
Antipodal pairs, critical pairs, and Nash angular equilibriain convex conesAlfredo Iusem1 and Alberto Seeger2Abstract . In this paper we discuss three related geometric concepts that arise in connectionwith the angular analysis of a convex cone K � Rd . Antipodal pairs and critical pairs in convexcones have been studied in earlier works of ours, but several additional results are presentedhere for the �rst time. The concept of Nash angular equilibrium is new and we set up the basicingredients of the theory.Mathematics Subject Classi�cation. 52A40, 90C26.Key words. Antipodal pairs, convex cones, maximal angle, critical angle, Nash angular equi-libria, polyhedral cones.1 IntroductionThe present paper is the last component of a triptych initiated in [3] and continued in [5] . Everything startedwith the variational problem which consist in �nding a pair of unit vectors achieving the maximal angle�max(K) = supu; v 2K\Sd arccoshu; vi (1 )of a closed convex cone K � Rd . This theme was addressed in detail in our work [3] and was motivated bythe fact that the term �max(K) not only has an intrinsic geometric interest, but also serves to measure thedegree of pointedness of the cone K. For a more specialized use of the expression (1 ) , see for instance thepaper by Pe�na and Renegar [8] .The notation employed in (1 ) is standard: the underlying space Rd is equipped with the usual innerproduct hu; vi = uTv and the associated norm k � k . The symbol Sd refers to the unit sphere in Rd . Thedimension d is assumed to be greater than or equal to 2. We introduce also the notationK 2 Ì(Rd) () � K � Rd is a closed convex conedi�erent from f0g and di�erent from Rd :The angle maximization problem (1 ) gives rise to a concept of antipodality that one may qualify as strongor absolute:De�nition 1. Let K 2 Ì(Rd) . One says that ( �u; �v) 2 Rd � Rd is a (strong or absolute) antipodal pairofK if �u; �v 2 K \ Sd and k �u � �vk = diam(K \ Sd) .As usual, diam(C) stands for the diameter of a nonempty bounded set C � Rd . In view of the generalrelation k u � vk 2 = 2(1 � hu; vi ) 8u; v 2 K \ Sd ; (2)1 Instituto de Matem�atica Pura e Aplicada, Estrada Dona Castorina 110 - Jardim Bot
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one sees that ( �u; �v) is an antipodal pair of K if and only if �u; �v 2 K \ Sd and arccosh �u; �vi = �max(K) .Antipodal pairs always exist because the diameter of a compact set is necessarily attained. By writingout the �rst-order optimality conditions for the corresponding diameter maximization problem one arrivesat the concept of critical pair as formulated in the next de�nition (cf. [3, Theorem 4.1 ]) . The notationK+ = fy 2 Rd : hy; xi � 0 8x 2 Kg stands for the dual cone of K.De�nition 2. By a critical pair ofK 2 Ì(Rd) one understands any pair ( �u; �v) ofvectors satisfying�u; �v 2 K \ Sd ; (3)�v � h �u; �vi �u 2 K+ ; (4)�u � h �u; �vi �v 2 K+ : (5)The angle �( �u; �v) = arccosh �u; �vi formed by a critical pair ( �u; �v) is called a critical angle. The adjectiveproper is added when �u and �v are not collinear, that is to say, j h �u; �vi j 6= 1 . The set of all propercritical angles ofK , denoted by Ò(K) , is called the angular spectrum ofK.Angular spectra of convex cones is the second component of our triptych. In reference [5] we established anumber of results dealing with the concept of critical angle, but some aspects of this theory were not treatedin an exhaustive manner. In this paper we will address a few questions that were left unattended.There is yet another reason which motivates us to write this paper. It has to do with the necessity ofexamining more carefully the very de�nition of antipodality. The concept introduced in De�nition 1 is notthe �rst idea that comes to mind when one refers to antipodality in a classical sense. According to ourde�nition, an antipodal pair is formed by unit vectors in K that are as far away from each other as possible.Now, imagine that we are looking for antipodal points on the surface of the earth. The north pole and thesouth pole do form a pair of antipodal points in the common parlance, but they are not located at maximaldistance because the earth is not perfectly spherical. This short and intuitive discussion leads us to introducean alternative concept of antipodality which is less restrictive:De�nition 3. A Nash angular equilibrium ofK 2 Ì(Rd) is a pair ( �u; �v) 2 Rd � Rd satisfying�u; �v 2 K \ Sd ;�( �u; �v) � �( �u; v) 8v 2 K \ Sd ;�( �u; �v) � �(u; �v) 8u 2 K \ Sd :If ( �u; �v) is as above, then one says that �( �u; �v) is a Nash angle ofK.The terminology that we are using is motivated by the general equilibrium theory developed by theeconomist John Nash [7] in the context of non-cooperative games. Observe that the concept of Nash angularequilibrium for K can be formulated also as a Nash problem involving the diameter maximization ofK \ Sd .Indeed, relation (2) yields straightforwardly( �u; �v) is a Nash angular equilibrium ofK () 8<: �u; �v 2 K \ Sd ;k �u � �vk � k �u � vk 8v 2 K \ Sd ;k �u � �vk � k u � �vk 8u 2 K \ Sd :In this paper we will explore the concept of Nash angle and we shall try to better understand whatmakes these angles so special. As preamble to our work, nothing is better than starting with the followingelementary but important observation. 2



Proposition 1. For any K 2 Ì(Rd) , the following two conditions hold:(a) every antipodal pair is a Nash angular equilibrium,(b) every Nash angular equilibrium is a critical pair.Proof. Part (a) is obvious. In order to prove (b) , suppose that ( �u; �v) is a Nash angular equilibrium. Inparticular, �u is a solution to the problem minimize hu; �vi (6)u 2 K \ Sd :Pick an arbitrary vector h 2 K and consider the curve ' : [0; "] ! Rd de�ned by'(t) = (1 � t) �u+ thk (1 � t) �u+ thk : (7)To make sure that the denominator in (7) doesn't vanish we ask " 2 ]0; 1 ] to be small enough. We call such' an �admissible curve" emanating from �u because'(0) = �u and '(t) 2 K \ Sd 8t 2 [0; "] :Since �u solves the problem (6) , the choice t = 0 yields a minimum for the univariate functiont 2 [0; "] 7! f(t) = h'(t) ; �vi ; (8)and therefore the derivative f0(0) = h' 0 (0) ; �vi = Dh � h �u; hi �u; �vEis nonnegative. One arrives in this way to the variational inequalityD �v � h �u; �vi �u; hE � 0 8h 2 Kwhich expresses that �v � h �u; �vi �u belongs to the dual cone of K. The criticality condition �u � h �u; �vi �v 2 K+is obtained in a similar way.In view of Proposition 1 , one can split the angular spectrum ofK in two disjoint pieces:Ò(K) = Ònash (K) [ Òord (K) :The �rst piece, denoted Ònash (K) , collects the proper critical angles that are formed by a Nash angularequilibrium. As a general rule, this portion is usually very small compared with the full collection of propercritical angles. In fact, most proper critical pairs are �ordinary� in the sense that they don't enjoy any typeof antipodality property. The angles formed by these ordinary proper critical pairs are thrown in the setÒord (K) .
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2 Preliminary Results2. 1 Are Nash Angular Equilibria Formed with Extreme Rays?Extreme rays (or extreme directions) play a very important role in the description of a convex cone. Thede�nition of an extreme ray varies slightly from one author to another, so it is not a bad idea to �x clearlythe meaning of this concept. We adhere to the following de�nition:De�nition 4. Let K 2 Ì(Rd) . An extreme ray ofK is a nonzero vector z 2 K such that z = z1 + z2with z1 ; z2 2 Knf0g implies z = �1 z1 = �2z2 for some �1 > 0 and �2 > 0. The symbolext(K) = fz=k zk : z is an extreme ray ofKgrefers to the set ofnormalized extreme rays ofK .Lemma 1. Let K 2 Ì(Rd) . Let �v 2 K \ Sd be such that hg; �vi > 0 for all g 2 ext(K) . If �u minimizesthe linear form h � ; �vi over K \ Sd , then �u 2 ext(K) .Proof. Since every nonzero vector in K is representable as a positive linear combination of �nitely manyvectors taken from ext(K) , we write �u =  Ppi=1 �igi � 1 Ppi=1 �igi for some integer p 2 N, vectors g1 ; : : : ; gpin ext(K) , and positive scalars �1 ; : : : ; �p. Given that pXi=1 �igi � pXi=1 �i; (9)we distinguish between two cases:Case I: equality occurs in (9) . By strict convexity of k � k 2 , this situation can happen only if p= 1, in whichcase we are done.Case II: the inequality (9) is strict. Relabeling the vectors g1 ; : : : ; gp if necessary and taking into accountthat h � ; �vi is positive over ext(K) , one can write 0 < hg1 ; �vi � � � � � hgp; �vi . Hence,h �u; �vi =  pXi=1 �igi � 1 pXi=1 �ihgi; �vi = Ppi=1 �ik Ppi=1 �igik Ppi=1 �ihgi; �viPpi=1 �i> Ppi=1 �ihgi; �viPpi=1 �i � hg1 ; �viSince we are contradicting the optimality of �u, the case II must be ruled out.Proposition 2. Let K 2 Ì(Rd) be strictly acute in the sense that hx; yi > 0 for all x; y 2 Knf0g . Then,every Nash angular equilibrium ofK is a pair ofnormalized extreme rays of the cone.Proof. It follows directly from Lemma 1 .Below we specialize Proposition 2 to the particular case of a polyhedral cone, that is to say, a convexcone representable in the formK = conefg1 ; : : : ; gpg = n pXi=1 xigi : x 2 Rp+o : (10)4



As customary, we say that fg1 ; : : : ; gpg � Rd is a set of generators for K . There is no loss of generality inassuming that all generators have unit length and that no generator is a positive linear combination of theremaining ones.Corollary 1. Consider a polyhedral cone K � Rd with generators fg1 ; : : : ; gpg satisfying hgi; gji > 0whenever i 6= j. If ( �u; �v) is a Nash angular equilibrium ofK, then �u and �v are in fg1 ; : : : ; gpg .Proof. It su�ces to apply Proposition 2 and observe that ext(K) = fg1 ; : : : ; gpg .Remark 1 . Corollary 1 applies only to Nash angular equilibria and not to ordinary critical pairs. It ispossible to construct a strictly acute polyhedral cone having a critical pair which is not formed with a coupleof generators.We state next a su�cient condition for a pair to be a Nash angular equilibrium of an acute polyhedralcone. This result will be used later in Section 4.Proposition 3. Let K � Rd be polyhedral cone with generators fg1 ; : : : ; gpg satisfying hgi; gji � 0whenever i 6= j. For a pair ( �u; �v) of unit vectors in K to be a Nash angular equilibrium ofK itsu�ces that k �u � �vk � k �u � gik (1 1 )k �u � �vk � k �v � gik (12)for every i 2 f 1 ; : : : ; pg .Proof. Suppose that (1 1 ) -(12) is in force. Take an arbitrary vector z 2 K \ Sd and express it in the formz =  Ppi=1 �igi � 1 Ppi=1 �igi: Let us prove that h �u; �vi � h �u; zi . As in the proof of Lemma 1 , one hash �u; zi =  pXi=1 �igi � 1 pXi=1 �ih �u; gii = Ppi=1 �ik Ppi=1 �igik Ppi=1 �ih �u; giiPpi=1 �i :In view of the convexity inequality (9) and the acuteness hypothesis made on the generators of K , one canwrite h �u; zi � Ppi=1 �ih �u; giiPpi=1 �i � min1� i�ph �u; gii � h �u; �vi ;the last inequality being due to Assumption (11 ) . The proof of h �u; �vi � h �v; zi is similar but relies on (12) .2. 2 Stability of Critical Pairs and Nash Angular EquilibriaWe endow the set Ì(Rd) with the usual bounded Pompeiu-Hausdor� metric�(K1 ; K2) = supk zk � 1 �� dist[z; K1 ] � dist[z; K2 ] �� :Since we are working in a �nite dimensional setting, convergence in the metric space (Ì(Rd) ; �) is equivalentto convergence in the sense of Painlev�e-Kuratowski (cf. [9]) .5



Endowing Ì(Rd) with a metric enables one to address all kind of relevant topological questions. As shownin the next proposition, the set-valued mapsK 7! C(K) = critical pairs ofK;K 7! N(K) = Nash angular equilibria ofKboth enjoy a certain upper stability property called graph-closedness.Proposition 4. The set-valued maps C : Ì(Rd) ! Rd � Rd and N : Ì(Rd) ! Rd � Rd are graph-closed,that is to say, the setsgr(C) = f (K; u; v) : (u; v) is a critical pair ofKg ;gr(N) = f (K; u; v) : (u; v) is Nash angular equilibrium ofKgare closed in the product space Ì(Rd) � (Rd � Rd) :Proof. TheWalkup-Wets isometry theorem [10] asserts that �(K+1 ; K+2 ) = �(K1 ; K2) for allK1 ; K2 2 Ì(Rd) :Closedness of gr(C) is then a direct consequence of (3)-(5) and the fact that K 7! K+ is a continuous map overthe metric space (Ì(Rd) ; �) . For proving that gr(N) is a closed set, take converging sequences fKngn2N ! Kand f ( �un ; �vn)gn2N ! ( �u; �v) such that �un ; �vn 2 Kn \ Sd ; (13)k �un � �vnk � k �un � vk 8v 2 Kn \ Sd ; (14)k �un � �vnk � k u � �vnk 8u 2 Kn \ Sd : (15)By passing to the limit in (13) one easily gets �u; �v 2 K \ Sd . Take now an arbitrary v0 2 K and express itin the form v0 = limn!1 vn with vn 2 Kn . By choosing v = vn in (14) and then letting n ! 1, one arrivesat the inequality k �u � �vk � k �u � v0 k . The proof of the conditionk �u � �vk � k u0 � �vk 8u0 2 K \ Sdis analogous but relies on (15) .Remark 2. Since C and N are graph-closed and take values in the compact set Sd � Sd , these set-valuedmaps turn out to be upper-semicontinuous in Berge's sense [1 ] . One can �nd examples showing that theseset-valued maps are not lower-semicontinuous.3 Higher-Order AnalysisFirst-order information was obtained by working with the admissible curve (7) , which can be written in theequivalent form '(t) = �u+ tzk �u+ tzkwith z = h � �u: We now take the analysis one step further. Readers who are familiar with the theory ofsecond-order optimality conditions for constrained optimization problems know that the Hessian matricesof the cost and constraint functions play a prominent role in the discussion. In our case, second-orderinformation is captured by a matrix having the the form of a shifted tensor product a ? b = abT � ha; bi . Inthe sequel we use the symbol c? for indicating the hyperplane that is orthogonal to c.6



Proposition 5. For ( �u; �v) to be a Nash angular equilibrium ofK 2 Ì(Rd) , the following second-ordercriticality conditions are necessary:(a) 
z; [ �u ? �v]z� � 0 for all z 2 [ �v � h �u; �vi �u]? \ R+(K � �u) ,(b) 
z; [ �u ? �v]z� � 0 for all z 2 [ �u � h �u; �vi �v]? \ R+(K � �v) .Proof. Let ( �u; �v) be a Nash angular equilibrium of K. Let us prove that �u ? �v is positive semide�nite overthe convex cone TK ( �u; �v) = [ �v � h �u; �vi �u]? \ R+(K � �u) :By positive homogeneity, there is no loss of generality in taking z in [ �v � h �u; �vi �u]? \ (K � �u) . We write thenz = h� �u with h 2 K. Since �u solves the problem (6) , the choice t = 0 yields a minimum for the function fintroduced in (8) . By writing the second-order Taylor expansionf(t) = f(0) + tf0(0) + 12 t2f00(0) + t2�(t) ;with �(t) ! 0 as t! 0+ , one sees that f00 (0) � 0 if f0(0) = 0. A matter of computation shows thatf0(0) = D �v � h �u; �vi �u; zE = 0;the last equality being due to the fact that z has been taken in the orthogonal of �v � h �u; �vi �u. Hencef00(0) = h �u; zi hz; �vi � k zk 2h �u; �vi = 
z; [ �u ? �v]z�must be nonnegative. Condition (b) is derived in a similar way.Proposition 5 seems a promising result, but a more careful examination of the second-order criticalityconditions forces us to be less optimistic. Two cases must be distinguished:� if the pair ( �u; �v) forms an angle greater than or equal to �=2, then the second-order criticality conditionsare automatically satis�ed, so they don't provide any new information.� if the pair ( �u; �v) forms an angle less than �=2, then second-order criticality conditions are transformedinto a tangency test as explained below.Theorem 1. Let ( �u; �v) be a Nash angular equilibrium ofK 2 Ì(Rd) with angle �( �u; �v) < �=2. Then,( �u; �v) satis�es the tangency test ( [ �v � h �u; �vi �u]? \ R+(K � �u) � R�u;[ �u � h �u; �vi �v]? \ R+(K � �v) � R�v: (16)Proof. Take z 2 R+(K � �u) such that h �v; zi � h �u; �vi h �u; zi = 0: By combining the latter equality andProposition 5(a) one gets h �u; �vi h h �u; zi2 � k zk 2i � 0: (17)But, h �u; �vi > 0 because �( �u; �v) is smaller than �=2. On the other hand, the term between brackets isnonpositive by the Cauchy-Schwarz inequality. The conclusion is that h �u; zi2 � k zk 2 = 0, and therefore z isa multiple of �u. This proves the �rst inclusion in (16) . The second inclusion is proved in a similar way.7



Remark 3. The inequality (17) holds automatically if h �u; �vi � 0. We insist on the fact that the tangencytest applies only to pairs with an angle less than �=2. Consider, for instance, the positive orthant K = R3+in the space R3 . The vectors �u = (1 ; 0; 0) and �v = (0; 1 ; 0) form not just a Nash angular equilibrium, butalso an antipodal pair. Notice that [ �v � h �u; �vi �u]? \ R+(K � �u) = R� f0g � R+ is a two-dimensional convexcone, and therefore it is not contained in the line R�u.Since K is a closed convex cone, one has R+(K � �u) = K + R�u, showing that both inclusions in (16)always hold in the opposite sense. Thus, the tangency test can be written in the equivalent form( [ �v � h �u; �vi �u]? \ R+(K � �u) = R�u;[ �u � h �u; �vi �v]? \ R+(K � �v) = R�v:Except for a closure operation, R+(K� �u) corresponds to the tangent cone to K at �u. In general, one cannotreinforce the tangency test by writing cl[R+(K � �u) ] instead of R+ (K � �u) .4 Threshold Condition for Nash Angular EquilibriaIt is reasonable to expect a Nash angular equilibrium to form an angle which is large, or at least not toosmall while compared with the maximal angle of the cone. This idea will be expressed in a more formalway in Theorem 2, the main result of this section. Before stating this result we need however to preparethe ground by introducing some notation and terminology. Recall that N(K) stands for the set of all Nashangular equilibria ofK .De�nition 5. The Nash threshold coe�cient ofK 2 Ì(Rd) , denoted by �K , is the largest constant� 2 [0; 1 ] such that k �u � �vk � � diam(K \ Sd) 8( �u; �v) 2 N(K) : (18)If K is a ray, then one has �K = 1. Otherwise, the Nash threshold coe�cient of K admits the obviouscharacterization �K = 1diam(K \ Sd) inf(u; v)2N(K) k u � vk :Even whenK has a simple structure, evaluating the Nash threshold coe�cient �K maybe a quite cumbersometask. In [6] we work out in detail the case of an elliptic cone. What is clear, however, is that�K = 1 () � every Nash angular equilibriumofK is an antipodal pair;or equivalently, �K < 1 () � K admits a Nash angular equilibriumwhich is not an antipodal pair:The question that we address now is that of �nding the largest constant � for which (18) is uniform withrespect to all elements in Ì(Rd) . In other words, we want to compute the in�mal value�� = infK2Ì(Rd ) �K : (19)8



To start with, observe that �� � 1=2. The proof of this inequality is straightforward and runs as follows:pick an arbitrary antipodal pair (a; b) of K. Then, for any ( �u; �v) 2 N(K) , one hasdiam(K \ Sd) = k a � bk � k a � �uk + k �u � bk � 2k �u � �vk :Obtaining a better lower estimate for �� requires, however, a more elaborate line of thought.4. 1 An Auxiliary ProblemWe open a parenthesis and study the auxiliary minimization problem�(a; b) = inf(u; v)2F(a; b ) k u � vk ; (20)where the feasible set F(a; b) is given by(u; v) 2 F(a; b) () 8>><>>: k u � ak � k u � vk ;k u � bk � k u � vk ;k v � ak � k u � vk ;k v � bk � k u � vk : (21 )At a later stage we will choose (a; b) as an antipodal pair of K , but for the time being a and b arearbitrary vectors taken from Rd . In the next lemma we fully characterize the solution setS(a; b) = f (u; v) 2 F(a; b) : k u � vk = �(a; b)gand the in�mal value �(a; b) of problem (20) . Lemma 2 has nothing to do with angular analysis of convexcones. In fact, it is a geometric result concerning the intrinsic structure of the Euclidean space (Rd ; h � ; � i ) .Lemma 2. Let a; b be two di�erent vectors taken from Rd . Then,(a) The solution set of(20) is nonempty and bounded. In fact, it admits the characterizationS(a; b) = ( � a + b2 + p36 k a � bk w; a + b2 � p36 k a � bk w� : w 2 Sd \ [a � b]?) :(b) The in�mal value of(20) is given by �(a; b) = (p3=3)k a � bk :Proof. The feasible set F(a; b) is nonempty because (a; b) 2 F(a; b) . The solution set of (20) does not changeif one adds the extra constraint k u� vk � k a� bk ; in which case the new feasible set becomes bounded. Thissimple argument shows that S(a; b) is nonempty and bounded. Consider now a pair (u� ; v�) of the formu� = a + b2 + p36 k a � bk w; v� = a + b2 � p36 k a � bk w;with w 2 Sd \ [a � b]? : One can easily check that (u� ; v�) belongs to the set G(a; b) de�ned by(u; v) 2 G(a; b) () k u � vk = k u � ak = k u � bk = k v � ak = k v � bk :9



In particular, (u� ; v�) is feasible for (20) and�(a; b) � k u� � v�k = (p3=3) k a � bk :Notice that (u� ; v�) is strictly better than (a; b) in the sense that k u� � v�k < k a � bk . We will provethat (u� ; v�) is in fact optimal. Consider an arbitrary solution ( �u; �v) of problem (20) . Observe that thevectors fa; b; �u; �vg cannot be on the same line, because otherwise one would contradict the optimality of( �u; �v) . We claim that ( �u; �v) 2 G(a; b) ; that is to say, all the inequality constraints in (21 ) become active at( �u; �v) . Suppose on the contrary that at least one inequality constraint is inactive, say k �u� ak < k �u� �vk : Wedistinguish between two cases.Case I: k �v � ak < k �u � �vk . Take t 2 ]0; 1 [ and form the pair(ut ; vt) = � tb + (1 � t) �u; tb + (1 � t) �v� :Clearly k ut � vtk = (1 � t) k �u � �vk < k �u � �vk andk ut � bk = (1 � t) k �u � bk � (1 � t) k �u � �vk = k ut � vtk ;k vt � bk = (1 � t) k �v � bk � (1 � t) k �u � �vk = k ut � vtk :On the other hand, if t is su�ciently small, then (ut ; vt) is near ( �u; �v) and one can writek ut � ak < k ut � vtk ; k vt � ak < k ut � vtk :In short, (ut ; vt) 2 F(a; b) and k ut � vtk < k �u � �vk , contradicting the optimality of ( �u; �v) .Case II: k �v � ak = k �u � �vk . Take an orthonormal matrix Q of size d� d and form the pair( 
u; 
v) = � b +Q( �u � b) ; b +Q( �v � b) � :By orthonormality, one hask 
u � 
vk = k �u � �vk ; k 
u � bk = k �u � bk ; k 
v � bk = k �v � bk :Moreover, Q can be chosen in such a way as to get k 
u � ak < k 
u � 
vk and k 
v � ak < k 
u � 
vk : This can bedone by taking as Q a suitable rotation matrix that slightly moves the vector �v � b so that it gets closer toa � b. Notice that with the new pair ( 
u; 
v) we are in the situation discussed in Case I, so again we arrive ata contradiction. We have established that all inequalities are tight at an optimal solution. It is then easy tocheck that all solutions must be of the form stated in (a) .4. 2 Exact Estimate for ��With the help of Lemma 2 we are now ready to establish:Proposition 6. Consider an arbitrary K 2 Ì(Rd) . Then,k �u � �vk � (p3=3) diam(K \ Sd) 8( �u; �v) 2 N(K) : (22)Proof. Choose (a; b) as an antipodal pair of K . Since a; b are unit vectors in K, one has N(K) � F(a; b) .In view of Lemma 2, for an arbitrary Nash angular equilibrium ( �u; �v) , one getsk �u � �vk � inf(u; v)2N(K) k u � vk � inf(u; v)2F(a; b ) k u � vk= (p3=3) k a � bk = (p3=3) diam(K \ Sd) :10



What Proposition 6 says is that �� � p3=3 � 0:577: We have thus obtained an improvement with respectto the previous lower estimate �� � 1=2. As shown next, a further improvement is simply not possible.Proposition 7. Let d � 3. For any � > p3=3, one can �nd a (strictly acute, solid, and polyhedral)K 2 Ì(Rd) and a pair ( �u; �v) 2 N(K) such that k �u � �vk < � diam(K \ Sd) :Proof. For simplicity we work in R3 , but a similar argument applies in a higher dimensional space. Pick any� > p3=3. The idea behind the construction of K is getting a convex cone whose Nash angular equilibriaare easy to identify. We rely on Proposition 3 to see what happens with the polyhedral cone K� generatedby the following unit vectors: g1 = [�2 + 3)]� 1=2 (p3; 0; �) ;g2 = [�2 + 3]� 1=2 (�p3; 0; �) ;g3 = [�2 + 1 ]� 1=2 (0; 1 ; �) ;g4 = [�2 + 1) ]� 1=2 (0; �1 ; �) :We choose � > p3, so that the inner productshg1 ; g2i = �2 � 3�2 + 3 ; hg3 ; g4i = �2 � 1�2 + 1 ;hg1 ; g3i = hg1 ; g4i = hg2 ; g3i = hg2 ; g4i = �2p�2 + 3p�2 + 1are all strictly positive. We work then in a context in which K� is strictly acute. By Corollary 1 , the Nashangular equilibria (and, in particular, the antipodal pairs) of K� are formed exclusively with generators ofthe cone. Notice that �2 � 3�2 + 3 � �2 � 1�2 + 1 � �2p�2 + 3p�2 + 1 : (23)This means that hg1 ; g2i is smaller than all the other inner products, and therefore (g1 ; g2) is an antipodalpair of K� . On the other hand, by using the su�ciency test of Proposition 3, one can prove that (g3 ; g4) isa Nash angular equilibrium ofK� . According to such test, we must check thatk g3 � g4k � minf k g3 � g1 k ; k g3 � g2k ; k g4 � g1 k ; k g4 � g2k g ;but, in the present context, everything reduces to checking hg3 ; g4i � hg1 ; g3i ; which is precisely the secondinequality in (23) . Observe �nally that the ratio�K� = k g3 � g4kk g1 � g2k = p33 s �2 + 3�2 + 1goes to p3=3 as � ! 1. Hence, for � su�ciently large, one gets �K� < � and the desired conclusion.Corollary 2. Ifthe dimension d ofthe underlying Euclidean space is at least three, then the in�malvalue ofproblem (1 9) is �� = p3=3:Some further comments on the proof of Proposition 7 are in order. Notice that:1 1



� If the parameter � is an integer, then fK�g �2N is a minimizing sequence for (19) in the sense thatlim�!1 �K� = �� :� When � goes to 1, the four generators of K� approach e = (0; 0; 1 ) , and therefore K� gets closer tothe ray R+e = f (0; 0; t) : t 2 R+g .These two items seem to be contradicting each other because a ray has absolutely no chance of being aminimizer of the function K 7! �K over the compact metric space (Ì(Rd) ; �) . This paradox is explainedwith the help of the next proposition.Proposition 8. The function K 7! �K , de�ned over the metric space (Ì(Rd) ; �) , is lower-semicontinuousat K� 2 Ì(Rd) ifand only ifK� is not a ray.Proof. Suppose that K� is not a ray. In view of Proposition 4 and Berge's minimum theorem [1 ] , thefunction K 7! inf(u; v)2N(K) k u � vkis lower-semicontinuous over (Ì(Rd) ; �) . On the other hand, the function K 7! [diam(K \ Sd) ]� 1 is wellde�ned and continuous on a neighbourhood ofK� . Hence, K 7! �K is lower-semicontinuous at K� . Supposenow that K� is a ray. Then, �K� = 1. But liminfK!K� �K < 1because one can construct a sequence fK�g �2N converging to K� and such that lim�!1 �K� = �� < 1 .4. 3 A Localization Result for Nash AnglesWe now establish a relationship existing between an arbitrary Nash angle and the maximal angle of the cone.Theorem 2. If� is a Nash angle ofK 2 Ì(Rd) , thenarccos � 2 + cos �max(K)3 � � � � �max(K) : (24)Proof. The second inequality in (24) is obvious and has been written here only for the sake of completeness.The �rst inequality is obtained from Proposition 6 and the relation (2) . We also use the general formula[diam(K \ Sd) ]2 = 2[1 � cos �max(K) ]linking the terms diam(K \ Sd) and �max(K) .To �x the ideas, if the maximal angle of K has, for instance, 120 degrees, then every Nash angle of Khas at least 51 .3 degrees. By contrast, the ordinary critical angles could be as closed to 0 as one wishes!On the other hand, if a critical angle � is above the threshold value (24) , it does not follow necessarilythat � is a Nash angle. In fact, the situation can be even worse: we exhibit next an example of a criticalpair whose angle is arbitrarily close to the maximal angle of the cone, and which is not a Nash angularequilibrium. In other words, proximity with respect to the maximal angle is not a guarantee for a criticalangle to be of the Nash type. 12



Example 1. Consider the polyhedral cone K � R3 generated by the unit vectorsg1 = 14 (�1 ;p3; 2p3) ; g2 = 14 (�1 ; �p3; 2p3) ; g3 = 14 (2 � "; p"(4 � ") ; 2p3) ;with " 2 [0; 1 ] . It is easy to computehg1 ; g2i = 58 ; hg1 ; g3i = 58 + "+p3"(4 � ")16 > 58 ; hg2 ; g3i = 58 + " � p3"(4 � ")16 < 58 :We take " close enough to 0 so that the condition  � È2 ofProposition 9 holds. According to this proposition(which is stated a few lines below) , all pairs of generators are critical. Since the cone K is strictly acute, allantipodal pairs are formed with a couple of generators. We conclude that �max(K) = arccos hg2 ; g3i : Thecritical pair (g1 ; g2) makes an angle arbitrarily close to �max(K) for " close enough to 0, but is not a Nashangular equilibrium because hg2 ; g3i < hg2 ; g1 i .5 Angular Spectra of Polyhedral ConesIn this section we address several questions concerning the angular spectrum of a polyhedral cone K, whichwe represent always in the form (10) with the usual assumptions on the set of generators fg1 ; : : : ; gpg .When is a pair of generators critical? This issue has been already addressed in [3, Section 7] . We juststate here a minor technical result which will be used in the sequel.Proposition 9. Suppose that K � Rd is a polyhedral cone with generators fg1 ; : : : ; gpg . Let = min1� k; `�pk6=` hgk ; g`i and È = max1� k; `�pk6=` hgk ; g`i :If � È2 , then K is acute and all pairs (gi; gj) (1 � i; j � p) are critical.Proof. Checking (4)-(5) for ( �u; �v) = (gi; gj) is the same as verifyinghgi; gji hgj; gqi � hgi; gqi ; (25)hgi; gji hgi; gqi � hgj; gqi ; (26)for all triplets ( i; j; q) . Let us check, for instance, the inequality (25) . To avoid trivialities, one can assume thatthe indices i; j; q are di�erent. Under the hypothesis  � È2 , all the inner products hgk ; g`i are nonnegativeand hgi; gji hgj; gqi � È2 �  � hgi; gqi :A similar argument shows that (26) holds.We now explain how to compute the critical angles of a polyhedral cone by solving a family of Perron-typeeigenvalue problems. We need �rst to introduce some additional notation and terminology. The symmetricpositive semide�nite matrix M = � hgi; gji � i; j=1 ; : : : ; pof size p� p is referred to as the Gramian matrix associated to the set fg1 ; : : : ; gpg . For nonempty subsetsI; J � f 1 ; : : : ; pg , denote by MI; J the principal matrix of M obtained by deleting the i-th row and the13



j-th column of M, whenever i =2 I and j =2 J . If the symbol j I j stands for the cardinality of I, then MI; Jis a rectangular matrix of size j I j � j J j . Because the generators fg1 ; : : : ; gpg are not necessarily linearlyindependent, it is helpful to writeI 2 M(g1 ; : : : ; gp) () � I � f1 ; : : : ; pg is nonempty and the setfgi : i 2 Ig is linearly independent:Notice that MI; I is the Gramian matrix of the sub-collection fgi : i 2 Ig . So, for I 2 M(g1 ; : : : ; gp) , thematrix MI; I is nonsingular.Theorem 3. Let K 2 Ì(Rd) be a polyhedral cone with generators fg1 ; : : : gpg and let M be the corre-sponding Gramian matrix. For � 2 ]0; �[ the following two statements are equivalent:(a) � is a proper critical angle ofK,(b) there are sets I; J 2 M(g1 ; : : : ; gp) , with I 6= J , and vectors � 2 int(Rj Ij+ ) , � 2 int(RjJj+ ) such that� 0 MI; JMJ; I 0 � � �� � = cos � � MI; I 00 MJ; J � � �� � ; (27)Xj2JMkj�j � cos �Xi2I Mki�i � 0 8k =2 I;Xi2I Mli�i � cos �Xj2JMlj�j � 0 8l =2 J;h�; MI; I�i = 1 ;h�; MJ; J�i = 1 :Furthermore, when these equivalent statements hold, the proper critical angle � is formed with theproper critical pair ( �u; �v) = � Pi2I �igi;Pj2J �jgj� :Proof. The implication (a) ) (b) has been shown in our previous work [3] . A careful examination of thatproof shows that the reverse implication is also true.The next corollary is a localization result for angular spectra of polyhedral cones in terms of Perron-typespectra of square matrices. One says that � 2 R is a Perron-type eigenvalue of the square matrix E if thesystem Ez = �z has a solution z in the interior of the positive orthant. For convenience we denote by �int(E)the set of Perron-type eigenvalues of E.Corollary 3. Let K 2 Ì(Rd) be a polyhedral cone with generators fg1 ; : : : ; gpg and let M be thecorresponding Gramian matrix. Then,Ò(K) � [I; J n arccos � : � 2 �int(BI; J)o ; (28)where the union is taken with respect to I; J 2 M(g1 ; : : : ; gp) with I 6= J , andBI; J = � MI; I 00 MJ; J � � 1 � 0 MI; JMJ; I 0 � = � 0 M� 1I; IMI; JM� 1J; JMJ; I 0 � : (29)14



Proof. This follows directly from Theorem 3 by identifying � with cos �. We are keeping the eigenvalueequation (27) and dropping the remaining conditions.Remark 4. In fact, the index sets I; J 2 M(g1 ; : : : ; gp) can be chosen in a more restrictive manner. Forinstance, there is no loss of generality in assuming thatmaxf j I j ; j J j g � dim[span(K) ] � 1 ; (30)I 6� J; J 6� I (31 )If K happens to be acute, then the requirement (31 ) can be reinforced by writing instead I \ J = ;. Thereason behind (30) is that the components of a critical pair are not to be sought in the relative interior ofthe cone. The notation span(K) refers, of course, to the vector space spanned by K . The justi�cation of(31 ) , which is a bit more technical, can be found implicitly in our work [5] .Needless to say, evaluating the right-hand side of (28) involves a huge amount of numerical work. Tosave time and computational e�ort, it is convenient to keep in mind that the matrices BI; J and BJ; I maywell be di�erent, but they yield exactly the same eigenvalues. So, if the system (27) has been worked out fora given choice (I; J) , then it is superuous to do similar computations with the pair (J; I) . Geometricallyspeaking, exchanging the order of I and J corresponds to exchanging the order of u and v.5. 1 Equi-Angular Polyhedral ConesIn this section we consider a polyhedral cone K generated by an equi-angular collection fg1 ; : : : ; gpg of unitvectors in Rd . Equi-angularity of the set of generators simply means thatthere is a constant  2 ]0; �[ such that hgi; gji = cos 8i 6= j: (32)By abuse of language, one applies the adjective �equi-angular" to the coneK itself. Of course, one recognizesthe term  as being the common angle formed by the generators.The equi-angularity assumption (32) imposes a restriction on the number of generators. Indeed, theinteger p is bounded from above by a constant depending on the angle  and the dimension d of theunderlying Euclidean space. This point is clari�ed in the next proposition. We start by writing:Lemma 3. Consider an equi-angular collection fg1 ; : : : ; gpg ofunit vectors with  2 ]0; �[ as commonangle. Let M be the Gramian matrix associated to this collection ofgenerators. Then,det(M) = (1 � cos )p� 1 � 1 + (p� 1 ) cos 	 : (33)Furthermore, p and  are bound by the relation1 + (p� 1 ) cos � 0: (34)Proof. Note that M = (1 � cos ) � I + [cos =(1 � cos ) ] (eeT)	 , with e = (1 ; 1 ; : : : ; 1 ) . Then the formulain (33) follows from the well known fact that det(A+uvT) = (1 +vTA� 1u) det(A) for all invertible A 2 Rp� pand all u; v 2 Rp (see, e.g. , [2] ) . The binding constraint (34) is a consequence of the positive semide�nitenessof the Gramian matrixM.An angle  2 ]0; �[ is declared unstab le if cos 2 f�1=2; �1=3; �1=4; : : : g , otherwise it is said to bestab le. The concept of instability is motivated by the possibility of the binding constraint (34) being active.Notice that only obtuse angles can be unstable. 15



Proposition 10. Let fg1 ; : : : ; gpg � Rd be an equi-angular collection ofunit vectors with  2 ]0; �[ ascommon angle. One has:(a) if is stab le, then p � d.(b) if is unstab le, then p � d+ 1 .Proof. If  is stable, then the Gramian matrix M has a nonzero determinant. So, the vectors fg1 ; : : : ; gpgare linearly independent and necessarily p � d. Suppose now that  is unstable. Then 1 + (q � 1 ) cos = 0for some q 2 f2; 3; : : :g : If q 6= p, then we are still under the condition det(M) 6= 0, so one gets again p � d.If q = p, then by dropping one generator from the collection fg1 ; : : : ; gpg one gets a subcollection having aGramian matrix with nonzero determinant. This subcollection of p� 1 vectors is then linearly independentand therefore p� 1 � d.We now come back to the main stream of our discussion. A striking feature of acute equi-angular cones isthat any pair (gi; gj) of generators happens to be critical. This can be checked with the help of Proposition9. In the next theorem we shall see how to construct other pairs whose criticality is less obvious to prove.The basic idea is to pick suitable index sets I; J and form(uI ; uJ) = 0@ 1k Pi2I gik Xi2I gi; 1k Pj2J gjk Xj2J gj1A :Notice that (uI ; uJ) is well de�ned whenever Pi2I gi 6= 0 and Pj2J gj 6= 0. Geometrically speaking, theunit vectors uI and uJ correspond to the barycenters of the polyhedral subcones KI = conefgi : i 2 Ig andKJ = conefgj : j 2 Jg , respectively.Theorem 4. Let K be an acute cone generated by an equi-angular collection fg1 ; : : : ; gpg of unitvectors in Rd . Pick disjoint index sets I; J � f1 ; : : : ; pg such that Pi2I gi 6= 0 and Pj2J gj 6= 0. Then,(uI ; uJ) is a critical pair ofK.Proof. Let  be the common angle formed by the generators, and let b = cos . For notational convenience,we set cI; J = D Xi2I gi;Xj2J gjE ; cI; I = k Xi2I gik 2 ; cJ; J = k Xj2J gjk 2 :For arbitrary disjoint index sets I; J � f1 ; : : : ; pg , one getscI; J = b j I j j J j ;cI; I = j I j � 1 + ( j I j � 1 )b	 ; (35)cJ; J = j J j � 1 + ( j J j � 1 )b	 :Since Pi2I gi 6= 0 and Pj2J gj 6= 0, the pair (uI ; uJ) is well de�ned andhuI ; uJi = cI; JpcI; IpcJ; J = b j I j j J jp j I jp1 + ( j I j � 1 )b p j J jp1 + ( j J j � 1 )b :A matter of simpli�cation leads to the expressionhuI ; uJi = bp j I jp j J jp1 + ( j I j � 1 )b p1 + ( j J j � 1 )b : (36)16



Let us prove that uI � huI ; uJiuJ 2 K+ , i.e. , that Ék (uI ; uJ) := huI ; gk i � huI ; uJi huJ ; gk i is nonnegativefor each k 2 f 1 ; : : : ; pg : Consider �rst the case k 2 J . A short computation shows thatÉk (uI ; uJ) = b j I jpcI; I � bp j I jp j J jp1 + ( j I j � 1 )b p1 + ( j J j � 1 )b 1 + ( j J j � 1 )bpcJ; JAfter plugging (35) into the above line and simplifying, one gets Ék (uI ; uJ) = 0: Consider now the casek =2 J . This time one hasÉk (uI ; uJ) = 1 + ( j I j � 1 )bpcI; I � bp j I jp j J jp1 + ( j I j � 1 )b p1 + ( j J j � 1 )b b j J jpcJ; J if k 2 I;Ék (uI ; uJ) = b j I jpcI; I � bp j I jp j J jp1 + ( j I j � 1 )b p1 + ( j J j � 1 )b b j J jpcJ; J if k =2 I:We recall again (35) and simplify. Regardless ofwhether I contains k or not, one ends up with Ék (uI ; uJ) > 0:The details are omitted. The proof of the symmetric condition uJ � huI ; uJiuI 2 K+ is similar. Theconclusion is that (uI ; uJ) is a critical pair ofK.The main merit of Theorem 4 is providing a simple way of constructing critical pairs in a polyhedralcone with special structure. As shown in the next result, the critical angle formed by (uI ; uJ) depends onthe choice of I and J only in terms of the cardinality of these sets. The next theorem says however morethan that: it provides a full characterization of the angular spectrum of an acute equi-angular cone.Theorem 5. Let K be generated by an equi-angular collection fg1 ; : : : ; gpg of unit vectors in Rd .Suppose that the common angle  formed by the generators is acute, more precisely,  2 ]0; �=2[ .Then, the angular spectrum ofK is given byÒ(K) = � � ;̀ k : 1 � ` � k � p� 1 ; `+ k � p	 ; (37)where � ;̀ k = arccos " p`k cos p1 + (`� 1 ) cos p1 + (k � 1 ) cos # : (38)Furthermore, �max(K) =  is the only Nash angle ofK, i. e. all other critical angles are ordinary.Proof. The acuteness assumption rules out the possibility of instability in  . Hence, the determinant of theGramian matrixM is nonzero. The generators are then linearly independent and, in particular, Pi2I gi 6= 0and Pj2J gj 6= 0 for any choice of I and J . Pick disjoint index sets I; J; and denote their cardinality by `and k , respectively. If one plugs this information in (36) , then one gets the critical angle � ;̀ k given in (38) .We write the condition `+ k � p because the index sets I and J are required to be disjoint. The condition` � k takes care of the symmetry relation � ;̀ k = �k; `.We have proven so far that � ;̀ k 2 Ò(K) for any pair ( ;̀ k) as in (37) . We now must check that Ò doesn'tcontain other critical angles. This fact can be proven directly by invoking [5, Theorem 6], a quite technicaland di�cult result concerning the uniqueness of critical angles for a given pair (I; J) . Another possibility isexploiting Theorem 3 and the acuteness assumptions made on  . According to Theorem 3 and Remark 4,if � is a proper critical angle of K, then for a suitable pair (I; J) of disjoint index sets, the term cos � willbe a Perron-type eigenvalue of the matrix BI; J given by (29) . The acuteness assumption and a little bit of17



standard linear algebra show that the matrix BI; J admits at most one Perron-type eigenvalue. In short, agiven choice (I; J) , with j I j = ;̀ j J j = k , produces the critical pair � ;̀ k and no other.In relation to the last part of the theorem, two comments will do. Firstly, the proper critical angle  isobtained by setting ` = 1 and k = 1, that is to say,  is formed with a pair of generators of K. In view ofthe expression (38) , the angle  is clearly the largest element in Ò(K) . And, secondly, Corollary 1 showsthat the critical angle � ;̀ k is of the ordinary type if ( ;̀ k) 6= (1 ; 1 ) .Notice that � ;̀ k 6= � 0̀ ; k 0 whenever ( ;̀ k) 6= ( 0̀ ; k 0 ) . This simple observation leads to the following cardi-nality result.Corollary 4. Let K be generated by an equi-angular collection ofp unit vectors in Rd . Ifthe commonangle formed by the generators belongs to ]0; �=2[ , then the angular spectrum ofK has exactlymp = j p2 k � p� j p2 k �elements, with b � c denoting the lower integer part function.Proof. It su�ces to apply Theorem 5 and count the number of pairs ( ;̀ k) as in (37) . To get the numbermp one must work out the expressionX1� `� k�p� 1`+k� p 1 = bp=2cX̀=1 � p� 1 � 2(`� 1 )	 :Remark 5. Notice that mp increases with respect to p. For constructing a polyhedral cone with a largenumber of critical angles, we take p as big as possible. According to Proposition 10(a) we can go up top = d but not beyond this threshold. To see that it is always possible to construct an acute equi-angularpolyhedral cone in Rd with exactly d generators, consider for instance the vectorsg1 = (p1 � (d� 1 )a2 ; a; a; : : : ; a) ;g2 = (a;p1 � (d� 1 )a2 ; a; : : : ; a) ;...gd = (a; a; : : : ; a;p1 � (d� 1 )a2) ;with 0 < a < (d� 1 )� 1=2 . Notice that md corresponds roughly to d2=4 when d is large.Remark 6. It is possible to exhibit a strictly acute polyhedral cone in Rd with more than md criticalangles, but this can happen only outside the class of equi-angular cones. We suggest slightly perturbingthe generators fg1 ; : : : ; gdg of Remark 5, namely, in the i-th generator gi we change a by a(1 + "i) . Theperturbation parameters "1 > 0; : : : ; "d > 0 are taken small enough and such that hgi; gji 6= hgi0 ; gj0 iwhenever ( i; j) 6= ( i 0 ; j0) . According to Proposition 9, every pair of generators is critical. So, we haveconstructed in this way a strictly acute polyhedral cone having at least d(d� 1 )=2 proper critical angles.
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6 Final RemarksWhile dealing with acute equi-angular polyhedral cones we know how to compute exactly all the criticalangles and how to recognize those that are of the Nash type. As we have seen in Section 5, the task ofidentifying critical angles in a general polyhedral cone can be done with the help of Theorem 3. IdentifyingNash angles is in general quite problematic and one must proceed with extreme care.It is very tempting to conjecture that the �big� critical angles correspond to Nash angles and the �small�critical angles are of the ordinary type. It would make life much easier if for each convex cone K thereis a number � (depending on K) such that Òord (K) � ]0; �[ and Ònash (K) � [�; �[ : As illustrated in thenext example, it is not always possible to separate the sets Òord (K) and Ònash (K) by means of two disjointintervals. More precisely, in any space Rd (with d � 3) one can construct a polyhedral cone having anordinary critical angle located between two Nash angles.Example 2. For simplicity we take d = 3 but this choice is not essential. We will construct a polyhedralcone K � R3 generated by 5 unit vectors. The �rst 4 vectors are:g1 = (�p3=3; 0;p6=3) ; g2 = (0; 1=2;p3=2) ;g3 = (p3=3; 0;p6=3) ; g4 = (0; �1=2;p3=2) :A simple computation shows that these vectors have unit length andhg1 ; g3i = 1=3 � 0:333; hg2 ; g4i = 0:5;hg2 ; g3i = hg1 ; g4i = hg3 ; g4i = hg1 ; g2i = p2=2 � 0:707:So, the pair (g1 ; g3) is a good candidate for antipodality and the pair (g2 ; g4) has some chances of being aNash angular equilibrium. The last vector g5 will be constructed so as to create an ordinary critical anglebetween arccoshg2 ; g4i and arccoshg1 ; g3i . We consider a unit vectorg5 = 0@ p33 � ";s 7p36 " � 32"2 ;s 23 � p32 "+ 12 "2 1Adepending on a parameter " > 0. This choice of g5 has been obtained after a long and tedious series oftechnical evaluations. It it not worthwhile entering into the details on how we arrived at such an expression.Anyway, observe that if " gets close to 0, then g5 approaches g3 . A matter of computation shows thathg1 ; g5i = �13 + p33 "+s 49 � p33 "+ 13"2 (39)hg3 ; g5i = 13 � p33 "+s 49 � p33 "+ 13"2 (40)For a small " one ends up with0 < hg1 ; g3i < hg1 ; g5i < hg2 ; g4i < hg2 ; g3i = hg1 ; g4i = hg3 ; g4i = hg1 ; g2i ;hg1 ; g3i � minf hg2 ; g5i ; hg3 ; g5i ; hg4 ; g5ig ;hg2 ; g4i � minf hg2 ; g5i ; hg5 ; g4ig :19



Given that K is strictly acute, all antipodal pairs are composed of generators (cf. Corollary 1) . We concludethat the only antipodal pair of K is (g1 ; g3) . Concerning (g2 ; g4) , observe thathg2 ; g4i � hg2 ; gii and hg2 ; g4i � hgi; g4i ;for every i 2 f 1 ; : : : ; 5g . By using Proposition 3, one deduces that (g2 ; g4) is a Nash angular equilibrium.Summarizing, we have a sandwich situationarccoshg2 ; g4i < arccoshg1 ; g5i < arccoshg1 ; g3iin which both extremes are Nash angles. Concerning the angle in the middle of the sandwich, notice that(g1 ; g5) is not a Nash angular equilibrium because hg1 ; g3i < hg1 ; g5i . So, if arccoshg1 ; g5i happens to be acritical angle, then it must be of the ordinary type. In view of [3, Proposition 7.1 ] , for (g1 ; g5) to be a criticalpair it is necessary and su�cient that hg1 ; gii � hg1 ; g5i hg5 ; gii ; (41 )hg5 ; gii � hg1 ; g5i hg1 ; gii ; (42)for every i 2 f 1 ; : : : ; 5g . Checking this system is painful and time consuming. However, if " is small enough,the inequalities in (42) are immediate. The inequalities in (41 ) are also easy to check except for i = 3, i.e.hg1 ; g3i � hg1 ; g5i hg5 ; g3i :By using (39)-(40) , one gets after some simpli�cationhg1 ; g5i hg5 ; g3i = 13 � p39 " < 13 = hg1 ; g3i :This con�rms that (g1 ; g5) is indeed a critical angle.We hope we have not frightened the reader with the technicalities of Example 2. Some aspects of thetheory of critical angles are unfortunately highly technical and sometimes we must use brute force to arriveat the desired conclusion. However, most of the theory is built up by using powerful and elegant tools ofgeometry and analysis.Acknowledgements. We thank an anonymous referee for his/her very valuable suggestions.References[1 ] C. Berge. Espaces Topologiques, Fonctions Multivoques . Dunod, Paris, 1966.[2] G.H. Golub and C.F. Van Loan. Matrix Computations . John Hopkins University Press, Baltimore,1996.[3] A. Iusem and A. Seeger. On pairs of vectors achieving the maximal angle of a convex cone. Math.Programming 104 (2005) , 501�523.[4] A. Iusem and A. Seeger. Axiomatization of the index of pointedness for closed convex cones. Comput.and Applied Math. 24 (2005) , 245�283. 20



[5] A. Iusem and A. Seeger. Searching for critical angles in a convex cone. Math. Programming, 2008, inpress. Online version at Doi: 10.1007/s10107-007-0146-0[6] A. Iusem and A. Seeger. Angular analysis of two classes of non-polyhedral convex cones: the point ofview of optimization theory. Comp. Appl. Math. , 26 (2007) , 191�214.[7] J. Nash. Non-cooperative games. Ann. ofMath. 54 (1951 ) , 286�295.[8] J. Pe�na and J. Renegar. Computing approximate solutions for conic systems of constraints. Math.Programming 87 (2000) , 351�383.[9] R.T. Rockafellar and R.J. Wets, Variational Analysis , Springer-Verlag, Berlin, 1998.[10] D.W. Walkup and R.J.B. Wets. Continuity of some convex-cone-valued mappings. Proc. Amer. Math.Soc. 18 (1967) , 229�235.

21


