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Abstract

Using the definition of dominated splitting, we introduce the notion of critical
set for any dissipative surface diffeomorphism as an intrinsically well defined object.
We obtain a series of results related to this concept.

1 Introduction.

Uniform hyperbolicity has been a long standing paradigm of complete dynamical descrip-
tion: Systems such that the tangent bundle over the Limit set (the accumulation points
of any orbit) split into two complementary subbundles that are uniformly forward (re-
spectively backward) contracted by the tangent map, can be completely described from
a geometrical and topological point of view.

Nevertheless, uniform hyperbolicity is a property less universal than it was initially
thought: there are open sets in the space of dynamics which are non-hyperbolic. Actually,
Newhouse showed that for smooth surface diffeomorphisms, the unfolding of a homoclinic
tangency (a non transversal intersection of stable and unstable manifolds of a periodic
point) generates open sets of diffeomorphisms such that their Limit set is non-hyperbolic
(see [N1], [N2], [N3]).

A natural question arises; which are the dynamical phenomenon that characterize non-
hyperbolic systems?

For one-dimensional endomorphism, the presence of critical points (points with zero
derivative) in the Limit set is an obstruction to hyperbolicity. On the other hand, Mañé
showed that smooth and generic (Kupka-Smale) one-dimensional endomorphisms without
critical points are either hyperbolic or conjugate to an irrational rotation (see [M]). In
other words, we could say that for generic smooth one-dimensional endomorphisms, any
compact invariant set is hyperbolic if, and only if, it does not contain critical points.

So, taking in mind this scenario for one-dimensional dynamics, we could try to identify
what are the two dimensional phenomenon whose presence impede the hyperbolicity for a
Kupka-Smale surfaces diffeomorphisms and whose absence guarantee it? In other words,
what are two dimensional “critical points” for Kupka-Smale surfaces diffeomorphisms?

The idea of trying to identify a critical set for two-dimensional maps, that it is to say, a
set designated to play a role analogous to that played by critical points in one-dimensional

1



dynamics, goes back to the seminal studies done for the Hénon attractor in [BC]. Here,
we try to introduce the critical set for any dissipative diffeomorphism, as an intrinsically
defined object.

To identify the critical sets, we need to look for weaker forms of hyperbolicity. Ba-
sically, there are two ways to relax hyperbolicity. One, called non-uniform hyperbolicity
(or Oseledet’s theory), where the tangent bundle splits for points almost everywhere with
respect to some invariant measure, and vectors are asymptotically contracted or expanded
in a rate that may depend on the base point. Other is the notion of dominated splitting
which was first introduced independently by Mañé, Liao and Pliss, as a first step in the
attempt to prove that structurally stable systems satisfy a hyperbolic condition on the
tangent map. An f -invariant set Λ is said to have dominated splitting if we can decompose
its tangent bundle in two invariant subbundles TΛM = E ⊕ F, such that:

‖Dfn
/E(x)‖‖Df−n

/F (fn(x))‖ ≤ Cλn, for all x ∈ Λ, n ≥ 0. (1)

with C > 0 and 0 < λ < 1. In this case we say that Λ has a (C, λ)−dominated splitting.
Since it was proved in [PS1] that any compact invariant set exhibiting dominated

splitting of a generic C2 surface diffeomorphism, is a hyperbolic set, to look for dynamical
obstructions to hyperbolicity is equivalent to look for dynamical obstructions to domination.

Following this idea, we propose to define the critical set as the region where domination
fails. This will provide us with a unique and intrinsic characterization of critical sets. Whit
this definition in mind, we can conclude (see theorem C for details):

for generic smooth surface diffeomorphisms,
any (dissipative) compact invariant set is hyperbolic if, and only if,

it does not contain critical points.

To pursue this program, first we recall the projective tangent bundle dynamics asso-
ciated to the derivative of a diffeomorphism and we rewrite the notion of domination in
terms of the projective tangent bundle dynamics. In particular, we introduce the notion
of non-uniformly dominated sets (this is asserted in the next subsection). In few words,
these sets are sets that exhibit some kind of asymptotic domination. From an easy ob-
servation that follows from Oseledet’s theorem, it is shown that under the assumption of
dissipation the non-uniformly dominated sets always exists (this is asserted in subsection
1.2). Using these sets, and general results about the dynamical consequences of domi-
nated splitting, we introduce the notion of critical points and values and we show that
they are the generic obstruction for hyperbolicity (this is done in subsection 1.3). Using
these notions of critical points, we explore different types of non-hyperbolic dynamics
that could appear (see subsection 1.4). At the end of the present section, we give some
application of those results. The proof of the theorem are given in the last section.
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1.1 Projective tangent bundle dynamic.

Let f ∈ Diff 1(M2) and let Λ be a compact invariant set of f . Let us take the derivative
of f acting in the unitarian tangent bundle:

Gx : (TxM)1 → (Tf(x)M)
1

Gx(v) =
Dxf(v)

|Dxf(v)| .

We denote with Gn
x = ©n−1

i=0 Gf i(x) and let us take

gx(v) = DwGx(v).

To simplify notation, we denote DwGn
x with gn

x and sometimes only with gn. Observe that
gn

x(v) = Πgf i(x)(G
i
x(v)),

It is possible to formulate the dominated spitting condition in terms of the dynamic
of G (see lemma 2.0.2 for precisse formulation).

Definition 1 Blocks of domination: Let Λ be a compact invariant set. Given δ > 0,
we define the following sets:

H−(δ) = {x ∈ Λ : ∃Fx ∈ (TxM)1 g−n(Fx) > (1 + δ)n,∀n ≥ 0};
H+(δ) = {x ∈ Λ : ∃Ex ∈ (TxM)1 gn(Ex) > (1 + δ)n,∀n ≥ 0}.

It follows immediately that these sets are compacts and the directions Ex and Fy are
unique. Observe that if Λ has a dominated splitting TΛM = E ⊕ F, then there exists
δ > 0 such that any point has an iterate in H±(δ) = Λ (for details see lemma 2.0.2).

1.2 Existences of Blocks of domination.

The goal of the next theorem is to show that under the assumption of “dissipation” (see
below for the definition), for any compact invariant set Λ contained in the Limit set
(noited from now on as L(f)) that there exists δ0 > 0 such that the sets H±(δ0) has total
measure, in the sense that for any invariant measure µ with support contained in Λ holds
that µ(H±(δ0)) = 1. The condition of dissipation is essential; in fact, observe that for the
identity map the sets H+(δ) and H−(δ) are empty fro any δ > 0.

From now on, we assume that f restricted to Λ is dissipative, i.e.: there exists a
positive constant b < 1 such that

|det(Dxf)| ≤ b for any x ∈ Λ.

In this case, we say that Λ is a dissipative compact invariant set of f . From now on, with
the constant b we denote

b = max{|det(Dxf)|, x ∈ Λ}.
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We also take the following positive constant larger than one,

b0 =
1

b
− 1.

Moreover, for any set Λ we remove the attracting periodic points. More precisely, given a
set Λ we consider the set Λ̂ = Closure[Λ\P0] where P0 is the set formed by attracting peri-
odic points contained in Λ. From now on, and taking in mind the previous consideration,
we assume that Λ does not contain attracting periodic points.

The next theorem should be considered a folklore’s one and follows from an easy
application of Oseledt’s theorem. For completeness the proof is given in section 3.

Theorem A: Let f ∈ Diff 1+β(M2) and let Λ be a dissipative compact invariant set
contained in L(f).. Then, there exists δ0 such that the Blocks of domination H+(δ0) and
H−(δ0) are not empty. Moreover, the sets

Λ+
0 = ∪n∈Zfn(H+(δ0)), Λ−0 = ∪n∈Zfn(H−(δ0))

have total measure.

Observe that points in H+(δ0) has a direction of uniform contraction for forward iter-
ates and points in H−(δ0) has a non-positive Lyapunov exponent for backward iterates.
In particular, observe that for points in H+(δ0) it is possible to obtain certain nice dy-
namical properties: their local stable set are uniformly embedded submanifolds. This is
a classical result that can be adapted from Pesin’s theory and it is recalled in section 2.

These sets are not necessarily invariant, however, if x ∈ H+(δ0) (x ∈ H−(δ0)) then the
forward (backward, respectively) orbit of x intersects H+(δ0) (H−(δ0)) infinitely many
times (see lemma 2.4).

1.3 Critical points and values.

Now, we define the critical sets. As we said, the critical sets corresponds to points where
the domination fails. Following this idea, roughly speaking, the critical points are points
in H−(δ0) such that, under forward iteration, their “unstable” direction is in tangent
position to the “stable” direction of a point in H+(δ0). The definition is introduced for
C2−dynamics

Definition 2 Critical points and critical values. Let f ∈ Diff 1(M2) and let Λ be
a dissipative compact invariant set contained in L(f). Let H±(δ0) be the sets given by
corollary 2.2. We say that x is a critical point and y is a critical value if:

1. x ∈ H−(δ0) and y ∈ H+(δ0) verifyng that

(a) for any n ≥ 0 fn(x) /∈ H−(δ0) and;
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(b) for any n ≥ 0 f−n(y) /∈ H+(δ0).

2. There exist a sequence of positive integer kn such that:

(a) fkn(x) → y,

(b) Gkn(Fx) → Ey.

We denote with CVΛ, the set of critical value of Λ and with CPΛ, the set of critical
points of Λ.

Let us explain briefly the previous definition: The first item assert that a point x is
a critical point, if it belongs to H−(δ0) and any forward iterate of x, does not belong to
H−(δ0); a point y is a critical value, if it belongs to H+(δ0) and any backward iterate
of y, does not belong to H+(δ0) The last item assert, that the unstable direction of x
accumulates, by iteration, on the stable direction of y.

Observe from the definition that critical points and critical values are one related to
the other. On the other hand, we are not assuming that the critical point and the critical
values are in the orbit of each other. However, in the definition, it could hold that kn = k
for any n and therefore fk(x) = y. In this case holds for any critical point, we do not
know if k = k(x) is uniformly bounded for any critical point.

Lemma 1.3.1 The set of critical points and critical values are closed sets.

The proof is given in section 3 after the proof of theorem B.
An easy example of critical points and values is given by a homoclinic tangency. To

define that, we need to recall that for a hyperbolic periodic point p of f , the stable and
unstable sets

W s(p) = {y ∈ M : dist(fn(y), fn(p)) → 0 as n →∞},

W u(p) = {y ∈ M : dist(fn(y), fn(p)) → 0 as n → −∞}
are Cr-injectively immersed submanifolds. A point of intersection of these manifolds is
called a homoclinic point.

Definition 3 Homoclinic tangency. We say that f has a homoclinic tangency if there
is a periodic point p such that there is a point x ∈ W s(p) ∩ W u(p) with TxW

s(p) =
TxW

u(p). In this case we say that x is a point of tangency.

In the next lemma we relate the tangencies with the critical points and values. Observe
that if x is a point of tangency then any iterate of x is also a point of tangency. However,
the lemma says that there is only one critical point and only one critical value in the orbit
of x. The proof is left to the reader.
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Lemma 1.3.2 If x is a point of tangency then there are integers k1 < k2 such that fk1(x)
is critical point and fk2(x) is a critical value.

The converse of the previous remark is not true (see next subsection); however, we
could say that the presences of critical points are “almost tangencies”: on one hand,
recall that if y ∈ H+(δ0) then the local stable set is an embedded submanifold, on the
other hand if x ∈ H−(δ0) and the local unstable set is also an embedded manifold then
Fx coincides with the tangent direction of the local unstable set; therefore, if Dfkn(Fx)
accumulates on Ey it holds that the unstable manifold accumulate in the stable manifold
of y in a tangent way.

The next two theorems explain the role of critical points and values: the presences
of critical points (values) is an obstruction for the existences of dominated splitting and
hyperbolicity; the absences of them guarantee domination properties and hyperbolicity.

Theorem B: Let f ∈ Diff 2(M2) be a Kupka-Smale system, and let Λ be a dissipative
compact invariant set of f contained in the Limit set. The set Λ has dominated splitting
if and only if CPΛ = ∅ (so CVΛ = ∅).

Observe that to guarantee that a set has dominated splitting, it is enough to guarantee
that there are no critical point. The above theorem hinges on a theorem that allows to
understand the dynamics of invariant set displaying dominated splitting, assuming that
the systems is smooth and Kupka-Smale. This theorem is proved in [PS1] (see theorem
B of the mentioned paper):

Theorem 1.1 ([PS1]) Let f ∈ Diff 2(M2) be a Kupka-Smale system and let Λ be a
compact invariant set contained in the Limit set exhibiting dominated splitting. Then
Λ can be decomposed in a hyperbolic set and a finite number of invariant closed curve
normally hyperbolic with dynamic conjugated to an irrational rotation.

Moreover, from the previous result and theorem B we get the following:

Theorem C: Let f ∈ Diff 2(M2) and let Λ be a dissipative transitive compact invariant
set of f contained in L(f), and let us assume that f is Kupka-Smale. Then Λ is either a
hyperbolic set or an invariant closed curve normally hyperbolic with dynamic conjugated
to an irrational rotation if and only if CPΛ = ∅ (so CVΛ = ∅).

Since it is possible to show that generically, any smooth surface diffeomorphisms has
not an invariant closed curve normally hyperbolic with dynamic conjugated to an irra-
tional rotation, from previous theorem we can conclude the next corollary:

Corollary 1.1 Let f ∈ Diff 2(M2) and let Λ be a dissipative transitive compact invariant
set of f . Generically it follows that Λ is a hyperbolic set if and only if CPΛ = ∅ (so
CVΛ = ∅).
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The previous theorem has immediate consequences about the non-hyperbolic dissipa-
tive compact invariant set: this set contains either critical points and critical values or
they are invariant curves with dynamic conjugated to an irrational rotation.

Corollary 1.2 Let f ∈ C2(M2) and let x be a recurrent point such that ω(x) is a Kupka-
Smale dissipative set. Then one of the next option holds:

1. ω(x) is a hyperbolic set;

2. ω(x) is a normally hyperbolic periodic closed curve;

3. there exists v ∈ TxM such that

lim sup
n→+∞

1

n
log |gn(v)| ≥ 1 + δ, lim

n→+∞
1

n
log |g−n(v)| > 1 + δ.

In particular, this implies that

lim inf
n→+∞

1

n
log |Dfn(v)| < 0, lim

n→+∞
1

n
log |Df−n(v)| ≤ 0.

The definition of critical points and values is naturally motivated by the definition
of critical points and values of one dimensional endomorphisms: Let h : I → I be
a one-dimensional map from an interval I having a critical point c0 in I; therefore,
h(c0) is the critical value of h. It is natural to embed h as a two dimensional dynamic
from I × I to itself in the following way: H(x, y) = (h(x), x). This map has a sta-
ble foliation given by the vertical lines: since DH(0, 1) = (0, 0) follows that any point
(x, y) ∈ H+(δ0) and E(x,y) = (0, 1). Moreover, (h′(x), 1) is an invariant direction; in
fact DH(h(x),x))(h

′(x), 1) = h′(x)(h′(h(x)), 1). Let us also assume that there is a sequences
{c−n} such that h(c−n) = c−n+1, c0 = c and c−n is not a critical point for any n > 0. Let us
take the sequences (c−n, c−n−1) and observe that H((c−n, c−n−1)) = (c−n+1, c−n). There-
fore, (c0, c−1) ∈ H−(δ0) and F(c0,c−1) = (h′(c−1), 1). Since, DH(c0,c−1))(h

′(c−1), 1) = (0, 1)
follows that, (c0, c−1) is the critical point and (h(c0), c0) is the critical value.

We have to point out, that it is not clear that it is possible to extract a complete
geometric structure associated to the critical sets. Taking in mind the picture for one-
dimensional endomorphisms, there is not hope to characterize any dynamics showing
critical points. However, this can be done assuming properties on the dynamic of the
critical orbit. We hope that the same approach could be done for the case of surface
maps. In particular, in the next subsections it is formulated a theorem that characterized
different kinds of dynamics that could hold for the critical sets.
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1.4 Different types of critical dynamics.

It is possible to get a better description of the dynamic of the critical points and values.
This is the purpose of the following theorem which strongly relies on theorem 1.1. Before
to formulate it, recall that the local stable (unstable) manifold of a hyperbolic set Λ0 is
the union of the local (unstable) stable manifold of the points in Λ0. To avoid notation,
let us denote the sets H−(δ0) and H+(δ0) given by theorem A, with H− and H+.

Theorem D: Let f ∈ Diff 2(M2) and let Λ ⊂ L(f) be a dissipative compact invariant
set of f without dominated splitting. Let also assume that f is Kupka-Smale. Then, one
of the following alternatives holds:

• For any point z ∈ Λ holds that ω(z) ∩ CPΛ 6= ∅ (the same for α(z)).

• There exist a compact invariant hyperbolic set Λ0 ⊂ Λ, and for any hyperbolic set
Λ0 ⊂ Λ holds:

1. closure(W u(Λ0)) ∩ CPΛ 6= ∅
2. closure(W s(Λ0)) ∩ CVΛ 6= ∅

We would like to say a few words to explain the previous theorem.
In the first option, all points accumulates on the critical points and values. This is the

case of a dissipative pseudo-circle which is a circle-like minimal nowhere locally connected
set (see [Ha]).

In the second option, there are hyperbolic sets contained in Λ and for any of them,
some critical points are accumulated by the unstable manifold of those hyperbolic sets
and some critical values are accumulated by the stable manifold of those hyperbolic sets.

1.5 Some applications.

In this subsection we conclude some results that follows from the previous theorems.

1.5.1 Existences of periodic points

Given a compact set, it is natural to ask if this set has periodic points. Under certain
conditions, related to the critical values and critical points, we can give a positive answer
to the previous question in the dissipative case.

Definition 4 We say that a compact invariant set Λ is maximal invariant if there exists
a neighborhood U of Λ such that

Λ = ∩nf
n(U).
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From theorem 1.1 it follows that any maximal invariant set with dominated splitting
contains periodic points or it is a periodic normally hyperbolic curve with dynamic conju-
gated to an irrational rotation. In the next corollary we give a result about the existence
of periodic points for sets without dominated splitting.

Corollary 1.3 Let f ∈ Diff 2(M) be a Kupka-Smale systems and let Λ be a transitive
compact maximal invariant dissipative set. Let us assume that Λ does not have dominated
splitting. If there is a point in Λ such that its orbit does not accumulate on the critical
points, then Λ contains periodic points.

1.5.2 Lyapunov stability.

The sets introduced in theorem A are useful to understand the Lyapunov stable systems
(system for which the states will remain bounded for all time, see [Ly]). In this case, we
do not assume that the map is Kupka-Smale.

Definition 5 Let Λ be a compact invariant set of a homeomorphisms f . We say that Λ
is Lyapunov stable, if for any ε1 > 0 there exists ε2 > 0 such that for any x ∈ Λ follows
that

fn(Bε1(x)) ⊂ Bε2(f
n(x)).

To characterize the attracting Lyapunov stable sets, we need the following theorem
that gives a complete description of systems having dominated splitting for smooth surface
maps without assuming that the map is Kupka Smale. This threm is a generalization of
theorem 1.1.

Theorem 1.2 ([PS2]) Let f ∈ Diff 2(M2) and let Λ be an invariant compact set con-
tained in L(f) exhibiting a dominated splitting. Then Λ can be decomposed into L(f) =
I ∪ Λ̃ ∪R such that

1. I is a set of periodic points with bounded periods and contained in a disjoint union
of finitely many normally hyperbolic periodic arcs or simple closed curves.

2. R is a finite union of normally hyperbolic periodic simple closed curves supporting
an irrational rotation.

3. Λ̃ can be decomposed into a disjoint union of finitely many compact invariant and
transitive sets. The periodic points are dense in Λ̃ and at most finitely many of them
are non-hyperbolic periodic points. The (basic) sets above are the union of finitely
many (nontrivial) homoclinic classes. Furthermore f/Λ̃(f) is expansive.
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Roughly speaking, the above theorem says that the dynamics of a C2 diffeomorphism
having dominated splitting can be decomposed into two parts: one where the dynamics
consists on periodic and almost periodic motions (I, R) with the diffeomorphism acting
equicontinuously; and another, where the dynamics are expansive and similar to the
hyperbolic case. Recall that a set is named expansive if any two different trajectories are
eventually separated.

Theorem E: Let f ∈ Diff 2(M2) and let Λ be a transitive dissipative Lyapunov stable
set. Then, Λ is either an attracting periodic point or a closed invariant curve normally
hyperbolic with dynamic conjugated to an irrational rotation.

Observe that the minimal pseudo-circle introduce by Handel is not Lyapunov stable.
Moreover, this set does not contain any embedded arc. In this direction we wonder the
following

Questions: Let f ∈ Diff 2(M2) and Λ be a locally connected transitive dissipative at-
tractor. Is it true that Λ either contains a periodic point or a Λ is a closed invariant curve
normally hyperbolic with dynamic conjugated to an irrational rotation.

1.5.3 Newhouse phenomena.

It was through the seminal works of Newhouse (see [N1], [N2], [N3]) that were shown
the existence of residual subsets of diffeomorphisms displaying infinitely many periodic
attractors (nowadays called “Newhouse phenomena”). We show in this subsection, that
the set of accumulation points of the infinitely many periodic attractors contains critical
points.

Corollary 1.4 Let f ∈ Diff 2(M2) be a Kupka-Smale system having infinitely many
sinks with unbounded period. Let also assume that the attracting periodic points are con-
tained in a dissipative region of the space. Then, the set of accumulation points of the
infinitely many periodic attractors contains critical points.

1.5.4 Dynamics conjugated to a hyperbolic ones.

In the next theorem, we address the problem about the characterization of dynamics
conjugated to a hyperbolic one: under which conditions hold that a dynamic conjugated
to a hyperbolic one is also hyperbolic? Observe that the conjugacy is not enough to
guarantee hyperbolicity.
Theorem F: Let f ∈ Diff 2(M2) be a Kupka-Smale map and let Λ be a compact maximal
invariant transitive set. Let us assume that there exists g ∈ Diff 1(M2) and a hyperbolic
compact invariant set Λg of g such that the following is verified:

1. there exists a homeomorphisms h : Λg → Λ such that

f ◦ h = h ◦ g,
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2. for any x ∈ Λg, h(W s
ε (x)) and h(W u

ε (x)) are C1−embeddings moving continuously
with x.

Therefore, it follows that Λ is hyperbolic if and only if for any x ∈ Λg follows that
h(W s

ε (x)) and h(W u
ε (x)) are transversal.

Corollary 1.5 In the hypothesis of the previous theorem, it follows that if there exists a
positive constant α0 such that for any periodic point q ∈ Λ holds that α(Es

q , E
u
q ) > α0,

where Es
q and Eu

q are the eigenspaces of Dqf
nq (nq being the period of q), then Λ is

hyperbolic.

Questions: The previous theorem is true if it is assumed uniform transversality between
the stable and unstable direction of the periodic points and it is not assumed that h(W s

ε (x))
and h(W u

ε (x)) are C1−embeddings?

Questions: It is true that uniform transversality follows from the fact that h(W s
ε (x))

and h(W u
ε (x)) are C1−embeddings that vary continuously? Observe that if there is a

homoclinic tangency then h(W s
ε (x)) and h(W u

ε (x)) are C1−embeddings that do not vary
continuously.
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2 Preliminaries.

First we formulate a couple of lemma that characterize the dominated splitting in terms
of the tangent bundle dynamic. In fact it translates the domination property in terms of
hyperbolicity of G: roughly speaking, we would say that Λ exhibits a dominated splitting,
if and only if there is “‘a hyperbolic attracting” subbundle for G. To do that, first we
have to relate the dynamic of Df with the dynamic of G. We also formulate a series of
lemmas and remarks that are used in the proofs of the theorems. We start introducing
the notion of angle of two vectors:

Definition 6 Let v and w be two vectors of Rd. It is defined the angle α(v, w) as the
unique positive number in [0, π

2
] such that

cos(α(v, w)) =
< v,w >

|v||w|
where < ., . > is the internal product induced by the riemanniam metric. Given two
one-dimensional subspaces, it is defined the angle between them as the angle between two
generators.

Lemma 2.0.1 Let f ∈ Diff 1(M2) and let Gx : (TxM)1 → (Tf(x)M)1 defined by Gx(v) =
Dxf(v)
|Dxf(v)| . Then it follows that

g(v) = DwGx|w=v =
det(Dxf)

|Dxf(v)|2 . (2)

Moreover, given two unitary vectors v and w it follows:

1. det(Dfn) = |Dfn(v)||Dfn(w)| sin(α(Dfn(v),Dfn(w)))
sin(α(v,w))

;

2. gn(w)gn(v) = [ sin(α(Dfn(v),Dfn(w)))
sin(α(v,w))

]2, where gn(u) = Πi = 0n−1g(Gi(u)).

Proof: The map G can be considered as a map from S1 to S1 and any unitarian vector
v can be written as vθ = (cos(θ), sin(θ)) for some θ ∈ [0, 2π). Then it follows that

g(vθ) = ∂θ(G(θ)) =
1

|Df(vθ)|2 [|Df(v∗θ)||Df(vθ)| − < Df(vθ), Df(v∗θ) >

|Df(vθ)| |Df(vθ)|],

where v∗θ = (sin(θ),− cos(θ)).
It is not Difficult to check that

det(Df) = |Df(v∗θ)||Df(vθ)| − < Df(vθ), Df(v∗θ) >

|Df(vθ)| |Df(vθ)|
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therefore it is concluded the equality (2). In particular, it follows that

|Dfn(v)|2 =
det(Dfn)

|gn(v)| . (3)

The other three equalities formulas are straightforward. The first two items are classical
ones and the last one follows from equality (3).

Corollary 2.1 For any δ > 0 and any n0 there is a unique direction v such that gn(v) >
(1 + δ)n for all positive n > n0.
Proof: The corollary follows from the previous formulas: Let us assume that there are
two different directions v, w verifying that gn(v) > (1 + δ)n and gn(w) > (1 + δ)n for all
integer n > n0. Therefore by the last formula of lemma 2.0.1 follows that for any n large

(1 + δ)2n < gn(w)gn(v) = [
sin(α(Dfn(v), Dfn(w)))

sin(α(v, w))
]2 <

1

sin(α(v, w))
.

A contradiction.

The next corollary is used in the proof of theorem B.
Corollary 2.2 Let x ∈ H−(δ0) and let l > 0 be such that gl(Fx) > (1 + δ0)

l. Then
gl(x) /∈ H−(δ0).
Proof: If gl(x) ∈ H−(δ0) then there exists a direction v ∈ (Tf l(x)M)

1
such that g−n(v) >

(1 + δ0)
n for n > 0. Since g−n(Gl(Fx)) > (1 + δ0)

n for n > l it follows that v = Gl(Fx)
and therefore, g−l(Gl(Fx)) > (1 + δ0)

l. A contradiction because g−l(Gl(Fx)) = 1
gl(Fx)

and

from hypothesis it is smaller that 1
(1+δ0)l .

Lemma 2.0.2 Let f ∈ Diff 1(M2) and let Λ be a compact invariant set of f , then Λ
have a dominated splitting if and only if there exists γ > 1, C > 0 and at least one of the
following equivalent conditions is satisfied

1. there exists a subbundle x → Ex over Λ, such that for any x follows that gn(Ex) >
Cγn (g−n(Ex) < Cγ−n) for n > 0

2. there exists a subbundle x → Fx over Λ such that for any x follows that g−n(Fx) >
Cγn (gn(Fx) < Cγ−n) for n > 0.
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Corollary 2.3 Let x ∈ M and v ∈ (TxM)1. Let us assume that there exist positive
integers n0,m0 and a positive constant γ > 1 such that |gn0(Gm(v))| > γ for any m > m0,
then ω(x) has dominated splitting.

Let x ∈ M and v ∈ (TxM)1. Let us assume that there exist positive integers n0,m0

and a positive constant γ > 1 such that |g−n0(G−m(v))| > γ for any m > m0, then α(x)
has dominated splitting.

The next lemma is due to Pliss (see [Pl], [M2]).

Lemma 2.0.3 Given 0 < γ0 < γ1 and a > 0, there exist n0 = n0(γ0, γ1, a) and l =
l(γ0, γ1, a) > 0 such that for any sequences of numbers {ai}0≤i≤n with n > n0, a−1 < ai < a
and Πn

i=0ai < γn
0 then there exist 1 ≤ n1 ≤ n2 ≤ .... ≤ nr with r > ln and such that

Πk
i=nj+1ai < γ

k−nj

1 nj < k < n.

Corollary 2.4 Let f ∈ Diff 1(M). Given any positive constant γ0, there exist a positive
constant γ1 = γ1(γ0) < γ0, a positive integer n0 and a positive constant l such that:

• for any x, v ∈ TxM and n ≥ n0 verifying gn(v) ≥ (1 + γ0)
n follows that there exists

a positive integers j < n such that n− j > ln and

gi(Gj(v)) > (1 + γ1)
i, 0 < i < n− j.

• for any x, v ∈ TxM and n ≥ n0 verifying g−n(v) ≥ (1+ γ0)
n follows that there exist

positive integers j < n such that n− j > ln and

g−i(G−j(v)) > (1 + γ1)
i, 0 < i < n− j.

There is an easy remark that follows from corollary 2.4, concerning points in H±(δ0).

Remark 2.1 If x ∈ H−(δ0) then there is a sequences of positive integers {kn} such that
f−kn(x) ∈ H−(δ0). If x ∈ H+(δ0) there is a sequences of positive integers {jn} such that
f jn(x) ∈ H+(δ0). Observe that in this sense, a critical point verifies that it is the “last”
iterate that belongs to H−(δ0) and a critical value verifies that it is the “first” iterate that
belongs to H+(δ0).

2.1 Complementary considerations.

From equation (3) it is obtained the following remark:

Remark 2.2 Let f ∈ Diff 1+β(M2) and let Λ be a dissipative compact invariant set
contained in the Limit set. Then, it holds that

14



1. if x ∈ H+ then |Dxf
n(Ex)| < λn

0 , for n > 0,

2. if x ∈ H− then for any δ > 0 there exists m0 = m0(δ) such that |Dxf
−n(Fx)| <

(1 + δ)n for any n > m0(δ).

The next lemma is an immediate application of Pesin’s theory.

Lemma 2.1.1 Let Λ be a compact invariant dissipative set. There exist a continuous
functions φs : H+(δ0) → Emb1(I1,M), such that if W s

ε (x) = φs(x)Iε, the following
properties hold:

1. TyW
s
ε (y) = Ey,

2. W s
ε (x) = {y ∈ M : dist(fn(x), fn(y)) < ε},

3. there exists λ < 1 and C > 0 such that for any x ∈ H+
Λ (δ0)

(a) |Dfn(Ex)| < Cλn.

(b) `(fn(W s
ε (x))) < Cλn.

Remark 2.3 If x ∈ H−(δ) then the local unstable set is not necessary neither trivial not
an embedded submanifold. However, if W u

loc(x) is a submanifold, then TxW
u
loc(x) = Fx.
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3 Proof of the Theorems A, B, C, D, E and F.

The proofs of the Theorem A is an immediate application of Oseldet’s theorem, lemma
3.0.2 and lemma 2.0.3. Let us start recalling the definition of regular points: a point x ∈ M
is a regular point if there exist number λEx ≤ λFx and a splitting of TxM = Ex ⊕ Fx such
that

lim
n→±∞

1

n
log ||Dxf

n(v)|| = λEx , v ∈ Ex; lim
n→±∞

1

n
log ||Dxf

n(v)|| = λFx , v ∈ Fx.

Let us denote with Λ0 the set of regular points of Λ.
The Oseledet’s theorem asserts that given an invariant measure µ the set of regular

points has total measure.

Theorem 3.1 Oseledet’s theorem: Let f ∈ Diff 1+β(M) and let µ be an invariant
measure. Then, the regular points has total measure.

If the support of µ is dissipative set and the measure is not supported on a periodic
attractor the next lemma follows:

Lemma 3.0.2 Let f ∈ Diff 1+β(M) and let µ be an invariant measure. If there are
not attracting periodic points in the support of the measure, then the largest Lyapunov
exponent, given by limn→∞ 1

n
log(||Dfn||) is non negative.

Recalling that, for any regular point follows that

lim
n→∞

1

n
log(|det(Dxf

n)|) = λEx + λFx , (4)

and recalling that there exists b < 1 such that

log(|det(Dxf
n)|) ≤ log(b)

then from lemma 3.0.2 we can conclude that

λEx ≤ log(b) < 0 ≤ λFx . (5)

More precisely:

Corollary 3.1 Let f ∈ Diff 1+β(M2) and let µ be an invariant measure. If the support of
the measure is a dissipative set and there are not attracting periodic points in the support
of the measure, then there are two Lyapunov exponents: one negative bounded by log(b)
and one non-negative.
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Proof of Theorem A: Oseledet’s theorem implies that the set Λ0 is not empty. In
particular, if x ∈ Λ0 then from corollary 3.1 follows that

lim
n→+∞

1

n
log(|Dfn(Ex)|) ≤ log(b).

From lemma 2.0.1, corollary 3.1 and (4) it is concluded that

lim
n→+∞

1

n
log |gn(Ex)| = λFx − λEx ≥ −λEx ≥ − log(b). (6)

Therefore, for n sufficiently large follows that

|gn(Ex)| ≥ (
1

b
)n.

Recall that b0 = 1
b
− 1, therefore, taking

δ0 =
1

2
b0

and using the Pliss’s lemma and the corollary 2.4, it follows that if x ∈ Λ0 then there
exist iterates that belong to H+(δ0).

Arguing in the same way, if follows that if x ∈ Λ0 then there exist backward iterates
that belong to H−(δ0). In fact, again from lemma 2.0.1, corollary 3.1 and (4) it is
concluded that

lim
n→+∞

1

n
log |g−n(Fx)| = λEx − λFx ≥ −λEx ≥ − log(b). (7)

Therefore, for n sufficiently large follows that

|g−n(Fx)| ≥ (
1

b
)n.

and so, using corollary 2.4 there exist iterates of x that belong to H−(δ0).
Therefore, H+(δ0) and H−(δ0) are not empty. To conclude that those sets intersect

ω(z) for any z ∈ Λ, it is enough to pick up an invariant measure with support contained
in ω(x).

Remark 3.1 Observe that the proof is based on the fact that regular points has iterates in
H+(δ0) and H−(δ0). However, the theorems does not assert that points in either H+(δ0)
or H−(δ0) are regular points. Moreover, recall that if x is a point of tangency then an
iterate of it belongs to H−(δ0) and an iterate of it belongs to H+(δ0), however, x is not a
regular point. Moreover, recalling the definition of critical points and values, follows that
the critical points and values are not regular points.

The next lemma is extremely useful in the proof of theorem B.
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Lemma 3.0.3 Let f ∈ Diff 1+β(M2) and let Λ be a dissipative compact invariant set
contained in the Limit set. Let Λ0 be a hyperbolic compact set contained in Λ. Then, it
holds that there exists δu > δ0 and n1 such that

1. if x ∈ Λ0 then |gn(Es
x)| > (1 + δu)n, for n > n1;

2. if x ∈ Λ0 then |g−n(Eu
x)| > (1 + δu)n, for n > n1;

where Es
x and Eu

x are the contractive and expansive subbundle of the the hyperbolic splitting
on Λ0.

The proof is immediate and follows from inequalities (5) and (6), and using the hypoth-
esis that Λ0 is hyperbolic to use that there is a positive Lyapunov exponent. In fact,
limn→+∞ 1

n
log |gn(Ex)| = λFx − λEx > −λEx ≥ − log(b) > log(1 + δ0).

The proof of theorem B follows from the following Main Propositions. Before to prove
it (the proofs are given is subsection 3.1), we show how the theorem B is concluded.

Main Proposition. Let f ∈ Diff 1+β(M) and let x ∈ M be such that ω(x) (α(x)
respectively) is a dissipative compact invariant set. Then, there is a positive constant
2
3
b0 < δ1 < 4

5
b0 such that if for some v ∈ (TxM)1 and for some positive integers k0,m0

follows
|gk(Gm(v))| ≤ (1 + δ1)

k, for anym > m0, k > k0

then ω(x) has dominated splitting. Moreover, there exist λ = λ(k0, b) and C = C(λ, k0)
such that ω(x) has a (C, λ)−dominated splitting.

A similar results holds for α(x); i.e.: if for some v ∈ (TxM)1 and for some positive
integers k0,m0 follows that |g−n(G−m(v))| ≥ (1−δ1)

n then α(x) respectively has dominated
splitting.

Remark 3.2 Observe that rate of domination depends on b and k0 and it does not depend
on x.

Proof of Theorem B: If Λ has dominated splitting, it follows immediately that there
are not critical points (or values).
To show the converse, first we start proving the following lemma:

Lemma 3.0.4 There exist x ∈ H−(δ0), y0 ∈ H+(δ0) and a sequence of points xi ∈ H−(δ0)
such that:

1. Fxi
→ Fx;

2. there is a sequences of positive integer {ki} such that

(a) fki(xi) → y0
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(b) Gki(Fxi
) → Ey0 ;

3. for any n ≥ 0 follows that fn(x) /∈ H−(δ0);

Proof of lemma 3.0.4: The proof goes through a series of claims.

Claim 1 Let δ1 be the constant given by the main proposition. If Λ does not have domi-
nated splitting then it follows that

1. there is a sequence of points {xi} such that xi ∈ H−(δ0),

2. there is an increasing sequence {ni} verifying ni → +∞,

3. there is a sequence {ki} not necessary increasing, such that for any i > 0 follows
that

gni(Gki(Fxi
)) > (1 + δ1)

ni .

Proof of claim 1: If the claim is false, follows that there exists k0 such that for any
x ∈ H−(δ0) and any m > 0 follows that

gk0(Gm(Fx)) ≤ (1 + δ1)
k0 .

Therefore from main proposition, follows that ω(x) has (C, λ)−dominated splitting. Using
that the constant of domination are uniform for any ω(x), follows that

L− = L(f|H−(δ0)) = closure(∪x∈H−(δ0)ω(x))

has a (C, λ)−dominated splitting. Let us take a neighborhood U of L− and observe that
there is m0 such that for any x ∈ H−(δ0) and m > m0 follows that fm(x) ∈ U . In
particular, since for any z ∈ Λ holds that ω(z) ∩H−(δ0) 6= ∅, then for any z ∈ Λ follows
that

ω(z) ⊂ ∩j∈Zf j(U).

Since L− has dominated splitting it is concluded that ∩j∈Zf j(U) also has dominated
splitting and therefore the same holds for ω(z). Taking z such that ω(z) = Λ it follows
that Λ has dominated splitting. Which is a contradiction with the assumption that Λ
does not have dominated splitting. This finish the proof of claim 1.

Taking the sequence {xi} and the sequences {ki} and {ni} given by claim 1, follows
from corollary 2.4 that there exists a sequence {ri} with ni − ri →∞ such that

gl(Gri(Fx)) > (1 + δ0)
l, 0 < l < ni − ri. (8)

From the fact that for any 0 < l < ni − ri holds that f l(f r
i (x)) /∈ H−(δ0) (recall corollary

2.2), we can assume that for any 0 < j ≤ ri follows that f j(xi) /∈ H−(δ0); otherwise we
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changes xi by f ji(xi) where ji is the largest positive integer smaller or equal than ri such
that f ji(xi) /∈ H−(δ0).

Now we take an accumulation point x of the sequences {xi} selected before and Fx as
an accumulation point of {Fxi

}. Observe that x ∈ H−(δ0) with

g−n(Fx) > (1 + δ0)
n.

Taking y0 and Ey0 as an accumulation point of {f ri(xi)} and {Gri(Fxi
)} respectively (the

sequences that verify (8)), it follows that y0 ∈ H+(δ0) with

gn(Ey0) > (1 + δ0)
n.

Claim 2 For any n > 0 follows that fn(x) /∈ H−(δ0).

Proof of claim 2: To check that we consider either the sequence {ri} is bounded or
unbounded.

In the first case, it follows that f r(x) = y0 for some positive integer and Gr(Fx) = Ey0

(where y0 is the point selected before). Therefore, replacing x by an iterate of it up to
f r−1(x) if necessary, observe that from corollary 2.2 it can not hold that a forward iterate
of x belong to H−(δ0).

In the case that {ri} is unbounded, we can assume that limi→+∞ri = +∞. If the claim
is false let n0 be a positive integer arbitrarily large such that fn0(x) ∈ H−(δ0). Therefore,
from corollary 2.1 follows that for any 0 ≤ j ≤ n0 g−j(Gn0(Fx)) > (1 + δ0)

j. We can take
a finite sequences of positive constants s1, s2, ..., sn0 such that each sj is smaller than one
and

g−(n0−l)(Gn0(Fx)) > Πn0
j=l[sj g−1(Gj(Fx))] > (1 + δ0)

n0−l 0 ≤ l ≤ n0.

Now we take xi close enough to x such that f j(xi) is close enough to f j(x) and Gj(Fxi
)

close to Gj(Fx) for any 0 ≤ j ≤ n0 in such a way that g−1(Gj(Fxi
)) > sj g−1(Gj(Fx)).

Therefore,

g−l(Gn0(Fxi
)) > Πn0

j=l[sj g−1(Gj(Fx))] > (1 + δ0)
n0−l 0 ≤ l ≤ n0.

This implies that fn0(xi) ∈ H−(δ0). Taking xi such that ri > n0 it follows a contradiction
with the election of the sequence {xi}. This finish the proof of claim 2 and also the proof
of lemma 3.0.4 is concluded.

Following with the proof of theorem B, we use the next claim:

Claim 3 Let δ1 be the constant given by the main proposition. Let x be the point in
H−(δ0) obtained in lemma 3.0.4. There exists an increasing sequence {ni} verifying ni →
+∞, and a sequences {ki} not necessary increasing, such that for any i > 0 follows that

gni(Gki(Fx)) > (1 + δ1)
ni .
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Proof of claim 3: If the sequence {ki} given by claim 1 verifies that is bounded, follows
that for some k > 0 holds that fk(x) = y0 and Gk(Fx) = Ey0 and therfore the lemma
follows immediately.

Now we consider the case that the sequences {ki} is unbounded, and we can assume
that ki → +∞. If the thesis does not hold, then there exist positive integers n0, m0 such
that gn(Gm(Fz)) ≤ (1+ δ1)

n for any m > m0, n > n0. From main proposition we conclude
that ω(x) is a hyperbolic set. Let

Λ0 = closure(∩n∈Zfn(V ))

where V is a small neighborhood of ω(x). It follows that Λ0 is a hyperbolic set and
there is k0 > 0 such that fk0(x) ∈ W s

loc(Λ0). To avoid notation, we assume that x ∈
W s

loc(Λ0) (where W s
loc(Λ0) is the local stable manifold of Λ0). Moreover, it holds that Fx

is transversal to TxWloc(Λ0): otherwise, gn(Fx) would expand for positive iterates and by
lemma 3.0.3 the expansion holds at rate 1 + δ0 and this is not the case because we are
assuming that x does not verify the thesis of claim 3.

Now we have to choose a series of constants:

1. Let δu and n1 be the constants given by lemma 3.0.3 for the set Λ0.

2. Let δ2 and δ3 such that δ0 < δ3 < δ2 < δu and let 0 < s < 1 such that (1 + δu)s >
1 + δ2 > (1 + δ2)s > 1 + δ3.

3. Let s be the constant chosen in the previous item and let β0 be a small positive
constant such that if z′ ∈ W u

β0
(z) for some z ∈ Λ0 then g−1(Eu(z′)) > s g−1(Eu(z)).

4. Let β1 be a small positive constant such that if dist(z, z0) < β1 for some z0 ∈ Λ0

and α(Fz, E
u
z0

) < β1 then g−1(Fz) > s g−1(Eu
z0

).

Observe that from the first and second item, and the lemma 3.0.3 it follows that if
z′ ∈ W u

β0
(z) for some z ∈ Λ0 then g−n(Eu(z′)) > (1 + δ2)

n if n is large enough.
Recall the sequences {xi} that accumulates on x (obtained in lemma 3.0.4). Let γ > 0

and let Vγ = Bγ(Λ0). From the fact that x ∈ W s
loc(Λ0) follows that for any Vγ there

exists k0 = k0(γ) such that for any n > 0 if xi is close enough to x then f j(xi) ∈ Vγ

for any k0 ≤ j ≤ n. Using that Λ0 is a hyperbolic set which is the closure of a maximal
invariant set, follows that there exists a point zi ∈ W u

loc(Λ0) such that f j(zi) ∈ Vγ and
dist(f j(xi), f

j−n(zi)) < γ for any k0 ≤ j ≤ n. Moreover, f−k(zi) → Λ0 as k → ∞ and
zi → Λ0. To show that, let us take fn(xi) and let us take zi ∈ W u

γ (Λ0) ∩ W s
loc(f

n(xi))
where W s

loc(f
n(xi)) is a C1−curve close to the local stable manifold of Λ0.

Since Fx is transversal to TxWloc(Λ0), follows that if n is large enough then Gn(Fxi
) is

close to the expanding subbundle of the hyperbolic splitting of Λ0. Therefore, we can take
γ < min{β0, β1} such that if xi is close enough to x and f j(xi) ∈ Vγ for any k0 ≤ j ≤ n
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then it follows that dist(f j(xi), f
n−j(zi))) < β1 and α(Gj(Fxi

), Eu
fn−j(zi)

) < β1. Then it

follows that g−1(Gj(xi)) > s g−1(Eu
fn−j(zi)

).
Hence, taking n large and xi close to x follows that

g−n(Gn(xi)) = Πn−1
j=1 g−1(Gj(xi)) > C0Π

n
j=k0

g−1(Gj(xi)) >

> C0 Πn
j=k0

[g−1(Eu
fn−j(zi)

)) s] = C0s
n−k0 Πn

j=k0
g−1(Eu

fn−j(zi)
)) >

> C0s
n−k0(1 + δ2)

n−k0

> C0(1 + δ3)
n−k0

where C0 = C0(γ) = Πk0
j=1g

−1(Gj(xi)). Since n can be taken arbitrarily large, C0 is fixed
(only depends on γ which is already chosen) and δ3 > δ0, follows that

C0(1 + δ3)
n−k0 > (1 + δ0)

n

and so
g−n(Gn(xi)) > (1 + δ0)

n.

Therefore, for n large, and xi close enough to x we have that fn(xi) ∈ H−(δ0). On the
other hand recall that for each xi, there is a large ki such that for any 0 < j < ki follows
that f j(xi) /∈ H−(δ0). So, taking xi such that ki > n we get a contradiction. This finished
the proof of claim 3.

Taking the point x and the sequences {ki} and {ni} given by claim 3, follows from
corollary 2.4 that there exists a sequence {ri} with ni − ri →∞ such that

gl(Gri(Fx)) > (1 + δ0)
l 0 < l < ni − ri. (9)

We can assume that ri is the first positive integer smaller than ni such that the inequal-
ity (9) holds. Taking y and Ey as an accumulation point of {f ri(xi)} and {Gri(Fxi

)}
respectively, it follows that y ∈ H+(δ0) with

gn(Ey) > (1 + δ0)
n.

Claim 4 For any n large holds that f−n(y) /∈ H+(δ0).

Proof of claim 4: To check that we consider either the sequence {ri} is bounded or
unbounded.

In the first case, it follows that f r(x) = y for some positive integer and Gr(Fx) = Ey.
Therefore, it can not hold that a backward iterate of y belong to H+(δ0). In the second
case, we can assume that ri → +∞ and we argue as in claim 2. More precisely, if there
is n > 0 such that y ∈ H+(δ0) it follows that taking ri sufficiently large it holds that
f ri−n(xi) and Gri−n(Fxi

) are close enough to y and G−n(Ey) respectively. Therefore, for
j < n it follows that gj(Gri−n(Fxi

)) > (1 + δ0)
j and so ri is not the first positive integer

verifying inequality (9). This finish the proof claim of 4.

The proof of theorem B is therefore concluded.
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Now we proceed to prove lemma 1.3.1. The proof is similar to claim 3.
Proof of lemma 1.3.1: Let {xn} be a sequences of critical points and let x be an
accumulation point. It follows immediately that x ∈ H−. To show that for any positive
integer n holds that fn(x) /∈ H− we argue as in claim 2. Therefore, to conclude the lemma
it is enough to show that

1. there is an increasing sequence {ni} verifying ni → +∞,

2. there is a sequence {ki} not necessary increasing, such that for any i > 0 follows
that

gni(Gki(Fx)) > (1 + δ1)
ni .

If these sequences do not exist, follows that there exists k0 such that for any m > 0
follows that

gk0(Gm(Fx)) ≤ (1 + δ1)
k0 .

Therefore, arguing as in claim 1 follows that ω(x) is a hyperbolic set and arguing as in
claim 3 it is conclude that for xn close enough to x follows that there exists a large positive
integer k such that fk(xn) ∈ H−(δ0). A contradiction.

The proof of theorem C follows from theorem B and theorem 1.1. So it remains to
prove theorem D.

Proof of Theorem D: Let us assume that the first option of theorem D does not
hold. Therefore, there exists a point x such that ω(x) does not contains critical points
and therefore is a hyperbolic set. Let Λ0 = closure(∩n∈Zfn(V )) where V is an small
neighborhood of ω(x). It follows that Λ0 is a hyperbolic set.

Let us consider the fundamental domain

Du = closure[f(W u
loc(Λ0)) \W u

loc(Λ0)].

Observe that Du is nonempty: otherwise Λ0 would be an attractor and in this case it
would coincide with Λ, which is a contradiction since we assume that Λ is non-hyperbolic
and Λ0 is a hyperbolic set.
Claim 5 It follows that Du ∩ Λ 6= ∅.
Proof of claim 5: Let z ∈ Λ such that ω(z) = Λ. It follows that there is a subsequences
of iterates of z that accumulates on Λ0. Since Λ0 is a hyperbolic proper subset of Λ, it is
concluded that there is a subsequences of iterates of z that accumulates on the unstable
manifold of Λ0 and does not accumulate on Λ0. This conclude the proof of claim 5.

To conclude the theorem it is enough to shows the following:

Claim 6 It follows that closure(∪z∈Du ∪n>0 {fn(z)}) ∩ CPΛ 6= ∅.
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Proof of claim 6: Let us take Λ1 = Closure(∪z∈Duω(z)). If the claim is false, follows
that Λ1 is a hyperbolic set. Moreover, there is k0 > 0 such that for any z ∈ Du it follows
that fk0(z) ∈ W s

loc(Λ1) and Tfk0 (z)W
s
loc(Λ1) is uniformly transversal to Gk0(Fz) for any

z ∈ Du: otherwise, it would hold that there is a critical point in Du. Therefore, it follows
that ∪0≤j≤k0f

−j(W s
loc(Λ1)) is a uniform neighborhood U of Du. It follows that if z is such

that ω(z) = Λ there is an iterate of it contained in U , which is a contradiction because in
this case, ω(z) = Λ0 would coincide with Λ and so Λ would be hyperbolic. This conclude
the proof of claim 6.

To prove the second item of the second option of theorem D it is argued as before,
replacing f by f−1.

Proof of Theorem E: It is enough to show that either Λ has dominated splitting or it is
an attracting periodic point (maybe with complex eigenvalues). In fact, if Λ has dominated
splitting, from theorem 1.2 then either it contains a normally hyperbolic invariant closed
curve with dynamic conjugated to an irrational rotation, or contains a periodic closed
arc, or it contains an expansive set. Since we are assuming that Λ is Lyapunov stable,
the third option does not hold. Therefore, if Λ has dominated splitting and since we are
assuming that Λ is transitive (so it can not contain a closed periodic arc), we conclude
that Λ coincides with the invariant closed curve with dynamic conjugated to an irrational
rotation.

First, we prove the following proposition:
Proposition 3.1 Let Λ be a dissipative minimal topologically (any orbit is dense) and
Lyapunov stable invariant set. Then, either Λ has dominated splitting or it is an attracting
periodic point.

Proof: Take a point x ∈ H+(δ0) and γ > 0 and ε > 0 sufficient small such that
fn(Bε(x)) ⊂ Bγ(f

n(x)) for any positive integer n. So, there is δ2 < δ0 such that for any
y ∈ Bε(x) there is a unique direction Ey such that gn(Ey) > (1 + δ2)

n for any positive
integer n. Since Λ is minimal, there is k0 > 0 such that for any z ∈ Λ there is n < k0 such
that fn(z) ∈ Bε(x). On the other hand, if y ∈ Bε(x) and fn(y) ∈ Bε(x) we have either
that Dfn(Ey) is collinear with Efn(y) or is not the case. In the last case, we obtain an
attracting periodic point, and so the proposition follows. In the former, we prove that for
any y ∈ Λ we obtain a direction Ey which is expanded by g for any positive iterate and
therefore from remark 2.0.2 we obtain that Λ has a dominated splitting.

Coming back to the proof of the theorem E, let us assume that Λ has not dominated
splitting. So, there is Λ0 ⊂ Λ a minimal set, in terms of Zorn’s lemma, without dominated
splitting. This set is topologically minimal: otherwise, it would contain a proper sets
with dominated splitting and in this case we, it follows that this proper set is a normally
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hyperbolic invariant closed curve with dynamic conjugated to an irrational rotation; in
particular, this curve is an attractor and therefore it follows that Λ is not transitive. After
it was proved that Λ0 is topologically minimal, we can apply the previous proposition and
we conclude that Λ is an attracting periodic point.

Proof of corollary 1.4: Let {pn} be a sequence of periodic attracting points whose
periods are unbounded and that there exists b < 1 such that for any pn follows that
|det(Dpn)| < b. . Let Λ0 be the set of limits points of the orbits of the points pn, i.e.:

Λ0 = ∩m≥0∪n≥mO(pn).

This set is a compact invariant set. If there is not critical points in Λ0 then it follows
that it has dominated splitting. Then, by Theorem 1.1, we conclude that Λ0 is a union of
a hyperbolic set and a finite union of periodic simple closed curves normally hyperbolic.
Since given a neighborhood of Λ0 there exists n0 such that, for any n ≥ n0, the orbit of pn

it is contained in this neighborhood, we get a contradiction. In fact, the orbits of pn can
not accumulate on the periodic simple closed curves since they are normally hyperbolic
(attracting or repelling curves). Thus, Λ0 is a hyperbolic set and so the maximal invariant
set in an admissible compact neighborhood of Λ0 is hyperbolic as well. In particular, for
sufficient large n, pn lies on this maximal invariant set and so it must be a hyperbolic
periodic point of saddle type, a contradiction and so our assumption is false.

Proof of Theorem F: Observe that it is enough to show that Λ does not have critical
points: Observe that for any x ∈ H−(δ0) and y ∈ H−(δ0) holds that

Ffk(x) = Tfk(x)h(W s
ε (h−1(fk(x)))), Ey = Tyh(W s

ε (h−1(y)))

therefore from the assumption of transversality can not exist points that satisfy the defi-
nition of critical points and values.

3.1 Proof of Main Proposition.

The Maim proposition is based in the following lemma and corollary 2.4.
Main Lemma. Let x ∈ M be such that ω(x) is dissipative. There exists 4

5
b0 < δ2 < 5

6
b0

such that if for some n0 and some v ∈ (TxM)1 it is verified that (1−δ2)
n < gn(v) < (1+δ2)

n

for any n > n0, then ω(x) is a sink.

Proof of Main Proposition: By lemma 2.0.2 it is enough to prove that there exists
some positive integers n1,m1 such that for any n > n1 and m > m1 follows

|gn(Gm(v))| < (1− δ1)
n.
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If it is not the case, it follows that there exist increasing sequences {ni}, {ki} such that
gni(Gki(v)) > (1− δ1)

ni . Then, by corollary 2.4 follows that there exists a sequence {ri}
with ni − ri →∞ and l0 > 0 such that

gl(Gri(v)) > (1− δ2)
l, ∀ l0 < l < ni − ri.

Taking z and w as an accumulation points of {f ri(x)} and {Gri(v)} respectively, follows
that

(1− δ2)
l < |gl(w)| < (1 + δ2)

l, ∀ l0 < l.

Therefore, by the Maim Lemma we conclude that there is a sink in Λ which is a contra-
diction.

Proof of Main Lemma: Let us take (TM)1 = {(x, v) ∈ TM : v ∈ TxM, |v| = 1} and
F : (TM)1 → (TM)1 defined as F (x, v) = (f(x), Gx(v)). Let us consider the points (x, v)
in the hypothesis of the lemma. Let us define the measures µN = (µ1

N , µ2
N) where

µ1
N =

1

N

N∑
i=0

δf i(x),

µ2
N =

1

N

N∑
i=0

δGi(v).

These measures has a convergent subsequences to an invariant measures µ of F. If the
measure is supported on the orbit of a sink, then the lemma follows. So, let us assume
that it is not the case. Let us take g : (TM)1 → R defined by g(x, v) = gx(v), the
derivative of Gx. It follows that

∫
log(gz(w))dµ(z, w) = lim

N→∞

∫
log(gz(w))dµN(z, w), (10)

and

∫
log(gz(w))dµN(z, w) =

1

N

N∑
i=0

log(gf i(x)(G
i(v))) =

1

N
log(gN

x (v)). (11)

From the fact that
(1− δ0)

n < gn(v) < (1 + δ0)
n

for n large enough it follows from (10) and (11) that

log(1− δ0) <

∫
log(gz(w))dµ(z, w) < log(1 + δ0). (12)

From lemma 3.1, Oseledet’s theorem and equation (2) follows that either
1.

∫
log(gz(w))dµ(z, w) = λF − λE or
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2.
∫

log(gz(w))dµ(z, w) = λE − λF ,
where λE is the negative Lyapunov exponent and λF is the non-negative Lyapunov

exponent. From lemma 3.1 follows that either

1.
∫

log(gz(w))dµ(z, w) > −λE > log(1
b
) or

2.
∫

log(gz(w))dµ(z, w) = λE < log(b).

From the election of b0 and b it holds that the last two inequalities contradict inequality
(12).
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[M] R. Mañé, Hyperbolicity, sinks and measure in one dimensional dynamics, Com-
mun. Math. Phys., 100 (1985), 495-524.
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