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We describe a heuristic method for reconstructing a region in the plane from a noisy
sample of points. The method uses radial basis functions with Gaussian kernels to com-
pute a fuzzy membership function which provides an implicit approximation for the
region. We also evaluate our reconstruction method for several sampling conditions.
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1. Introduction

We consider the problem of reconstructing a region in the plane from a noisy sample
of points. Figure 1 shows the setting: A is a region of R? and points are sampled
in or near A. Note three things about the sampling: the points are well distributed
in the interior of A; there are sample points outside A (these are the effect of noise
in the sampling); and the boundary of A is not sampled at all, except by accident.

The classical geometrical solutions for shape reconstruction from points, such as
a-shapes* and (-skeletons,® work well in the absence of noise but are too sensitive
to the presence of noise, because they use all sample points in the reconstruction
graph. We seek a method that can automatically identify points that are definitely
in the interior of the region (these are trustworthy) and points that are near the
boundary (these are less trustworthy because of noise).

To the best of our knowledge, there has been no research explicitly focused on
this region reconstruction problem. Virtually all previous work has focused on the
reconstruction of curves and surfaces®® due to its practical importance in shape
acquisition and reverse engineering. In these applications, the points are sampled
on or near the boundary of the object, but not in its interior. Moreover, most
approaches that use radial basis functions for shape reconstruction view the problem
as a function interpolation problem.2®% However, we are not dealing here with a
function interpolation problem, not even one that could be approached by giving
a constant value to every sample point: as mentioned above, the challenge is to
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Fig. 1. A noisy sample of a planar region A.

identify the trustworthy interior points. This is our main motivation.

The mathematical problem we want to solve is defined and discussed in Sec-
tion 2. Our heuristic solution is explained in Section 3. Example reconstructions
and performance results are discussed in Section 4.

2. The Problem

To handle noisy samples and to quantify the trustworthiness of each sample point,
we approach the region reconstruction problem as a characteristic function recon-
struction problem:

Given a sample S of points well distributed in or near an unknown
region A C R?, find an approximation X for the characteristic
function x that is consistent with S.

A sample is well distributed when the number of sample points per area unit does
not vary much in or near A. To model noise in the sample, we shall assume that
the sampling has been done according to the density implied by an unknown fuzzy
membership function' X for A, that is, a function x¥: R? — [0, 1] that satisfies

Xz)=1= zeA and X(x)=0 = z&A.
Note that, in contrast, the characteristic function y = xa satisfies

xX(z)=1 < z€A and x(z)=0 & z&A.
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Thus, a fuzzy membership function only provides partial information about A, but
it never lies: when Y coincides with x, the membership information provided by X
is correct. The more Y differs from x, the noisier the sample is. Note that the noise
is concentrated near the boundary of A.

To reconstruct A from S, we shall approximate y with another fuzzy membership
function ¥, and from X obtain an approximation A for A. Recall that both X and A
are unknown. The only information comes from the sample points S; the values
of X in S are not provided. Thus, as mentioned in Section 1, we are not dealing
with the standard problem of function interpolation from 2D scattered data.'?

Assigning a constant value, say 1, to each sample point and interpolating a
function through these points would not solve the region reconstruction problem:
there would be no sample points with value 0 to force the interpolated function to
approximate x or x. Any solution to the region reconstruction problem must identify
points that need to be discarded or given low weight in such an interpolation. It
cannot treat all sample points in the same way: some points have to be identified
as being interior points and thus more trustworthy.

3. Our Solution

Our solution to the region reconstruction problem uses radial basis functions! to
compute an approximation X for the characteristic function y of A that is consistent
with the sample S. From Y we compute an implicit approximation A for A as

A={zeR?:x(z) > 6},

for a suitable threshold § € (0, 1], typically 0.5. The details are explained below.
An example of the method in action is shown in Figure 2. Starting from the

sample points, we use radial basis functions to combine the local influence of all

sample points into a single pre-reconstruction function ®: R? — R given by

O(x) =) Ke(x),

£es

Fig. 2. Overview of our reconstruction method: (a) sample points S, (b) pre-reconstruction func-
tion @, (c) fuzzy membership function X, (d) reconstructed region A.
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where K¢ is a radial basis function, or kernel, centered at the sample point £ € S.
Having selected a suitable kernel, which in our case will be a Gaussian (Section 3.1),
we define the approximation X as the following normalization of ®:

0, D(x)< A
X(x) = %’ A< ®(z)<B
1, o(z) > B

This normalization maps the interval [A, B] linearly onto the interval [0, 1], cutting
values below A or above B. After many tests, we found empirically that the values
below worked well:

1420.767 BZl.SC’ CZQmaX{¢(I):IEQ}
log(N)

3.1. Choosing the kernel

Since we assume that the sample is well distributed in and near A, we consider only
isotropic kernels K¢, that is, functions whose value at a point « € R? depend only
on the distance from z to the sample point £. More precisely, we take

Ke(x) = <M> ;

r

where 1: RT — R is a basis function and r is the radius of influence, which we
take the same for all sample points £ (Section 3.2).

We tested several candidates for ¢. Some had compact support and satisfied
Y(u) =0 for u > 1. (In terms of K¢, this means that £ does not influence points x
that are farther than r from £.) We tested the following candidates for :

o Y(u)=1 (constant)
e Y(u)=1-u (linear)
o Y(u) =1—2uk 4+ urt! (polynomial)
1 .
o (u) v k (rational)
1
o ip(u) = e losle u (compact exponential)

where € > 0 and k € N are parameters.
We also tested candidates without compact support:

o Y(u) = e_u2 (exponential)
o plu) =e /2 (Gaussian)

We tried several variations of the parameters involved, but the functions with
compact support did not give good results. We chose the Gaussian basis function
for the rest of the research because it proved less sensitive to variations in the
spatial uniformity of the sample. The other functions generated false holes in the
reconstruction wherever there were voids in the sample (Figure 3).



May 9, 2008

14:49 WSPC/INSTRUCTION FILE ijsm

A heuristic method for region reconstruction from moisy samples 5

(a) fuzzy membership function (b) 10000 sample points

(f) rational kernel

(g) compact exponential kernel (h) exponential kernel (i) Gaussian kernel

0 ol 02 03 04 05 08 07 08 08 1

Fig. 3. Pre-reconstruction for several kernels. False holes appear in the dark blues areas in the
interior of the region, for all kernels except the Gaussian kernel.

3.2. Choosing the radius

The radius of influence is the main parameter in our approach. We want to choose
a radius that is adapted to the sample, being small for dense samples and larger
for sparse samples.
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Since we assume that the sample well distributed, the number of sample points
that influence the value of ® at a point z near A should be approximately the
same for all points x. The radius of influence measures not only the density of the
sample but also its spatial structure, if any. For instance, if the sample is taken on
a rectangular grid, we expect that about 4 sample points will influence any given
point; if the sample is taken via a Poisson process, we expect that about 6 sample
points will influence any given point.

We choose the radius automatically (but empirically) as follows. If the sample
were uniformly distributed in a rectangle Q containing A, and if we laid a reg-
ular grid of square cells so that each cell contained just one sample point, then
the diameter of the cells would be /2area(2)/N, and so the radius of the disk
circumscribing a cell would be Ry = y/area(2)/2N, as shown in Figure 4.

However, the sample is not uniformly distributed in 2, because it is concentrated
near A. So, we lay a regular grid of square cells of side 2Ry in © and look at the
sample points that land in each cell. For each sample point &, we compute the
radius R(€) of the smallest ball centered at £ containing least n sample points, for
a small fixed n > 2, which will depend on the spatial structure of the sample. If
a cell C' contains more than n sample points, we take R(C) to be the average of
all R(¢) for & € C. If C contains less than n sample points, we take R(C) = Ry.
We take the average of R(C) over all cells C' as our first estimate 7 of the influence
radius r.

The final value of r is computed as follows: We need to decide which n to use. We
start with n = 2 and compute the relative standard deviation ¢’ = o /7 of the R(&)
over all sample points &. If ¢/ < 0.01, we infer that the sample has strong spatial
structure and we take r = 7/2. If ¢/ < 0.25, we infer that the sample has some
spatial structure and we take r = 7. If ¢/ > 0.25, we increase n by 1 and repeat the
previous analysis until we reach ¢’ < 0.25 or n = 12. If we reach n = 12 without
reaching ¢’ < 0.25, then we pronounce the sample to be not well distributed and
abort the reconstruction.

[
° LJ °
° ® ° ®
® R) ° * °
o ©
o |eo °
[ ]

Fig. 4. Initial radius Rg.
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4. Results

Tests. We tested and evaluated our reconstruction method for several regions and
sampling conditions. Here we report on the results for the two synthetic regions A
shown in Figure 5. The region ‘Q’ was chosen to try to assess the effect of smoothing
on the edges. The region ‘a’ was chosen to try to assess how well the reconstruction
handled topological features, such as multiple connected components and holes.

To establish ground truth for our experiments, we selected a rectangular region (2
containing A and we used rejection sampling'® to sample Q according to the density
implied by a fuzzy membership function X for A. To simulate noise, we took x as
a convolution of y with a Gaussian low-pass filter with o2 equal to 2% and 4% of
the area of €2, as shown in Figure 6.

To test the behavior of samples with spatial structure, we chose four sampling
schemes: points in a regular grid, points in a perturbed regular grid, points with
a Poisson disk distribution, and points uniformly distributed in 2 with no spatial
structure, as illustrated in Figure 7.

We used two error measures to quantify the quality of the reconstruction in Q:

1000 - ~
& = @y [, (K@)~ %) ds

1000 2
= —= - X3 d
A area, (Q) /Q (XA(:E) XA(‘/E)) x
These numbers measure how far the approximating fuzzy membership function ¥
is from the original function Y and how far the reconstructed region A is from the
original region A. Recall that our ground truth is ¥ and A, here represented by xx.
(The normalization factor 1000 was added to simplify the numbers.)

)

Fig. 5. Regions used in tests: ‘Q’ and ‘a’.
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QL

Fig. 6. Fuzzy membership functions used in tests. Left: 2% noise; right: 4% noise.

Results. Typical samples used in the tests are shown in Figure 10. The recon-
structions obtained with our method from these samples are shown in Figure 11 for
noiseless samples and in Figure 12 for noisy samples. In these figures, we show the
reconstructed region A and the reconstruction error Ixa — Xzl Figure 13 shows the
fuzzy membership function X for the reconstructions shown in Figures 11 and 12.

Table 1 shows the average reconstruction errors. Each block gives &5 | &3 for
the test regions shown in Figures 5 and 6. The best results are shown in bold.

Figure 8 shows a reconstruction of a Miré print that tries to recreate the imag-
inary region sampled by the artist. The points used in the reconstruction were
sampled from a black-and-white version of the original color image.

Figure 9 shows the effect of smoothing on the edges. As expected, the smoothing
decreases with the sample size.
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Fig. 7. Sampling schemes: regular grid, perturbed regular grid, Poisson disk distribution, no spatial
structure.

Fig. 8. Reconstructing a Miré print: original print, sample points, reconstructed region.
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500 RG PRG PD U

X0 082|081 088|076 092|076 194 | 172
Xo 2% 082]081 079|079 080|079 178|172
Xo 4% 100|099 082|085 084|089 167|171
Xa 061 | 058 077|062 086|066 175 | 162
Xa 2% 073|072 065|063 074|069 165 | 162
Xa 4% 077|079 068 | 070 075|077 158 | 164

1000 RG PRG PD U
X0 050 | 047 056 | 053 065 | 054 137 | 118
Xo 2% 060|056 056 | 056 059|059 123 | 119
Xo 4% 091|082 073|068 073|070 120 | 123
Xa 041 | 040 052|043 055|043 116 | 102
Yo 2% 055|054 047 | 047 048 | 047 106 | 104
Yo 4% 071|067 058 | 055 058|056 102 | 107

4000 RG PRG PD U

X0 027 [ 027 036|034 040 | 038 060 | 047
Yo 2% 047|040 044 | 040 045|042 052 | 050
Yo 4% 088078 071|056 070|057 065 | 056
Xa 028 | 027 032|030 032]029 050 | 041
Yo 2% 049|046 038|035 038|036 043 | 042
Yo 4% 072063 061|049 057 | 046 052 | 048

10000 RG PRG PD U

XQ 022 | 021 025|023 028027 037|030
Xo 2% 051044 042|036 042|036 036 | 033
Xo 4% 084072 072|055 070|053 057 | 040
Xa 018 | 018 021|021 023|022 031|026
Yo 2% 046|043 036|031 035|030 031|024
Yo 4% 069|058 061|047 058 | 044 047 | 035

Table 1. Average reconstruction errors £ | &3 From top to bottom: 500, 1000, 4000, 10000 sample
points. From left to right: regular grid; perturbed regular grid; Poisson disk distribution; no spatial
structure. Best results in bold.

Discussion. For noiseless samples (Figure 11), the reconstruction was better for
spatially structured samples (RG, PRG, PD), even for small samples. Samples from
regular grids gave the best results overall. For noisy samples (Figure 12), spatially
structured samples gave better results when the sample was small, but unstructured
samples gave better results when the sample was large. Surprisingly, samples from
a Poisson disk distribution did not perform well. We also performed convergence
tests and they showed that the reconstruction errors decreased fairly fast as the
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size of the sample increased.

The numbers in Table 1 suggest that the two error measures are essentially the
same. The numerical differences in reconstruction performance shown in Table 1,
which are given in thousandths of the area of €2, do not always translate into clear
visual differences in the reconstructions shown in Figures 11 and 12. This suggests
that our reconstruction method is robust and works for different kinds of samples.
Of course, the larger the sample, the better the reconstruction.

The method faithfully reproduced all topological features of the test shapes and
successfully reconstructed almost all of their interiors, as quantified by our error
measures (the typical error was around 5%). In particular, our method can reliably
identify the sample points that are clearly inside A and the sample points that are
probably near the boundary of A, which was one of our goals. As illustrated in
Figure 13, the empirically chosen normalization parameters A and B allow us to
identify the interior points quite well: they are the points x for which x(z) = 1.
Moreover, the boundary points, for which 0 < X(z) < 1, are limited to a narrow
band. As a consequence, the method reconstructs the interior of the shapes quite
well. The boundary of the approximating region A is thin but is not as smooth as
we may expect; it contains some oscillations. However, at least in our experiments,
this expectation is probably due to the strong intuitive meaning of the test shapes.

5. Conclusion

Although it is based on heuristics and empirical choice of parameters, the region
reconstruction method that we have proposed here is simple to understand and
implement. The implicit representation provided for the reconstructed region A
can be exploited for geometric processing, such as area computation and boundary
evaluation.

Two lines for further research seem natural at this point. One is to use principal
components analysis” (PCA) to generate anisotropic kernels and try to improve
the smoothness of the reconstructed boundaries. Another is that an analysis of the
variation of the radius R(£) can be used to determine the spatial structure of the
sample. This information can probably be exploited for other tasks.
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Fig. 9. Smoothing effect on boundaries. Left: reconstructed region; right: reconstruction error.
From top to bottom: 1000, 10000, and 100000 points.
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1000 points, noiseless

1000 points, noisy

10000 points, noiseless

10000 points, noisy

RG PRG PD U

Fig. 10. Samples used in tests. From top to bottom: 1000 sample points, noiseless and noisy; 10000
sample points, noiseless and noisy. From left to right: regular grid; perturbed regular grid; Poisson
disk distribution; no spatial structure.
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Fig. 11. Reconstructed regions and reconstruction errors for noiseless samples. Left two columns:
1000 sample points; right two columns: 10000 sample points. From top to bottom: regular grid;
perturbed regular grid; Poisson disk distribution; no spatial structure.
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Fig. 12. Reconstructed regions and reconstruction errors for samples with 2% noise. Left two
columns: 1000 sample points; right two columns: 10000 sample points. From top to bottom: regular
grid; perturbed regular grid; Poisson disk distribution; no spatial structure.
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regular grid

no spatial structure

. .

Fig. 13. Fuzzy membership functions for 10000 sample points. Left column: noiseless, right column:
2% noise. From top to bottom: regular grid; perturbed regular grid; Poisson disk distribution; no
spatial structure.



