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Summary. We describe a block matrix iterative algorithm for solving a linear-
quadratic parabolic optimal control problem (OCP) on a finite time interval. We
derive a reduced symmetric indefinite linear system involving the control variables
and auxiliary variables, and solve it using a preconditioned MINRES iteration, with
a symmetric positive definite block diagonal preconditioner based on the parareal
algorithm. Theoretical and numerical results show that the preconditioned algorithm
converges at a rate independent of the mesh size h, and has parallel scalability.

1 Introduction

Let (to,ts) denote a time interval, let 2 C R? be a polygonal domain of size
of order O(1) and let A be a coercive map from a Hilbert space L?(t,,ts;Y)
to L2(to,tf;Y’), where Y = H{(£2) and Y/ = H™!(42), i.e., the dual of ¥
with respect to the pivot space H = L?(2); see [2]. Denote the state variable
space as Y = {z € L%(to,t5;Y) : 2t € L*(to,tr;Y’)}, where it can be shown
that Y C CO([to, ts]; H); see [2]. Given y, € H, we consider the following state
equation on (tp,ty) with z € Y-

2(0) = g )

{Zt—i-AZ:Bv for t, <t <ty,
The distributed control v belongs to an admissible space U = L2(t,,t5;U),
where in our application U = L?({2), and B is an operator in £(U, L?(t,, t¢; H)).
It can be shown that the problem (1) is well posed, see [2], and we indicate
the dependence of z on v € U using the notation z(v). Given a target function
§in L2(t,, ty; H) and parameters ¢ > 0, 7 > 0, we shall employ the following
cost function which we associate with the state equation (1):

Te)0) =5 [ 1)) =i e dt+ 5 [T dt @)
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For simplicity of presentation, we assume that y, € Y and § € L%(t,,ts;Y),
and normalize ¢ = 1. The optimal control problem for equation (1) consists
of finding a controller u € U which minimizes the cost function (2):

J(y,u) = min J(z(v),v). (3)
veU
Since ¢, 7 > 0, the optimal control problem (3) is well posed, see [2].

Our presentation is organized as follows: In § 2 we discretize (3) using a
finite element method and backward Euler discretization, yielding a large scale
saddle point system. In § 3, we introduce and analyze a symmetric positive
definite block diagonal preconditioner for the saddle point system, based on
the parareal algorithm [3]. In § 4, we present numerical results which illustrate
the scalability of the algorithm.

2 The discretization and the saddle point system

To discretize the state equation (1) in space, we apply the finite element
method to its weak formulation for each fixed ¢ € (¢,,t5). We choose a quasi-
uniform triangulation 75, (£2) of {2, and employ the P; conforming finite el-
ement space Y, C Y for z(t,-), and the Py finite element space U, C U
for approximating v(¢,-). Let {¢; }?:1 and {¢; }le denote the standard ba-
sis functions for Y;, and Uy, respectively. Throughout the paper we use the
same notation z € Y}, and z € R9, or v € Uy and v € R?, to denote both a
finite element function in space and its corresponding vector representation.
To indicate their time dependence we denote z and wv.

A discretization in space of the continuous time linear-quadratic optimal
control problem will seek to minimize the following quadratic functional:

Tn(z,0) = % /t - )T OMuz - D) @) dt—i—g /t "W O Rt dt (4)

o o

subject to the constraint that z satisfies the discrete equation of state:
Mpz+ Apz = Bpy, for t, <t <ty and z(t,) =yl (5)

Here (z — §™)(t) denotes the tracking error, where " (t) and y{ belong to Y},
and are approximations of y(t) and y, (for instance, use L2({2)-projections
into Y). The matrices My, A, € szq’ B, € R¥*P and Ry, € RP*P have
entries (Mh)ij = (¢i7¢j)7 (Ah>ij = (¢i7¢4¢j)7 and (Bh)ij = ((,ZSHBI/JJ) and
(Rn)ij = (¥i,1;), where (-,-) denotes the L?*(§2) inner product.

To obtain a temporal discretization of (4) and (5), we partition [t,, t¢]
into [ equal sub-intervals with time step size 7 = (t; — t,)/l. We denote
t, = to+ 17 for 0 <1 < [. Associated with this partition, we assume that
the state variable z is continuous in [t,,t;] and linear in each sub-interval
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[ti—1,t], 1 <1< [ with associated basis functions {191}520. Denoting z € R4
as the nodal representation of z(¢;) we have z(t) = Z§=o 219;(t). The control
variable v is assumed to be a discontinuous function and constant in each sub-
interval (t;_1,#;) with associated basis functions {x;}!_,. Denoting v; € R? as
the nodal representation of v(t; — (7/2)), we have v(t) = 25:1 vxi(t).

The corresponding discretization of the expression (4) results in:

F@v)= 3 (-9 K -9)+ v Gv i @-9)7g (0

1
2
The block vectors z := [le,...,z[T]T € Rl and v := [l ... ol]T € RIP
denote the state and control variables, respectively, at all the discrete times.
The discrete target is y := [§7, ... ,@iT]T € R with target error e; = (2, —J")
for 0 < 1 < I. Matrix K = D, ® M), € RUD*(9 where D, € R'*! has entries
(D:)ij = [ 0i(t)0;(t)dt, for 1 < i,j <, while G = r7I; @ R), € RUP)* (D),
where ® stands for the Kronecker product and I; € RIX1 is an identity matrix.
The vector g = (g1 ,0%,...,0")T where gy = ZMjeq. Note that g does not
necessarily vanish because it is not assumed that yf = 9.
Employing the backward Euler discretization of (5) in time, yields:

Ez+Nv=f, (7)
where the input vector is f := [(My?)T,07,...,07]T € R4, The block lower
bidiagonal matrix E € R(49*(9) ig given by:

Fy

—M;, Fy,

E = o ; (8)
—M, F),
where Fy, = (M, + 74;) € RI%4, The block diagonal matrix N € R () x (ip)

is given by N = —71; ® By. The Lagrangian L;(z,v,q) for minimizing (6)
subject to constraint (7) is:

Lr(z,v,q) = J(z,v) + q* (Ez + Nv — f). 9)

To obtain a discrete saddle point formulation of (9), we apply optimality
conditions for Lp(+,-,-). This yields the symmetric indefinite linear system:

K 0 ET y Ky—g
0 G N7 u| = 0 , (10)
E N O o) f

where § == [()7,...,(3")™)T € R'. Eliminating y and p in (10), and
defining b := NTE-T (KEflf - Ky + g) yields the reduced Hessian system:
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(G+NTETKE 'N)u =b. (11)

The matrix H := G + NTE-TKE~!'N is symmetric positive definite and
(u,Gu) < (u,Hu) < p(u,Gu), where = O(1 + 1); for details see [4]. As
a result, the Preconditioned Conjugate Gradient method (PCG) can be used
to solve (11), but each matrix-vector product with H requires the solution of
two linear systems, one with E and one with E”. To avoid double iterations,

we define the auxiliary variable w := —E-TKE~"!Nu. Then (11) will be
equivalent to the symmetric indefinite system:

EK'ET N||w 0

SR IR ®

The system (12) is ill-conditioned and will be solved using the MINRES algo-
rithm with a preconditioner of the form P := diag(E; TKE; !, G™1); see [5].
For a fixed number of parareal sweeps n, E-! and E;T are linear operators.
We next define the operator E,; ! and then analyze the spectral equivalence

between E-TKE~! and E;TKE; !.

3 Parareal approximation E;TKE;1

An application of E:LTIA{E;l to a vector s € RUD*(D js performed as
follows: Step 1, apply E,'s :— 2" using n applications of the parareal
method described below. Step 2, multiply Kz" :— £ where K := D, ® My,
D, :=blockdiag(D?}, ..., DF), and the DF are the time mass matrices associ-
ated to the sub-intervals [T _1,Tk]. And Step 3, apply E;Tt" :— x, i.e., the
transpose of Step 1.

To describe E,,, we partition the time interval [t,,%] into k coarse sub-
intervals of length AT = (t5 — to)/l;:, setting Ty = t, and T}, = t, + kAT
for 1 < k < k. We define fine and coarse propagators F' and G as follows.
The local solution at T} is defined marching the backward Euler method from
Ti—1 to Ty on the fine triangulation 7 with an initial data Zy_q at Ti_1. Let
m = (Ty — Tp—1)/7 and jr_1 = M It it is easy to see that:

MypZy = FZk—1 + Sk, (13)
where F := (M, F; )™M, € R1¥4, S, = ™ (M, F;7 Y™
with Zy = 0. Imposing the continuity condition at time T}, for 1 < k < k,
ie., MpZy, — FZ,_1 — Sk = 0, we obtain the system:

Sjk—14+m

Mh Zl Sl
—F M, Zy Sy

—F M, | | 2 S;
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The coarse solution at T}, with initial data Z,_1 € R? at Ty_ is given by
one coarse time step of the backward Euler method M, Z, = GZ;_, where
G := My(My, + AR, AT) ' M), € R2%4. In the parareal algorithm, the coarse
propagator G is used for preconditioning the system (14) via:

Zr [z Mp CIRE

Zyt zy ~G M, Ry
: =0T T o (15)
n—+1 n n

z z7 ~G M, Ry

where the residual vector R™ := [Rp7, ..., RZT]T € R* is defined in the usual
way from the equation (14).

We are now in position to define 2" := E_!s. Let 2" be the nodal rep-
resentation of a piecewise linear function 2" in time with respect to the fine
triangulation 7 on [t,,ts], however continuous only inside each coarse sub-
interval [Tj,_1, T}], i.e., the function 2" can be discontinuous across the points
Ti, 1 < k < k — 1, therefore, 2" € RUTF=D4_On each sub-interval [Tj_1, Tk],
2" is defined marching the backward Euler method from Ty _; to T} on the
fine triangulation 7 with initial condition Z;' ; at Tj_;.

Theorem 1. For any s € RUD*1D gnd ¢ (0,1/2), we have:
Yonin (E1s, KE's) < (E;ls,KEgls) < Ymax (E7's, KE™'s) |

= (14 2a=to) 4 96y /(1 — 2)
where { T o, TE ’
Ymin 1= (1 — Ln(t‘f;to) — 26)/(1 —+ 26).

Proof. Let V3, := [v1, ..., v4] and Aj, := diag{A1, ..., A4] be the generalized eigen-
vectors and eigenvalues of A; with respect to My, i.e., A, = Mth/thh_l.
Let z := E7's with 2(t) = Y7_, ay(t)vg, and 2" := E;'s with 2"(t) =

g=1 g (t)vg. We note that oy might be discontinuous across the Tj. Then:
(B8, KE™'s) = llzllfa(r, ¢ :0200)) = 2=t Il oty

(E7_Lls7KET_LlS) = Hén"%?(tmtf;LQ(Q)) = 23:1 ||042||2L2(t0,tf)a

and therefore:
”O‘ZHQLQ(tO,tf) = (O‘Z - O‘q’az; + aq)L2(t,,,tf) + Haq||2L2(to,tf)
< ZEHQZ - aq”%mo,tf) + 5”05:; + aq“%z(to,tf) + Haq||2L2(to,tf)
< illa”*a 17 + 2el|ay |17 + (1+26)||ag|I7
= 4e7a GIL2(to,ty) q IL2(to,ty) L2 (to,ty)>

which reduces to:
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(1 =20)0g 72, ey < A+ 20 0glFo, ) + acllog — aqllFag, 4
For each t; € [Ty—1,Tx] we have:
oy (t1) = aqg(t)] = (1+7Ag) ™ T/ |0l (Tymy) = ag(Ti—1)),
and since A, > 0 implies (14 7X,)~ (" ~7k-1)/7 < 1, we obtain:
g — agllZ2 ey, 1) < ATl (Ti-1) — ag(Ti-1)[*.

Hence:

(1=20)llaglZ2r, 1) < (1+26)laglTeg, 1)+

tr —to
! max_|af(T) —aq(Ty)[%.
de  o<k<k

Using the Lemma 1 (see below) with ag(Tp) = 0 and initial guess o) (T%) = 0,
and using

4 .
max |ag(Ti)[* = lag(Te)* < ~ minlaq(Ti) + BtllZ2(r,, 7,0 4v)

0<k<k

we obtain: ) ) ) 4p2 )
max |ag (Tk) — ag(Th)|” < pr, max |og(Th)|” < —*llagllzz, )
0<k<k 0<k<k T

and the upper bound (16) follows. The lower bound follows similarly.
Remark 1. Performing straightforward computations we obtain:

4
\/ 1 + ng(t;fto) o 1

Hence, for small values of p,,, we have ypax—1 &~ 44/ M The dependence

min Ymax(€) = 1+

of Ymaz — 1 with respect to 7 is sharp as evidenced in Table 1 (see below)
since it increases by a \/§ factor when 7 is refined by half.

Decompose Zy, = Y °1_ aq(Ti)vg and Z7 = 370, af(Ty)vg, and denote
G (Ty) = ay(T)) — ay (Ty). The convergence of the parareal algorithm for
systems follows from the next lemma which it is an extension of the results
presented in [1].

Lemma 1. Let AT = (t; —t,)/k and Ty =t, + kAT for 0 <k < k. Then,

max |ay(Ty) — af (Ti)| < pn max_|ag(Tk) — ag(Th)],
1<k<k 1<k<k

a1 (1*5'%_1)‘ < 0.2084".

_ n
where py, = SUpg 3.1 (el 1B _ ﬁ) % =T\ 13

Proof. Using Theorem 2 from [1] we obtain:

G = (14 A7) 4T/ = B,) T(B)C (16)
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where G, := (1+ )\qAT)_l and 7(3) := { #7771 if j > i, 0 otherwise} is
a Toeplitz matrix of size k. Applying (16) recursively we obtain:

max (] < pd Joax, 1o,

1<k<k
where: "
P i= H ((1 + )‘qT)_AT/T - 'Bq) Tn(/Bq)HLoo ’ (17)

Since A; > 0 and 5, < (1 + )\qAT)_AT/T < e AT we obtain

[(1+ )‘qT)iAT/T — B4l < |e_)\qAT — B4l = |61_1/5q — Bl (18)
which yields:

ph < et = BT (B e < sup ! P = BT (6)]| o
0<pB<1

By considering ||7"(8)]lec < |7 (6)||% = ‘%;ﬂ‘ , a simpler upper bound

for p, can be obtained:

1-1/6_

< (SUp0<B<1 T@ﬁ) ~ 0.2984",

17ﬁf9’1 n
1-8

SUPg<pg<1 ‘el_l/ﬁ - 5‘71

and the maximum is attained around (. = 0.358, independently of n and k
(B« presents slight variation for 1 < n and 6 < k, cases of practical interest).

4 Numerical Experiments

The optimal control problem we consider involves the 1D-heat equation:
Zt—Zee =0, O<z <1, 0<t <1,

with boundary conditions z(¢,0) = z(¢,1) = 0 for ¢ € [0,1], and initial data
z(0,2) = 0 for x € [0, 1]. The control variable v(-) corresponds to the forcing
term, and the target function is the nodewise interpolation of the function
9(t,z) = x(1 — x)e~®. We choose a tolerance tol < 10~ for the left precondi-
tioned MINRES.

Table 1 lists the value of (ymax — 1) for different values of 7 and n. The
results confirm Remark 1. Table 2 lists the number of MINRES iterations as
AT and 7 vary while (AT/7) remains constant. Choosing n = 2,4, 7 iterations
for the Parareal, the number of iterations for the MINRES basically remains
constant when h or 7 are refined, and so the results indicate scalability. Table 3
lists the number of MINRES iterations for n = 2 and 7 = (1/512) for different
values of (AT/7). It indicates also scalability with respect to AT. Like in
[4], we observe numerically that the number of MINRES iterations grows
logarithmicaly with respect to 1/r.
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Table 1. Values of ymaee —1 when 7 is refined. Parameters h = 1/10 and AT = 1/20.

n\ 200 400 800 1600

n=1 | 0.864415 | 1.449299 | 2.473734 | 4.371709
n =2 | 0.070835 | 0.097852 | 0.136802 | 0.193845
n=23 | 0.007760 | 0.010765 | 0.015141 | 0.021165
n =4 | 0.000865 | 0.001224 | 0.001715 | 0.002397

Table 2. MINRES iterations using a parareal with n = 2/4/7 as preconditioners.
Parameters r = 0.0001 and AT /7 = 16.

k 4
l 64

8
128

16
256

32
512

h=1/16
h=1/32
h=1/64

62 /40 / 42
60 / 42 / 42
60 / 42 / 42

58 /44 /44
58 /44 / 44
58 / 44 / 44

60 / 50 / 44
60 / 50 / 44
60 / 50 / 44

60 / 50 / 44
62 /50 / 44
62 /50 / 44

Table 3. MINRES iterations using the Parareal algorithm with n = 2 as precondi-
tioner. Parameters r = 0.001/0.0001/0.00001 and 7 = 1/512.

k
AT /T
h=1/16
h=1/32
h=1/64

8
64

32 /62 /136

32 /62 /136

32 /62 /136

16

32
32 /62 /136
32 /62 /136
32 /62 /136

32
16
32 /60 / 132
32 /62 /132
32 /62 /132

64
8

32 /60 / 132

32 /60 / 132

32 /60 / 132
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