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Summary. We describe a block matrix iterative algorithm for solving a linear-
quadratic parabolic optimal control problem (OCP) on a finite time interval. We
derive a reduced symmetric indefinite linear system involving the control variables
and auxiliary variables, and solve it using a preconditioned MINRES iteration, with
a symmetric positive definite block diagonal preconditioner based on the parareal
algorithm. Theoretical and numerical results show that the preconditioned algorithm
converges at a rate independent of the mesh size h, and has parallel scalability.

1 Introduction

Let (t0, tf ) denote a time interval, let Ω ⊂ R2 be a polygonal domain of size
of order O(1) and let A be a coercive map from a Hilbert space L2(to, tf ; Y )
to L2(to, tf ;Y ′), where Y = H1

0 (Ω) and Y ′ = H−1(Ω), i.e., the dual of Y
with respect to the pivot space H = L2(Ω); see [2]. Denote the state variable
space as Y = {z ∈ L2(to, tf ;Y ) : zt ∈ L2(to, tf ;Y ′)}, where it can be shown
that Y ⊂ C0([to, tf ]; H); see [2]. Given yo ∈ H, we consider the following state
equation on (t0, tf ) with z ∈ Y:

{
zt +Az = Bv for to < t < tf ,

z(0) = yo.
(1)

The distributed control v belongs to an admissible space U = L2(to, tf ;U),
where in our application U = L2(Ω), and B is an operator in L(U , L2(to, tf ; H)).
It can be shown that the problem (1) is well posed, see [2], and we indicate
the dependence of z on v ∈ U using the notation z(v). Given a target function
ŷ in L2(to, tf ; H) and parameters q > 0, r > 0, we shall employ the following
cost function which we associate with the state equation (1):

J(z(v), v) :=
q

2

∫ tf

t0

‖z(v)(t, .)− ŷ(t, ·)‖2L2(Ω) dt+
r

2

∫ tf

t0

‖v(t, ·)‖2L2(Ω) dt. (2)
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For simplicity of presentation, we assume that yo ∈ Y and ŷ ∈ L2(to, tf ;Y ),
and normalize q = 1. The optimal control problem for equation (1) consists
of finding a controller u ∈ U which minimizes the cost function (2):

J(y, u) := min
v∈U

J(z(v), v). (3)

Since q, r > 0, the optimal control problem (3) is well posed, see [2].
Our presentation is organized as follows: In § 2 we discretize (3) using a

finite element method and backward Euler discretization, yielding a large scale
saddle point system. In § 3, we introduce and analyze a symmetric positive
definite block diagonal preconditioner for the saddle point system, based on
the parareal algorithm [3]. In § 4, we present numerical results which illustrate
the scalability of the algorithm.

2 The discretization and the saddle point system

To discretize the state equation (1) in space, we apply the finite element
method to its weak formulation for each fixed t ∈ (to, tf ). We choose a quasi-
uniform triangulation Th(Ω) of Ω, and employ the P1 conforming finite el-
ement space Yh ⊂ Y for z(t, ·), and the P0 finite element space Uh ⊂ U

for approximating v(t, ·). Let {φj}q̂
j=1 and {ψj}p̂

j=1 denote the standard ba-
sis functions for Yh and Uh, respectively. Throughout the paper we use the
same notation z ∈ Yh and z ∈ Rq̂, or v ∈ Uh and v ∈ Rp̂, to denote both a
finite element function in space and its corresponding vector representation.
To indicate their time dependence we denote z and v.

A discretization in space of the continuous time linear-quadratic optimal
control problem will seek to minimize the following quadratic functional:

Jh(z, v) :=
1
2

∫ tf

to

(z − ŷ)T (t)Mh(z − ŷ)(t) dt +
r

2

∫ tf

to

vT (t)Rhv(t) dt (4)

subject to the constraint that z satisfies the discrete equation of state:

Mhż + Ah z = Bhv, for to < t < tf ; and z(to) = yh
o . (5)

Here (z − ŷh)(t) denotes the tracking error, where ŷh(t) and yh
0 belong to Yh

and are approximations of ŷ(t) and yo (for instance, use L2(Ω)-projections
into Yh). The matrices Mh, Ah ∈ Rq̂×q̂

h , Bh ∈ Rq̂×p̂ and Rh ∈ Rp̂×p̂ have
entries (Mh)ij := (φi, φj), (Ah)ij := (φi,Aφj), and (Bh)ij := (φi,Bψj) and
(Rh)ij := (ψi, ψj), where (·, ·) denotes the L2(Ω) inner product.

To obtain a temporal discretization of (4) and (5), we partition [to, tf ]
into l̂ equal sub-intervals with time step size τ = (tf − to)/l̂. We denote
tl = to + l τ for 0 ≤ l ≤ l̂. Associated with this partition, we assume that
the state variable z is continuous in [to, tf ] and linear in each sub-interval
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[tl−1, tl], 1 ≤ l ≤ l̂ with associated basis functions {ϑl}l̂
l=0. Denoting zl ∈ Rq̂

as the nodal representation of z(tl) we have z(t) =
∑l̂

l=0 zlϑl(t). The control
variable v is assumed to be a discontinuous function and constant in each sub-
interval (tl−1, tl) with associated basis functions {χl}l̂

l=1. Denoting vl ∈ Rp̂ as

the nodal representation of v(tl − (τ/2)), we have v(t) =
∑l̂

l=1 vlχl(t).
The corresponding discretization of the expression (4) results in:

Jτ
h (z,v) =

1
2

(z− ŷ)T K(z− ŷ) +
1
2

vT Gv + (z− ŷ)T g. (6)

The block vectors z := [zT
1 , . . . , zT

l̂
]T ∈ Rl̂q̂ and v := [vT

1 , . . . , vT
l̂
]T ∈ Rl̂p̂

denote the state and control variables, respectively, at all the discrete times.
The discrete target is ŷ := [ŷT

1 , . . . , ŷT
l̂
]T ∈ Rl̂q̂ with target error el = (zl− ŷh

l )

for 0 ≤ l ≤ l̂. Matrix K = Dτ ⊗Mh ∈ R(l̂q̂)×(l̂q̂), where Dτ ∈ Rl̂×l̂ has entries
(Dτ )ij :=

∫ tf

to
ϑi(t)ϑj(t)dt, for 1 ≤ i, j ≤ l̂, while G = rτIl̂ ⊗ Rh ∈ R(l̂p̂)×(l̂p̂),

where ⊗ stands for the Kronecker product and Il̂ ∈ Rl̂×l̂ is an identity matrix.
The vector g = (gT

1 , 0T , . . . , 0T )T where g1 = τ
6Mhe0. Note that g1 does not

necessarily vanish because it is not assumed that yh
0 = ŷh

0 .
Employing the backward Euler discretization of (5) in time, yields:

Ez + Nv = f , (7)

where the input vector is f := [(Mhyh
0 )T , 0T , ..., 0T ]T ∈ Rl̂q̂. The block lower

bidiagonal matrix E ∈ R(l̂q̂)×(l̂q̂) is given by:

E =




Fh

−Mh Fh

. . . . . .
−Mh Fh


 , (8)

where Fh = (Mh + τAh) ∈ Rq̂×q̂. The block diagonal matrix N ∈ R(l̂q̂)×(l̂p̂)

is given by N = −τIl̂ ⊗ Bh. The Lagrangian Lh(z,v,q) for minimizing (6)
subject to constraint (7) is:

Lτ
h(z,v,q) = Jτ

h (z,v) + qT (Ez + Nv − f). (9)

To obtain a discrete saddle point formulation of (9), we apply optimality
conditions for Lh(·, ·, ·). This yields the symmetric indefinite linear system:




K 0 ET

0 G NT

E N 0







y
u
p


 =




Kŷ − g
0
f


 , (10)

where ŷ := [(ŷh
1 )T , . . . , (ŷh

l̂
)T ]T ∈ Rl̂q̂. Eliminating y and p in (10), and

defining b := NT E−T
(
KE−1f −Kŷ + g

)
yields the reduced Hessian system:



4 Sarkis, Schaerer and Mathew

(G + NT E−T KE−1N)u = b. (11)

The matrix H := G + NT E−T KE−1N is symmetric positive definite and
(u,Gu) ≤ (u,Hu) ≤ µ(u,Gu), where µ = O(1 + 1

r ); for details see [4]. As
a result, the Preconditioned Conjugate Gradient method (PCG) can be used
to solve (11), but each matrix-vector product with H requires the solution of
two linear systems, one with E and one with ET . To avoid double iterations,
we define the auxiliary variable w := −E−T KE−1Nu. Then (11) will be
equivalent to the symmetric indefinite system:

[
EK−1ET N
NT −G

] [
w
u

]
=

[
0

−b

]
. (12)

The system (12) is ill-conditioned and will be solved using the MINRES algo-
rithm with a preconditioner of the form P := diag(E−T

n K̂E−1
n ,G−1); see [5].

For a fixed number of parareal sweeps n, E−1
n and E−T

n are linear operators.
We next define the operator E−1

n and then analyze the spectral equivalence
between E−T KE−1 and E−T

n K̂E−1
n .

3 Parareal approximation E−T
n K̂E−1

n

An application of E−T
n K̂E−1

n to a vector s ∈ R(l̂q̂)×(l̂q̂) is performed as
follows: Step 1, apply E−1

n s :→ ẑn using n applications of the parareal
method described below. Step 2, multiply K̂zn :→ t̂ where K̂ := D̂τ ⊗Mh,
D̂τ := blockdiag(D̂1

τ , . . . , D̂k̂
τ ), and the D̂k

τ are the time mass matrices associ-
ated to the sub-intervals [Tk−1, Tk]. And Step 3, apply E−T

n t̂n :→ x, i.e., the
transpose of Step 1.

To describe En, we partition the time interval [to, tf ] into k̂ coarse sub-
intervals of length ∆T = (tf − to)/k̂, setting T0 = to and Tk = to + k∆T

for 1 ≤ k ≤ k̂. We define fine and coarse propagators F and G as follows.
The local solution at Tk is defined marching the backward Euler method from
Tk−1 to Tk on the fine triangulation τ with an initial data Zk−1 at Tk−1. Let
m̂ = (Tk − Tk−1)/τ and jk−1 = Tk−1−T0

τ . It it is easy to see that:

MhZk = FZk−1 + Sk, (13)

where F := (MhF−1
h )m̂Mh ∈ Rq̂×q̂, Sk :=

∑m̂
m=1

(
MhF−1

h

)m̂−m+1
sjk−1+m

with Z0 = 0. Imposing the continuity condition at time Tk, for 1 ≤ k ≤ k̂,
i.e., MhZk − FZk−1 − Sk = 0, we obtain the system:




Mh

−F Mh

. . . . . .
−F Mh







Z1

Z2

...
Zk̂


 =




S1

S2

...
Sk̂


 . (14)
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The coarse solution at Tk with initial data Zk−1 ∈ Rq̂ at Tk−1 is given by
one coarse time step of the backward Euler method MhZk = GZk−1 where
G := Mh(Mh + Ah∆T )−1Mh ∈ Rq̂×q̂. In the parareal algorithm, the coarse
propagator G is used for preconditioning the system (14) via:




Zn+1
1

Zn+1
2
...

Zn+1

k̂


 =




Zn
1

Zn
2
...

Zn
k̂


 +







Mh

−G Mh

. . . . . .
−G Mh







−1 


Rn
1

Rn
2
...

Rn
k̂


 , (15)

where the residual vector Rn := [Rn
1

T , ..., Rn
k̂

T ]T ∈ Rk̂q̂ is defined in the usual
way from the equation (14).

We are now in position to define ẑn := E−1
n s. Let ẑn be the nodal rep-

resentation of a piecewise linear function ẑn in time with respect to the fine
triangulation τ on [to, tf ], however continuous only inside each coarse sub-
interval [Tk−1, Tk], i.e., the function ẑn can be discontinuous across the points
Tk, 1 ≤ k ≤ k̂ − 1, therefore, ẑn ∈ R(l̂+k̂−1)q̂. On each sub-interval [Tk−1, Tk],
ẑn is defined marching the backward Euler method from Tk−1 to Tk on the
fine triangulation τ with initial condition Zn

k−1 at Tk−1.

Theorem 1. For any s ∈ R(l̂q̂)×(l̂q̂) and ε ∈ (0, 1/2), we have:

γmin

(
E−1s,KE−1s

) ≤
(
E−1

n s, K̂E−1
n s

)
≤ γmax

(
E−1s,KE−1s

)
,

where

{
γmax := (1 + ρ2

n(tf−to)
τε + 2ε)/(1− 2ε),

γmin := (1− ρ2
n(tf−to)

τε − 2ε)/(1 + 2ε).

Proof. Let Vh := [v1, ..., vq̂] and Λh := diag{λ1, ..., λq̂] be the generalized eigen-
vectors and eigenvalues of Ah with respect to Mh, i.e., Ah = MhVhΛhV −1

h .
Let z := E−1s with z(t) =

∑q̂
q=1 αq(t)vq, and ẑn := E−1

n s with ẑn(t) =∑q̂
q=1 αn

q (t)vq. We note that αn
q might be discontinuous across the Tk. Then:

(E−1s,KE−1s) = ‖z‖2L2(to,tf ;L2(Ω)) =
∑q̂

q=1 ‖αq‖2L2(to,tf ),

(E−1
n s, K̂E−1

n s) = ‖ẑn‖2L2(to,tf ;L2(Ω)) =
∑q̂

q=1 ‖αn
q ‖2L2(to,tf ),

and therefore:

‖αn
q ‖2L2(to,tf ) =

(
αn

q − αq, α
n
q + αq

)
L2(to,tf )

+ ‖αq‖2L2(to,tf )

≤ 1
4ε
‖αn

q − αq‖2L2(to,tf ) + ε‖αn
q + αq‖2L2(to,tf ) + ‖αq‖2L2(to,tf )

≤ 1
4ε
‖αn

q − αq‖2L2(to,tf ) + 2ε‖αn
q ‖2L2(to,tf ) + (1 + 2ε)‖αq‖2L2(to,tf ),

which reduces to:
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(1− 2ε)‖αn
q ‖2L2(to,tf ) ≤ (1 + 2ε)‖αq‖2L2(to,tf ) + 1

4ε‖αn
q − αq‖2L2(to,tf ).

For each tl ∈ [Tk−1, Tk] we have:

|αn
q (tl)− αq(tl)| = (1 + τλq)−(tl−Tk−1)/τ |αn

q (Tk−1)− αq(Tk−1)|,

and since λq > 0 implies (1 + τλq)−(tl−Tk−1)/τ ≤ 1, we obtain:

‖αn
q − αq‖2L2(Tk−1,Tk) ≤ ∆T |αn

q (Tk−1)− αq(Tk−1)|2.
Hence:

(1−2ε)‖αn
q ‖2L2(to,tf ) ≤ (1+2ε)‖αq‖2L2(to,tf )+

tf − to
4ε

max
0≤k≤k̂

|αn
q (Tk)−αq(Tk)|2.

Using the Lemma 1 (see below) with αq(T0) = 0 and initial guess α0
q(Tk) = 0,

and using

max
0≤k≤k̂

|αq(Tk)|2 = |αq(Tk′)|2 ≤ 4
τ

min
β
‖αq(Tk′) + βt‖2L2(Tk′ ,Tk′+τ)

we obtain:
max

0≤k≤k̂
|αn

q (Tk)− αq(Tk)|2 ≤ ρ2
n max

0≤k≤k̂
|αq(Tk)|2 ≤ 4ρ2

n

τ
‖αq‖2L2(to,tf ),

and the upper bound (16) follows. The lower bound follows similarly.

Remark 1. Performing straightforward computations we obtain:

min
ε

γmax(ε) = 1 +
4√

1 + τ
ρ2

n(tf−to) − 1
.

Hence, for small values of ρn, we have γmax−1 ≈ 4
√

ρ2
n(tf−to)

τ . The dependence
of γmax − 1 with respect to τ is sharp as evidenced in Table 1 (see below)
since it increases by a

√
2 factor when τ is refined by half.

Decompose Zk =
∑q̂

q=1 αq(Tk)vq and Zn
k =

∑q̂
q=1 αn

q (Tk)vq, and denote
ζn
q (Tk) := αq(Tk) − αn

q (Tk). The convergence of the parareal algorithm for
systems follows from the next lemma which it is an extension of the results
presented in [1].

Lemma 1. Let ∆T = (tf − to)/k̂ and Tk = to + k∆T for 0 ≤ k ≤ k̂. Then,

max
1≤k≤k̂

|αq(Tk)− αn
q (Tk)| ≤ ρn max

1≤k≤k̂
|αq(Tk)− α0

q(Tk)|,

where ρn := sup0<β<1

(
e1−1/β − β

)n 1
n!

∣∣∣ dn−1

dβn−1

(
1−βk̂−1

1−β

)∣∣∣ ≤ 0.2984n.

Proof. Using Theorem 2 from [1] we obtain:

ζn
q =

(
(1 + λqτ)−∆T/τ − βq

)
T (βq)ζn−1

q , (16)
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where βq := (1 + λq∆T )−1 and T (β) :=
{

βj−i−1 if j > i, 0 otherwise
}

is
a Toeplitz matrix of size k̂. Applying (16) recursively we obtain:

max
1≤k≤k̂

|ζn
q | ≤ ρq

n max
1≤k≤k̂

|ζ0
q |,

where:
ρq

n :=
∥∥∥
(
(1 + λqτ)−∆T/τ − βq

)n

T n(βq)
∥∥∥

L∞
. (17)

Since λq > 0 and βq ≤ (1 + λq∆T )−∆T/τ ≤ e−λq∆T , we obtain

| (1 + λqτ)−∆T/τ − βq| ≤ |e−λq∆T − βq| = |e1−1/βq − βq|, (18)

which yields:

ρq
n ≤ |e1−1/βq − βq|n‖T n(βq)‖L∞ ≤ sup

0<β<1
|e1−1/β − β|n‖T n(β)‖L∞ .

By considering ‖T n(β)‖∞ ≤ ‖T (β)‖n
∞ =

∣∣∣ 1−βk̂−1

1−β

∣∣∣
n

, a simpler upper bound
for ρn can be obtained:

sup0<β<1

∣∣e1−1/β − β
∣∣n

∣∣∣ 1−βk̂−1

1−β

∣∣∣
n

≤
(
sup0<β<1

e1−1/β−β
1−β

)n

≈ 0.2984n,

and the maximum is attained around β∗ = 0.358, independently of n and k̂
(β∗ presents slight variation for 1 ≤ n and 6 ≤ k̂, cases of practical interest).

4 Numerical Experiments

The optimal control problem we consider involves the 1D-heat equation:

zt − zxx = v, 0 < x < 1, 0 < t < 1,

with boundary conditions z(t, 0) = z(t, 1) = 0 for t ∈ [0, 1], and initial data
z(0, x) = 0 for x ∈ [0, 1]. The control variable v(·) corresponds to the forcing
term, and the target function is the nodewise interpolation of the function
ŷ(t, x) = x(1− x)e−x. We choose a tolerance tol ≤ 10−6 for the left precondi-
tioned MINRES.

Table 1 lists the value of (γmax − 1) for different values of τ and n. The
results confirm Remark 1. Table 2 lists the number of MINRES iterations as
∆T and τ vary while (∆T/τ) remains constant. Choosing n = 2, 4, 7 iterations
for the Parareal, the number of iterations for the MINRES basically remains
constant when h or τ are refined, and so the results indicate scalability. Table 3
lists the number of MINRES iterations for n = 2 and τ = (1/512) for different
values of (∆T/τ). It indicates also scalability with respect to ∆T . Like in
[4], we observe numerically that the number of MINRES iterations grows
logarithmicaly with respect to 1/r.
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Table 1. Values of γmax−1 when τ is refined. Parameters h = 1/10 and ∆T = 1/20.

n \ l̂ 200 400 800 1600

n = 1 0.864415 1.449299 2.473734 4.371709
n = 2 0.070835 0.097852 0.136802 0.193845
n = 3 0.007760 0.010765 0.015141 0.021165
n = 4 0.000865 0.001224 0.001715 0.002397

Table 2. MINRES iterations using a parareal with n = 2/4/7 as preconditioners.
Parameters r = 0.0001 and ∆T/τ = 16.

k̂ 4 8 16 32

l̂ 64 128 256 512

h = 1/16 62 / 40 / 42 58 / 44 / 44 60 / 50 / 44 60 / 50 / 44
h = 1/32 60 / 42 / 42 58 / 44 / 44 60 / 50 / 44 62 / 50 / 44
h = 1/64 60 / 42 / 42 58 / 44 / 44 60 / 50 / 44 62 / 50 / 44

Table 3. MINRES iterations using the Parareal algorithm with n = 2 as precondi-
tioner. Parameters r = 0.001/0.0001/0.00001 and τ = 1/512.

k̂ 8 16 32 64

∆T/τ 64 32 16 8

h = 1/16 32 / 62 / 136 32 / 62 / 136 32 / 60 / 132 32 / 60 / 132
h = 1/32 32 / 62 / 136 32 / 62 / 136 32 / 62 / 132 32 / 60 / 132
h = 1/64 32 / 62 / 136 32 / 62 / 136 32 / 62 / 132 32 / 60 / 132

References

[1] M. J. Gander and S. Vandewalle. On the super linear and linear con-
vergence of the parareal algorithm. In D. E. Keyes and O. B. Widlund,
editors, Domain decomposition methods in science and engineering XVI,
pages 291–298. Springer, Lect. Notes Comput. Sci. Eng., 2005.

[2] J. L. Lions. Optimal control of systems governed by partial differential
equations. Springer-Verlag, Berlin-Heidelberg-New York, 1971.

[3] J. L. Lions, Y. Maday, and G. Turinici. Résolution d’edp par un schéma en
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