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Abstract
Vortices are known to play a key role in many important processes in physics
and chemistry. Here, we study vortices in connection with the quantum
trajectories that can be defined in the framework provided by the de Broglie–
Bohm formalism of quantum mechanics. In a previous work, it was shown
that the presence of a single moving vortex is enough to induce chaos in these
trajectories. Here, this situation is explored in more detail by discussing
the relationship existing between Lyapunov exponents and the parameters
characterizing the vortex dynamics. We also consider the issue when more
than one vortex exist. In this case, the interaction among them can annihilate or
create pairs of vortices with opposite vorticity. This phenomenon is analyzed
from a dynamical point of view, showing how the size of the regular regions in
phase space grows, as vortices disappear.

PACS numbers: 03.65.+w, 03.65.Ta

1. Introduction

Bohmian mechanics (BM) was originally introduced in the 1950s [1] as an alternative
formulation of quantum mechanics, with the aim of solving some of the fundamental
interpretational difficulties existing in the standard version [2]. Past this initial period, and with
a more computationally oriented view, it has experienced recently an important revitalization,
having become at present a powerful tool for the study of many interesting physical processes
[3]. The perspective used in BM, which is based on quantum trajectories (QT) piloted by the
system’s de Broglie wave [4] (see section 2 below), combines both the predictive accuracy of
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the quantum theory with the capability of providing intuitive interpretations of the underlying
physical phenomena [5], and represents a true theory of quantum motion [6].

The nature of BM makes the consideration of the dynamical characteristics of QTs a
crucial point in this theory. Unfortunately, this issue has been ignored very often in the
literature, or treated from a very naive or even wrong point of view. Frisk [7] has pointed out
towards a possible relationship existing between vortices and chaos in QTs. Very recently, the
authors have made what we consider a relevant advance along this line in [8, 9], which has
also contributed to place the problem on firm grounds. In these two papers, the importance
of the vortices of the associated velocity field was shown, also establishing the functional
relationship existing between their dynamics and the complexity or ergodicity [10] of the QTs.
In particular, our work has clearly shown that QTs are, in general, intrinsically chaotic, and
the very restrictive conditions in which this is not so were also discussed.

Vortices have attracted a great deal of attention and interest in many scientific fields
since early times in physics. They are associated to singularities at which the corresponding
mathematical magnitudes become infinity or change abruptly, and are now widely recognized
as an interesting subject of study per se [11]. In classical physics, vortices are known to play
a prominent role in fluid dynamics [12], meteorology [13], particle trapping in planetesimal
and star formation [14], liquid crystals [15], oscillatory reaction [16], combustion and flames
[17], non-linear optics [18], and more recently in the growing business of microfluidics
[19]. They are also important quantum mechanically, being central to superfluidity [20],
superconductivity [21], wave-guides [22], long-distance electron tunneling in biomolecules
[23], chemical reaction dynamics [5, 24] and very recently in connection with Bose–Einstein
condensation [25]. Vortitial motions are highly relevant in nonlinear quantum dynamics, since
they mediate the corresponding stability and interactions among vortices, something that has
been shown very important in BEC condensates [26] and optics [27].

The chaotic properties of QTs have been recently shown to be critical in relation to
a cornerstone in the interpretation of quantum mechanics as it is Born’s probability rule:
ρ = |ψ |2. This relation still remains a postulate after a century of quantum physics, although
it has been revisited in the last years by several authors [28–30] in order to make probability
an emergent phenomenon [31]. The most important work in relation to the interests of the
present paper is that of Valentini and Westman [30]. These authors numerically explored
an speculation contained in the original papers by Bohm, according to which probabilities
have a dynamical origin, and behave similarly to thermal probabilities in ordinary statistical
mechanics [32]. These calculations showed how the standard distribution is obtained as the
time evolution towards equilibrium of initial non-equilibrium states, ρ �= |ψ |2, this taking
place with an exponential decrease in the associated coarse-grained H-function. Although
not explicitly mentioned by the authors, ergodicity of QTs is required to support their
arguments. In this respect, the typicality of |ψ |2 at equilibrium has also been discussed in the
literature [33].

In this paper, we extend our previous work [8, 9] to the role played by vortices as an
active agent to induce complexity in QTs. For this purpose, we study the quantum dynamics
in a simple system (2D harmonic oscillator) for which the classical counterpart is integrable,
considering an increasing number of these vortitial singularities. For the case of a single vortex,
we have developed and analyzed the results of a simplified model, in which the dynamics of
the QTs is assumed to be exclusively determined by the influence of the existing vortex.
The computational efficiency of this model is high, since it allows a very fast calculation
of the main dynamical characteristics of the associated QTs and its relation to the vortex
motion, which is otherwise very time consuming even for the simplest physical models.
For more than one vortex, we concentrate our study on the dynamical consequences of the



Vortex dynamics 3

corresponding annihilation and/or creation processes, that have been shown by us to be a key
factor controlling QT chaoticity. When pair of vortices disappear, temporarily or otherwise,
sizeable parts of configuration space in which QTs evolve regularly are created, and this effect
is enough to decrease their complexity. Concurrently, the opposite effect takes place when
vortices appear, and the balance between these two counteracting tendencies and its evolution
in time completely determines global chaoticity of a given system.

The organization of this paper is as follows. In the next section we briefly review the
theory in which our calculations are based, and the models that have been used. In particular,
the fundamental equations in the de Broglie–Bohm formalism of quantum mechanics, the
so-called quantum trajectories, and how vortices appear in the theory are briefly described.
Also, we discuss in this section the fundamental role played by vortices in relation to the main
point addressed in this work, i.e. the chaoticity and complexity of the QTs. Finally, section 4
is devoted to the presentation of our results, and the paper concludes with a summary of the
main conclusions.

2. Bohmian mechanics, vortices and chaos

The QT–BM formalism starts from the suggestion made by Madelung [34] of writing the
wavefunction in a polar form

ψ(r, t) = R(r, t) exp[iS(r, t)], (1)

where R = ψ∗ψ and S = (ln ψ − ln ψ∗)/(2i) (h̄ is set equal to unity throughout the paper) are
two real functions of position and time. Substitution of this expression into the time-dependent
Schrödinger equation allows to recast quantum theory into a ‘hydrodynamical’ form, governed
by:

∂R2

∂t
+ ∇ ·

(
R2 ∇S

m

)
= 0,

∂S

∂t
+

(∇S)2

2m
+ V + Q = 0, (2)

which are the continuity and ‘quantum’ Hamilton–Jacobi (HJ) equations, respectively. The
qualifying term ‘quantum’ applies to the last equation due the fact that it contains an extra term
with respect to the usual HJ equation [35]. This non-local term, determined by the quantum
state and given by

Q = 1

2m

∇2R

R
, (3)

is usually called ‘quantum potential’. Together with V , it determines the total force acting
on the system. Actually, this extra contribution is responsible for introducing the (eventual)
quantum effects into the dynamics of the system.

Similarly to what happens in the standard HJ theory [35], equations (2) allow us to
introduce, for spinless particles, ‘quantum trajectories’ for the system. These QTs are obtained
by integration of the following differential equation:

v = ṙ = ∇S

m
= i

2m

ψ∇ψ∗ − ψ∗∇ψ

|ψ |2 , (4)

defining the corresponding velocity field.
According to the probabilistic interpretation of quantum mechanics, QTs are the paths

along which the probability flows in the quantum fluid. The quantum state is therefore defined,
in this interpretation of quantum mechanics, by ψ(r, t) and r(t), that evolve simultaneously
in a deterministic way, in which the pilot wave ψ guides the particles, each one starting at a
different position [4, 6].



4 D A Wisniacki et al

Due to its ‘hydrodynamical’ nature, vortices appear quite naturally in BM. From the
mathematical point of view, these vortices are related to the regions in which the wavefunction,
ψ , vanishes, and they are the result of the wavefunction interferences. In this sense, they have
a purely quantum nature, with no corresponding classical explanation. In the absence of
magnetic fields, the bulk vorticity, ∇ ×v, in the quantum probability fluid is determined by the
points where the phase, S, is singular. This happens at isolated points for 2D systems and in
lines for the 3D case. The condition leading to the formation of quantum vortices [36] arises
from the complex character of the wavefunction and its single-valuedness condition, that lead
to the condition

S ′(r, t) = S(r, t) + 2πn, n = 0,±1,±2, . . . , (5)

implying that the circulation, �, along any closed contour, C, encircling a vortex must be
quantized [37] according to

� = m

∮
C

ṙ · dr =
∮
C
∇S · dr = 2πn. (6)

From this condition, it follows that the velocity v must diverge as one approaches the vortex
position. Actually, the time-dependent velocity field in the vicinity of a vortex located at the
time t at rv(t) is given to first order by [38, 39]

v = − i

2m

[r − rv(t)] × (w × w∗)
|[r − rv(t)] · w|2 . (7)

where w ≡ ∇ψ(rv(t)). Since quantum vortices have zero thickness, this approximation is
always valid sufficiently close to the vortex. Actually, an estimation of the relative error as
well as second-order expressions can be found in [39]. Moreover, equation (7) exactly fulfills
the quantization condition (6), something that reinforces its reliability.

In a previous paper [8], it was shown that vortices play a fundamental role in the
dynamical character of QTs. In particular, the existence of a single moving vortex is enough
to induce chaotic dynamics in the QTs. What happens here is that the motion of the vortex
produces a saddle point, with stable and unstable manifolds that exhibit topological transverse
intersections which generate an homoclinic tangle. On the contrary, when the vortex is still,
or fulfill special conditions, these manifolds joined smoothly and the associated QTs describe
trajectories which are regular, as can be ascertained with the standard tools of nonlinear
dynamics [10].

3. Models

The system that we choose to study is the two-dimensional isotropic harmonic oscillator of
unit mass and angular frequency ω = 1. The corresponding Hamiltonian is then given by

Ĥ = −1

2

(
∂2

∂x2
+

∂2

∂x2

)
+

1

2
(x2 + y2). (8)

The associated eigenenergies are Enx,ny
= nx +ny +1, and the eigenfunctions can be expressed

as

φnx,ny
(x, y) = 1

(π2nx+ny nx!ny!)1/2
Hnx

(x)Hny
(y) exp

[
−1

2
(x2 + y2)

]
, nx, ny = 0, 1, . . . ,

(9)

where Hn are the nth degree Hermite polynomials.
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The main reason for choosing this system is that the physical forces (term V in (2)) are
very simple, with the corresponding dynamics being completely regular. In this way, we
guarantee that all signs of chaotic behavior that can be found in our calculations are solely due
to the effect of the quantum potential Q in (2).

In order to rationalize our results, we will also consider in this paper a simplified model
extracted from [8]. The idea is to find the simplest related model that has only the influence of
a single vortex. Since it is known that the velocity field in the vicinity of such a point is given
by equation (7), we will extend this expression to all configurational space, also imposing the
extra simplifying constrains that wx = iwy and the vortex trajectory is time-periodic. Under
these assumptions, the non-autonomous velocity field is then given by

vx = − y − yv(t)

[x − xv(t)]2 + [y − yv(t)]2
,

vy = x − xv(t)

[x − xv(t)]2 + [y − yv(t)]2
,

(10)

where we will consider the trajectories corresponding to a particle of unit mass. Defining new
variables in polar coordinates x̄ = x − xv(t) = r cos θ and ȳ = y − yv(t) = r sin θ , the above
expressions result in

vr = r[yv(t) sin θ + xv(t) cos θ ],

vθ = 1

r
+ yv(t) cos θ + xv(t) sin θ.

(11)

This non-autonomous velocity field can be interpreted as a perturbation of the autonomous
field: v0 = (0, 1/r) with the time-periodic term

G(r, θ, t) = (r[yv(t) sin θ + xv(t) cos θ ], [yv(t) cos θ + xv(t) sin θ ]) (12)

The corresponding flow can also be expressed in Hamiltonian form as

H(r, θ, t) = log r

2
+ r[yv(t) cos θ − xv(t) sin θ ]). (13)

Let us finally remark that from this expression it can be easily shown that in this simplified
model there is no chaos in the QTs when the motion of the vortex is circular, due to the fact
that for this case H(r, θ, t) = f (r, θ + t).

4. Results

Our results will be presented in this section, which is divided for convenience into two parts.
In the first one, results for the case with a single vortex are reported. The aim is to extend

the study presented in [8] in order to obtain a deeper understanding of the relationship existing
between chaos and QTs. This is done by exploring the role played by the mechanical
characteristics governing the motion of the vortex, a point that has not been addressed
previously.

In the second part, we analyze results for the situation in which a few interacting vortices,
annihilating and creating in pairs, exist. The purpose of our research here is to disentangle the
relationship existing between vortex interaction and the QT chaoticity degree.

4.1. Single vortex

In [8] it was shown that the motion of vortices implies chaos in the associated QTs. This
is observed, for example, if one considers an initial state with a wavefunction given by the
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Figure 1. Stroboscopic Poincaré surface of section for the quantum trajectories corresponding to
the initial wavefunction given in (14) for values of parameters a and b equal to (a) 0.80, 0.80;
(b) 0.80, 0.88; (c) 0.80, 0.96; and (d) 0.80, 1.36. Each plot contains the data from 30 trajectories
propagated for 1500 crossings with the surface of section. The trajectory described by the vortex
has also been included in the insets.

following combination of eigenstates:

ψ0(x, y) = Aφ00 + Bφ10 − iCφ01, (14)

where A,B and C are real constants fulfilling the (normalization) condition: A2 +B2 +C2 = 1.
This wavefunction generates a time-dependent velocity field which has only one vortex, whose
trajectories can be obtained analytically as

rv(t) = (xv(t), yv(t)) =
(

−
√

2A

B
cos t,

√
2A

C
sin t

)
, (15)

expression which corresponds to the equation of an ellipse with x and y axes of length
a = √

2A/B and b = √
2A/C, respectively.

To ascertain the complexity of the associated QTs, we will use the ideas and tools of
nonlinear mechanics [10]; in particular we resort to the use of stroboscopic surfaces of section
(SOS) for their visualization. In our case, the non-autonomous velocity field generated by
(14) and determination of the QTs is periodic. Accordingly, these trajectories can be suitably
monitored by using a stroboscopic SOS defined using the corresponding value of the period,
ω = 2π/(E10 − E00). This SOS is computed by plotting the particle position, (x, y), at fixed
values of time given by t = 2πn, with n = 0, 1, . . . . Some results are shown in figure 1.

When the vortex does not move and its position remains fixed (at (xv, yv) = (0, 0)), the
Poincaré SOS consists of concentric circumferences, showing that the motion of the associated
QTs is not chaotic. Due to its simplicity, this case is not shown in figure 1. Also, when the
vortex moves circularly (a = b) the dynamics of the QTs is also regular, but in this case a
pitchfork bifurcation of the central fixed point takes place [40], and two new stable fixed points
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Figure 2. Averaged Lyapunov exponents for the quantum trajectories generated from the simplified
model described in section 3, as a function of parameters a and b, corresponding to the lengths of
the x and y axes of the elliptic trajectory described by the vortex generated by wavefunction (14).

appear in addition to the old one that becomes unstable. This situation can be seen in panel
(a) of figure 1.

On the other hand, when the value of a/b increases, and the vortex moves elliptically, a
clear transition to chaos takes place and sizeable portions of irregular motion are evident even
at small deviations of this parameter from unity (see panels (b)–(d) in figure 1). Moreover,
the fraction of the phase space occupied by these chaotic regions monotonically increases
with the value of the eccentricity, a/b. What happens here is that the motion of the vortex
produces a saddle point, with stable and unstable manifolds that exhibit topological transverse
intersections which generates an homoclinic tangle, organizing the structure of a chaotic band
[41]. The existence of this effect, which is not present in the case with a/b = 1 shown in
panel (a) where the corresponding manifolds joined smoothly, has been rigourously proved in
[8]. Some indications on how to construct a (local) approximation explaining the bifurcation
giving rise to the saddle point can be found in [40].

A point that still remains open after the work presented in [8] is that concerning the
relationship existing between the parameter characteristics of the motion of the vortex and the
global chaoticity of the QTs.

To gauge the dynamical complexity of our system we calculate, as it is customary in
chaos theory, the Lyapunov exponent of the QTs, λ, statistically averaged over 50 initial
conditions randomly distributed in the square x, y ∈ [−2, 2]. A positive value of λ indicates
the presence of chaotic behavior, while when λ = 0 we are in the presence of a completely
regular dynamics.

The results for λ, computed from the simplified model described in section 3 for the
vortex generated by wavefunction (14) as a function of the parameters a and b (see (15)), are
shown in figure 2, in the form of a contours plot. (Note that the wavefunction (14) plays no
other role in the calculations of our simplified model but specifying the vortex trajectory, and
do not actually intervene in the integration of the simplified QTs.) As can be seen, the results
are symmetrical with respect to the diagonal a = b, where λ exactly vanishes, the vortex
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Figure 3. Averaged Lyapunov exponents for the quantum trajectories generated from the simplified
model described in section 3, for constant values of the lengths of the y and x axes corresponding
to b = 0.3 and a = 0.8, respectively (filled triangles). A fitting of the results to the parabolic
expression λ = 0.04|a2 − b2| is also shown as a full line. The shapes of the associated vortex
trajectories have also been included.

trajectory is circular and the QTs are nonchaotic. This result is not unexpected, since specular
points at different sides of the diagonal correspond to a mere change from oblate to prolate
configurations (or viceversa), without changing the shape of the vortex trajectory. Clearly, this
modification does not affect the character of the associated QTs, as discussed in the previous
section. Moreover, figure 2 shows that the averaged Lyapunov exponent grows as we separate
from the diagonal, going into regions with larger differences, in absolute value, between a
and b. This behavior can be easily rationalized, since by doing this we move away from the
regions in which the vortex moves circularly, into more eccentric trajectories; thus implying
more chaos in the QTs, as discussed above.

What is more interesting is to analyze in detail this growing behavior. This can be done
by analyzing different cuts in the previous plot. Figure 3 shows two such plots: one with the
variation of λ along the variable a for a fixed value of b = 0.3, and the other with the variation
along variable b for a = 0.8. The positions of these two cuts have been indicated with dashed
lines in figure 2. As can be seen, in both plots the averaged Lyapunov exponent grows with
the eccentricity of the ellipse described by the vortex of the velocity field, which have also
been plotted in the figure in order that the value of the eccentricity can be visually ascertained.
But more interestingly, we find in this figure that λ follows extremely accurately a parabolic,
λ ∝ |a2 − b2|, law along these two cuts.

To close this subsection, it is interesting to compare the results for the simplified model
presented in figures 2 and 3 with those rendered by the full model, in which the QTs are
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Figure 4. Averaged Lyapunov exponents for the quantum trajectories generated from the initial
wavefunction given by (14) (full model described in section 3), as a function of parameters
a = √

2A/B and b = √
2A/C, corresponding to the lengths of the axis of the elliptic trajectory

described by the associated vortex.

Figure 5. Averaged Lyapunov exponents of the quantum trajectories generated from the initial
wavefunction given by (14) and the full model described in section 3, for constant values of the
lengths of the y and x-axis corresponding to b = 0.3 and a = 0.8, respectively.
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actually computed from the quantum potential derived from wavefunction (14). The results
of the corresponding calculations are shown in figures 4 and 5. As can be seen, the resulting
averaged Lyapunov exponents obtained from both models are quite similar, but some important
differences exist. In the first place, λ gets here very small (possibly zero) at the axes, a = 0
and b = 0. The fact that the results obtained in these two calculations are different at the
axis is not surprising, and comes from the assumption that wx = iwy in the simplified model.
This equality would approximately correspond in our case to having coefficients B and C in
equation (14) fulfilling condition B−1 = C−1. The range of values for a and b considered in
figures 2 and 4 do not separate significantly from this, except close to both axis, and here is
where the results of the approximate (figure 2) and realistic (figure 4) models differ the most.
Another point worth discussing is why λ vanishes at the axis. The reason for this is not obvious,
but can be understood if one analyzes the situation carefully. For one thing, at the axes we
have a vortex describing very eccentric elliptical motions, with trajectories close to a straight
line passing through the origin. Accordingly, and as discussed above in connection with the
results of figure 1, one should expect a large degree of chaoticity in the corresponding QTs,
contrary to the actual findings in the results for λ in figure 4. However, we have here another
important counteracting effect. Indeed, when the vortex moves in such eccentric ellipses, it
spends a large fraction of time in configurations for which the corresponding quantum density
probability is very small, with the net result that the contribution of these very eccentric vortex
trajectories in the value of the global chaoticity is negligible, and λ finally gets extremely
small.

The corresponding cuts for b = 0.3 and a = 0.8, depicted in figure 5, also show this
behavior. Apart from this difference, when comparing the results in this figure with those for
the simplified model shown in figure 3, it is observed that λ is in general larger in the former
case than in the latter; consider for example the maxima at a 	 0.14 in the upper plot and at
b 	 0.34 in the lower one, or the values at a, b = 1 in both of them. In physical terms, this
result implies that the QTs are, in general, more chaotic in the full model than in the simplified
one.

One final interesting comment concerns the asymptotic behavior of the averaged Lyapunov
exponent. Although not visible with the scale limits chosen in figures 4 and 5, this parameter
goes to zero as either a, b → ∞. Again, and as discussed for the case of the value of λ at
the axes, this behavior is the result of two opposite effects. In the first place, we have that
for large values of a or b the vortex is orbiting in a loop located very far from the origin, far
from the parameter range corresponding to still or circular vortices and thus inducing chaos
in the QTs. However, the weight corresponding to these asymptotic regions is negligible and
the influence of this vortex in λ is not important.

4.2. Vortex interaction: creation and annihilation

Let us consider now what happens when vortices interact, giving rise to annihilation and/or
creation. Remember that when this happens vortices appear or disappear in pairs, each of
them with opposite signs of the corresponding vorticity.

The simplest initial wavefunction for which this phenomenon takes place in our case is
the following combination of eigenstates:

ψ ′
0(x, y) = A′φ00 + B ′φ20 − iC ′φ02, (16)

where A′, B ′ and C ′ are real constants fulfilling the (normalization) condition: A′2 +
B ′2 + C ′2 = 1. This wavefunction has (at most) four vortices, symmetrically located in
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2x

(d)
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(b)

(c)

(e)

(a)

Figure 6. Paths described by the velocity field vortices generated by the initial wavefunction
given by (16) with values of the parameters A′ and B ′ equal to (a) 0, 0.6996; (b) 0.2621, 0.6751;
(c) 0.4393, 0.6285; (d) 0.4442, 0.6268; (e) 0.4586, 0.6217; and (f ) 0.7136, 0.4901. To give an
idea of the vorticity corresponding to each vortex, the associated velocity field has been plotted
superimposed in panel (a).

the four x − y quadrants, whose positions as a function of time are given by:

rv(t) = (xv(t), yv(t))

=
(

±
√

1

2
− A′

√
2B ′ sin

(
2t +

π

2

)
,±

√
1

2
+

A′
√

2C ′ sin(2t)

)
. (17)

According to this expression several quite different situations, as a function of the values given
to parameters A′, B ′ and C ′, can take place. A full account of the most interesting possibilities
is summarized in the plots of figure 6.

As can be seen in figure 6(a), for A′ = 0 the four vortices do not move, being stationary
at positions (±1/

√
2,±1/

√
2), respectively. To give an idea of the vorticity corresponding to

each vortex, the associated velocity field has also been plotted superimposed in the figure. As
can be observed, contiguous vortices have opposite signs of the vorticity.

As the value of parameter A′ increases (thus decreasing the values of both B ′ and C ′),
the situation changes and the four vortices acquire some motion, following (17). Some
representative trajectories are shown in the other panels of figure 6, where it can be observed
that several qualitatively different behaviors exist.

For small enough values of A′, the vortices move in trajectories that correspond to closed
loop figures which never touch each other, as shown in figure 6(b). In this case, vortices do
not annihilate at any time.
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(a)

(b)

Figure 7. (a) Position of the vortices along the trajectory corresponding to: (a) Upper loop of
figure 6(d) at different values of time: t1−6 = 0.03, 0.25, 1.57, 2.20, 2.95, 3.11. (b) Loop of
figure 2(f ) for t1−5 = 0.53, 0.63, 0.97, 1.60 and 1.83. Vortices annihilate and reappear at points
marked with hollow symbols.

As A′ further increases, the trajectory loops grow in size (see for example, figure 6(c)),
eventually getting to the point in which some of them touch each other. When this happens,
the two implied vortices annihilate, both disappearing when they simultaneously arrive at the
point of contact. The resulting effect is the formation of two symmetrical eight-shaped figures.
Past this point, the two loops merge, opening a gap in the region next to the point in which
they first made contact. This situation is seen in figure 6(d). Now, the vortex dynamics is very
interesting, and it is more clearly illustrated in figure 7. In it, the position of the two vortices
along the trajectory at increasing values of time has been marked (with full squares for the
left vortex and full circles for the right one). If we consider a complete cycle (T = π), the
dynamics go as follows. Let us start at a point just passed t1. The two vortices then evolve,
one clockwise (towards the right) and the other one anticlockwise (towards the left), passing
through all the different points marked in the figure at times t2 − t5, respectively. Afterwards,
they then get at the point labeled t6 on the vertical axis, where the two vortices meet and
mutually annihilate. When this happens, they both disappear for a short interval of time, given
in our case by 
t = π + t1 − t6 = 2t1 = 0.07, after which they reappear again at the point
labeled t1 (also on the vertical axis). After that the cycle repeats again, with the four vortices
going around their respective sections of the whole circuit.

For bigger values of A′, the loops described by the vortices touch also at a second point,
this taking place now on the horizontal axis. When this happens, a second gap opens, and
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Figure 8. Stroboscopic Poincaré surface of section for the quantum trajectories corresponding
to the initial wavefunction given by (16) for the same values of the parameters A′ and B ′ used
in figure 6. Due to the symmetry of the figure only the first quadrant has been plotted. Each
plot contains the data from 30 trajectories propagated for 3000 crossings with the surface of
section.

then we have two closed paths, instead of four, along which the four vortices move in cycles.
This situation is shown in figure 6(e). During this motion, the vortices annihilate and are
created again periodically, every time that a pair meets either at the vertical or the horizontal
axis.

Finally, this pattern continues as A′ increases, with the outer path expanding and the inner
one shrinking, until a point in which the inner loop disappears. This happens for the largest
value of A′ considered in this work, and it is shown in figure 6(f ). Here the dynamics are
similar, with a typical situation in which four vortices, one in each quadrant, exist, as shown
in figure 7(b). However, the four of them annihilate simultaneously at t5, reappearing later at
t1 after and elapsed time interval of 
t = 1.84, during which no vortices exist.

Let us now consider how this interaction between vortices, implying the creation and
annihilation of pairs, affects the global chaoticity of the associated QTs. To gauge this effect,
we present in figure 8 some results corresponding to the stroboscopic Poincaré SOS (defined
similarly as in figure 1) for the QTs calculated using the initial wavefunction given by (16) for
the same values of the parameters A′ and B ′ used in figure 6. As can be seen, the QTs in the first
panel are completely regular, as expected since they correspond to a value of A′ = 0 associated
to still vortices. The corresponding trajectories describe in the SOS some sort of triangularly
distorted circles around the fixed points located at (x, y) = (±1/

√
2,±1/

√
2). Note that

due to the symmetry of the figure, only the first quadrant has been plotted. As A′ increases,
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some of the invariant tori in the plot are destroyed due to the perturbation induced by the
motion of the vortices and signatures of chaoticity appear in a substantial part of the displayed
phase space. However, two relevant islands of regularity still remain. One around the original
fixed point (x, y) = (±1/

√
2,±1/

√
2) and the other around new fixed point located at higher

values of |x|. In the third panel the regularity islands around (x, y) = (±1/
√

2,±1/
√

2)

disappear, while the others continue their evolution dictated by the Kolmogorov–Arnold–
Moser (KAM) theorem [10], for example, a conspicuous chain of islands corresponding
to a 1:4 secondary resonance is apparent in the plot. Finally, as A′ further increases (last
three panels), this latter regularity island grows in size, thus incrementing the fraction of
regular QTs.

This non-monotonic behavior, in which the area corresponding to regular QTs first
decreases and then increases with A′, can be easily explained with the aid of the results
shown in figure 6. The plots in this figure clearly show that as A starts increasing (from
zero) the motions described by the four existing vortices get more complicated (less circular),
thus inducing a more chaotic character in the dynamics of the associated QTs. However,
after a certain value of A′ (third panel in figure 6), the trajectories of these vortices collide
with other at some point, this implying the corresponding annihilation of vortices and later
reappearance of them. During these intervals of time, there are regions in configuration
space free from vortices, and then the regular character in the dynamics of the QTs is
fostered. When considered closely, this is the effect observed in the results of figure 8,
where the fraction of regular motion decreases in the first four panels and later increases in the
last two.

The behavior that we have just described is also observed in the case in which many
vortices exists, as discussed by us in [9], where the estimates of the global chaoticity were
assessed statistically. In this way, the study that we are presenting here constitutes the
final piece in the puzzle of understanding the relationship existing between chaoticity of
QTs in BM and the dynamical characteristics of the associated vortices, and it contributes
to fill the gap between the results presented in our two previous works reported in [8, 9],
respectively.

5. Summary and conclusions

Summarizing, in this paper we present a theoretical study on the relationship existing between
chaos in the QTs appearing in the Bohmian formulation of quantum mechanics and the
dynamical characteristics of the motion of the vortices associated to the corresponding velocity
field, which is complementary to our previous contributions on this issue [8, 9]. Using a novel
simplified model, which takes into account only the influence of a single vortex in the QTs,
we have thoroughly analyzed how a given moving vortex induces chaos, quantified through
the Lyapunov exponent, in the QTs. Moreover, we have also analyzed the case with few
vortices. Here, a new phenomenon, namely the annihilation and later reappearance of pairs of
vortices with opposite signs in the vorticity, can takes place. When this happens, portions of
the configuration space gets free from vortices and the associated induced chaos in the QTs,
which turn accordingly more regular, disappears.

Finally, let us remark that studies such as the one we are presenting here are very
important in the recently revitalized topics of BM, since the QTs in which this theory is based
are inherently chaotic due to quantum effects. This mean that they may show chaos even in the
case in which this phenomenon is not induced by nonlinearities due to the physical potential
acting of the system.
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