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Abstract. There are three related concepts that arise in connection with the angular analysis
of a convex cone: antipodality, criticality, and Nash equilibria. These concepts are geometric in
nature but they can also be approached from the perspective of optimization theory. A detailed
angular analysis of polyhedral convex cones has been carried out in a recent work of ours. This
note focus on two important classes of non-polyhedral convex cones: elliptic cones in an Euclidean
vector space and spectral cones in a space of symmetric matrices.
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1 Introduction

The Euclidean space Rd is equipped with the usual inner product 〈u, v〉 = uT v and the associated norm ‖ · ‖.
The symbol Σd refers to the unit sphere in Rd. We also use the notation

Ξ(Rd) ≡ nontrivial closed convex cones in Rd.

That a convex cone K in Rd is nontrivial means that K is different from {0} and different from the space
Rd itself. The symbol K+ is used to indicate the positive dual cone of K.

There are various tools that serve to describe the angular structure of a convex cone. The following
definition recalls the main conceptual ingredients used in this note.

Definition 1. Let K ∈ Ξ(Rd). Let ū and v̄ be two unit vectors in K.

i) (ū, v̄) is an antipodal pair of K if ū and v̄ achieve the maximal angle

θmax(K) = sup
u,v ∈K∩Σd

arccos〈u, v〉. (1)

ii) The angle θ(ū, v̄) = arccos〈ū, v̄〉 formed by a critical pair (ū, v̄) is called a critical angle. That a
pair (ū, v̄) is critical means that

v̄ − 〈ū, v̄〉ū ∈ K+ and ū− 〈ū, v̄〉v̄ ∈ K+.

The adjective proper is added when ū and v̄ are not collinear, i.e., |〈ū, v̄〉| 6= 1. The set of all
proper critical angles of K, denoted by Ω(K), is called the angular spectrum of K.
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iii) (ū, v̄) is a Nash angular equilibrium of K if

θ(ū, v̄) ≥ θ(ū, v) ∀v ∈ K ∩ Σd,

θ(ū, v̄) ≥ θ(u, v̄) ∀u ∈ K ∩ Σd.

The number θ(ū, v̄) is then called a Nash angle of K.

The motivation behind each of the above concepts is explained with great care and detail in our previous
work [8]. For the reader’s convenience, we recall some of the reasons why the study of critical angles is
important. The largest critical angle of a convex cone K is θmax(K), i.e., the maximal angle that can be
formed by picking up two unit vectors from K. The geometric meaning of θmax(K) justifies by itself the
study of the variational problem (1), but there are also application-oriented motivations. For instance, Peña
and Renegar [13] show that the number θmax(K) plays a role in estimating the efficiency of certain interior
point methods for solving feasibility systems with inequalities described by K. On the other hand, θmax(K)
is related to

ρ(K) = min
Q∈Ξ(Rd)
Q unpointed

haus(K,Q), (2)

a number which has been suggested in [4] as tool for measuring the degree of pointedness of K. Here

haus(K,Q) = max

{

max
x∈K∩Σd

dist(x,Q), max
x∈Q∩Σd

dist(x,K)

}

stands for the bounded Pompeiu-Hausdorff metric on Ξ(Rd). In general, the evaluation of (2) is a cumbersome
task even for cones having a relatively simple structure. Fortunately, the least distance problem (2) is related
to the angle maximization problem (1) which, in principle, is easier to solve because the decision variables
u, v live in a standard Euclidean space. In fact, one has the following striking formula [9]

ρ(K) = cos

[

θmax(K)

2

]

.

Moreover, if K is not a half-line and admits (ū, v̄) as antipodal pair, then the closed convex cone

Q = K ∩ [R(ū− v̄)]⊥ + R(ū− v̄)

is unpointed and lies at minimal distance from K.
Of course, θmax(K) is not the only critical angle of interest. The smallest proper critical angle plays

also a relevant role in the description of the cone, namely, it can be used as tool for measuring its degree
of solidity. By an index of solidity we understand any continuous function G : Ξ(Rd) → R satisfying the
axioms:

i) G(K) = 0 if and only if K is not solid,

ii) G(K) = 1 if and only if K is a half-space,

iii) G(U(K)) = G(K) for any orthonormal matrix U ,

iv) K1 ⊂ K2 implies G(K1) ≤ G(K2).
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The Frobenius coefficient

Gfrob(K) =

{

radius of the largest ball contained
in K and centered in a unit vector

is the first example of index of solidity that comes to mind. An alternative choice is

Gangular(K) = ρ(K+) = cos

[

θmax(K
+)

2

]

. (3)

What is bothering about the expression (3) is that it involves the dual cone K+ and not the original cone
K itself. However, this problem can be remediated since it is possible to write (3) in the equivalent form

Gangular(K) =

{

sin
[

θmin(K)
2

]

if K is solid,

0 if K is not solid,

where θmin(K) indicates the smallest proper critical angle of K.
We have explained in few words why the maximal angle and the smallest proper critical angle are

mathematical objects of interest. The intermediate critical angles are perhaps less useful, but in any case
they provide additional information on the geometric structure of the cone. We now come back to the main
stream of the presentation. The main fact to be remembered about Definition 1 is that every antipodal pair
is a Nash angular equilibrium, and that every Nash angular equilibrium is a critical pair.

It is useful to split the angular spectrum of K in two disjoint pieces:

Ω(K) = Ωnash(K) ∪ Ωord(K).

The first piece collects the proper critical angles that are formed by a Nash angular equilibrium. The
remaining proper critical angles are said to be “ordinary” and they are thrown in the set Ωord(K).

The angular structure of a polyhedral convex cone is by now well understood as one can see by consulting
the references [5, 7, 8]. In a non-polyhedral setting the situation is more involved as one may expect. For
instance, in the technical note [9] we succeeded in constructing a non-polyhedral convex cone whose angular
spectrum is uncountable, a phenomenon that cannot occur under polyhedrality. The example constructed
in [9] is very involved and its interest is mainly academic.

In this note we study two important classes of non-polyhedral convex cones arising in practice: elliptic
cones in an Euclidean vector space and spectral cones in a space of symmetric matrices.

2 Angular Analysis of Elliptic Cones

In this section we consider d = n+1 with n ≥ 2. Recall that the elliptic cone E(A) associated to a symmetric
positive definite matrix A ∈ Rn×n is the closed convex cone in Rn+1 given by

E(A) = {(x, r) ∈ Rn+1 :
√
xTAx ≤ r}.

Elliptic cones are used in a great diversity of areas. The three dimensional case has applications in contact
problems with orthotropic friction law [3, 17] and in electromagnetic scattering [16], just to mention two
concrete examples. General background on higher dimensional elliptic cones can be found in [4, 7] among
other references.

3



The trace of the elliptic cone E(A) over the unit sphere Σn+1 is the set all vectors (x, r) ∈ Rn+1 such
that

√
xTAx ≤ r, (4)

‖x‖2 + r2 = 1. (5)

The Cartesian representation (4)-(5) is not always the best way of describing E(A) ∩Σn+1. As explained in
the next lemma, this set can also be described by using a parametric representation. The notation

e(C) = {α ∈ Rn : 〈α,Cα〉 ≤ 1}

stands for the ellipsoid associated to a symmetric positive definite matrix C ∈ Rn×n.

Lemma 1. Decompose the symmetric positive definite matrix A ∈ Rn×n in the usual spectral form
A = QDQT , where D is a diagonal matrix containing the eigenvalues of A arranged in nondecreasing
order µ1 ≤ · · · ≤ µn, and Q = [q1 · · · qn] is an orthonormal matrix whose columns are formed with
corresponding eigenvectors q1, . . . , qn. Then,

z ∈ E(A) ∩ Σn+1 ⇐⇒ z =
(

Qα,
√

1− ‖α‖2
)

with α ∈ e(I +D). (6)

Proof. Take any z = (x, r) and write its first component in the form x = Qα with α ∈ Rn. The fact that
z has unit length is expressed by the relation r =

√

1− ‖α‖2. Membership of z in E(A) corresponds to the
inequality 〈α, (I +D)α〉 ≤ 1.

We refer to (6) as the canonical parametrization of E(A) ∩ Σn+1. Since e(I + D) is contained in Bn,
the closed unit ball of Rn, the square root operation in (6) is well defined. For the sake of convenience, we
introduce the function Ψ : Bn → Rn+1 given by

Ψ(α) =
(

Qα,
√

1− ‖α‖2
)

.

Although Ψ depends explicitly on the collection {q1, . . . qn} of eigenvectors of A, the spherical product

(α, β) ∈ Bn ×Bn 7→ Φ(α, β) = 〈Ψ(α),Ψ(β)〉

is a more intrinsic concept. Indeed, by orthonormality of Q, one simply has

Φ(α, β) = 〈α, β〉+
√

1− ‖α‖2
√

1− ‖β‖2.

There is a very interesting theory behind the definition of Φ, but we shall not elaborate on this subject more
than strictly necessary. The use of this special type of vector product will be clear in a moment.

2.1 Antipodal and Critical Pairs in E(A)
In what follows we use the parametrization of E(A) ∩ Σn+1 described in Lemma1. Arbitrary points in
E(A) ∩ Σn+1, say u and v, will be represented in the parametric form

u = Ψ(α), v = Ψ(β), with α, β ∈ e(I +D).
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Since Ψ is a bijection between e(I +D) and E(A) ∩ Σn+1, the angle maximization problem (1) becomes

minimize 〈α, β〉+
√

1− ‖α‖2
√

1− ‖β‖2 (7)

subject to α, β ∈ e(I +D).

A careful analysis of the above variational problem leads to a full characterization of the set of antipodal
pairs of E(A).

Theorem 1. Decompose the symmetric positive definite matrix A ∈ Rn×n as in Lemma1. Suppose
that the smallest eigenvalue of A, denoted by µmin(A), has multiplicity r, that is to say, the eigenspace
associated to µmin(A) is r-dimensional. Then,

(a) the maximal angle of E(A) is given by

θmax(E(A)) = arccos
[µmin(A)− 1

µmin(A) + 1

]

.

(b) (ū, v̄) is an antipodal pair of E(A) if and only

ū =

( r
∑

i=1

αiqi,

√

µmin(A)

µmin(A) + 1

)

, v̄ =

(

−
r
∑

i=1

αiqi,

√

µmin(A)

µmin(A) + 1

)

,

with coefficients α1, . . . , αr ∈ R such that

r
∑

i=1

α2i =
1

µmin(A) + 1
. (8)

Proof. Given the specific structure of (7), one sees that this minimization problem is solved by taking
αr+1 = · · ·αn = 0 and the first r coefficients of α as in (8). The parameter vector β must have opposite
orientation with respect to α, i.e. we must take β = −α. Part (a) follows immediately from (b).

Remark 1. If the eigenvalue µmin(A) is simple, that is to say, r = 1, then the elliptic cone E(A) has exactly
two antipodal pairs, namely,

ū =
1

√

µmin(A) + 1

(

± q1,
√

µmin(A)

)

, v̄ =
1

√

µmin(A) + 1

(

∓ q1,
√

µmin(A)

)

.

Since one antipodal pair is obtained from the other by permuting the order of u and v, one may say that the
antipodal pair is "unique". In case of higher order multiplicity, i.e. r ≥ 2, the collection of antipodal pairs
can be parametrized with an r-dimensional parameter vector as in (8).

We recall a result on angular spectra of elliptic cones obtained recently in [7]. As shown in the next
theorem, computing the angular spectrum of E(A) is essentially the same job as computing all the eigenvalues
of the matrix A. The critical pairs of E(A) are obtained by using the eigenvectors of A.

Theorem 2. Let A ∈ Rn×n be symmetric and positive definite. The vectors (x, r) and (y, s) form a
proper critical pair of E(A) if and only if the following three conditions hold:
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(a) y = −x,

(b) s = r =
√

1− ‖x‖2 =
√
xTAx,

(c) x is an eigenvector of A.

In this case, the corresponding critical angle takes the value

θ = arccos

(

µ− 1

µ+ 1

)

, (9)

where µ is the eigenvalue of A associated to x.

The proof technique used in [7] doesn’t rely on the canonical parametrization of E(A)∩Σn+1. By relying
on Lemma1 it is possible to describe in a more precise manner the nature of a given critical pair of E(A) in
terms of the multiplicity of the corresponding eigenvalue of A. We will not indulge however on this matter.
Theorem2 as stated is all what we need to go on with our exposition.

2.2 Nash Angular Equilibria in E(A)
Elliptic cones are, no doubt, very special objects. According to Theorem 2, the angular spectrum of E(A)
has at most n elements. Indeed,

Ω(E(A)) = {θ1, . . . , θn},
where the i-th critical angle

θi = arccos

(

µi − 1

µi + 1

)

is obtained directly from the i-th eigenvalue µi of A.
The theorem stated below is a fundamental result on Nash angular equilibria of elliptic cones. Several

consequences of this theorem will be presented as soon as the proof is completed.

Theorem 3. Let (ū, v̄) be a proper critical pair of E(A). Denote by θ the corresponding critical angle
and by µ the corresponding eigenvalue, that is to say, µ is the unique solution of the equation (9).
The following four conditions are then equivalent:

(a) (ū, v̄) is a Nash angular equilibrium of E(A),

(b) ū minimizes the linear form 〈 · , v̄〉 over E(A) ∩ Σn+1,

(c) v̄ minimizes the linear form 〈ū, · 〉 over E(A) ∩ Σn+1,

(d) µ ≤ 1 + 2µmin(A)

Proof. Take, for instance, θ = θk, that is to say, consider the critical angle that derives from µ = µk. As in
Lemma1, we form Q = [q1 · · · qn] with an orthonormal basis of eigenvectors of A. The diagonal matrix D is
formed with the corresponding eigenvalues that we arrange in nondecreasing order µmin(A) = µ1 ≤ · · · ≤ µn.
Either by using the parametric representation of ū and v̄ as in Lemma1, or by applying Theorem2, one gets

ū =
1√
1 + µ

(qk,
√
µ), (10)

v̄ =
1√
1 + µ

(−qk,
√
µ).
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For the sake of clarity, we divide the proof of the theorem in five steps.

Step 1: We study the behavior of 〈ū, · 〉 over a special path. For each t ∈ [0, 1], consider the point

zt = (1 + r2t )
−1/2(xt, rt),

with xt = −
√
t qk +

√
1− t q1, and rt =

√

xTt Axt. Note that xt has unit length, and so does zt. Note also
that, in view of the equality in the definition of rt, the vector zt belongs to bd[E(A)], the boundary of E(A).
In short, {zt : t ∈ [0, 1]} is a continuous path on the set Σn+1 ∩ bd[E(A)]. We will study the behavior of the
univariate function φ : [0, 1]→ R given by φ(t) = 〈ū, zt〉. In view of (10) and the definition of zt, after some
simplification one arrives at the expression

φ(t) =
−
√
t+
√
µ
√

tµ+ (1− t)µ1√
1 + µ

√

1 + tµ+ (1− t)µ1
. (11)

Observe that φ(1) = (µ− 1)/(µ+ 1) = 〈ū, v̄〉. Let us examine the sign of φ′(1). Since

φ′(t) =

[

−1√
t
+

√
µ(µ1−µ1)√
t(µ−µ1)+µ1

]

√

t(µ− µ1) + µ1 + 1−
(

−
√
t+
√
µ
√
t(µ−µ1)+µ1

)

(µ−µ1)√
t(µ−µ1)+µ1+1

2[t(µ− µ1) + µ1 + 1]
√
µ+ 1

,

one gets

φ′(1) =
1

2(µ+ 1)3/2

[

(

−1 +
√
µ(µ− µ1)√

µ

)

√

µ+ 1−
(

−1 +√µ√µ
)

(µ− µ1)√
µ+ 1

]

=
1

2(µ+ 1)2
(µ− 2µ1 − 1).

With this information at hand, we can proceed with the next step.

Step 2: We prove that (c)⇒ (d). Suppose on the contrary that µ > 2µ1 − 1. So φ′(1) > 0, and therefore

〈ū, zt〉 = φ(t) < φ(1) = 〈ū, v̄〉

for some t ∈ [0, 1] closed enough to 1. Since zt belongs to E(A) ∩Σn+1 for all t ∈ [0, 1], the vector v̄ is not a
minimizer of 〈ū, · 〉 over E(A) ∩ Σn+1. This contradiction confirms that (c) implies (d).

Step 3: We derive a so-called “extrapolation property” associated to condition (c). Consider the inequality

〈ū, v̄〉 ≤ 〈ū, v〉 ∀ v ∈ E(A) ∩ Σn+1.

We represent a point v ∈ E(A) ∩ Σn+1 in terms of a parameter vector β ∈ Rn as described in Lemma1, i.e.

v = Φ(β) with β ∈ e(I +D). (12)

It follows that, for v as in (12), one has

〈ū, v〉 = 1√
1 + µ

(βk +
√
µ
√

1− ‖β‖2).
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For convenience we make the change of variables

r =

√

1− ‖β‖2
‖β‖

, δi =
βi
‖β‖

for i = 1, . . . , n.

Thus,

〈ū, v〉 =
δk + r

√
µ

√

(1 + µ)(1 + r2)
≥

−|δk|+ r
√
µ

√

(1 + µ)(1 + r2)
=

−|δk|
√

(1 + µ)(1 + r2)
+

√
µ

√

(1 + µ)(1 + 1
r2 )

. (13)

The rightmost expression in (13) is clearly an increasing function of r on the positive half-line. Observe that,
since v belongs to E(A) and µi ≥ µ1 (1 ≤ i ≤ n), it holds that

r2 ≥
n
∑

i=1

δ2i µi = δ2kµ+
∑

i 6=k

δ2i µi ≥ δ2kµ+





∑

i 6=k

δ2i



µ1 = δ2kµ+
(

1− δ2k
)

µ1, (14)

using the facts that
∑n
i=1 δ

2
i = 1 in the rightmost equality of (14). Replacing (14) in (13), and calling

t = δ2k ∈ [0, 1], one obtains

〈ū, v〉 ≥
−
√
t+
√
µ
√

tµ+ (1− t)µ1√
1 + µ

√

1 + tµ+ (1− t)µ1
= 〈ū, zt〉,

where zt is defined as in Step 1. Summarizing, we have shown the following extrapolation property: given
an arbitrary point v ∈ Σn+1 ∩ E(A), there exists another point zt belonging to Σn+1 ∩ bd[E(A)] and lying
farther away from ū than v.

Step 4: We prove that (d)⇒ (c). In view of the extrapolation property derived in Step 3, it suffices to prove
that

〈ū, zt〉 ≥ 〈ū, v̄〉 ∀t ∈ [0, 1],

or equivalently, that φ : [0, 1]→ R attains its minimum at t = 1. Under the assumption µ ≤ 1+2µ1, one has
of course µ1 ≥ max {0, (µ− 1)/2}. We consider two cases, according to the value of this maximum, i.e. to
the sign of µ− 1. First we look at the right hand side of (11) as a function of µ1, which we will now denote
as φ(t, µ1). By rewriting (11) as

φ(t, µ1) =
−
√
t

√
1 + µ

√

1 + tµ+ (1− t)µ1
+

√
µ

√
1 + µ

√

1 + 1
tµ+(1−t)µ1

,

one sees that φ(t, ·) is nondecreasing in the non-negative half-line for all t ∈ [0, 1]. Now we study the two
cases of interest.

i) µ− 1 < 0. Observe that

〈ū, zt〉 = φ(t, µ1) ≥ φ(t, 0) =
−
√
t+
√
µ
√
µt

√
µ+ 1

√
1 + µt

=

√
t(µ− 1)√

µ+ 1
√
1 + µt

=
µ− 1

√
µ+ 1

√

1
t + µ

. (15)

Since the rightmost expression in (15) is decreasing as a function of t in the interval [0, 1], one gets

〈ū, z̄t〉 ≥ φ(1, 0) = (µ− 1)/(µ+ 1) = 〈ū, v̄〉

for all t ∈ [0, 1], as we needed to prove.
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ii) µ− 1 ≥ 0. In this case we write

〈ū, zt〉 = φ(t, µ1) ≥ φ
(

t,
µ− 1

2

)

=
−
√
2t+

√
µ
√

t(µ+ 1) + µ− 1

(µ+ 1)
√
t+ 1

. (16)

For t ∈ [0, 1], denote by ψ(t) as the rightmost expression of (16). The function ψ : [0, 1] → R is
derivable and

(µ+ 1)(t+ 1)ψ′(t) =

(

−
√
2

2
√
t
+

√
µ(µ+ 1)

2
√

t(µ+ 1) + µ− 1

)

√
t+ 1−

(

−
√
2t+

√
µ
√

t(µ+ 1) + µ− 1

2
√
t+ 1

)

.

After a tedious simplification one arrives at

ψ′(t) =
1

2(µ+ 1)(t+ 1)3/2

(

−
√

2

t
+

2
√
µ

√

t(µ+ 1) + µ− 1

)

. (17)

It follows from (17) that ψ′(t) ≤ 0 if and only if (µ−1)(1− t) ≥ 0. We conclude that ψ is nonincreasing
in the whole interval [0, 1]. Hence,

〈ū, z̄t〉 ≥ ψ(t) ≥ ψ(1) =
1

µ+ 1

(

−
√
2 +
√
µ
√
2µ

√
2

)

=
µ− 1

µ+ 1
= 〈ū, v̄〉

for all t ∈ [0, 1]. We reach again the desired inequality.

Step 5: Completion of the proof. We have shown insofar that (c) ⇐⇒ (d). By using a mutatis mutandis
argument one proves similarly that (b) ⇐⇒ (d). For completing the proof of the theorem it is now enough
to observe that (a) is the conjunction of (b) and (c).

Corollary 1. For a proper critical pair (ū, v̄) of an elliptic cone K in Rn+1 to be a Nash angular
equilibrium, it is necessary and sufficient that

‖ū− v̄‖ ≥
√
2

2
diam(K ∩ Σn+1). (18)

Proof. Let K = E(A) and suppose that the proper critical pair (ū, v̄) is associated with the eigenvalue µ.
Since 〈ū, v̄〉 = (µ− 1)/(µ+ 1), one has ‖ū− v̄‖ = 2/

√
µ+ 1. On the other hand, the diameter of K ∩ Σn+1

is attained with an antipodal pair of K, so one has

diam(K ∩ Σn+1) = 2/
√

µmin(A) + 1.

It is clear that the condition µ ≤ 2µmin(A) + 1 is equivalent to

2√
µ+ 1

≥
√
2

2

2
√

µmin(A) + 1
,

so the announced result follows from Theorem 3.

Corollary 2. For a proper critical angle θ of an elliptic cone K to be a Nash angle, it is necessary
and sufficient that

arccos

[

1 + cos θmax(K)

2

]

≤ θ. (19)

Proof. It is a matter of reformulating Corollary 1.
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2.3 Nash Threshold Coefficient of E(A)
It is reasonable to expect a Nash angular equilibrium to form an angle which is large, or at least not too
small while compared with the maximal angle of the cone. This idea is corroborated by the relation (19) in
Corollary 2 or, equivalently, by the relation (18) in Corollary 1.

In connection with the above observation, recall that the Nash threshold coefficient of a nontrivial
closed convex cone K in Rd is the largest constant β ∈ [0, 1] such that

‖ū− v̄‖ ≥ β diam(K ∩ Σd) ∀(ū, v̄) ∈ Nash(K), (20)

where Nash(K) stands for the set of all Nash angular equilibria of K. If βK denotes the Nash threshold
coefficient of K, then the infimal-value

β∗ = inf
K∈Ξ(Rd)

βK

corresponds to the largest constant β for which the inequality (20) holds uniformly with respect to all
elements in Ξ(Rd). After a considerable amount of effort we were able to prove in [8, Corollary 2] that

{

in dimension d greater or equal than three,

the infimal-value β∗ is equal to
√
3/3.

Unless K has a special structure, it is hopeless to derive a simple formula for evaluating βK itself. As far as
elliptic cones are concerned, we are now in position to establish the following result.

Proposition 1. The Nash threshold coefficient of an elliptic cone E(A) is given by

βE(A) =

√

µmin(A) + 1

µ?(A) + 1
, (21)

where µ?(A) denotes the largest eigenvalue of A that is less or equal than 2µmin(A)+1. In particular,

inf
K∈Ξ(Rd)
K elliptic

βK =
√
2/2,

and this infimum is attained by any elliptic cone E(A) such that 2µmin(A) + 1 is an eigenvalue of A.

Proof. Let µ1 ≤ · · · ≤ µn be the eigenvalues of A. In view of Corollary 1, the number βE(A) corresponds to
the largest constant β ∈ [0, 1] such that

2√
µk + 1

≥ β 2
√

µmin(A) + 1

holds for any k ∈ {1, . . . , n} satisfying µk ≤ 2µmin(A) + 1. A matter of simplification leads directly to the
formula (21).

3 Angular Analysis of Spectral Cones

We now work in a linear space of dimension d = (1/2)n(n+1) with n ≥ 2. More precisely, we are concerned
with a special class of convex cones in

Sn ≡ real symmetric matrices of size n× n.

10



As usual, Sn is equipped with the Frobenius inner product 〈A,B〉 = trace(AB) and the associated norm.
For the sake of convenience we write Σ(Sn) = {A ∈ Sn : ‖A‖ = 1} and reserve the symbol Σn for the unit
sphere in the Euclidean space Rn.

For an arbitrary closed convex coneM in Sn, the computation of the maximal angle θmax(M) is in general
a cumbersome task. The same remark applies to the computation of the other possible critical angles. The
purpose of this section is to derive useful calculus rules for computing critical angles at least for a special
class of convex cones in Sn.

Recall that a convex coneM in Sn is said to be spectral (or weakly unitarily invariant) if

A ∈M =⇒ UTAU ∈M for all U ∈ On (22)

with On denoting the group of orthonormal matrices of size n× n. Notice, incidentally, that the concept of
spectrality applies to an arbitrary set in Sn and not just for a convex cone.

The next two lemmas are part of the folklore on weakly unitarily invariant sets and functions, see for
instance the references [1, 2, 10, 11, 15]. In the sequel the notation λ(A) = (λ1(A), . . . , λn(A)) stands for
the vector of eigenvalues of A arranged in nondecreasing order, and diag(x) stands for the diagonal matrix
whose entries on the diagonal are the components of the vector x.

Lemma 2. A convex cone M in Sn is spectral if and only if there is a permutation invariant convex
cone K in Rn such that

M = {A ∈ Sn : λ(A) ∈ K}.

Furthermore, such K is unique and given by

KM = {x ∈ Rn : diag(x) ∈M}.

One refers to KM as the permutation invariant convex cone induced byM. Recall that a set K in Rn is
called permutation invariant if Π(K) = K for all Π ∈ Πn, with Πn denoting the set of n× n permutation
matrices.

Lemma 3. One has:

(a) the dual of a permutation invariant convex cone in Rn is a permutation invariant convex cone
in Rn.

(b) If M is a spectral convex cone in Sn, then its dual M+ is a spectral convex cone in Sn. Fur-
thermore, M+ can be computed by using the formula

M+ = {A ∈ Sn : λ(A) ∈ K+
M}.

The most popular example of spectral convex cone in Sn is the Loewner cone of positive semidefinite
symmetric matrices. A list of more elaborate spectral convex cones includes

M = {A ∈ Sn : λ1(A) + . . .+ λm(A) ≥ 0} (1 ≤ m ≤ n− 1), (23)

M = {A ∈ Sn : γ
∑n
i=r λi(A) ≤

∑m
i=1 λi(A)} (1 ≤ m, r ≤ n, γ ≥ 0),

M = {A ∈ Sn : max{0, λn(A)}+ γ‖A‖ ≤ δ trace(A)} (γ ≥ 0, δ ∈ R),
M = {A ∈ Sn :

√

[λn(A)− λ1(A)]2 + ‖A‖2 ≤ δ trace(A)} (δ ≥ 0),

M = {A ∈ Sn : γ‖A‖ ≤ trace(A)} (γ > 0),

11



just to mention a few examples. In all cases it is easy to recognize which is the corresponding permutation
invariant convex cone KM. If x↑ denotes the vector which is obtained by rearranging in nondecreasing order
the components of x ∈ Rn, then one gets

KM = {x ∈ Rn : x↑1 + . . .+ x↑m ≥ 0}, (24)

KM = {x ∈ Rn : γ
∑n
i=` x

↑
i ≤

∑m
i=1 x

↑
i },

and so on. The example (23) is perhaps the most interesting one since it appears in concrete problems of
optimization [12] and principal components analysis [14].

Be aware that KM may posses some properties that are lacking inM, think for instance of polyhedrality.
It is not difficult to see that the convex cone (24) is polyhedral, but the spectral convex cone (23) is not. The
lack of polyhedrality in (23) is due to a “curvature” effect introduced by the eigenvalue functions λi : Sn → R.

3.1 Antipodal Pairs in a Spectral Cone

Is there any link between the angular structure of M and that of KM? Answering this question is not a
trivial matter. Our first task will be comparing the maximal angle

θmax(M) = sup
A,B∈M

‖A‖=1,‖B‖=1

arccos〈A,B〉

of the spectral coneM in Sn and the maximal angle

θmax(KM) = sup
u,v∈KM
‖u‖=1,‖v‖=1

arccos〈u, v〉.

of the permutation invariant cone KM. The last term is easier to evaluate because KM has in principle a
simpler structure and, in any case, it lives in a vector space of lower dimension.

As explained in the next theorem, the antipodal pairs of M and those of KM are related through the
eigenvalue map λ : Sn → Rn. We start by establishing a commutation principle for optimization problems
with spectral data. Recall that a spectral set in Sn is defined by means of the relation (22). Similarly, a
function Φ on Sn is said to be spectral (or weakly unitarily invariant) if

Φ(UTAU) = Φ(A) for all U ∈ On.

Lemma 4 (Commutation principle). Let N ⊂ Sn be a spectral set and Φ : Sn → R be a spectral
function. Let Ā, B̄ ∈ Sn. If B̄ is a local minimum (or a local maximum) over N of the fonction
〈Ā, · 〉+Φ(·), then Ā and B̄ commute.

Proof. Suppose that B̄ is a local minimum of 〈Ā, · 〉+Φ(·) over N . This means that B̄ ∈ N and

〈Ā, B̄〉+Φ(B̄) ≤ 〈Ā, B〉+Φ(B) ∀B ∈ N ∩Oε(B̄) (25)

with Oε(B̄) denoting an open ball of radius ε > 0 and center B̄. Take X̄ ∈ On so that

X̄T B̄X̄ = E = diag(λ(B̄)).

By definition of spectral set, XEXT belong to N for all X ∈ On. By a continuity argument, there is a small
δ > 0 such that XEXT ∈ Oε(B̄) whenever X ∈ Oδ(X̄). In view of (25), one gets

〈Ā, X̄EX̄T 〉+Φ(X̄EX̄T ) ≤ 〈Ā,XEXT 〉+Φ(XEXT ) ∀X ∈ On ∩Oδ(X̄).

12



But, by spectrality of Φ, the terms Φ(X̄EX̄T ) and Φ(XEXT ) cancel out. The conclusion is that X̄ is a
local solution to the optimization problem

minimize f(X) = 〈Ā,XEXT 〉
with respect to X ∈ On, (26)

and hence it satisfies the first order necessary optimality conditions for this problem. Before writing down
these optimality conditions, observe that f is not defined on Sn but on the space Mn of arbitrary real
matrices of size n× n. The Frobenius inner product on Mn is given by 〈X,Y 〉 = trace(XTY ). By rewriting
the contraint (26) as XXT = I and introducing the Lagrangean function

(X,M) ∈Mn ×Mn 7→ L(X,M) = 〈Ā,XEXT 〉 − 〈M,XXT − I〉,

we see that X̄ satisfies

∇ML(X̄, M̄) = X̄X̄T − I = 0, (27)

∇XL(X̄, M̄) = 2ĀX̄E − (M̄ + M̄T )X̄ = 0, (28)

for some M̄ ∈Mn. Since X̄
−1 = X̄T by (27), we get from (28) that

ĀB̄ = Ā(X̄EX̄T ) = (1/2)(M̄ + M̄T )

is a symmetric matrix. It follows that ĀB̄ = (ĀB̄)T = B̄Ā. The case of a local maximum is treated in a
similar way.

It is possible to derive more sophisticated versions of the above commutation principle but Lemma 4 is
general enough to cover all our needs. Everything is now ready to state:

Theorem 4. A spectral closed convex coneM in Sn and the associated permutation invariant closed
convex cone KM have the same maximal angle, i.e., θmax(M) = θmax(KM). Furthermore, the follow-
ing statements are equivalent:

(a) (Ā, B̄) ∈ Sn × Sn is an antipodal pair of M.

(b) there exist an antipodal pair (ū, v̄) of KM and a matrix Q ∈ On such that Ā = Qdiag(ū)QT and
B̄ = Qdiag(v̄)QT .

Proof. Let (ū, v̄) be an antipodal pair of KM. Write Ā = diag(ū) and B̄ = diag(v̄). One has ‖Ā‖ = ‖ū‖ = 1,
‖B̄‖ = ‖v̄‖ = 1, and also λ(Ā) = ū↑, λ(B̄) = v̄↑. Since KM is permutation invariant, the vectors ū↑ and v̄↑

remain in KM, and therefore Ā, B̄ ∈M. The conclusion is that

θmax(M) ≥ arccos〈Ā, B̄〉 = arccos〈ū, v̄〉 = θmax(KM).

The reverse inequality is obtained by exploiting the commutation principle stated in Lemma 4. The proof
runs as follows. Take matrices Ā, B̄ ∈M of unit length realizing the maximal angle inM, i.e.,

〈Ā, B̄〉 = min
A,B∈M∩Σ(Sn)

〈A,B〉.

13



In particular, B̄ is a minimizer of the linear form 〈Ā, · 〉 over the spectral setM∩Σ(Sn). Lemma 4 implies
that Ā and B̄ commute. Hence, Ā and B̄ can be simultaneously diagonalized by means of a matrix Q ∈ On.
This means that

QT ĀQ = diag(ū) and QT B̄Q = diag(v̄) (29)

for suitable vectors ū, v̄ ∈ Rn. Hence,

〈Ā, B̄〉 = 〈Qdiag(ū)QT , Qdiag(v̄)QT 〉 = 〈diag(ū),diag(v̄)〉 = 〈ū, v̄〉.

Observe also that ū, v̄ are unit vectors and, by spectrality ofM, they are in KM. Hence, one gets

〈Ā, B̄〉 ≥ inf
u,v∈KM∩Σn

〈u, v〉

and the desired inequality θmax(M) ≤ θmax(KM). The second part of the theorem is implicit in the above
proof.

3.2 Critical Pairs in a Spectral Cone

We now compare the angular spectra ofM and KM. The commutation principle stated in Lemma 4 plays
again a crucial role.

Theorem 5. A spectral closed convex coneM in Sn and the associated permutation invariant closed
convex cone KM have the same collection of proper critical angles, i.e., Ω(M) = Ω(KM). Further-
more, the following statements are equivalent:

(a) (Ā, B̄) ∈ Sn × Sn is a critical pair of M.

(b) there exist a critical pair (ū, v̄) of KM and a matrix Q ∈ On such that Ā = Qdiag(ū)QT and
B̄ = Qdiag(v̄)QT .

Proof. Suppose that Ā, B̄ ∈M∩ Σ(Sn) satisfy the criticality conditions

B̄ − 〈Ā, B̄〉Ā ∈M+, (30)

Ā− 〈Ā, B̄〉B̄ ∈M+. (31)

We shall prove that Ā and B̄ commute. To do this, we come back to the very definition of a critical pair. It
is not difficult to see that the system (30)-(31) can be written in the form

−[B̄ − ηĀ] ∈ ∂ΨM(Ā),

−[Ā− ηB̄] ∈ ∂ΨM(B̄), (32)

with ∂ standing for the subdifferential operator in the sense of convex analysis, ΨM denoting the indicator
function ofM, and η = 〈Ā, B̄〉. Let us examine more closely for instance the relation (32). Standard rules
of convex analysis show that (32) amounts to saying that B̄ minimizes the linear function 〈Ā− ηB̄, · 〉 over
the setM. In view of Lemma 4, one obtains the commutation property

(Ā− ηB̄)B̄ = B̄(Ā− ηB̄),
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confirming in this way that ĀB̄ = B̄Ā. By proceeding to a simultaneous diagonalization as in (29) one
obtains

Qdiag(v̄)QT − η Qdiag(ū)QT ∈M+,

Qdiag(ū)QT − η Qdiag(v̄)QT ∈M+.

By spectrality ofM+ we can drop the common orthonormal transformation Q and write simply

diag(v̄ − η ū) ∈M+,

diag(ū− η v̄) ∈M+.

By recalling Lemmas 2 and 3, one sees that (ū, v̄) is necessarily a critical pair of KM. The proof of the
reverse implication (b)⇒ (a) is omitted since it offers no difficulty.

Remark 2. As one sees from Theorem5, a critical pair (Ā, B̄) ofM is formed necessarily with a couple of
commuting matrices. The components of the vectors ū, v̄ produced by the simultaneous diagonalization (29)
may not be arranged in a similar order, i.e., there may be no common permutation matrix Π ∈ Πn such that
Πu = u↑ and Πv = v↑. This explains why we cannot infer that (λ(Ā), λ(B̄)) is a critical pair of KM.

Remark 3. Recall that the critical angles of a closed convex cone can be separated into two disjoint groups:
Nash angles and ordinary critical angles. Suppose that (Ā, B̄) is a Nash angular equilibrium ofM, i.e., one
has the combination of the following two conditions:

B̄ minimizes 〈Ā, · 〉 overM∩ Σ(Sn), (33)

Ā minimizes 〈 · , B̄〉 overM∩ Σ(Sn). (34)

In view of Lemma 4, either one of these conditions imply that ĀB̄ = B̄Ā. By plugging Ā = Qdiag(ū)QT

and B̄ = Qdiag(v̄)QT into (33)-(34) and working out the details, one concludes that (ū, v̄) is necessarily a
Nash angular equilibrium of KM.
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