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Abstract. Intermediate depth, Boussinesq-type modeling is used to generalize previously known
results for surface water waves propagating over arbitrarly shaped topographies. The improved re-
duced wave model is obtained after studying how small changes in the linear dispersion relation
(over a flat bottom) can become dramatically important in the presence of a highly-fluctuating to-
pography. Numerical validation of the dispersive properties, regarding several possible truncations
for the reduced models, are compared with the complete (non-truncated) linear potential theory
model. Moreover, linear L2 estimates are extended from the analysis of KdV-type models to include
the improved Boussinesq systems in contrast with potential theory. Discrepancies observed among
the different possible reduced models become even more important in the waveform inversion prob-
lem. The time reversal technique is used for recompressing a long fluctuating signal, representing a
highly scattered wave that has propagated for very long distances. When properly backpropagated
(through a numerical model), the scattered signal refocuses into a smooth profile representing the
onset of the ocean’s surface disturbance. Previous Boussinesq models underestimate the original
disturbance’s amplitude. The improved Boussinesq system agrees very well with the full potential
theory predictions.
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1. Introduction. The physical applications for long wave interactions with to-
pography range from coastal surface waves [22] to atmospheric flows over mountain
ranges [3, 9]. Waves on the surface of an ideal fluid, under the force of gravity are
governed by the Euler equations. Nevertheless in both engineering applications as
well as laboratory scales, the full Euler equations appears more complex than nec-
essary. Very often this system, for the entire fluid body, can be simplified to more
tractable reduced surface models, when restricted to specific physical regimes. Un-
der this modeling strategy Boussinesq-type equations, which include the lowest order
terms regarding nonlinearity and dispersive effects, have been shown to provide an
accurate description for wave evolution in coastal regions. The first set of equations
valid for variable depth was derived by Peregrine [30] in 1967. The model is valid
under the mild slope hypothesis.

Very recently there has been a great amount of research regarding additional
modeling issues, namely in improving Boussinesq-type models as for example in [18,
19, 20, 29, 33, 21]. But all of these consider flat or slowly varying topographies.
For very general topographies a terrain-following Boussinesq model was developed
by Nachbin [28] in 2003. The model allows for multiply-valued topography profiles.
This model was analyzed in [23, 24, 13, 15]. Existence and uniqueness for a variable
coefficient Boussinesq system of equations was first given by Quintero and Muñoz in
2004 [32].

In the present paper we use ideas from Nwogu [29] and generalize them to the
present scenario of highly-variable (multiscale) depth profiles. We show how small
(higher order) changes in the linear dispersion relation (over a flat bottom) become
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2 J.C. MUÑOZ AND A. NACHBIN

dramatically important in the presence of a highly-fluctuating topography. We present
a linear dispersion analysis and validate the corresponding results both for a flat bot-
tom and also in the presence of a variable propagation medium. In order to fully
validate dispersive properties of several possible truncations, that can be made for
these Boussinesq-type models, we compare them with the corresponding complete
(non-truncated) model, namely linear potential theory. Moreover, in the appendix we
extend linear L2 estimates, deduced for KdV-type equations [5], in order to compare
solutions of the improved Boussinesq systems with those of potential theory. For the
numerical validation we use a new, highly efficient numerical scheme developed by
Artiles and Nachbin [1, 2]. Discrepancies observed become even more important in
the waveform inversion problem [31], an application for determining (for example) a
tsunami’s initial profile. Here we adopt the time reversal technique for recompressing
a long fluctuating signal, representing a highly scattered wave that has propagated for
very long distances. Time reversed recompression means that, if properly backprop-
agated (through a numerical model), the scattered signal will refocus into a smooth
profile representing the original waveform, namely that which would have been ob-
served at the onset of the ocean disturbance.

The paper is organized as follows. For completeness in section 2 we present an
overview of the terrain-following formulation given in [28]. Hence it becomes clear how
one can generate several different truncations regarding the different Boussinesq-type
models. In section 3 we present improved systems, generalizing Nwogu’s ideas [29],
for highly variable topographies. We also present the dispersive properties for several
different Boussinesq models. In section 4 we briefly describe the numerical methods
developed by Wei and Kirby [34] and recently adapted by Muñoz and Nachbin [24] for
the terrain-following Boussinesq model, together with a new efficient potential theory
solver developed by Artiles and Nachbin [1]. In section 5 the dispersion properties are
numerically validated and illustrated in the case of highly-variable depths. Finally in
section 6 the waveform inversion problem is analysed for both Gaussian and solitary
wave profiles and in section 7 we present our conclusions. Moreover, in the appendix
L2 estimates are deduced for comparing linear solutions of the (one parameter family
of) Boussinesq equations with those of the potential theory equations.

2. Formulation and background of the problem. In this section we de-
rive the family of governing equations adopted in this paper. These variable coeffi-
cient equations were introduced (without details) in a previous work by Quintero and
Muñoz [32] where global existence and continuous dependence on parameters was
demonstrated.

Consider the dimensionless form of the potential theory formulation for Euler’s
equations with a free surface and an impermeable bottom topography [35]:

(2.1) β φxx + φyy = 0 for − H(x/γ) < y < αη(x, t), −∞ < x < ∞,

subject to

(2.2) ηt + αφxηx − 1
β

φy = 0,

(2.3) η + φt +
α

2

(
φ2

x +
1
β

φ2
y

)
= 0



IMPROVED BOUSSINESQ TYPE EQUATIONS 3

at the free surface y = αη(x, t). The function φ(x, y, t) denotes the velocity potential,
η(x, t) the wave elevation measured with respect to the undisturbed free surface y = 0.
The dimensionless parameters α = ao/ho and β = h2

o/�2
p measure the strength of

nonlinear and dispersive effects, respectively, and the parameter γ = �/�p measures
the ratio inhomogeneities/wavelength. The typical amplitude is denoted by ao, the
typical depth by ho and the typical wavelength by �p. The topography’s horizontal
length scale of variation is �. In the potential theory model the fluid is assumed to be
inviscid, incompressible and irrotational.

At the impermeable bottom the Neumann condition

(2.4) φy +
β

γ
H ′(x/γ)φx = 0

is satisfied. We assume that the boundary at the bottom is described by the function
y = −H(x/γ) where

(2.5) H(x/γ) =
{

1 + n(x/γ) when 0 < x < L
1 when x ≤ 0 or x ≥ L.

The bottom profile is described by the (possibly rapidly varying) function n(x/γ).
We point out that the topography is rapidly varying when γ � 1. The undisturbed
depth is given by y = −1 and the topography can be of large amplitude provided that
|n| < 1. The fluctuations n are not assumed to be small, nor continuous, nor slowly
varying.

Next, in order to simplify the geometry of the problem and enable the asymp-
totical analysis of equations (2.1)-(2.5), we define a symmetric flow domain by re-
flecting the original one about the undisturbed free surface. In this symmetric do-
main we define curvilinear coordinates defined through the conformal mapping of
this region. This strategy was already employed in [17] and [28]. For complete-
ness we summarize the main ingredients of the asymptotic analysis in curvilinear
coordinates. The symmetric domain is denoted by Ωz where z = x + i

√
βy and it

can be considered as the conformal image of the strip Ωw where w = ξ + iζ̃ with
|ζ̃| ≤ √

β. Note that the topography is defined along the curve ζ̃ ≡ −√
β. Then

z = x(ξ, ζ̃) + i
√

βy(ξ, ζ̃) = x(ξ, ζ̃) + i ỹ(ξ, ζ̃) where x and ỹ are a pair of harmonic
functions on Ωw. In figure 2.1, we present a scheme which explains the changes of
variables to be introduced in the sequel.

The scaled water wave equations in the fixed orthogonal curvilinear coordinates
(ξ, ζ̃) are:

(2.6) φξξ + φ
ζ̃ζ̃

= 0, −
√

β < ζ̃ < α
√

βN(ξ, t),

with free surface conditions

(2.7) |J |Nt + αφξNξ − 1√
β

φ
ζ̃

= 0

and

(2.8) φt + η +
α

2|J |
(
φ2

ξ + φ2
ζ̃

)
= 0
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Fig. 2.1. Schematic plot which explains the changes of variables introduced in the derivation
of the extended Boussinesq equations. The conformal map transforming the rectangular coordinates
(x, ỹ) onto the curvilinear coordinates (ξ, ζ̃) is indicated in this plot.

at ζ̃ = α
√

βN(ξ, t). The bottom boundary condition (2.4) transforms into the trivial
condition

(2.9) φ
ζ̃

= 0 at ζ̃ = −
√

β.

The function N(ξ, t) denotes the position of the free surface in the new coordinate
system and |J | denotes the Jacobian of the change of coordinates:

|J | = xξ ỹζ̃ − ỹξxζ̃ = ỹ2
ζ̃

+ ỹ2
ξ .

At this point, it is convenient to let the origin of the curvilinear coordinate system
be at the bottom and define ζ̃ =

√
β(ζ − 1). In the system of coordinates (ξ, ζ),

equations (2.6)-(2.9) transform into

(2.10) βφξξ + φζζ = 0, at 0 < ζ < 1 + αN(ξ, t),

with free surface conditions

(2.11) |J |Nt + αφξNξ − 1
β

φζ = 0,

(2.12) η + φt +
α

2|J |
(

φ2
ξ +

1
β

φ2
ζ

)
= 0

at ζ = 1 + αN(ξ, t) and

(2.13) φζ = 0 at ζ = 0.
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As in Whitham [35], consider a power series expansion near the bottom of the
channel in the form

(2.14) φ(ξ, ζ, t) =
∞∑

n=0

ζn fn(ξ, t).

Asymptotic analysis will be performed at the level of the equations in terms of the
small parameters α and β.

By substituting this expression in the scaled Laplace equation (2.10) and using
the Neumann condition (2.13) at the bottom we can express the potential as a power
expansion in β

(2.15) φ(ξ, ζ, t) =
∞∑

n=0

(−β)n

(2n)!
ζ2n ∂2nf(ξ, t)

∂ξ2n

where, for simplicity, f(ξ, t) = f0(ξ, t).
Now using that at the smooth free surface ζ̃FS = α

√
βN(ξ, t) the Jacobian is

|J |(ξ, t) = ỹ2
ξ (ξ, ζ̃FS) + ỹ2

ζ̃
(ξ, ζ̃FS),

and the Taylor polynomial formula leads to

(2.16) |J |(ξ, t) = ỹ2
ζ̃
(ξ, 0) + α2RJ (ξ, ζ̃M ) = M(ξ)2 + O(α2), 0 < |ζ̃M | < |ζ̃FS |.

The metric term M(ξ) is defined below. Thus, the Jacobian can be well approximated
by an O(1) time independent coefficient. The time dependent correction term is O(α2)
due to the fact that the curvilinear coordinate system is symmetric about ỹ = ζ̃ = 0.
There are no O(α) terms. For the same reason, approximating ζ̃(x, ỹFS) in ỹ leads to

(2.17) N(ξ, t) =
1

M(ξ)
η(x(ξ), t) + α2βRN (ξ, ỹM ), 0 < |ỹM | < |ỹFS |,

and we establish a relation between the free surface representation in curvilinear
coordinates (N(ξ, t)) and in cartesian coordinates (η(x, t)).

At the undisturbed level we define the variable free surface coefficient [28]

M(ξ) ≡ ỹζ̃(ξ, 0) = 1 + m(ξ)

where

(2.18) m(ξ;
√

β, γ) ≡ π

4
√

β

∫ ∞

−∞

n(x(ξ0,−
√

β)/γ)
cosh2 π

2
√

β
(ξ0 − ξ)

dξ0 = (K ∗ (n ◦ x)) (ξ).

Recall that the square of the metric term M(ξ) is the leading order term of the
Jacobian. Note also that the coefficient M(ξ) is smooth even when the function
describing the bottom is discontinuous or non differentiable. Moreover the metric
coefficient is time independent and becomes identically one in the case of a constant
depth. These features are important when implementing a numerical solver for the
Boussinesq formulation.

Introducing the approximations (2.16), (2.17) in the equations (2.10)-(2.13), it
gives

(2.19) βφξξ + φζζ = 0, at 0 < ζ < 1 + α
η(ξ, t)

M
,
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with free surface conditions

(2.20) Mηt + αφξ

( η

M

)
ξ
− 1

β
φζ = 0,

(2.21) η + φt +
α

2M2

(
φ2

ξ +
1
β

φ2
ζ

)
= 0

at ζ = 1 + αη(ξ,t)
M and

(2.22) φζ = 0 at ζ = 0.

Using the power series expansion for the potential the free surface conditions (2.20)-
(2.21) can be further approximated as

(2.23) η + ft − β

2
fξξt +

α

2M2(ξ)
f2

ξ = O(αβ, β2),

(2.24) M(ξ) ηt +
[(

1 +
α

M(ξ)
η

)
fξ

]
ξ

− β

6
fξξξξ = O(α2, αβ, β2).

Remark that the variable coefficients in the system above are time independent and
depend only on ỹζ̃(ξ, 0). This is a consequence of equations (2.16)-(2.17). Moreover,
the transversal curvilinear coordinate ζ does not appear in the equations above.

In [28] it is shown that equations (2.23)-(2.24) lead to the terrain-following
system

M(ξ)ηt +
[(

1 +
α η

M(ξ)

)
Uo

]
ξ

= 0,(2.25)

Uo,t + ηξ + α

(
U2

o

2M2(ξ)

)
ξ

− β

3
Uo,ξξt = 0,(2.26)

where Uo is the depth averaged velocity

(2.27) Uo(ξ, t) =
1

ζFS

∫ ζF S

0

φξ(ξ, ζ, t)dζ.

As pointed out in Nachbin [28] these are weighted averages along (ξ ≡constant)-curves
connecting the undisturbed free surface to the topography (c.f. figure 2.2). It turns
out that the conformal mapping gives more weight near the free surface, than to the
regions in the deep valleys, where the topography is rapidly varying.

3. Improved Boussinesq systems. In the present work, instead of using the
depth averaged velocity, we will express the evolution equations in terms of the fluid
velocity measured at an intermediate depth, say at ζ = Z0(ξ), with u(ξ, t) =
φξ(ξ, Z0(ξ), t), where 0 < Z0(ξ) < 1. This idea was already applied by Nwogu [29]
to obtain a formally equivalent Boussinesq approximation, in the case where the
depth is slow-varying. The purpose was to improve the dispersive characteristics
of the resulting reduced model. Recall that we are interested in the case where the
topography dependent coefficient M(ξ) is allowed to (also) vary on a fast scale denoted
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Fig. 2.2. Multiscale topography with the ξ − ζ curvilinear coordinate system.

by � [15, 13, 14, 16, 23, 24, 28]. In the sequel we will show how, by using curvilinear
coordinates, we are able to extend Nwogu’s strategy to more general topography
profiles.

Differentiating equation (2.15) with respect to ξ and evaluating at ζ = Z0(ξ), we
find

(3.1) u(ξ, t) = φξ(ξ, Z0, t) = fξ − β

2
Z2

0fξξξ + O(β2) = ũ − β

2
Z2

0 ũξξ + O(β2),

where for simplicity, we let ũ = ũ(ξ, t) = fξ(ξ, t) be the “slip velocity” along the
bottom of the channel. As a consequence,

(3.2) ũ = u(ξ, t) +
β

2
Z2

0 ũξξ + O(β2).

Substituting the expression for ũ (given by the equation above) into equations
(2.23)-(2.24) and retaining only terms up to O(α), O(β), we arrive at the system

M(ξ)ηt +
[(

1 +
α η

M(ξ)

)
u

]
ξ

+
β

2

[(
Z2

0 − 1
3

)
uξξ

]
ξ

= 0,(3.3)

ut + ηξ + α

(
u2

2M2(ξ)

)
ξ

+
β

2
(Z2

0 − 1)uξξt = 0.(3.4)

An interesting observation is that the system above reduces to the terrain-following
system (2.25)-(2.26) when we set Z0 =

√
1/3. Namely at this intermediate depth the

system is exactly the same as using the (ζ) depth-averaged velocity.
Several Boussinesq formulations can be derived from equations (3.3)-(3.4) de-

pending on where the terrain-following velocity (φξ) is monitored. In particular, by
letting Z0 =

√
2/3, system (3.3)-(3.4) reads

M(ξ)ηt +
[(

1 +
α η

M(ξ)

)
u

]
ξ

+
β

6
uξξξ = 0,(3.5)

ut + ηξ + α

(
u2

2M2(ξ)

)
ξ

− β

6
uξξt = 0.(3.6)

Equation (3.5) implies in

(3.7) uξ(ξ, t) = −M(ξ)ηt + O(α, β).
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By putting this relationship into system (3.5)-(3.6), and retaining only terms of order
O(α, β), we obtain the model

(M(ξ)η)t +
[(

1 +
α η

M(ξ)

)
u

]
ξ

− β

6
(M(ξ)η)tξξ = 0,(3.8)

ut + ηξ + α

(
u2

2M2(ξ)

)
ξ

− β

6
uξξt = 0.(3.9)

System (3.8)-(3.9) was presented by Quintero and Muñoz in [32]. The main property
of this particular Boussinesq formulation is the existence of a conserved energy-type
functional which enables the use of classical tools to demonstrate the global existence
of its solutions [32]. We remark that the existence of this conserved quantity is
unclear for the Boussinesq model (2.25)-(2.26). Of equal importance is the presence
of symmetric dispersive terms in both equations of the system (3.8)-(3.9), expressed
through the operator ∂t −β/6∂ξξt. This operator can be inverted [32] and the system
cast into an integro-differential form, so that the fixed point principle can be applied
in order to establish local existence of solutions.

Note that the dispersive terms of the model above are modified when we change
the level at which the fluid velocity u is measured, i.e. the parameter Z0. We remark
that this degree of freedom (to select the parameter Z0) allows us to match the linear
dispersion relation, corresponding to the Boussinesq approximation (3.3)-(3.4), with
that of the original potential theory equation (2.19)-(2.22) up to a higher order. This
will be explained in section 3.1.

Furthermore, note that all variable coefficients in the model are smooth even when
the physical topography profile is described by a discontinuous or even a multi-valued
function. We point out that Nwogu [29] obtained a set of equations with dispersive
terms similar to those in system (3.3)-(3.4) However, the applicability of Nwogu’s
formulation is restricted to slowly-varying bottom profiles, which is a common feature
of other Boussinesq-type formulations, as for instance [30, 19, 20, 33, 36, 18]. The
reason is that in cartesian coordinates the neglected terms of order O(α2, αβ, β2) in
the Boussinesq model turn out to be large when the detailed features of the topography
are small compared to the typical wavelength [17].

In contrast, in the present Boussinesq formulation (3.3)-(3.4), the neglected terms
of order O(α2, αβ, β2) remain small even when the topography is rapidly vary-
ing. This is due to the use of terrain-following (curvilinear) coordinates [28]. Thus,
we expect that the solutions of equations (2.19)-(2.22) and system (3.3)-(3.4) coincide
with good accuracy even when dispersion is significant. The agreement between the
two models, in the presence of nontrivial dispersion, is demonstrated rigorously in
appendix A in the case where the depth is constant.

When the bottom is described by a complicated function, we can not prove this
fact but the numerical experiments, to be presented in the following section, will
provide strong numerical evidence on this regard within the range 0 < β < 0.05,
α = 0.001. To be specific, in a laboratory scale this regime is such that for example,
if ho = 10 mt (characteristic depth), ao = 0.01 mt, (characteristic wave amplitude)
and the typical pulse width is �p ≈ 44.7214 mt. In the ocean these are at least scaled
by a factor of 100. For example a tsunami has a few meters of amplitude and several
kilometers of length. It can be generated in regions one thousand meters deep.

3.1. Linear dispersive properties. To perform an analysis regarding the dis-
persive terms in equations (3.3)-(3.4) it is sufficient to consider the intermediate depth
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Z0 to be a constant.
It is important to remark what is expected from the asymptotically simplified

Boussinesq model (3.3)-(3.4). It would be desirable that its solution approximates,
in some sense, the solution of the original potential theory equations (2.19)-(2.22),
provided that 0 < α << 1, 0 < β << 1. Within this regime the high-order terms
O(α2, αβ, β2) are expected to be negligible with respect to the first order terms re-
tained in the Boussinesq model (3.3)-(3.4).

The analytical, dispersion relation, consistency between the Boussinesq system
(3.3)-(3.4) and the potential formulation of the Euler equations (2.19)-(2.22) is a
necessary condition so that the new model is able to capture the same (long wave)
physical phenomena as the original fluid equations.

To start, consider the linear dispersion relation with the phase velocity

(3.10) C2 =
ω2

k2
=

1 − (β/2)(Z2
0 − 1

3 )k2

1 − (β/2)(Z2
0 − 1)k2

for model (3.3)-(3.4). Also we have the phase velocity for Airy waves given by

C2
Airy =

ω2

k2
=

1√
βk

tanh(
√

βk)

≈ 1 − 1
3
(
√

βk)2 +
2
15

(
√

βk)4 − 17
315

(
√

βk)6 + O((
√

βk)8),(3.11)

corresponding to equations (2.19)-(2.22). The approximations above correspond to
the Taylor series expansions for

√
βk small. Observe that, according to equation

(3.10), the velocity of propagation of solutions to models (3.3)-(3.4) and (2.19)-(2.22)
depend on the wave number k, indicating their dispersive nature. Furthermore the
phase speed is affected by depth Z0 selected in the Boussinesq model. We remark
that the dispersion relation (3.10) corresponds to a Padé approximation of the exact
dispersion relation (3.11).

As mentioned above, the interesting point here is that we can use this degree of
freedom (by selecting the parameter Z0) in order to match the Taylor series expansion
of the dispersion relation (3.11) up to terms of O((

√
βk)4). This will be shown below.

By using a particular value of the intermediate depth variable Z0 we can decrease the
errors in the phase velocity introduced when the high-order terms O(α2, αβ, β2) are
neglected in the asymptotic analysis used to derive the equations (3.3)-(3.4).

Recall that in constant depth, this fact can be established rigorously by using the
Fourier transform technique. This is accomplished in appendix A where we show that
the difference in L2–norm of the solutions of models (2.19)-(2.22) and the Boussinesq
system (3.3)-(3.4) with α = 0 (linear regime) and constant depth (M ≡ 1) is smallest
when Z0 =

√
1/5 within a time interval which tends to infinity when β → 0. The

analysis extends that presented in [5] which considered KdV-type models. For this
value of the parameter Z0, the dispersion relation (3.10) transforms into

ω2

k2
=

1 + (β/15)k2

1 + 2(β/5)k2

≈ 1 − 1
3
(
√

βk)2 +
2
15

(
√

βk)4 − 4
75

(
√

βk)6 + O((
√

βk)8).(3.12)

This result is beyond expected since the Boussinesq model is only accurate up to
order O(α, β). Thus, we get a significant improvement in accuracy of the dispersion
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relation of the Boussinesq approximation (3.3)-(3.4), in contrast to system (2.25)-
(2.26) which is based on the depth averaged velocity. We remark that the linear
dispersion corresponding to the terrain-following system (2.25)-(2.26) is only accurate
up to order O(β).

However, we can obtain an optimal value of the depth parameter Z0, by minimiz-
ing the relative error of the phase velocity for instance, over the frequency interval
0 <

√
βk < 5. The result of this process is the value Z0 = 0.469 [29]. It gives a

maximum error of 6 % for the entire range. In contrast, for the terrain-following
system (2.25)-(2.26), we obtain a maximum relative error in the same interval of 15
%. This is shown in figure 3.1 where we compare the dispersion relations for the
terrain-following system (2.25)-(2.26), with the one for formulation (3.3)-(3.4) having
either Z0 =

√
1/5 or Z0 = 0.469. The relative error is computed with respect to the

linear potential equations (2.19)-(2.22).
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0
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0
=√1/5  (circles)

√β k 

Fig. 3.1. Relative error of the phase velocity as a function of
√

βk for the Boussinesq-type
system (3.3)-(3.4) with Z0 =

p
1/3 (the terrain-following system), Z0 = 0.469 and Z0 =

p
1/5.

4. Numerical schemes. In this section we want to provide numerical evidence
regarding the dispersion analysis presented above and also explore the differences
between the various (variable coefficient) Boussinesq models, namely when in the
presence of rapidly varying topographies.

4.1. Numerical scheme for the Boussinesq models. For completeness we
present the numerical scheme employed in computing the solutions to the one param-
eter family of Boussinesq systems (3.3)-(3.4). This scheme is basically the same as
that developed by Wei and Kirby [34] and which we adapted in [24]. For simplicity,
let

g(ξ) =
1
2
(Z2

0 (ξ) − 1).

First we rewrite the system in a more convenient way, as
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ηt = E(η, u),(4.1)
Vt = F (η, u),

where

E(η, u) = − 1
M(ξ)

((
1 +

αη

M(ξ)

)
u

)
ξ

+
β

M(ξ)
((g(ξ) + 1/3)uξξ)ξ,(4.2)

F (η, u) = −ηξ − α

2

(
u2

M(ξ)2

)
ξ

.

The intermediate variable V is defined as

V = u − βg(ξ)uξξ.

We now approximate the solution of system (4.1) by using a high-order predictor-
corrector solver. The space-time domain {ξ ∈ [ξ1, ξJ ] , t ≥ 0} will be discretized by
ξj = ξ1 + (j − 1)∆ξ, 1 ≤ j ≤ J and tn = (n − 1)∆t, 1 ≤ n ≤ N0, respectively. The
discretizations of the variables u, η, V will be denoted by un

j , ηn
j , V n

j . As mentioned
above this strategy is basically the same as that presented in [24], the difference being
that the Sturm-Liouville type problem, for inverting the change of variables from V
back to u, has the new coefficient g(ξ).

As suggested in [34] we use a third-order explicit Adams-Bashforth solver to
produce a predicted value for (V, η) and then a fourth-order implicit Adams-Moulton
scheme is applied to obtain a corrected solution. The predictor is given by

ηn+1
j = ηn

j +
∆t

12
(23En

j − 16En−1
j + 5En−2

j ),

V n+1
j = V n

j +
∆t

12
(23Fn

j − 16Fn−1
j + 5Fn−2

j ).(4.3)

The notation En
j = E(ηn

j , un
j ) and Fn

j = F (ηn
j , un

j ) is used. The first-order derivatives
in equation (4.2) and uξξξ are approximated by appropriate differences schemes [24].
Recall that for evaluating the fluid velocity un+1

j we must solve the (spatial) ordinary
differential equation

(4.4) u − βg(ξ)uξξ = V,

which is forced by the known left handside V n+1
j . The second derivative in equation

(4.4) is discretized by a centered approximation giving rise to a tridiagonal system
of algebraic equations which is solved very efficiently. We remark that this system’s
matrix is constant in time and thus only one LU decomposition must be performed
at the starting point.

When the boundary values un+1
1 and un+1

J and ηn+1
1 and ηn+1

J are required, we
use the linear radiation conditions (B. Engquist and A. Majda [10])

ut − uξ = 0, at ξ = ξ1,(4.5)
ut + uξ = 0, at ξ = ξJ ,
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where ξ1 and ξJ denote the left and right ends of the computational domain. Anal-
ogous conditions are applied on the function η. Conditions above play the role of
absorbing the waves arriving at the boundaries of the computational domain. This
allows us to perform numerical simulations without introducing a too long computa-
tional spatial domain. These conditions work well for small amplitude waves propa-
gating in the linear regime in the absence of a topography. Therefore at the extremes
of our computational domain the channel has a short flat bottom region.

Once the predicted values ηn+1
j , un+1

j are obtained we compute En+1
j , Fn+1

j from
equations (4.2). The corrected values are calculated from

ηn+1
j = ηn

j +
∆t

24
(9En+1

j + 19En
j − 5En−1

j + En−2
j ),

V n+1
j = V n

j +
∆t

24
(9Fn+1

j + 19Fn
j − 5Fn−1

j + Fn−2
j ),(4.6)

where the quantities at level n + 1 are computed iteratively by using the predicted
approximation as the initial guess. The new un+1

j is computed from V n+1
j as in the

predictor step. We stop the iteration process when the relative error between two
successive corrected values ηn+1, un+1 and η(n+1)∗ , u(n+1)∗ are smaller than a given
tolerance.

To verify the stability and the accuracy of this numerical scheme we perform a
simulation with constant depth, taking alternatively Z0 =

√
1/5, Z0 = 0.469.

Adapting the strategy described in [34] an approximate solitary wave solution for
system (3.3)-(3.4) can be written as

η(ξ, t) = A1sech
2(B(ξ − Ct − ξo)) + A2sech

4(B(ξ − Ct − ξo)),(4.7)

u(ξ, t) = Asech2(B(ξ − Ct − ξo)),

where

A1 =
C2 − 1

3
2α(Z2

0 − 1/3 − (Z2
0 − 1)C2)

, A2 = − (C2 − 1)2(1
2 (Z2

0 − 1/3) + (Z2
0 − 1)C2)

αC2(Z2
0 − 1

3 ) − (Z2
0 − 1)C2

B =
{

C2 − 1
2β(Z2

0 − 1/3 − (Z2
0 − 1)C2)

}1/2

, A =
C2 − 1

αC
.

The parameter ξo indicates the location of the solitary wave at t = 0. The
constant C is the wave velocity and it is calculated from the equation

(4.8) 2(Z2
0 − 1)C6 − ((3 + 2α)(Z2

0 − 1) +
2
3
)C4 + 2α(Z2

0 − 1
3
)C2 + Z2

0 − 1
3

= 0.

Observe that the wave speed and the amplitude of the wave are connected. We
point out that (4.7) corresponds to an exact solitary wave for the Benney-Luke type
equation

φtt − φξξ + α(2φξφξt + φtφξξ) − β(
Z2

0 − 1/3
2

φξξξξ − Z2
0 − 1
2

φξξtt) = 0,

which is formally equivalent to system (3.3)-(3.4) (with u = φξ) up to order O(α, β).
We now perfom a numerical experiment. When α = β = 0.03, and Z0 =

√
1/5

or Z0 = 0.469, the wave speed (computed from (4.8)) is approximately C ≈ 1.01485.
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In the simulation the discretization parameters used were ∆ξ = 0.0333, ∆t = 0.0267
and the computational domain is taken as [0,100]. In these experiments, we observe
that the solitary wave preserves its shape after propagating over a distance of ap-
proximately 13 times its effective width (� ≈ 6). There is no indication of numerical
attenuation nor spurious dispersion. The solitary wave speed coincides with good
accuracy with the speed of the numerical solitary solution. This was systematically
observed in several numerical experiments with different values of the parameters α,
β and of the intermediate depth Z0 in system (3.3)-(3.4). We remark that the disper-
sion and nonlinearity values α = β = 0.03 are not negligible [23, 24] in this problem.
Thus, we conclude that the numerical scheme is describing very well both nonlin-
ear and dispersive effects present in the (one parameter family) Boussinesq models
(3.3)-(3.4).

80 85 90 95 100
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

80 85 90 95 100
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

ξ ξ 

(A) 

η  at  t=80 

(B) 

Fig. 4.1. Propagation of the solitary wave for model (3.3)-(3.4) with α = β = 0.03. Convention:
solid line indicates the numerical solution and the dots profile (4.7). (A) Boussinesq model with

depth parameter Z0 =
p

1/5. (B) with Z0 = 0.469.

4.2. Numerical scheme for the linear potential theory equations. Con-
sider the linearization of equations (2.19)-(2.22)

βφξξ + φζζ = 0, for 0 < ζ < 1,(4.9)

ηt − 1
βM(ξ)

φζ = 0, at ζ = 1,(4.10)

η + φt = 0, at ζ = 1,(4.11)
φζ = 0, at ζ = 0,(4.12)

subject to the initial conditions

φ(ξ, 1, 0) = φ0(ξ), η(ξ, 0) = η0(ξ).

At the time stage (n + 1)∆t we discretize the equations at the free surface ζ = 1
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by

ηn+1 − ηn

∆t
− φn+1

ζ + φn
ζ

2βM(ξ)
= O(∆t2),(4.13)

φn+1 − φn

∆t
+ ηn +

∆t

2βM(ξ)
φn

ζ = O(∆t2).(4.14)

This scheme in time is basically the same as used in [25, 26, 27]. It is perfectly suited
for the Dirichlet-to-Neumann (DtN) formulation presented by Artiles and Nachbin
[1, 2] as we shall describe. Having an expression for the DtN operator enables writing
a highly efficient and highly accurate numerical scheme, without any truncation errors
in space. By the construction of the DtN operator presented in [1, 2], the normal
derivative at the free surface can be computed through

φζ(ξ, 1, t) =
1
2π

∫ ∞

−∞
k
√

βtanh(
√

βk)φ̂(k, 1, t)eikξdk.(4.15)

This expression is exact and automatically satisfies Laplace’s equation (4.9). Moreover
it can be easily evaluated through the FFT algorithm. Here the hat denotes the
Fourier transform with respect to the spatial coordinate ξ. In conclusion at any fixed
time t equation (4.15) transforms Dirichlet data (φ(ξ, 1, t)) into the corresponding
Neumann data along the (linear) free surface of the fluid (ζ = 1). A nonlinear DtN
operator was also described in [1, 2]. Its numerical implementation is currently under
investigation.

5. Numerical experiments. In this section, we will compare model (3.3)-(3.4)
with Z0 = 0.469 (the optimal value of the depth parameter, c.f. section 3.1), the
terrain-following Boussinesq system (2.25)-(2.26), both with the original linear (α = 0)
potential theory equations in curvilinear coordinates (2.19)-(2.22). This will be per-
formed through a suite of numerical experiments performed by using the Boussinesq
solvers described in section 4. We only consider the linear regime for the potential
theory equations in order to fully focus on the dispersion issues discussed earlier.
Simulations with the full nonlinear potential equations will appear in a future work.

Given a pair (f, g) of initial data for the potential theory equations (2.19)-(2.22)
we will explain how to compute the corresponding initial data for the Boussinesq
systems (3.3)-(3.4) and (2.25)-(2.26). This is the main difficulty in comparing the
solutions of these models because the dependent variables are not the same. We
proceed as follows.

Let Ω denote the rectangle bounded by ζ = 0, ζ = 1, ξ = 0 and ξ = L, L > 0.
Let us give the free surface data (φ, η) for equations (2.19)-(2.22). Then we compute
the corresponding initial potential profile φ(ξ, Z0, 0) (at the depth ζ = Z0 and time
t = 0) by the contour integral

φ(ξ, ζ = Z0, 0) =
1

2π
√

β

∮
∂Ω

(φ(Q, 0)Gñ(P, Q) − φñ(Q, 0)G(P, Q)) dQ.(5.1)

We use the notation: P = (ξ, Z0), Q = (ξ̃, ζ̃), φñ = (βφξ, φζ).�n (�n denotes the outer
normal vector at the boundary ∂Ω), with the Green’s function

G(ξ, ζ, ξ̃, ζ̃) =
1
2
ln((ξ − ξ̃2 + β(ζ − ζ̃)2) +

1
2
ln((ξ − ξ̃2 + β(ζ + ζ̃)2).(5.2)
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We remark that equation (5.1) is a consequence of Green’s third identity. Details can
be found in [25, 26, 27]. Note also that kernel G is such that Gñ = 0 at the channel
bottom ζ = 0 and ∆(ξ,ζ)G(P, Q) = δP (Q), where δP (Q) represents the Dirac delta
function. Now, since φζ = 0 at the bottom ζ = 0, and assuming that φ, φñ tend to
zero when |ξ| → ∞, we have that when L → ∞, the contour integral in (5.1) needs
only to be evaluated along the free surface ζ = 1. Namely,

φ(ξ, ζ = Z0, 0) =
1

2π
√

β

∫ ∞

−∞

(
φ(Q̃, 0)Gñ(P, Q̃) − φñ(Q̃, 0)G(P, Q̃)

)
dξ̃,(5.3)

where Q̃ = (ξ̃, 1). This reduces the number of grid points along the contour by at
least 50 percent. The topography does not need to be discretized and its effect is built
into the (smooth) free surface coefficient M(ξ). Once the initial velocity potential is
computed by the numerical evaluation of the integral, the initial value for the velocity
of the Boussinesq model (3.3)-(3.4) is calculated as u(ξ, 0) = u0(ξ) = φξ(ξ, Z0, 0). We
remark that the wave elevation at t = 0, η(ξ, 0) = η0(ξ) coincides in both models.

5.1. Constant depth experiments. The goal of our first experiment is to give
evidence of some results from the dispersion analysis performed for the Boussinesq
models considered, in respect to the potential theory equations (2.19)-(2.22). This is
done in the case where the depth is constant. We set β = 0.2 and α = 0.001, i.e. we
have nontrivial dispersion and the regime is effectively linear.

To keep our focus on the full dispersion relation we solve the linear potential
theory equations (4.9)-(4.12) on the computational domain [0, 20π], with ∆t = 0.0063
and 8192 FFT points in the spatial mesh (where ∆ξ = 0.00767). The boundary
conditions are periodic but no activity will be observed at the extremes of the interval
[0, 20π]. The initial conditions are

Φ(ξ, 1, 0) = Φ0(ξ) =

√
10
π

e−5(ξ−20)2 ,

η(ξ, 0) = η0(ξ) = −10

√
10
π

(ξ − 20)e−5(ξ−20)2.

These conditions produce right and left going waves when β �= 0. Nevertheless the
left going wave tends to zero as β ↓ 0 [26, 35]. Remark that once the solution to
the equations (4.9)-(4.12) are known, then the initial fluid velocity for the Boussinesq
models is computed through the equation (5.3) as explained above. The parameters
for solving the system (2.25)-(2.26) are ∆t = 0.0063, ∆ξ = 0.0077. In figure 5.1 we
superimpose the solutions of models (4.9)-(4.12) and (2.25)-(2.26) at time t = 25. We
observe that they coincide with good accuracy in the interval [36,50] corresponding
to the wavefront, namely of low wavenumber content [35]. As expected, the signals
in the interval [5,35] differ due to the truncation errors introduced by neglecting the
terms of order O(β2) in the Boussinesq model (3.3)-(3.4).

In figure 5.2 the solution of system (3.3)-(3.4) with the optimal value of the depth
parameter Z0 = 0.469 (computed as explained in section 3.1) is compared with the
original equations (4.9)- (4.12). The numerical parameters are the same as before. In
contrast to the previous experiment, the solutions match with good accuracy in the
whole interval [5,50]. The Boussinesq system (3.3)-(3.4) captures well the dispersive
details of the oscillatory coda of the propagating signal. In figure 5.1 the mismatch
along the coda is due to the large phase errors as depicted in figure 3.1.
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These experiments are in agreement with the linear dispersion analysis performed
in section 3.1 and the theory presented in appendix A.

5 10 15 20 25 30 35 40 45 50
−1.5

−1

−0.5

0

0.5

1

1.5
η at t = 25β=0.2 

ξ 

Fig. 5.1. A rightgoing wavetrain to the right and a small leftgoing wavetrain to the left. Dashed
line: Numerical solution of the terrain-following system (2.25)-(2.26). Solid line: Numerical solu-
tion of the equations (4.9)-(4.12). Model parameters: α = 0, β = 0.2.
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η at t = 25β=0.2 

ξ 

Fig. 5.2. Dashed line: Numerical solution of system (3.3)-(3.4) with Z0 = 0.469. Solid line:
Numerical solution of the equations (2.19)-(2.22). Model parameters: α = 0, β = 0.2.

5.2. Highly variable topography. We have tested the different models over
a flat bottom and now we are in a position to perform experiments in the presence
of an irregular bottom. We will consider two levels of dispersion in the models. The
variable coefficient M(ξ) is taken to be of the form

M(ξ) = 1 + δn(ξ/γ),

where n(ξ/γ) is a mean-zero piecewise linear function constructed by using a ran-
dom number generator in the interval [-1,1] and δ measures the amplitude of the
fluctuations. The constant γ measures the relative scale of variation of the bottom
irregularities. We consider γ to be small. This type of synthesized function has been
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employed by several researchers in order to validate pulse shaping theory in random
media [4, 8, 12, 7]. Maintaining our focus on the linear regime we will examine how
the reduced Boussinesq model captures the fine features of the topography in contrast
with the potential theory model.

We start by fixing a very small dispersion parameter value β = 0.002. In figure 5.3
we compare the solution (i.e. a multiply scattered segment of the wave) of equations
(4.9)-(4.12) with the solution of the model (2.25)-(2.26). The numerical parameters for
equations (4.9)-(4.12) are ∆t = 0.01, 212 FFT points in space where the computational
domain is [0,150]. The numerical parameters for solving system (2.25)-(2.26) are
∆ξ = 0.024, ∆t = 0.0125 and the computational domain is [0,120]. The irregularities
of the coefficient M(ξ) covers the interval [67,107] and the fluctuations are such that
δ = 0.5 and � = 0.1. The initial conditions for equations (2.19)-(2.22) are

Φ(ξ, 1, 0) = Φ0(ξ) = e−20(ξ−60)2 ,

η(ξ, 0) = η0(ξ) = −40(ξ − 60)e−20(ξ−60)2 .

Here we are considering a shorter pulse (hence having a broader band in wavenumber
space) to show the broad range of applicability of the numerical method and also of
the dispersion analysis presented. The corresponding initial velocity at Z0 =

√
1/3

for the system (2.25)-(2.26) is calculated from equation (5.3). Observe in figure 5.3
that the solutions of the original potential theory equations and the approximated
Boussinesq model agree well. We are graphing the region where we measured the
maximum value of the error. Over the rest of the computational domain the solutions
agree even better.

In figure 5.4 we compare the solution of equations (4.9)-(4.12) to the solution
of the model (3.3)-(3.4) for the optimal value of the depth parameter Z0 = 0.469.
The numerical parameters for the model equations are the same as in the previous
experiment. The corresponding solutions of the two models agree with even better
accuracy.
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β=0.002 η  at  t=50 

ξ 

Fig. 5.3. Dashed line: Numerical solution of the terrain-following system (2.25)-(2.26). Model
parameters: α = 0.001, β = 0.002. Solid line: Numerical solution of the equations (4.9)-(4.12).
Model parameters: α = 0, β = 0.002.

An additional experiment (figure 5.5) is performed for Zo =
√

2/3, keeping α =
0.001, β = 0.002. This is the best value for the depth parameter in order to prove
theorems regarding solution properties in function space [6, 32]. Nevertheless the
comparison with potential theory is not as good as for Z0 = 0.469.
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Fig. 5.4. Dashed line: Numerical solution of the Boussinesq system (3.3)-(3.4). Model parame-
ters: α = 0.001, β = 0.002, Z0 = 0.469. Solid line: Numerical solution of the equations (4.9)-(4.12).
Model parameters: α = 0, β = 0.002.
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Fig. 5.5. Dashed line: Numerical solution of the system (3.8)-(3.9). Model parameters: α =

0.001, β = 0.002, Zo =
p

2/3. Solid line: Numerical solution of the equations (4.9)-(4.12). Model
parameters: α = 0, β = 0.002.

Now we increase the dispersion parameter to β = 0.05. In figure 5.6 we contrast
the solution for equations (4.9)-(4.12) with the solution of model (2.25)-(2.26). We use
the same numerical parameters as in the preceding experiments. We take a different
realization of the metric coefficient M(ξ) in this set of experiments to show that the
results are generic. In this case, the error introduced when the dispersive terms are
truncated in the Boussinesq model (3.3)-(3.4) (with Z0 =

√
1/3) is appreciable.

To contrast with the preceding experiment, in figure 5.7 we compare the solutions
for equations (4.9)-(4.12) with those for system (3.3)-(3.4) with Z0 = 0.469. As
explained in section 3.1, for this particular value of the depth parameter Z0, the
smaller relative error in phase velocity for the models considered makes the difference.
Now, the solutions agree well inside the region [67,107] where the fluctuations of
the topography are located. This experiment provides strong evidence that the new
Boussinesq formulation (3.3)-(3.4) (with Z0 = 0.469) enables an improved prediction
for the pulse reflection with respect to the terrain-following system (2.25)-(2.26). This
behaviour was observed systematically in several numerical experiments performed for
different levels of the dispersion parameter β.
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Fig. 5.6. Dashed line: Numerical solution of the terrain-following system (2.25)-(2.26). Model
parameters: α = 0.001, β = 0.05. Model parameters: α = 0.001, β = 0.05. Solid line: Numerical
solution of the equations (4.9)-(4.12). Model parameters: α = 0, β = 0.05.
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Fig. 5.7. Dashed line: Numerical solution of system (3.3)-(3.4) with Z0 = 0.469. Model
parameters: α = 0.001, β = 0.05. Solid line: Numerical solution of the equations (4.9)-(4.12) .
Model parameters: α = 0, β = 0.05.

Finally consider the (optimal L2 norm) value Zo =
√

1/5 = 0.447. This value is
no that different from 0.469. Nevertheless some differences in the highly fluctuating
part of the scattered signal can be noticed (c.f. figure 5.8).

6. Waveform inversion by time reversal refocusing. Time-reversal experi-
ments can be performed for the transmitted (TRT) or for the reflected (TRR) signal as
schematically indicated in figure 6.1. The transmitted (or reflected signal) is recorded
at the corresponding extreme of the inhomogeneous medium. The data is time re-
versed and sent back into the same medium through the exact same model. By time
reversion it is meant that information recorded last is sent out first. In other words
the recorded signal is used as a new initial data, for the same system of partial dif-
ferential equations, but it is propagated backwards into the (same) inhomogeneous
medium, as indicated in figure 6.1. Much mathematical and experimental work has
been done showing that this process leads to the recompression of the noisy signal into
the original pulse shape. In particular laboratory experiments were done for acous-
tic waves [11]. For mathematical details please consult [24, 13] and the references
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Fig. 5.8. Dashed line: Numerical solution of the system (3.3)-(3.4) with Z0 =
p

1/5. Model
parameters: α = 0.001, β = 0.05. Solid line: Numerical solution of the equations (2.19)-(2.22).
Model parameters: α = 0, β = 0.05.

therein, which include several leading work by Papanicolaou and collaborators. One
of our recent goals has been to study the time-reversal refocusing for solitary waves.
In previous work, we have mathematically analysed the effect of dispersion [13] and
the effect of nonlinearity [14] separately. Nevertheless to the present date there is
no theory for the time-reversed refocusing of solitary waves or solitons of any kind.
Numerical simulations with solitary waves have been presented in [24, 15] and are
further explored in the present paper through the improved Boussinesq model. We
hope that this experimental study will eventually lead to new mathematical theory.

Regarding applications in water waves, the problem of waveform inversion has
been studied by adjoint methods as in Pires and Miranda [31] and the references
within. Their goal is to characterize the initial sea surface displacement due to
tsunamigenic earthquakes. In other words one would like to recover (numerically)
relevant details of a tsunami source from tidal gauge observations. In our case, in-
stead of performing the backward numerical integration for the corresponding adjoint
equations, we use the (same) forward numerical model but with the time-reversed
data as explained above. Waveform inversion is obtained through the time-reversed
refocusing effect. The advantage regarding time-reversal methods is for nonlinear
problems. For adjoint methods there are technical difficulties involved with nonlin-
earity as reported by Pires and Miranda [31].

The purpose of this section is to revisit the refocusing phenomenon, now in the
case of the system (3.3)-(3.4) with the optimal depth Z0 = 0.469. We also present time
reversal simulations with the potential theory equation. We note that this has never
been done before. The goal is to observe the improved waveform inversion procedure
in comparison with earlier experiments. Namely, up to now, all the dispersive time
reversal refocusing experiments were performed for the depth-averaged Boussinesq
system, which amounts to Z0 =

√
1/3 [24, 13, 15]. In addition, we will further

explore the refocusing of solitary waves, for different values of the amplitude of the
topography fluctuations and of the correlation length of the irregularities.

Throughout this section, the numerical parameters for equations (4.9)-(4.12) are
∆t = 0.01, 212 FFT points in space and the computational domain is [0,150]. The
numerical parameters for systems (2.25)-(2.26) and (3.3)-(3.4) are ∆ξ = 0.024, ∆t =
0.0125 and the computational domain is [0,120]. The irregularities of the coefficient
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Fig. 6.1. Schematic figure for time reversal simulations.

M(ξ) are located in the interval [67,107] and again δ = 0.5 and � = 0.1.

6.1. TRR refocusing of Gaussian pulses. The first experiment uses β =
0.002 and α = 0.001 indicating a weakly dispersive, effectively linear regime. The
pulses are the same as before, namely

Φ(ξ, 1, 0) = Φ0(ξ) = e−20(ξ−60)2 ,

η(ξ, 0) = η0(ξ) = −40(ξ − 60)e−20(ξ−60)2 .

Note that for a time-reversal in reflection (TRR) experiment we only record the
reflected signal, recorded to the left of the topography (c.f. figure 6.1). Hence this
fluctuating signal has no indication whatsoever of the original pulse shape, say as
opposed to the transmitted wave. These fluctuating signals (for η and u) are sent back
into the inhomogeneous medium and by the refocusing phenomenon they recompress
into a (reduced) copy of their initial pulse shapes.

We emphasize that the pulse shape is exactly the same [13]: in the present ex-
periment it is the derivative of a Gaussian as shown in figure 6.2. In figure 6.2 the
refocused pulse obtained from model (4.9)-(4.12) is superimposed to the one obtained
from system (2.25)-(2.26). Observe that the refocused pulses obtained from both
models agree with very good accuracy and that they are derivatives of a Gaussian (as
expected) of a reduced amplitude. The reduction in amplitude is intuitive since there
is a nontrivial amount of energy being transmitted to the other side of the topography.
Hence TRR recompresses only a fraction of the initial energy [15].

In an analogous way, in figure 6.3 we observe that the refocused pulse obtained
with the model (2.19)-(2.22) coincides to that of system (3.3)-(3.4) with Z0 = 0.469.
This is expected since the dispersion level is low (β = 0.002).

In the second experiment we increase the level of dispersion by a factor of 25
(β = 0.05). Again we adopt a different realization of the coefficient M(ξ) in this
experiment to show that the results are generic. In figure 6.4 we compare the refocused
pulse obtained with model (4.9)-(4.12) with that of system (2.25)-(2.26). Now observe
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Fig. 6.2. In solid line: TRR refocusing for system (4.9)-(4.12). Model parameters: α = 0,
β = 0.002. In dashed line: TRR refocusing for system (2.25)-(2.26). Model parameters: α = 0.001,
β = 0.002.
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Fig. 6.3. In solid line: TRR refocusing for system (4.9)-(4.12). Model parameters: α = 0,
β = 0.002. In dashed line: TRR refocusing for system (3.3)-(3.4). Model parameters: α = 0.001,
β = 0.002, Z0 = 0.469.

that the corresponding solutions are quit different. In particular, the relative error in
the pulses’ peaks is roughly 40 percent.

In figure 6.5 we compare the refocused pulse obtained with the model (4.9)-
(4.12) to that of system (3.3)-(3.4) with Z0 = 0.469. In contrast with the previous
experiment, observe that the Boussinesq prediction agrees very well at the pulses’ peak
and even along the fluctuating part of the signal. The TRR refocusing phenomenon
highlights, in a quite dramatic fashion, the improvements of the Boussinesq system:
waveform inversion with another Boussinesq system (as the one we used in [13, 15])
can underestimate, say, the initial amplitude of a tsunami [31]. It is important to say
that the theory and computations in [13, 15] were correct but, as shown in this paper,
done with a restrictive model. The TRR refocusing phenomenon also works well for
Z0 =

√
1/5.

6.2. TRT refocusing of Gaussian pulses. We now perform TRT as schemat-
ically indicated in figure 6.1. In this case usually we observe a leading wavefront fol-
lowed by a fluctuating coda. The fluctuating coda consists of a dispersive tail as well
as of a disordered component, generated due to the forward scattering. This can be
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Fig. 6.4. In solid line: TRR refocusing for system (2.19)-(2.22). Model parameters: α = 0,
β = 0.05. In dashed line: TRR refocusing for system (2.25)-(2.26). Model parameters: α = 0.001,
β = 0.05.

55 56 57 58 59 60 61 62 63 64
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
η at t = 50β=0.05 

ξ 

Fig. 6.5. In solid line: TRR refocusing for system (2.19)-(2.22). Model parameters: α = 0,
β = 0.05. In dashed line: TRR refocusing for system (3.3)-(3.4). Model parameters: α = 0.001,
β = 0.05, Z0 = 0.469.

clearly seen in figure 6.6 where the smooth (Airy-like) wavefront is about to leave the
region where the topography is located. The wavefront, the dispersive tail and the
disordered coda are all recorded to the right of the topography. We set β = 0.05. The
numerical parameters for the potential theory equations (4.9)-(4.12) are ∆t = 0.01,
213 FFT points in space and the computational domain is [0,290]. The numerical
parameters for systems (2.25)-(2.26) and (3.3)-(3.4) are ∆t = 0.013, ∆ξ = 0.029 and
the computational domain is [0,290]. The initial conditions for equations (2.19)-(2.22)
are

Φ(ξ, 1, 0) = Φ0(ξ) = e−20(ξ−150)2 ,

η(ξ, 0) = η0(ξ) = −40(ξ − 150)e−20(ξ−150)2.

Observe that the initial pulses are located at the position ξ = 150. We recall that the
corresponding initial velocity at the level Z0 for systems (2.25)-(2.26) and (3.3)-(3.4)
is calculated from equation (5.3).

In figure 6.7 we compare the refocused pulse obtained with the model (4.9)-(4.12)
to the one obtained with system (2.25)-(2.26). In figure 6.8 we compare the refocused
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Fig. 6.6. An example of the entire wave profile, computed from the potential theory equations
(4.9)-(4.12).

pulse obtained with potential theory to that of system (3.3)-(3.4) with Z0 = 0.469.
One can see some improvement. The improvement for TRT is not so dramatic as
for TRT. The reason is that for TRT the bulk of the energy is still contained in the
leading wavefront. In other words most of energy resides on low wavenumbers and
therefore the dispersive effects are less noticeable.
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Fig. 6.7. In solid line: TRT refocusing for system (4.9)-(4.12). Model parameters: α = 0,
β = 0.05. In dashed line: TRT refocusing for system (2.25)-(2.26). Model parameters: α = 0.001,
β = 0.05.

6.3. TRR refocusing for solitary waves. In this section we analyze the re-
focusing property for solitary waves of system (3.3)-(3.4). Recall that equation (4.7)
furnishes a solitary wave solution for a second order Boussinesq-type equation for-
mally equivalent to equations (3.3)-(3.4). The length scale for the irregularities of the
coefficient M(ξ) is � = 0.6 because the effective support of the solitary wave (4.7)
is �p = 6. Thus, we preserve the ratio γ = �/�p = 1/10. The initial solitary wave
is located at the position ξ = −5. The amplitude of the irregularities is δ = 0.5.
The irregularities of the metric coefficient M(ξ) are in the interval [5,305]. In this set
of experiments, the numerical parameters are ∆t = 0.0375, ∆ξ = 0.04266, and the
computational domain is [-320,320].

In the first experiment we adopt α = β = 0.01. Just as for the Gaussian pulse we
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Fig. 6.8. In solid line: TRT refocusing for system (4.9)-(4.12). Model parameters: α = 0,
β = 0.05. In dashed line: TRT refocusing for system (3.3)-(3.4). Model parameters: α = 0.001,
β = 0.05, Z0 = 0.469.

record the reflected signal to the left of the topography. We time reverse the data and
use it as the initial condition for the exact same problem. This time reversed fluctuat-
ing data travels towards the rough region and, after interacting with the topography,
it recompresses into the smooth pulse shown at the center of figure 6.9. There is no
theory to tell us what kind of pulse we are seeing after refocusing. It is not clear that
we have a reduced copy of the solitary wave.
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Fig. 6.9. TRR refocusing of the solitary wave (4.7) of the system (3.3)-(3.4) with Z0 = 0.469.
Numerical parameters: α = β = 0.01.

In the second experiment we repeat the previous experiment but now we set
α = β = 0.03. This experiment is more dispersive and nonlinear than the previous
one. The refocused pulse is presented in figure 6.10 and very much resembles the
previous case. The phenomenon is robust regarding the dispersion and nonlinearity
levels.

Now we vary some other parameters related to the propagation medium (i.e.
topography) rather than the wave. We repeat the previous experiment (keeping Zo =
0.469) but now with a smaller fluctuation level: δ = 0.25. This implies in a weaker
reflected signal. A plausible question is to whether the weak reflected signal will
contain enough energy to produce a well defined refocused pulse. The answer is
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Fig. 6.10. TRR refocusing of the solitary wave (4.7) of the system (3.3)-(3.4) with Z0 = 0.469.
Numerical parameters: α = β = 0.03.

clearly seen in figure 6.11 where we have a clean refocused pulse, but of a smaller
amplitude (since it contains less energy).
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Fig. 6.11. TRR refocusing of the solitary wave (4.7) of system (3.3)-(3.4) with Zo = 0.469.
Model’s parameters: α = β = 0.01, fluctuation level δ = 0.25.

Next we change the correlation length adopted to be � = 0.3, which is half of
that in the previous experiments. Now the topography is even more rapidly varying
and long waves can not feel it in detail. The amplitude of fluctuations is back to
δ = 0.5. Observe that the amplitude of the refocused pulse is approximately 30 % of
the initial solitary wave (4.7). Compare with figure 6.9 where (� = 0.6, δ = 0.5) and
the refocused pulse amplitude was at the 40 % level. As mentioned above, here the
topography is on an even finner scale, so that the solitary wave feels less the details
and therefore sheds less reflection.

The important fact about all these experiments is that the refocusing phenomenon
is very robust for solitary waves.

7. Conclusion. We have used ideas from Nwogu [29] to improve Boussinesq
models in the presence of highly-variable (multiscale) depth profiles. We presented a
linear dispersion analysis and numerically validated the corresponding results. Vali-
dation was done by comparing them with the corresponding linear potential theory.
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Fig. 6.12. TRR refocusing of the solitary wave (4.7) of system (3.3)-(3.4) with Zo = 0.469.
Model’s parameters: α = β = 0.01.

We showed the excellent performance of the improved Boussinesq system in the pres-
ence of highly disordered topographies. Discrepancies observed among the different
Boussinesq models became even more important in the waveform inversion problem.
In this problem we adopted the time reversal technique for recompressing a long fluc-
tuating signal, representing a highly scattered wave that has propagated for very long
distances. The scattered signal refocused into a smooth profile. In particular we
showed that this phenomenon is very robust even for solitary waves. The case for
solitary waves can only be done numerically because there is no theory to predict the
refocused pulse shape.

Appendix A. Analytic comparison of the linearized models. Bona
and Chen [5] derived L2 estimates for the difference between linear solutions of the
KdV equation and of another KdV-type equation. In this appendix we extend their
analysis and compare linear solutions of the Boussinesq equations (3.3)-(3.4) with
those for the potential theory equations (2.19)-(2.22). Hence we restrict ourselves to
the linear case (i.e. α = 0) and constant depth (M ≡ 1). Further we recall that the
dispersion parameter β is small in this analysis.

In first place, the linearized Boussinesq system reads

ηt + uξ +
β

2
(Z2

0 − 1/3)uξξξ = 0,(A.1)

ut + ηξ +
β

2
(Z2

0 − 1)uξξt = 0,(A.2)

u(ξ, 0) = f(ξ), η(ξ, 0) = η0(ξ),(A.3)

and the linear potential equations are

(A.4) βφξξ + φζζ = 0, for 0 < ζ < 1,

ηt − 1
β

φζ = 0, at ζ = 1,

η + φt = 0, at ζ = 1,(A.5)
φζ = 0, at ζ = 0,

φ(ξ, 1, 0) = φ0(ξ), η(ξ, 0) = η0(ξ).
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In order to eliminate the parameter β in the equations above, we introduce the change
of variables

φ(ξ, ζ, t) = β−1/2Φ(β−1/2ξ, ζ, β−1/2t),
η(ξ, t) = β−1N(β−1/2ξ, β−1/2t),
u(ξ, t) = β−1U(β−1/2ξ, β−1/2t).

Therefore, the new initial data in the variables U, N, Φ are N(ξ, 0) = N0(ξ) =
βη0(β1/2ξ), U(ξ, 0) = F (ξ) = βf(β1/2ξ) and Φ(ξ, 1, 0) = Φ0(ξ) = β1/2φ0(β1/2ξ).
The equations (A.4)-(A.5) transform into

(A.6) Φξξ + Φζζ = 0, para 0 < ζ < 1,

Nt − Φζ = 0, en ζ = 1,(A.7)
N + Φt = 0, en ζ = 1,(A.8)

Φζ = 0, en ζ = 0,(A.9)
Φ(ξ, 1, 0) = Φ0(ξ), N(ξ, 0) = N0(ξ),(A.10)

and system (A.3) is written as

Nt + Uξ +
1
2
(Z2

0 − 1/3)Uξξξ = 0,(A.11)

Ut + Nξ − 1
2
(Z2

0 − 1)Uξξt = 0,(A.12)

U(ξ, 0) = F (ξ), N(ξ, 0) = N0(ξ).(A.13)

Now let

ω̄2 =
k2 − 1

2 (Z2
0 − 1

3 )k4

1 − 1
2 (Z2

0 − 1)k2
and(A.14)

ω2 = k tanh(k).(A.15)

By Fourier transforming the equations above with respect to the spatial variable ξ we
obtain the solution of model (A.6)-(A.10) (in the Fourier space)

φ̂(k, ζ, t) = (D1(k)eiωt + D2(k)e−iωt)cosh(kζ),(A.16)

N̂(k, t) = iω(−D1(k)eiωt + D2(k)e−iωt)cosh(k),(A.17)

where

D1(k) =
iωφ̂0(k) − N̂0(k)

2iωcosh(k)
,(A.18)

D2(k) =
iωφ̂0(k) + N̂0(k)

2iωcosh(k)
.(A.19)

In order for models (A.6)-(A.10) and (A.11)-(A.13) to coincide at the start (t = 0),
it is necessary that
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φ̂0(k) =
F̂ (k)cosh(k)
cosh(kZ0)ki

.

By inserting this expression in equations (A.17), we obtain

Ûp(k, t) =

(
F̂ (k)

2
− k

2ω

cosh(kZ0)N̂0(k)
cosh(k)

)
eiωt+(A.20)

(
F̂ (k)

2
− k

2ω

cosh(kZ0)N̂0(k)
cosh(k)

)
e−iωt,

where Ûp(k, t) = ikφ̂(k, Z0, t), i.e. Up(ξ, t) is the ξ-component of the fluid velocity
according to model (A.6)-(A.10). Moreover, the wave elevation can be expressed as

N̂p(k, t) =
(
− ωcosh(k)

2kcosh(kZ0)
F̂ (k) +

1
2
N̂0(k)

)
eiωt+(A.21) (

ωcosh(k)
2kcosh(kZ0)

F̂ (k) +
1
2
N̂0(k)

)
e−iωt.

On the other hand, the solution of system (A.11)-(A.13) (in the Fourier space)
can be written as

Û(k, t) =

(
F̂ (k)

2
− k

2ω̄

N̂0(k)
(1 − (1/2)(Z2

0 − 1)k2)

)
eiω̄t+(A.22)

(
F̂ (k)

2
− k

2ω̄

N̂0(k)
(1 − (1/2)(Z2

0 − 1)k2)

)
e−iω̄t

and

N̂(k, t) =
(
− ω̄

2k
F̂ (k)(1 − (1/2)(Z2

0 − 1)k2) +
1
2
N̂0(k)

)
eiω̄t+(A.23) (

ω̄

2k
F̂ (k)(1 − (1/2)(Z2

0 − 1)k2) +
1
2
N̂0(k)

)
e−iω̄t.

For simplicity, we suppose that the initial data η0 and f are band limited. Namely,
the support of their Fourier transforms are contained in a compact set [−K, K] for
some K > 0 large enough. Therefore, the support of the Fourier transforms N̂0(k)
and F̂ (k) is contained in the interval [−√

βK,
√

βK].
By expanding the frequencies ω and ω̄ in a Taylor series around k = 0, we obtain

ω = k − 1
6
k3 +

19
360

k5 − 55
3024

k7 + O(k9),

ω̄ = k − 1
6
k3 − 1

72
(6Z2

0 − 5)k5 − 1
432

(13 − 30Z2
0 + 18Z4

0)k7 + O(k9).

Furthermore

ωcosh(k)
2kcosh(kZ0)

=
1
2

+
(

1
6
− Z2

0

4

)
k2 +

1
720

(4 − 60Z2
0 + 75Z4

0)k4 + O(k6),

ω̄(1 − (1/2)(Z2
0 − 1)k2)

2k
=

1
2

+
(

1
6
− Z4

0

4

)
k2 − 1

144
k4 + O(k6).
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By using these expansions and the equations (A.20)-(A.21) and (A.22)-(A.23) for
the Fourier amplitudes, relative to the solution of each model, we obtain the estimate∣∣∣Ûp(k, t) − Û(k, t)

∣∣∣ ≤ F̂ (k)(O((5Z2
0 − 1)tk5) + O(tk7))+

N̂0(k)(O((3 − 20Z2
0 + 25Z4

0)k4 + k6) + O((5Z2
0 − 1)tk5 + tk7)).

Analogously, it follows the estimate∣∣∣N̂p(k, t) − N̂(k, t)
∣∣∣ ≤ N̂0(k)(O((5Z2

0 − 1)tk5) + O(tk7))+

F̂ (k)(O((3 − 20Z2
0 + 25Z4

0)k4 + k6) + O((5Z2
0 − 1)tk5 + tk7)).

Thus analyzing the corresponding solutions of models (A.6)-(A.10) and (A.11)-(A.13)
in Fourier space, we observe that their smallest difference is achieved when Z0 =√

1/5. For this value of the depth parameter, we obtain the following bounds for the
velocity and the wave elevation by using the Parseval identity:

‖Up(., t) − U(., t)‖2 ≤ ‖η0‖2 (C1β
15/4 + C2β

17/4) + C3 ‖f‖2 tβ17/4(A.24)

‖Np(., t) − N(., t)‖2 ≤ ‖f‖2 (D1β
15/4 + D2β

17/4) + D3 ‖η0‖2 tβ17/4,(A.25)

where ‖.‖2 denotes the L2 norm and C1, C2, C3, D1, D2, D3 are positive constants.
Therefore, the error in the Boussinesq approximation is of O(β2) (both in the

wave elevation and the fluid velocity) provided that 0 < t < β−9/4. Note that for β
small, say of about 0.01, this gives an extremely large time interval of about 32000
units. This level of accuracy is consistent since the terms neglected in the derivation
of system (A.11)-(A.13) (with α = 0) are of O(β2).
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