobian variety J/k.

Definition. The p—rank of an abelian variety A/k is denoted by o(A); it
means that there are exactly o(A) copies of Z/pZ in the group of points
of order p in A(k). The p—rank o(C) of a curve C/k is the p—rank of its
Jacobian. We call it also the Hasse- Witt invariant of the curve.

If we have the L—polynomial of a curve C, we can use the following result
to determine its Hasse-Witt invariant (see [16]):

Proposition 2.3. Let C be a curve defined over k =F,. If L—polynomial is
L=14ait+...+ agg_1t29*1 +q9t%, then the Hasse- Witt invariant satisfies

o(C) =mazx {i|a; Z0 (mod p)}.

Remark 2.4. Since asy—; = ¢ ‘a;, i = 0,1,...,g, then 0 < o(C) < g. If
0(C) = g the curve is called ordinary.

Corollary 2.5. If a curve C is mazimal (or minimal) over a finite field, then
the Hasse- Witt invariant satisfies o(C) = 0.

Proof. It follows from the above proposition and Proposition 2.1. B

Remark 2.6. In fact, the p-rank of an abelian variety is equal to the number
of zero slopes in its p—adic Newton polygon and this number is not bigger
than the dimension. So in general we have 0 < ¢(C) < ¢(C). From Propo-
sition 2.1 a maximal (or minimal) curve C is supersingular, so all slopes of
its Newton polygon are equal to 1/2. On the other hand if a curve C defined
over a finite field k = IF, is supersingular, then C is minimal over some finite
extension of k (see [18, Proposition 1]). For additional information about
Newton polygon, see [12].

We recall the following basic result concerning Jacobians. Let C be a
curve, .# denotes the Frobenius endomorphism (relative to the base field) of
the Jacobian J of C, and let h(t) be the characteristic polynomial of .Z. Let
h(t) = [T, hi(t)" be the irreducible factorization of h(t) over Z[t]. Then

[[h(#)=0 on T (2.1)

This follows from the semisimplicity of .% and the fact that the representation
of endomorphisms of J on the Tate module is faithful (cf. [21, Theorem 2]
and [11, VI, Section 3]). In the case of a maximal curve over F,2, we have
h(t) = (t + q)*. Therefore from (2.1) we obtain the following result, which
is contained in the proof of [14, Lemma 1].
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Lemma 2.7. The Frobenius map F (relative to F2) of the Jacobian J of a
mazximal (resp. minimal) curve over Fp acts as multiplication by —q (resp.

by +q).

Remark 2.8. Let A be an abelian variety defined over F 2, of dimension g.
Then we have

(g— 1% < #A([F,2) < (¢+1)%.

But if C is a maximal (resp. minimal) curve over F2, by the above lemma
we have J(Fp2) = (Z/(q+ 1)Z)* (vesp. J(Fp) = (Z/(q — 1)Z)*). So the
Jacobian of a maximal (resp. minimal) curve is maximal (resp. minimal) in
the sense of the above bounds.

The following proposition is crucial for us (see [2, Proposition 1.2]):

V12

Proposition 2.9. Let A be an abelian variety defined over IF 2, where ¢ = p™.
If the Frobenius # relative to Fp2 acts on the abelian variety A as multipli-
cation by +q, then we have that F™ = 0.

3 Cartier Operator

Let C be a curve defined over a perfect field k of characteristic p > 0. Let Q!
be the sheaf of differential 1-forms on C. Then there exists a unique operation,

¢ :HC,QY — H(C,0Y,
the so-called Cartier operator, such that

(i) € is 1/p—linear; i.e., € is additive and € (f*w) = f € (w),

(iif) € (f~"df) = df,

(iv) a differential w € H°(C, Q") is logarithmic (i.e., there exists a function
f # 0 such that w = df /f) if and only if w is closed and €' (w) = w.

)

(ii) ¥ vanishes on exact differentials; i.e., € (df) = 0,
)
)

Remark 3.1. Moreover for a given natural number n, one can easily show
that J(
; 0 if pt17+1
n J —
¢ (@dz) { 7 ldx if  j4+1=p"s.

We mention here the following theorem of Hasse-Witt ([6]):



Theorem 3.2. Let V' be a finite dimensional vector space over an alge-
braically closed field of characteristic p > 0. Let 1 : V — V be a 1/p—linear
map. Then there are two subspaces V* and V° satisfying the following con-
ditions:

o V? is spanned by v invariant elements.
o Each y in VO is killed by an iterate of 1.
o V=VipV.

Definition. For a basis wy, .. .,w, of H°(C, Q") let (a;;) denote the associated
matrix of the Cartier operator %’; i.e., we have

g
‘f(wj) = Z aijwi.
i=1

The corresponding Hasse- Witt matriz <7 (C) is obtained by taking p—th
roots, i.e., we have

(C) = (a/?).

ij
Because of 1/p-linearity, the operator €™ is represented with respect to the
basis wi, . ..,wy by the product of matrices below:

n—1 2
@77 (@) ) ()

We denote by .27 (C)™ the p—th root of the matrix above that represents the
iterated Cartier operator .

Theorem 3.3. Let C be an algebraic curve defined over a finite field with
q? elements, where ¢ = p"™ for some n € N. If the curve C is maximal (or
minimal) over F 2, then we have that €™ = 0.

Proof. From Lemma 2.7 we know that the Frobenius acting on the Tate
module of the Jacobian of C acts as the multiplication by 4+¢q. Then one may
apply Proposition 2.9 to conclude that .#™ = 0. Finally, since the Cartier
operator acting on H°(C,Q!) is dual to the Frobenius acting on H(C, 0¢)
by the Serre duality, one obtains also that " =0. W

The next result (see [19, Corollary 2.7]) relates the Hasse-Witt matrix
and the Weierstrass gap sequence at a rational point.

Proposition 3.4. Let C be a curve defined over a perfect field and n € N.
Let o/ (C) denote the Hasse-Witt matriz of the curve C. If P is a rational
point on C, then the rank of <7 (C)I" is larger than or equal to the number of
gaps at P divisible by p™.



Corollary 3.5. Let C be a curve defined over Fp. Let P be a rational point
on the curve C. If C is mazimal over Fp then q is not a gap number of P.

Proof. Writing ¢ = p" for some integer n, if C is a maximal curve over IF
then by Theorem 3.3 we have .7 (C)" = 0. Thus the result follows from
Proposition 3.4. W

Corollary 3.6. Let C be a hyperelliptic curve over F,. where ¢ = p" and
p>2. If€" =0, then

Proof. As the genus is fixed under a constant field extension, we can sup-
pose that k is algebraically closed. We know that a Weierstrass point on
a hyperelliptic curve has the gap sequence 1,3,5,...,2g — 1, so the result
follows from Proposition 3.4. W

Remark 3.7. If C is maximal over [F,2 then 4 = 0. On the other hand we
know that the Cartier operator on a curve is zero if and only if the Jacobian
of the curve is the product of supersingular elliptic curves (see [13, Theorem
4.1]). Now by Theorem 1.1 of [2] we will have also

e g(C) < (p*—p)/2

e g(C) < (p—1)/2if C is hyperelliptic and (p, g) # (2, 1).

4 Fermat curves

In this section we give a characterization of maximal Fermat curves.
Let k be a finite field with ¢? elements, where ¢ = p™ for some integer n.
Let C(m) be the Fermat curve defined over k by

xm+ym — Zm’

where m is an integer such that m > 3 and ged(m, p) = 1.

As is well-known, the genus g of C(m) is g = (m—1)(m—2)/2. The affine
model of the curve C(m) is given by " + y* = 1, (21 = x/z, y1 = y/z).
Let p,, denote the set of m—th roots of unity. If m divides ¢® — 1, then the
group fim X (i, operates on rational points of C(m) by

(£7C)($1Jy1> = (f%, gyl) with gv( € Hm- (41)



Remark 4.1. If C is maximal over F 2, then m divides ¢ — 1 (see the proof
of Lemma 4.5 in [5]).

Lemma 4.2. With notation and hypotheses as above. If C(m) is maximal
over F 2, then m < g+ 1.

Proof. Since the genus is g = (m — 1)(m — 2)/2 and the curve C(m) is
maximal over [F2, then

#C(m)(Fpz) =1+ ¢+ (m —1)(m — 2)q. (4.2)

Looking at the function field extension Fp(x,y)/F2(x), where it holds
that y™ = 1 — 2™, the points with ™ = 1 are totally ramified. Hence we
also have the following inequality

#C(m)(F2) <m+ (¢ +1—m)m. (4.3)

Using (4.2) and (4.3) we conclude that m < ¢+ 1. W
If m = ¢+ 1 then C(q + 1) is the Hermitian curve over F,2. Suppose m
divides ¢ + 1; i.e., ¢ + 1 = mr for some integer . Then we can define the

following morphism
{ Clg+1) — C(m)
(z,y) = ("y")
Hence C(m) is covered by C(q + 1). Thus by Remark 2.2 if m divides ¢ + 1,

then C(m) is maximal over F 2. Now we want to show the converse of it. We
start with a remark:

Remark 4.3. Assume ¢ = p is a prime number. If the curve C(m) is maximal
over F,2, then Theorem 3.3 implies that the Hasse-Witt matrix of C(m) is
zero. Hence from [9, Corollary 1] we get that m is a divisor of p + 1. The
next theorem generalizes this result.

Theorem 4.4. Let C(m) be the Fermat curve of degree m prime to the char-
acteristic p defined over F 2. Then C(m) is mazimal over F 2 if and only if
m divides q + 1.

Proof. If m divides ¢ + 1, from the above discussion we have that the
curve C(m) is maximal over 2. Now we must show the converse statement.
Consider then the maximal curve C(m) over F.. By Remark 4.1 we have
that m divides ¢> — 1. As in the proof of the lemma above, looking at the
function field extension F(z,y)/F,2(z) we have:

#C(m)(Fp2) =m+ Am for some integer \. (4.4)



In fact C(m) has m rational points which correspond to the totally ramified
points with 2™ = 1 and some others that are completely splitting. On the
other hand from the maximality of C(m), we have

#C(m)(Fpe) =1+¢*+ (m—1)(m — 2)q. (4.5)

Comparing (4.4) and (4.5) we obtain that m divides (¢+1)?. Hence m divides
2(q + 1), since m is a divisor of ¢ — 1. Now we have two cases:

Case p = 2. In this case since ged(m, p) = 1, we have that m is odd and
hence it divides ¢ + 1, since it divides 2(q + 1).

Case p = odd. In this case we have ged(q + 1,9 — 1) = 2. Reasoning as
in the case p = 2, we get here that if d is an odd divisor of m, then d is a
divisor of ¢ + 1. The only situation still to be investigated is the following:
g+ 1=2"s with s an odd integer and m = 2"'s; with s; a divisor of s. But
according to Remark 2.2 and the following lemma, this situation does not
occur.

Lemma 4.5. Assume that the characteristic p is odd and write g+ 1 = 2".s
with s an odd integer. Denote by m := 2", Then the Fermat curve C(m) is
not maximal over F .

Proof. Writing ¢ = p" we consider three cases:

Case p = 1 (mod 4). In this case we have ¢ + 1 = 2.s with s an odd
integer. So we must show that the curve C(4) is not maximal over F 2. But
it follows from [9, Theorem 2] that the curve C(4) with p = 1 (mod 4) is
ordinary and so it is not maximal.

Case p = 3 (mod 4) and n even. In this case we have again ¢ + 1 = 2.s
with s an odd integer and we must show that the curve C(4) is not maximal
over F,2. Since 4 is a divisor of p + 1, the curve C(4) is maximal over F.
Hence C(4) is minimal over F 2 because n is even.

Case p =3 (mod 4) and n odd. As n is odd then we have g+ 1 = 2"s with
r > 2 and s odd. Here we can assume that r > 3. In fact for r = 2 according
to [8, page 204], the curve C(8) is not supersingular and hence C(8) cannot
be maximal. Note that » = 2 implies p = 3 (mod 8).

Consider now the curve C(m) with m = 2" and r > 3. As m = 2"t is
the biggest power of 2 that divides ¢> —1, so (—1) is not a m-th power in F.
Hence the points at infinity on y™ = 1 — 2™ are not rational. This implies
that (see (4.1)) :

#C(m)(Fpz2) = m + A\ym? for some integer ;. (4.6)

Then from (4.5) and (4.6) we get



¢ +1+2q—3mg—m =0 (mod m?).

Hence (g+1)* —m(2q+2) —m(q—1) = 0 (mod m?). Since m divides 2q + 2,
we obtain that 4(q + 1)* — 4m(q — 1) = 0 (mod 4m?). This implies that m
divides 4(¢ — 1) and this is impossible as r > 3 and 4(¢ — 1) = 8s; with s;
odd. This completes the proofs of Lemma 4.5 and of Theorem 4.4. HEll

Remark 4.6. The particular case of Theorem 4.4 when m is of the form
m = t* —t+ 1 with ¢ € N, was proved in Corollary 3.5 of [1].

5 Artin-Schreier curves

In this section we consider curves C over k = F 2 given by an affine equation

y'—y = f(x), (5.1)

where f(x) is an admissible rational function in k(z); i.e., a rational func-
tion such that every pole of f(z) in the algebraic closure k occurs with a
multiplicity relatively prime to the characteristic p. If C is a maximal curve
over F,2, from [5, Remark 4.2] we can assume that f(z) is a polynomial of
degree < g+ 1. In the following we apply results introduced in the preceding
sections to characterize maximal curves given as in Equation (5.1).

The following remark is due to Stichtenoth:

Remark 5.1. Suppose that ¢ = p in Equation (5.1) considered over a perfect
field k. Then we can change variables to assume that the curve C is given
by Equation (5.1) with an admissible rational function. This follows from
the partial fraction decomposition and from arguments similar to the proof
of [17, Lemma II1.7.7]. In fact let u(x) in k[z] be an irreducible polynomial
and suppose that the rational function f(x) involves a partial fraction of the
form c(z)/u(x)®, with c(x) a polynomial in k[z] prime to u(z) and with I
a natural number. Since the quotient field k[z]/(u(z)) is perfect, we can
find polynomials a(x) and b(z) in k[z] such that ¢(x) = a(x)? + b(x).u(z).
Denoting by z = a(z)/u(x)! we get:

() u(@)? = (F = 2) = 2z + bla) fulx)? .

Performing the substitution y — y — z and repeating this argument as in the
proof of [17, Lemma II1.7.7], we get the desired result.

Denote by tr the trace of F . over IF,. We have that (see [23]):
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Proposition 5.2. Let C be a curve defined over F 2 by the equation
Yyl —y=azx®+b

where a,b € Fp2, a # 0 and d is any positive integer relatively prime to the
characteristic p. Suppose d divides ¢ + 1 and define v and u by vd = ¢*> — 1
and ud = q+ 1. Then

1) If C is mazimal over Fp, then tr(b) =0 and a” = (—1)".

2) If C is minimal over Fp and g # 2, then d = 2, tr(b) = 0 and a” # (—1)".

Remark 5.3. Let ¢ = 2 and b € Fy \ Fy; apart from the curves listed in
item 2) of the above proposition, we have another minimal one of the form
as in Equation (5.1): the minimal elliptic curve over F, given by the affine
equation y? +vy = a2 + b.

Suppose ¢ = p is a prime. Then a curve given by Equation (5.1) is a
p—cyclic extension of P!. In [7] we have a characterization of such curves,
defined over an algebraically closed field, with zero Hasse-Witt matrix. Here
we generalize their argument, and we characterize such curves in the general
case ¢ = p" with nilpotent Cartier operator €™ = 0.

We now state the main result of this section:

Theorem 5.4. Let C be a curve defined by the equation y? —y = f(x),
where f(z) € Fpe(z] is a polynomial of degree d prime to p. If the curve C is
mazimal over Fp2, then C is isomorphic to the projective curve defined over
F2 by the following affine equation

Yl +y = 2" with — d a divisor of ¢ + 1.

Proof. Write ¢ = p". As the curve C is maximal over F ., from Theorem
3.3 we know that €™ = 0.
A basis B for H°(C, Q) is as bellow :

B={y 2%z |0 <a,r and ap" +rd < (p" —1)(d—1)— 2}. (5.2)
Since y = y? — f(x) we have
Gy vdz) = (g — [ ).

From Remark 3.1 we get

G (y 2 d) = (T) (=1)ty g (fhatdz). (5.3)



Hence we have
" (fadx) =0 (5.4)

for all h, r and a satisfying 0 < h <, (;) is prime to p and
ap" +rd < (p" —1)(d—-1)—2. (5.5)

First we show again that the degree of f(z) is not bigger than ¢ + 1. In
fact if d = deg(f(z) > ¢+ 2, then 277 'dz is a element of B, because

q(¢—1) < (¢—1(g+1)—2

From Remark 3.1 we get €™ (2P ~'dx) = dx and this contradicts €™ = 0.
Now if d = ¢+ 1, then the genus of the curve C is g = ¢(q — 1)/2. Hence
according to [14] the curve C is the Hermitian curve given by:

yq + Yy = xq—&-l‘

Hence we can assume d < ¢, and so d < ¢ — 1. Then there exists £ > 1 such
that
ld+1<qg<(l+1)d+1.

Again by ged(p, d) = 1, we have
ld+1<qg<(l+1)d—1. (5.6)
For a natural number r € N satisfying
(g—1—-r)yd>q+1

we define
(r+1)d+ 1}
. :
This number a(r) is the biggest possible number a € N satisfying (5.5).
From (5.6) and d < ¢ — 1, we get that a({) = d — 3 and therefore

a(r):=[d—1-

deg(f'z*9) = td + a(f) = (£ + 1)d — 3. (5.7)

Suppose that ¢ —1 = ¢d+a with 0 < a < a(f). Then the polynomial f‘z®
has degree ¢ — 1 and it follows from Remark 3.1 that

E(flx.dx) = ag"/1.dx

where a4 denotes the leading coefficient of f(x). But this is in contradiction
with (5.4) where we take r = h = (.

12



Therefore we now get from (5.7) that
q—1>ld+all)+1=(+1)d—2. (5.8)
By (5.6) and (5.8), we have
qg+1=sd with s :==0+1> 2. (5.9)

Since ged(p,d) = 1, we can change the variable x by x — z + a, for a
suitable o € F2, such that

f(z) = agz® + a;x* + ... + ag with i < d — 2.

Therefore

f(@) = asa® + sag a4 4ag.

Suppose d > 3. In this case if 1 < i < d — 2, then
0<d—i—2<d—-3=ua(s).

We stress here that it holds a(¢) = a({ + 1) =d — 3.
Therefore

i+(s—1)d+d—i—2=sd—2=q—1,

and we get ’
E"(fix?2de) = s(ad " a;)Vdx = 0.

This implies a; = 0 since s is prime to p by (5.9). Hence f(x) must be of the
form (the case d = 2 is trivial)

f(z) =ar®+b with d a divisor of ¢ + 1.

Now if the curve is maximal, from Proposition 5.2 we know that ¢r(b) = 0
and a’ = (—1)* where u = (¢ + 1)/d and v = (¢* — 1)/d. By Hilbert’s 90
Theorem, there exists v € F2 such that 9 —« = b and by changing variable
y — y + v we can assume b = 0.

Now we have two cases:

Case u is even. In this case a’ = 1 and hence a = ¢? for some ¢ € IFZ2.
Changing variable x — ¢~z we have

y!—y=a? with d|q+1

Take o € F2 with %! = —1. Substituting y — o~ '.y we have y?+y = az’.

Again here o’ = o= V% = (—=1)* = 1 and hence a = ¢ for some element

RS IF7> and we conclude that the curve is isomorphic to y¢ +y = x4,
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Case u is odd. In this case ¢* = —1 and hence (—a?H)* = 1. So
—a? ! = 4D for some (3 € Fo. Set p = aB~¢, then p?~' = —1. Now
by changing variables x — 7'z and y — —puy we have that the curve C is
equivalent to

y!+y=2 with d|g+1. W

Remark 5.5. Most of the arguments in the proof above just uses the prop-
erty " = 0. We then have that the hypothesis that d divides ¢ + 1 in
Proposition 5.2 is superfluous. We also get that all maximal curves over F
given by y?—y = f(x) as in Theorem 5.4 are covered by the Hermitian curve.

We can also classify minimal Artin-Schreier curves over . as below:

Theorem 5.6. Let C be a curve defined by the equation y! —y = f(x), where
f(x) € Fpelz] has degree prime to p and p # 2. If C is minimal over F 2 and
g(C) # 0, then C is equivalent to the projective curve defined by the equation

g+1

2_
y! —y=az® where a € Fpe, a#0, and it satisfies o' T #(=1)z.

Proof. We know that if a curve is minimal over F 2, with ¢ = p", then again
the operator €™ is zero. So by the proof of the above theorem, the curve can
be defined by y? — y = ax? + b where d is a divisor of ¢ + 1. Now we can use

again Proposition 5.2; it yields d = 2, tr(b) = 0 and o'z # (—1)%1 |

Remark 5.7. In the above theorem, if ¢ = 1 (mod 4), then changing vari-
able x — a~'x, where a = a2, the minimal curve C is equivalent to

y -y =a’,
Clearly, this last curve is maximal over Fp if ¢ =3 (mod 4).

Let m : C — D be a p—cyclic covering of projective nonsingular curves
over the algebraic closure k. Then we have the so-called Deuring-Shafarevich
formula:

o(C)—1+r=plc(D)—1+r), (5.10)

where r is the number of ramification points of the covering .
Corollary 5.8. Let C be a curve defined over k = F 2 such that there exists
C — P!

a cyclic covering of degree p which is also defined over k. If the curve C
is mazimal over 2, then C is isomorphic to the curve given by the affine
equation yP +y = x¢, where d divides p + 1.

14



Proof. From Remark 5.1 we can assume that the curve C is given by :

where every pole of f(x) in k occurs with a multiplicity relatively prime
to the characteristic p. Now if the curve C is maximal, then according to
Corollary 2.5 we know that o(C) = 0. Note that from Formula (5.10) we
must have » = 1 and we can put this unique ramification point at infinity,
and hence we can assume that f(z) is a polynomial in k[z]. Note here that
the unique ramification point is a k-rational point. The result now follows
from Theorem 5.4. W

6 Hyperelliptic curves

Let k = F,2 be a finite field of characteristic p > 2. Let C be a projective
nonsingular hyperelliptic curve over k of genus g. Then C can be defined by
an affine equation of the form

y? = f(x)

where f(x) is a polynomial over k of degree 2¢g + 1, without multiple roots.
If C is maximal over F 2 then by Corollary 3.6 we have an upper bound on
the genus, namely

In the next theorem we establish a characterization of maximal hyperel-
liptic curves in characteristic p > 2 that attain this genus upper bound.

Theorem 6.1. Suppose that p > 2. There is a unique maximal hyperelliptic
curve over F 2 with genus g = (¢—1)/2. It can be given by the affine equation

y2:xq—|—m.

Before proving this theorem, we need to explain how the matrix associated
to €, where ¢ = p", is determined from f(z).

The differential 1-forms of the first kind on C form a k—vector space
HY(C, Q') of dimension g with basis

ifld
B:{wi:m x,izl,...,g}.
Yy

15



The images under the operator €™ are determined in the following way.
Rewrite

o dx o L )
T T E c;x’dx,
y —

w; =
where the coefficients ¢; € k are obtained from the expansion
N g1
-1 _ (¢=1)/2 _ ed ith N = 2——(9 1).
y f(x) ;cjz wi 5 (29+1)

Then we get for i =1,...,9,

x(H‘l)q dl’

w; =y~ ( Z iji+j_1dx)+zc(l+l)q—i R

T
l

i+j750]mod q
Note here that 0 <[ < % —1<g-— % On the other hand, we know from
Remark 3.1 that if €"(z""'dz) # 0 then r = 0 (mod ¢). Thus we have

—_

9= l

x
(5"(%) = (C(H_l)q_i)l/q —dl'
1=0 y
If we write w = (w1, ...,w,) as a row vector we have

C"(w) = wMD,

where M is the (g x ¢g) matrix with elements in &k given as

Cqg—1 Cq—2 . Cq—yg

Coq—1 Co¢q—2 ... C2¢—g
M = ) _

Cgq—1 Cgq—2 -+ Cgq—yg

Remark 6.2. In [22] the author find a characterization for hyperelliptic
curves defined over an algebraically closed field whose Hasse-Witt matrix is
zero. In the proof below we use his ideas to classify hyperelliptic curves with
a nilpotent Cartier operator.

16



Proof of Theorem 6.1. Let C be a hyperelliptic curve of genus given by
g = (¢ —1)/2. Then the curve C can be defined by the equation y? = f(z),
with a square-free polynomial

f(x) = aga? + ag129" + ...+ a1z + ag € Fp2[z] and a, # 0.

As C is maximal over F 2, then C has 14 ¢? +¢(¢— 1) rational points. On the
other hand if we consider C as a double cover of P!, the ramification points
are the roots of f(x) and the point at infinity. As the point at infinity is a
rational point and 1 + ¢® + ¢(¢ — 1) is an even number, we have that f(x)
must have an odd number of rational roots. Hence f(z) has at least one
rational root in F 2, denote it by 6. Now by substituting = + 6 for x, we can
assume that C is defined by the equation y* = f(z) with f(0) = 0. We then
write

f(x) = a2+ a2 + ...+ a1z € Felz] and aja, # 0.

Now as the curve C is maximal over F 2, with ¢ = p" for some integer n,
then €™ = 0. So the above matrix M is the zero matrix. Hence looking at
the last row of M, we have

Cgq—1 = Cgq—2 = ... = Cgq—g = 0.
We will show by induction that this means
g1 = Qg2 = ... = Qq_g = 0.

First we observe that

Coq—1 = §-0g" " ag-1.
S0 cgq—1 = 0 implies a4—1 = 0. Now assume a,—; = 0, forall 1 <7 <m < g.
We want to show then that a,_,, = 0. Under the assumption above, we have
that f(x) reduces to

f(z) = agz? 4+ agemx®™ ™ + ...+ ar.

We will then have that cgq—p, = g.agflaq_m. S0 Cgq—m = 0 implies that
aq—m = 0. By induction, we have shown that the polynomial f(z) reduces to

f(l‘) = aqxq + agxg + ...+ CL2:E2 + a;x.

Now we want to show that a;, = 0 for all 2 <t < g. Looking at the first row
of the matrix M, we have

Cg—1 = Cg—2 = ... = Cyq1 = 0.

17



By induction we can show that this means
agzagz...:ag:().

In fact, we first observe that c,41 = a9 tay. Because a; # 0, cg+1 = 0
implies as = 0. Now assume that a; = 0 for all ¢+ with 2 < i <m < g. We
want to show that a,, = 0. Under this assumption, we have that f(x) is :

f(z) = agx? 4+ agx? + ... 4+ ap2™ + a1,

We will then have that cy_14p, = g.a19 ta,,. Again because a; # 0, we have
that cy—14, = 0 implies a,, = 0. Thus by induction we have shown that the
polynomial f(x) must be of the form

f(x) = az? + a1z with a;.a, # 0.
Now we can write the equation of the curve C as below:
x? + px = My®  for some i, \ € Feo.

As the curve C is maximal over Fg ., one can show easily that the additive
polynomial A(x) := 29+ px has at least a nonzero root 5 € F*,. In fact more
holds; it follows from [5, Theorem 4.3] that all roots of A(x) belong to [Fg.
Set a := (% and x1 = ax, then
A(z) = a (ax)’ + (pa)(ax).
Hence
A(w) = a~9((z1)" + pat'y)

has the root z; = a8 = Bt € Fy. So pa?™l = —1, and this means that the
curve C is equivalent to the curve given by the equation

r¢ — 2, = ay®, where a:= a’)\.

Now as we have seen at the end of the proof of Theorem 5.4, this curve is
isomorphic to the curve given by the equation

V=z'+z. B

In the next theorem we classify also minimal hyperelliptic curves over I
in characteristic p > 2 with genus satisfying g = (¢ — 1)/2 :

Theorem 6.3. Suppose that p > 2. There is a unique curve C which is a
mianimal hyperelliptic curve over Fp with genus g = (¢ — 1)/2 ; it can be
given by the affine equation

ay? =29 —x, with a€ F. such that Q@ 1/2 (—1)l+b/2,

18



Proof. The curve C can be given by y*> = f(x), with f(z) a square-free
polynomial in F2[z] of degree deg(f(z)) = ¢ = p™. We have :

#C(Fe2)=¢"+1—(¢—1)g=q+1

and in particular #C(F,2) is an even natural number. As in the proof of
Theorem 6.1 we can assume that f(0) = 0, and from ¢™ = 0 we then
conclude that it holds

f(z) = agz? + aqx with ajaq, # 0.
Hence the minimal curve C can be defined by
z? + px = My, for some fi, A € Fp,.

The polynomial A(z) = 9 + pz must have a nonzero root in [F2; otherwise
the map sending = to A(z) would be an additive automorphism of F and
hence the cardinality of rational points would satisfy

#C(Fp) =1+ ¢

From this nonzero root € IFZQ, we conclude as in the proof of Theorem 6.1
that the curve C can be given by the equation

! — ) = a9’ with a € Fp..

It now follows from Proposition 5.2 that

¢ —1
-

For an element a € ]F'Z2 we have a” = +1. Consider two curves over F . given

1
a® # (—=1)" with u = a+ and v =

by a1.y?> = 7 — z and by a.y? = 27 — x respectively, with a? # (—1)" and
with a4 # (—1)* Hence it holds that a¥ = a3y and we have ay = a;.c?, for
some element ¢ € IFZQ. The substitution y — cy shows that the two curves
above are isomorphic to each other. W

The theorem below is the analogous to Theorem 6.1 in case of character-
isticp =2

Theorem 6.4. Suppose that p = 2. There exists a unique mazimal hyper-
elliptic curve over Fp with genus g = q/2. It can be given by the affine
equation

g2ty = 29t

Proof. With arguments as in the proof of Corollary 5.8, we get that the
curve can be given by y* + y = f(z) with f(x) a polynomial in Fgp[z] of
degree ¢ + 1. The result now follows from item 3) of Theorem 2.3 of [3]. W
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7 Serre maximal curves

In this section we consider curves C that attain the Serre upper bound and
we call them SW—mazimal curves; i.e., curves C defined over I, such that

4C(F,) = g+ 1+[2/3.9(C).

Proposition 7.1. Let k be a field with q elements and denote by m = [2,/q].
For a smooth projective curve C of genus g defined over k =1TF,, the following
conditions are equivalent:

e The curve C is SW—maximal.
e The L— polynomial of C satisfies L(t) = (1 + mt + qt>)9.
Proof. See [10] and [17, page 180]. W

Corollary 7.2. Let C be a smooth projective curve of genus g defined over
k = F, which attains the Serre bound. Then its Hasse- Witt invariant satisfies

_J g if ged(p,m) =1
J(C)_{ 0 if plm

Proof. Since C is SW-maximal, from Proposition 7.1 we have
L(t) = (1 + mt + qt*)?
= 1420 () (m+qt)
=1+ 2L, (DE(Eje0 () et).

If p divides m, then it is clear from Proposition 2.3 that ¢(C) = 0. Now
suppose that ged(p,m) = 1. We have to show that the coefficient of #9 in
the L-polynomial L(t) is not divisible by p. Denote it by a,. From the last
equality above, we then obtain

ag =m? (mod p). B

We recall that an admissible rational function f(z) € k(z) is such that
every pole of f(z) in the algebraic closure k occurs with a multiplicity prime
to the characteristic p. We then have:

Theorem 7.3. Let C be a SW-mazimal curve over F, given by an affine
equation of the form

Aly) = f(z), (7.1)
where A(y) € Fyly| is an additive and separable polynomial and where f(x)
is an admissible rational function. Denote by m = [2./q] and suppose that

ged(p,m) = 1. Then all poles of f(x) are simple poles.
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Proof. We know that a curve C given by (7.1) is ordinary if and only if the
rational function f(x) has only simple poles (see [20, Corollary 1]). Thus
Theorem 7.3 follows directly from Corollary 7.2 . H

Corollary 7.4. Let C be a SW-maximal curve as in the above theorem with
ged(p,m) = 1. Then the genus satisfies g(C) = (degA — 1)(s — 1), where s
denotes the number of poles of f(x).

We finish with two examples of SW-maximal Artin-Schreier curves. In
the first example we have that p divides m and the rational function f(x)
has a nonsimple pole; in the second, we have that ged(p,m) = 1 and the
rational function f(x) has only simple poles, as follows from Theorem 7.3.

Example 7.5. Let k = Fy. So m = [2v/2] = 2 and p divides m. Let C be
the elliptic curve over Iy, given by the affine equation

v +y=1"+uz

One can see easily that C has five k—rational points which means that C is
SW-maximal over k. Note that f(z) = 2®+z has a pole of order 3 at infinity.

Example 7.6. Let & = Fs. So m = [2v/8] = 5 and ged(p,m) = 1. Let C be
the elliptic curve over Fg, given by the affine equation

_952—1—3:—1—1
_ . ,

v +y

Then the curve C is SW-maximal since C has 14 k—rational points. In fact
the two simple poles of (z? + z + 1)/x are totally ramified in the extension
k(x,y)/k(x) and they correspond to two k—rational points on C. By Hilbert
90 Theorem, we have

#C(Fs) =2+ 2B,

where B 1= #{a € Fg | trpyr, (F21) = 0}. But one can show that B = 6;

«

in fact the points x = a € Fg \ Fy are completely splitting in k(x,y)/k(x).
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