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Abstract
We introduce two inexact proximal-like methods for solving equilibrium problems in reflexive
Banach spaces and establish their convergence properties, proving that the sequence generated by
each one of them converges to a solution of the equilibrium problem under reasonable assumptions.
Keywords: Bregman distance, Equilibrium problem, Inexact solutions, Maximal monotone
operator, Proximal point method.

1 Introduction

Let B be a reflexive Banach space and K C B a nonempty closed and convex set. Given f :
K x K — R such that

Pl: f(z,z) =0 for allz € K,
P2: f(z,.): K — R is convex and lower semicontinuous for all z € K,
P3: f(.,y) : K — R is upper semicontinuous for all y € K,

the equilibrium problem EP(f, K) consists of finding z* € K such that f(z*,y) > 0 for all y € K.
Such an z* is called a solution of EP(f, K). The set of solutions of EP(f, K) will be denoted by
S(f, K).

The equilibrium problem encompasses, among its particular cases, convex minimization prob-
lems, fixed point problems, complementarity problems, Nash equilibrium problems, variational
inequality problems and vector minimization problems (see, e.g., [4], [19])-

The prototypical example of an equilibrium problem is a variational inequality problem. Since
it plays an important role in the sequel, we describe it now in some detail. Consider a continuous
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T : B — B*, where B* is the dual of B, and define f(z,y) = (T'(x),y — ). Then f satisfies P1-P3,
and EP(f, K) is equivalent to the variational inequality problem VIP(T, K), consisting of finding
a point z* € K such that (T'(z*),z — z*) > 0 for all z € K. We can consider also the case of a
point-to-set operator 7' : B — P(B*), if it is maximal monotone. In this case VIP(T, K) consists
of finding z* € K such that (v*,z — z*) > 0 for some v* € T'(z*) and all z € K. In this situation,
we define f(z,y) = supyer(z)(4,y — ). Though it is less immediate, this f is well defined and it
still satisfies P1-P3. Finiteness of f follows from monotonicity of 7', and upper semicontinuity of
f(-,y) from maximality (via demiclosedness of the graph of maximal monotone operators).

The equilibrium problem has been rather widely studied, but most of the work on the issue
deals with conditions for the existence of solutions (see, e.g., [1], [2], [3], [5], [11],[12], [13], [16] and
[19]).

In terms of computational methods for the equilibrium problem, only a few references can be
found in the literature. Among those of interest, we mention the algorithms introduced in [19] and
[25].

In the current paper we introduce inexact versions of a proximal point method for solving
EP(f, K) in reflexive Banach spaces. We comment next on this method.

The proximal point algorithm, whose origins can be traced back to [23] and [24], attained its
basic formulation in the work of Rockafellar [29], where it is presented as an algorithm for finding
zeroes of a maximal monotone point-to-set operator T': H — P(H), where H is a Hilbert space.
The algorithm generates a sequence {z’} C H, starting from some z° € H, where 277! is the
unique zero of the operator 77 defined as

T(z) = T(z) + 7;(z — ), (1)

with {;} being a bounded sequence of positive real numbers, called regularization coefficients. It
has been proved in [29] that for a maximal monotone 7', the sequence {z’} is weakly convergent to
a zero of T' when T has zeroes, and is unbounded otherwise. Such weak convergence is global, i.e.
the result just announced holds in fact for any 2° € H.

Proximal point methods for the same problem but in Banach spaces, can be traced back to [22]
and were furtherly developed in [7] and [8]. In this set-up, one works with maximal monotone point-
to-set operators T': B — P(B*), where B is Banach space and B* its dual, so that the formula for
T7 given by (1) does not work any more, because T'(x) is a subset of B*, while v (z — z7) belongs
to B. Thus, instead of (1), one works with

T (z) = T(z) + vlg' (z) — g ()], (2)

where g : B — R is Fréchet differentiable satisfying some regularity properties (see H1-H6 in Section
2). The prototypical example is g(z) = (1/2) ||x||2, in which case ¢’ is the duality operator, and
the identity operator in the case of Hilbert spaces, for which the definitions of T7 given by (1)
and (2) coincide. It is convenient to deal with a general g rather than just the square of the norm
because in Banach spaces this function lacks the privileged status it enjoys in Hilbert spaces. In the



spaces LP and ¢, for instance, the function g(z) = (1/p) ||z||” leads to simpler calculations than the
square of the norm. It has been shown in [15] that the function g(z) = r ||z||®, works satisfactorily
in any reflexive, uniformly smooth and uniformly convex Banach space, for any r > 0, s > 1. The
convergence analysis recovers most of the already mentioned results which hold in Hilbert spaces
(see, e.g., [7]).

A proximal point method for equilibrium problems in a Hilbert space H has been recently
proposed in [20]. At iteration j, given z/ € H, one solves the problem EP(f;, K), where the
regularized function f; is defined as

filz,y) = f(z,y) + vz — 27,y — @). 3)

It is established in [20] that f; satisfies the required properties, and that EP(f;, K) has a unique
solution, which is the next iterate z77!. The sequence {7} generated by the method is shown to
be weakly convergent to a solution of the problem, under appropriate assumptions on f, when the
problem has solutions.

Since the computation of each iterate requires solution of a regularized equilibrium problem
(which will be called a subproblem in the sequel), it is important to establish convergence results
assuming inexact solutions of the subproblems. This issue was already dealt with in [29], where it
was assumed that the j-th subproblem was solved with an error bounded by a certain €; > 0, and
the convergence results were preserved assuming that Z;’il gj < oo. This summability condition
is undesirable because it cannot be ensured in practice and also requires increasing accuracy along
the iterative process. A better error criterion, introduced in [32], allows for constant relative errors
and can be described, in its Hilbert space version, as follows. Instead of solving (1), which gives

one finds first an approximate zero of T}, say #7, which can be taken as any point in the space
satisfying _ ' ' '
el + (2! —37) e T(#7),

where the error term e’ satisfies

/|| < oyjmax {||o? — &7 + 47l |, [la? — 27|}, (4)

for some o € [0, 1) (this o can be seen as a constant relative error tolerance). Then the next iterate
is obtained as the orthogonal projection of 27 onto the hyperplane H; = {z € H : (v/,z — &’) = 0}
with v/ = 7;(z? —27) + €7, ie.
ji+1 _ . <Ujaxj — j])
o R R et
[o7]]

This inexact procedure, as well as a related one introduced in [33], were extended to Banach spaces
in [15].



In this paper we will build upon the results of [15] and [20], obtaining inexact proximal point
methods for equilibrium problems in Banach spaces. Instead of f; as defined in (3), we will solve
at iteration j the regularized problem EP(f;, K), with f; given by

fj($ay) :f($,y)+7j<gl(‘7") _gl(wj)ay_l')a (5)

where g : B — R is an auxiliary function satisfying appropriate assumptions (see H1-H6 in Section
2). When B is a Hilbert space and g(z) = (1/2) ||z||?, we get fi = f;- In order to generate an
inexact algorithm, we will consider perturbations of f;. Indeed in our algorithm f; will be replaced
by a perturbed f;,

f5(z,y) = filz,y) — (€,y — z) = f(z,9) + (¢ (x) — g’ (z7),y — z) — (], y — x), (6)

where e/ € B*, the error vector at the j-th iteration, will be subject to bounds similar to (4), to
be presented in Section 4.

The outline of this paper is the following. We present some preliminary material in Section 2.
In Section 3 we show that (6) can be considered as a regularization of EP(f, K), i.e. EP(f7, K) has
a unique solution for each j whenever certain conditions are satisfied. In Section 4 we present two
inexact proximal point algorithms for solving EP(f, K) and establish their convergence properties
in Section 5. In Section 6 we present a reformulation of EP(f, K) which allows us to refine our
convergence results.

2 Preliminary results

We state first some standard notation. B will denote a reflexive Banach space with norm ||-|| (or
IIll g), B* will be the dual of B, with norm ||-||,, We denote the open ball with radius J centered
at ¢ € B by B(z,d) C B and B*(z*,d) C B* will denote the open ball with radius § centered at
x* € B*, respectively. The symbol (-,-) will indicate the duality coupling in B* x B, defined by
(¢,z) = ¢(z) for all z € B and all ¢ € B*. For a Gateaux differentiable function g : B — R,
g : B — B* will denote its Gateaux derivative.

Our results require some conditions both on the data problem, namely the function f, and on
the auxiliary function g. We will present next such conditions, starting with g. First, we introduce
the Bregman distance associated to a convex and Géateaux differentiable function ¢ : B — R,
together with some related notations, taken from [9].

Definition 2.1. The Bregman distance with respect to g is the function Dy : B x B — R defined
by Dy(z,y) = g(z) — g(y) — (¢'(v), = —y).

Definition 2.2. The modulus of total convezity of g is the function vy : B x [0,400) — [0, +00]
defined by vg(z,t) = inf{Dy(y, =) : [y — =| = t}.

Next we present some assumptions on g which will be needed in our convergence analysis.
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H1: The level sets of Dy(z,.) are bounded for all z € B.

H2: inf,cc vy(z,t) > 0 for all bounded set C C B and all ¢ > 0.

H3: ¢’ is uniformly continuous on bounded subsets of B.

H4: ¢ is onto, i.e., for all y € B*, there exists z € B such that ¢'(z) = y.
H5: limyjz500[9(7) — pllz — 2[|]] = +o00 for all fixed z € K and p > 0.

H6: If {4/} and {27} are sequences in K which converge weakly to y and z, respectively and y # z,
then
liminf | (¢'(y7) - ¢'('),y — 2) [> 0.
k—o00
These properties, with the exception of H5, were identified in [15]. We make a few remarks on
them. Observe that positivity of Dy(z,y) for all z,y € B is equivalent to strict convexity of g.
Thus, condition H2 implies strict convexity of g (functions satisfying a weaker condition, namely
positivity of vy(z,t) for all z € B and all t > 0, are called totally convez in [9]). H5, introduced
here for the first time in connection with Bregman functions and distances, is a form of coercivity.
It has been proved in [9], p.75, that sequential weak-to-weak* continuity of ¢’ ensures H6.
It is important to check that functions satisfying these properties are available in a wide class
of Banach spaces. We have the following result.

Proposition 2.3.

i) If B is a uniformly smooth and uniformly convex Banach space, then g(z) = ||z||° satisfies
H1-H5 for allT > 0 and all s > 1.

ii) If B is a Hilbert space, then go(z) = 3 ||| satisfies H6. The same holds for g,(z) = % [E4]5
when B =1, (1 <p < c0).

Proof. The result of item (i) for properties H1 through H4, as well as item (ii), were proved in
Proposition 2 of [15]. For H5, note that for the function of interest we have

-1
g9(x) = pllz —zll =rllzll® — plle — 2l = rllz® = pllzll — pllzll = Izl [ lz1I* — p] = pll2Il, (7)
and the rightmost expression of (7) goes to co as ||z|| — oo because s — 1 > 0. O

We remark that the only problematic property is H6, in the sense that the only example we have
of a nonhilbertian Banach space for which we know functions satisfying it is £, with 1 < p < oo.
As we will see in Section 5, most of our convergence results demand only H1-H5.

The following results are consequences of some of the properties above. The first one deals with
Bregman projections onto hyperplanes. For fixed 0 #v € B*,§ € B,let H={y € B: (v,y — ) =
0L, H- ={y e B:{(v,y—9) >0},and H ={y € B: (v,y — §) < 0}.



Proposition 2.4. Assume that g satisfies H2. Then for all0 # v € B*, j € B, x € H" and
z € H™, it holds that Dy(Z,x) > Dy(Z,2) + Dy(z,x) where z is the unique minimizer of Dgy(-,7)
on H.

Proof. See Lemma 1 in [15], where the result is proved under an assumption weaker than H2,
namely total convexity of g. O

The next result deals with Bregman projections onto closed and convex sets.

Proposition 2.5. If g satisfies H1-H2 and C C B 1is closed and convez, then for all z € B there
exists a unique solution & of the problem min Dy(z,z) s.t. x € C, which satisfies (¢'(z) — ¢'(&),y —
z) <0 forally € C.

Proof. See [9], p. 70. O

The point Z is said to be the Bregman projection of T onto C.

Proposition 2.6. Assume that g satisfies H2. Let {z*},{y*} C B be two sequences such that at
least one of them is bounded. If limy_,oo Dy(y*,2%) = 0, then limy_,oo ||.’L'k — yk” = 0.

Proof. See Proposition 5 in [15]. O
Proposition 2.7. If g satisfies H3, then both g and ¢' are bounded on bounded subsets of B.
Proof. See Proposition 4 in [15]. O

We move now to conditions on the bifunction f, for which we start by recalling some definitions
and facts related to maximal monotone operators. Let 7' : B — P(B*) be a point-to-set operator.
The graph of T is the set G(T) = {(v,z) € B* x B:v € T(x)}. A point z € B is a zero of T if
0 € T(z). T is said to be monotone if (w —w',z — z') > 0, for all z, ' € B and all w € T(z),
w' € T(x'). Tt is mazimal monotone if its graph is not properly contained in the graph of any other
monotone operator.

Convergence results for the proximal point method applied to the problem of finding zeros of
operators require that they be monotone, or some variant thereof. We need to transpose such
monotonicity concepts to the realm of equilibrium problems. We consider first the following alter-
natives:

P4*: f(z,y) + f(y,z) <0 for all z,y € K.
P4*: Whenever f(z,y) > 0 with z,y € K, it holds that f(y,z) < 0.

P4: There exists # > 0 such that f(z,y) + f(y,z) < 6{¢'(z) — ¢'(y),z —y) for all z,y € K.



In the prototypical example of an equilibrium problem, i.e., f(z,y) = supyer(s)(u,y — ) for
some T : B — P(B*), it is easy to check that P4°® is equivalent to monotonicity of 7. Thus, a
function f satisfying P4*® will be said to be monotone. We remind that an operator T': B — P(B*)
is said to be pseudomonotone when (u,z—y) < 0 for some z,y € H and some u € T'(z) implies that
(v,z —y) >0 for all v € T'(y). It is easy to check that if 7' is pseudomonotone and single-valued
then f, as defined above, satisfies P4*, and the converse statement holds also when T' is point-to-set.
For this reason, a function f satisfying P4* will be said to be pseudomonotone. Along the same
line, a function f satisfying P4 will be called #-undermonotone.

We comment now on some relations among P4, P4* and P4°®. It has been proved in Proposition
1 of [20] that under P1-P3, P4® implies P4*. On the other hand, P4* does not imply P4°, as the
following example, also taken from [20], shows.

Example 2.8. Let K = [1/2,1] C R and define f : K x K — R as f(z,y) = z(x —y). This f
satisfies P1, P2 and P3. It is pseudomonotone and 1-undermonotone, but not monotone.

Two other monotonicity-like properties which have been considered in the literature are the
following:

P4’: For all 2, ...,2™ € K which are pairwise different, and all A1, ..., \,,, which are strictly positive
and such that Y ;" \; = 1, it holds that

Ig%isnmf(z’, Y Ae?) <0. (8)

P4” : For all z!,...,2z™ € K and all Ay, ..., \,, > 0 such that Yoty Ai =1, it holds that

SN f (3, Sty Az < 0. 9)

It is immediate that both P4’ and P4” are weaker than P4°®, i.e., than monotonicity. Examples
are given in [16] showing that P4’, P4” and P4* are mutually independent.

The following property has been identified in [16] as being necessary and sufficient for the
existence of solutions of EP(f, K) under some monotonicity properties of f.
P5: For any sequence {27} C K satisfying lim; ;o0 ||J:J” = 400, there exists u € K and jy € N such
that f(z7,u) <0 for all j > jo.

Indeed, we have the following result:

Theorem 2.9. Assume that f satisfies P1-P3. Assume also that any one among P4’, P}” and
PJ* holds. Then EP(f,K) has solutions if and only if P5 holds.

Proof. See Theorem 4.3 of [16]. O



3 Regularization of equilibrium problems

The following proposition guarantees that, under adequate monotonicity assumptions, the function
f§ introduced in (6) is a regularization of f.

Proposition 3.1. Consider f satisfying P1-P4. Fiz z € B,e € B* and v > 0, where 0 is the
undermonotonicity constant in P4. Take g : B — R satisfying H1-H2 and H5. If f :KxK—=R
is defined as 3

fz,y) = f(z,y) + (g (2) — ¢'(2),y — 2) — (e;y — 2), (10)

then EP(f, K) has a unique solution.

Proof. We first prove existence of solutions. In view of Theorem 2.9, it suffices to show that f
satisfies P1-P3, P4* and P5. It follows from (10) that f inherits P1-P3 from f. Now we claim that
f satisfies P4*. Note that

f@,9) + fly,z) = flz,9) + fy,2) = (g (z) — ¢'(v),z —y)

) ' (11)
<O -7){g(z)—9g)z—-y) <0,

using the definition of f in the equality and the fact that f satisfies P4 in the first inequality. The
second inequality follows from the facts that g is strictly convex, as a consequence of H2, and 7y > 6.
It follows from (11) that P4* holds for f. In order to apply Theorem 2.9, it suffices to establish
that f satisfies P5. So, we take a sequence {2’} such that lim;_, HxJ” = 400. We claim that P5
holds with u equal to the Bregman projection of Z onto K, as defined after Proposition 2.5. Note

that
F(@7u) = f(z9,u) — (g (a7) — ¢'(z),27 —u) — (e,u—27) = f(a,u)
— (g (u) — ¢'(2),27 —u) —¥(g'(27) — ¢'(u),2” —u) — (e,u—27) <
— flu,27) = (g (u) — ¢' (%), 27 — u) + (0 —){g'(z7) — ¢ (u), 2 —u)
+ llell, lu— 27| < =f(u,27) + (0 = )¢ («7) — ¢’ (w), 27 —u) + [le]l, ||ju— 27|,

using P4 and Cauchy-Schwartz inequality in the first inequality and Proposition 2.5 in the second
one, taking into account that v > 0 and 27 € K. We introduce now some notation for the marginals
of f. For z € K, define F; : K — R as

(12)

Fi(y) = f(z,y). (13)

Take Z € ri(K) (the relative interior of K'), which is nonempty by convexity of K. Since F, is
convex by P2, its subdifferential at &, denoted as 0F,(Z), is nonempty. Take & € 0F,(&). By the
definition of subdifferential, we have

<ﬁ’$j - 56) < Fu(a"]) - Fu(i) = f(uaxj) - f(“a'%) (14)



In view of (14),

—flu,27) < (0,8—27) — f(u,2) < |9, |2 — 27|| = f(u, ) < |5, |lu—27||+]|0], % - ull - £ (u, ),
(15)
using Cauchy-Schwartz inequality and the triangle inequality in the second and third inequalities,
respectively.
We now find an upper bound for the second term in the rightmost expression of (12).

(g'(f{cj) —¢'(w),&’ —u) = Dy(a’,u) + Dyg(u,2?) > Dy(a”,u) =

. . . 16
g(a?) = g(u) — (g (w), 2 —u) > g(z7) — g(u) — ||g'(W)]], |7 — |, 1)

using the definition of Bregman distance in the first equality, nonnegativity of D, which follows
from H2, in the first inequality, and Cauchy-Schwarz inequality in the second inequality.

Now we utilize the inequalities obtained in (15) and (16) to get an upper bound for the rightmost
expression in (12).

Fa?,u) < (0 —7) |g(z7) - 19]], + [lell, ;r(_'ye— 0) [lg' ()], 9 —

+ (v = 0)g(u) + [|2]], [|Z — ull = f(u, 2).

(17)

Let z =w and p = (v — )7 (||9]|, + llell,) + ¢’ (w)]],. Since 6 — < 0, lim;_,o ||27|| = +o0 and
g satisfies H5, it follows from (17) that lim; s f (z7,u) = —oc. Therefore, f(x?,u) < 0 for large

enough j. We have shown that f satisfies P5. Hence, f satisfies all the assumptions of Theorem
2.9, which implies that EP(f, K) has solutions.

Now we establish uniqueness of the solution. Assume that Z and ' solve EP( f,K ). Using the
definition of f, we have that

0< f(%,3) = f(& )+ &) - ¢'(2),& - &) — (e, — 7). (18)
0< f@,%) = f(#,%) + (g (&) — ¢'(2),& — &) — (e, & — F). (19)
Adding (18) and (19), and using P4, we get
0<f(&,3)+ f(&,3) —{g' (@) - ¢ (@), 5 -7) < (0 —{g'(@) - ¢'(&),7 - ) <0.

Since 8 — v < 0, we obtain (¢'(Z) — ¢'(z'),Z — ') = 0, implying that Z = 7', because g is strictly
convex as a consequence of H2. O

4 Inexact versions of the proximal point method

We start by presenting an exact proximal point method for equilibrium problems in Banach spaces.
Consider EP(f, K), where K C B is closed and convex and f : K x K — R satisfies P1-P4 and P4*.



The algorithm requires two exogenous data: an auxiliary function g : B — R satisfying H1-H5 and
a sequence of regularization parameters {v;} C (6, 7], where 0 is the constant of undermonotonicity
appearing in P4 and 7 > 6.

The algorithm generates a sequence {2’} C B as follows. z
given 7, 27+ is the solution of EP(f;, K) with

0 is an arbitrary point in K, and,

filz,y) = f(2,y) +7i(d () — §'(27),y — ).

Existence and uniqueness of /1! are consequences of Proposition 3.1, with v = Vi, T = zJ. When
B is a Hilbert space and g(z) = (1/2) ||z||* this method reduces to the one analyzed in [20]. The
convergence properties of the method can be summarized as follow.

Proposition 4.1.
i) If EP(f,K) has solutions, then the sequence {x7} is bounded and asymptotically solves the

problem, in the sense that liminf; . f(z’,y) >0 for ally € K.

i) If additional]y f(,y) is weakly upper semicontinuous for all y € K, then all weak cluster
points of {z’} are solutions of EP(f, K).

i) If additionally g satisfies H6, then {z7} is weakly convergent to a solution of EP(f, K).

We will not prove this proposition, because the exact method is indeed a particular case of the
two inexact methods which we present next, together with their convergence analysis.

Both inexact algorithms fit in the following scheme: given z7, an auxiliary point Z/ is computed
as the exact solution of a perturbed problem EP(ff, K), where ff(z,y) = fj(z,y) + (e, z —y) and
el is an arbitrary error vector whose norm is “small”, i.e. bounded by an appropriate function of
the data available at iteration j, namely v;, 27 and 7. The error vector e’ is then used for building
a hyperplane H; which separates z? from S(f,K). Then z7t! is obtained by either projecting
2/ onto H; with respect to the Bregman distance D, (Algorithm I), or by taking a step from
7/ in the direction of H; with respect to the metric induced by D, (Algorithm II). We mention
parenthetically that seeing inexact solutions of a given problem as exact solutions of a perturbed
problem is a frequent tool in Numerical Analysis, like in the error analysis of methods for solving
systems of linear equations (see, e.g., [26]).

The function g and the sequence {v;} appearing in the following two algorithms satisfy the
same assumptions as those used in the exact algorithm given above. Additionally, we will need a
relative error bound o € (0,1).

Algorithm I: Inexact Proximal Point+Bregman Projection Method
1. Choose 2° € K. .
2. Given 27, find a pair 77 € B, e € B* such that z’ solves EP( ]e,K) with
f;($ay) = f(-'L',y) + ’Yj<gl('7") - gl(wj)ay - $> - <€j7y - ‘T>7 (20)
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ie.
f5(@,y) >0 Vy € K, (21)

and e’ satisfies

o, < § T e < @
* oyve(x?, 1) if ||z7 — #7|| > 1,
with Dy, v, as in Definition 2.1 and 2.2, respectively.
3. Let ' ' ' _
v = 5lg'(27) — g'(@7)] + €. (23)
If v/ = 0 or 7/ = 27, then stop. Otherwise, take H; = {z € B : (v/,z — #7) = 0} and define
27t = argmin Dy(z, 7). (24)
z€H;
Algorithm II: Inexact Proximal Point-Extragradient Method
1. Choose z° € K.
2. Given 27, find a pair 77 € B, e’ € B* such that 77 solves EP( ;,K) with
fje(way) = f(q"ay) + 7j<gl($) - gl(‘rj)ay - x) - <ej7y - IE), (25)
i.e. .
fi(@,y) > 0Vy € K, (26)
and e/ satisfies _ _ _ o
Dy(#,(¢) g (#) —j '¢]) < oDy(#,a7). (27)
3. If #7 = 29, then stop. Otherwise,
2t = (¢") Mg (@) — vy te), (28)

It is worthwhile to observe that the inexact subproblems of both Algorithm I (i.e. (21)-(22))
and Algorithm II (i.e. (26)-(27)) are solvable. Indeed, given any e/ € B, Proposition 3.1 ensures
the existence of a unique solution for EP(ff, K), say #J. If we take, in particular, e/ = 0, then the
left hand sides of both (22) and (27) vanish, and so the inequalities in (22) and (27) are satisfied.
We also note that for e/ = 0 both (24) and (28) give /1! = &, so that with this choice of e/ both
algorithms reduce to the exact algorithm introduced at the beginning of this section.
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9 Convergence Analysis

First we settle the issue of finite termination of these algorithms.

Proposition 5.1. Suppose that Algorithm I (respectively Algorithm II) stops after j steps. Then
%7 generated by Algorithm I (respectively Algorithm II) is a solution of EP(f, K).

Proof. Algorithm I stops at j-th iteration in two cases: if ¥/ = 0, in which case, by (20) and (23),
% € S(f,K), or if # = 27, in which case, by (22), e/ = 0, which in turn implies, by (23), v/ =0
and we are back to the first case. Consequently, Z7 is a solution of EP(f, K). Finite termination in
Algorithm IT occurs only if #/ = 27, in which case Dy(i/,27) = 0, and therefore, by (27), e/ = 0,
which in turn implies, by (25)-(26), f(27,y) > 0 for all y € K, so that &/ € S(f, K). O

The convergence analysis of the proximal point method for finding zeroes of monotone operators
requires monotonicity of the operator, or some variant thereof. For equilibrium problems, we will
work under assumptions weaker than monotonicity (i.e., P4°®). We will assume #-undermonotonicity
(property P4) and additionally any one among the three variants of pseudomonotonicity introduced
in Section 2, namely P4*, P4’ and P4”. The fact that our convergence analysis works under any of
these three assumptions is a consequence of the following result.

Proposition 5.2. Assume that any one among P4’, P4” and PJ* holds. If P2 is satisfied, then
fly,z*) <0 for ally € K and all z* € S(f, K).

Proof. First consider the case P4’. Fixing y € K, we have that f(z*,Az* + (1 — A\)y) > 0 for
all 0 < X < 1, since z* € S(f,K). Now take z' = y, 22 = z* and m = 2 in (8), obtaining
f(y, Ay + (1 = X)z*) < 0. Using property P2 with A — 07, we obtain the desired result. When P4”
holds, we take y € K and then put 2! =y, 22 = z*, and m = 2 in (9), getting

My, y+ 1 =XNz*)+ 1A =N f(z", y+ (1= X)z*) <0. (29)

Since the second term in the left hand side of (29) is nonnegative because z* € S(f, K), we conclude
that f(y,\y + (1 — X)z*) < 0 for all A € (0,1). We use again P2 with A — 0T for obtaining the
result. The proof for the case P4* follows from the fact that f(z*,y) > 0 for ally € K and all z* €
S(f, K). O

From now on we treat separately Algorithms I and II.

5.1 Convergence Analysis of Algorithm I
We start with a result similar to Lemma 2 in [15].

Lemma 5.3. Let {27}, {#'}, {v;}, and o be as in Algorithm I and assume that g satisfies H2. For
all j, it holds that _ ' _ o o
le’]l, lo” = &[] < 093 Dg(#,47) < 7;Dyla?, &). (30)
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Proof. We consider two cases. First, if ||:137 — :Z"JH < 1 then we have that ||ejH* H:H — :/%JH < HejH*,
so that the leftmost inequality in (30) follows trivially from (22). For the second case, namely
||a:j — :%7” > 1, we will use the fact that vy(z,st) > syy(z,t) for all s > 1,¢ > 0,z € B, which has
been proved in [9], p. 18. Then,

07 Dy(#1,27) > ovyjvy(a?, H:I:J - 5:9”) > o7, H:I:J - JE]” vy(z?,1) > Hmﬂ - 553” He]”*, (31)

using Definition 2.2 in the first inequality, the above stated property of v, in the second one and
(22) in the third. Thus, the first inequality of (30) is proved, and the second one holds because
o €[0,1]. O

We continue by establishing some basic properties of the sequences {27}, {7} and {v7} gener-
ated by Algorithm I.

Proposition 5.4. Consider EP(f,K). Assume that f satisfies P1-P4 and also any one among
P}’, P4” and P4*. Take g : B — R satisfying H1-H5 and an ezogenous sequence {v;} C (6,7],
where 0 is the undermonotonicity constant in P4. Let {z7} be the sequence generated by Algorithm
L If EP(f, K) has solutions, then

i) For all z* € S(f,K), Dy(z*,27) is nonincreasing and convergent.
ii) {z7} is bounded.
iii) {xIt1 — 27} converges strongly to 0.
) {7]-_167'} is bounded.
v) {27 — #7} converges strongly to 0.
vi) {v'} converges strongly to 0.

Proof. Take z* € 3(f,K). Let H; ={z € B: (vI,z — 27) < 0}. Since 77 € S( £, K) with f7 given
by (20), we have ff(z’,y) > 0 or equivalently f(2/,y) > (v’,y — ’) for all y € K, with v/ as in
(23). In particular, f(z7,z*) > (v7,z* — 7). Using Proposition 5.2, we have that 0 > (v/, z* — 27),
so that z* € H ;- By definition of v/ and D, we have that

<fuj,$j — ij) = 'yj<g'(wj) — g'(ij),wj — ij) + (ej,wj — jj) = 'yj[Dg(ij,wj) + Dg(:vj,ij)]—l- (32)
(a7 — &) > 7 Dyg(#,27) + [v;Dy(a’, &) — |||, ||=7 — #|]] ,

where the last inequality follows from the definition of the norm in B*. Applying now Lemma, 5.3,
we get from (32) (v/,27 — 27) > v,;Dy(27,27) > 0, so that 27 € H;', and in view of (24), we are
able to apply Lemma 2.4 with §j =4/ € B, z = 2/, v = v/, and z = 271!, obtaining

Dg(,’L'*’:L'j) 2 D9($*7$j+1) + Dg(wj+1a$j) Z Dg($*>$j+1)- (33)

13



The result of (i) follows from (33), taking into account the nonnegativity of D,. We also obtain
from (33) that {7} C {y € B : Dy(z*,y) < D,y(z*,2%)}, and hence the sequence is bounded
because of H1, establishing (ii).
We prove now (iii). Taking limits in (33) as j — oo and using (i), we get
lim Dy(z/*,27) = 0. (34)
J—0o0
Since g satisfies H2, we conclude from Proposition 2.6 that (iii) holds.
For proving (iv), we consider the set A C B defined as A = {y : ||x7 — y” <1 for some j}. In
view of (ii), A is bounded. By Definition 2.1 and Proposition 2.7, D, is bounded on A x A, say by
¢ > 0. From (22), taking into account that o < 1, we get

valej Dy(a,a7)  if ||27 — #|| <1 (35)

J x| ve(a?,1) if Hxﬂ - iJH >1,

If ||ac3 —;in < 1 then both 2/ and 7’ belong to A and we get from (35) that nyj_lej‘ < ¢
*

otherwise, we take any y € B such that Hy — :cJH =1, so that y € A, and get from Definition 2.2
that vy4(z7,1) < Dy(y,z7) <, so that, in view of (35), H’yj_lejH* < ( also in this case. We conclude
that {y;'e’} is bounded.

We proceed to prove (v). Note that 0 <| ('yj_lej,xj*l — 29 |< Hyj_lejH* ||zt — 27||. Since

{7]716j } is bounded by (iv) and {27! — 27} converges strongly to 0 by (iii), we get

lim (y; e’ a7t — 27) = 0. (36)
Jj—oo
Observe that
Dg(xj+1a$j) - Dg(xj+1a£j) - Dg(‘ijaxj) = <g,(xj) - gl(‘%j)afij - 'Tj+1>

T A — 9 _ -
= "Yfl(v”,:iﬁ — ity - (7;163,5;9 — 0t = <7;163’$]+1 — 7y, (37)

where the first equality follows from the definition of Dy, the second one from (23) and the last one
from the fact that 277! € H; = {z € B : (v/,z — #7) = 0}. Thus, using (37),

Dy(z7tt,29) — Dy(a?, 37) = (*)/j_lej,acj+1 — a2y + Dy(#7,27) + (7]-_16j,xj — &)

(38)

> (071,29 — ) 4 - [y o) = ], o - ) 2 05 0 - ),

where the last inequality follows from the leftmost inequality in (30), since o € [0,1]. Taking limits
as j — oo in the leftmost and rightmost expressions of (38), we obtain, using (34) and (36),

lim D, (z7*!,37) = 0, (39)

J—0o0
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and therefore, we conclude, using H2 and Proposition 2.6, that {z/*! — 7} converges strongly to
0, so that in view of (ii), {7 — #/} converges strongly to 0, establishing (v).

Now we prove (vi). By (v), there exists jo € N such that, ||w9 — 509” < 1, for all 5 > jo, and
consequently for j > jo our error criterium (22) implies that

7], < 073Dy (7, 27). (40)

Next, we take limit as j goes to oo in the leftmost and rightmost expressions of (37). The rightmost
one converges to 0 by (iii)-(v), the first term in the leftmost expression converges to 0 by (34) and the
second term converges to 0 by (39). It follows that lim; o, Dy(%’,27) = 0, and then, since v; < 7,
we get from (40) that e/ is strongly convergent to 0. From (v) and H3, we get that {¢'(z/) —¢'(37)}
also converges strongly to 0. It follows then from (23) that v7 is strongly convergent to 0 as well. [

Now we proceed to state and prove our convergence result for Algorithm I. We remind that a
sequence {2/} C K is an asymptotically solving sequence for EP(f, K) if liminf;_, f(27,y) > 0 for
ally € K.

Theorem 5.5. Consider EP(f, K). Assume that f satisfies P1-P/ and additionally any one among
P4’, P47 and Pf*. Take g : B — R satisfying HI-H5 and an exogenous sequence {7} C (0,7],
where 6 is the undermonotonicity constant in P4. Let {z7} be the sequence generated by Algorithm
L If EP(f, K) has solutions, then

i) {7} is an asymptotically solving sequence for EP(f, K).

ii) If f(-,y) is weakly upper semicontinuous for all y € K, then all cluster points of {27} solve
EP(f,K).

i) If in addition g satisfies HG6, then the whole sequence {z’} is weakly convergent to some
solution z* of EP(f, K).

Proof. i) Fix y € K. Since #/ solves EP( £,K), by the definition of f{ and Cauchy-Schwartz
inequality, we have that

0 < fH(#,y) = f(@,y) + (yld' (&) — ¢'(27)] — ¥,y — &)

: . . \ . _ (41)
= f(@,y) + (=, y — &) < f@,y) + ||V, ||lv — &7 -
By Proposition 5.4(ii) and (v), we know that the sequence {#’} and therefore, the sequence
{y — &7}, are bounded for each fixed y. Consequently, taking limits in (41) as j — oo and using
Proposition 5.4(vi) we get
0 < liminf f(,y), (42)
Jj—o0

for all y € K.
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ii) By Proposition 5.4(ii) and (v), {z’} has weak cluster points, all of which are also weak cluster
points of {#7}. These weak cluster points belong to K, which, being closed and convex, is weakly
closed. Let # be a weak cluster points of {#7}, say the weak limit of the subsequence {#%} of {#/}.
Since f(-,y) is weakly upper semicontinuous, we obtain from (42) that 0 < limsup;_,, f (#%,y) <
f(Z,y) for all y € K. As a result, Z belongs to S(f, K).

iii) Assume that # is another weak cluster point of {z7}, say the weak limit of the subsequence
{z%} of {z7}. By (ii), both # and & solve EP(f, K). By Proposition 5.4(i), both Dy(%,z’) and
Dy(%,27) converge, say to n > 0 and p > 0, respectively. Using the definition of D, we have that

(g'(zeﬂ') — g'(mif),.f: —I) = Dg(:i,a:ij) — Dg(a“:,wef) + Dg(fc,a:ej) — Dg(fc,wif).
Therefore

(g (@5) = g'(a%),8 = 3)| < | Dy(#,3) = Dy(d,5%)

+ ‘Dg(zi,xef) —D,#,24)|. (43
Taking limits in (43) as j — oo, we get

liminf |(g'(2%) — ¢' (%), % — &)
j—o0

<ln—nl+Ip—ul =0,
which contradicts H6. As a result, Z = £. O

5.2 Convergence Analysis of Algorithm II

The next proposition establishes the basic property of the generated sequence, in terms of the
Bregman distance from its iterates to any point of the solution set.

Proposition 5.6. Consider EP(f, K) where f satisfies P1-P3 and any one among P4’, P}” and
PJ*. Take g : B — R satisfying H1-H5. Let {27}, {#’}, {v;} and o be as in Algorithm II. Then

Dg(l'*axj—'—l) S Dg(m*amj) - ’Yj_1<vjai'j - iL'*> - (1 - O-)Dg(*%jal'j) S Dg(.’L'*,.’Ej), (44)
for any z* € S(f,K).

Proof. As in the case of Algorithm I, we define the auxiliary vector v/ as

v = lg' () — ¢'(@)] + ¢, (45)
so that (28) can be rewritten as
0=7;"07 + g'(27*1) — ¢/ (a9). (46)
Replacing (28) in (27), we obtain
Dy(#,27%) < oDy (37, 27). (47)
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Note that

Dg(x*axj—i—l) = Dg(l‘*,.’,cj) + <gl($j) - g,(q"j+1)7$* - jj) + D!]('i‘jaxj—l—l) - Dg(i‘]axj)
= Dg(m*,g;j) + <7j_17}j,$* - jj) + Dg('ijamj+1) - Dg(jjaxj) (48)
< Dg(x*a$j) - 7_7'_1<Uj7jj - *T*> - (1 - O)Dg('i‘jaxj)a

using the definition of Dy in the first equality, (46) in the second equality and (47) in the inequality.
We have proved the leftmost inequality in (44).
Since D, is nonnegative and o € [0, 1), we obtain from (48)

Dy(a™, a71) < Dy(a",27) — 75 Mo, 5 — o). (49)
On the other hand, 7/ €S( %, K). Consequently
f(jjay)+7;1<_vjay_'%j) > Oa (50)

for all y € K. In particular, (50) holds for y = z*, so that f(i/,z*) > vjl(vj,x* — #7) which is
equivalent to f(&7,z*) > -, Y, 37 — z*). In view of Proposition 5.2, any one among P4’, P4”
and P4* implies that f(i/,2*) < 0. Henceforth, we have that —fyj_l(vj,ij — z*) < 0. Replacing
this inequality in (49), we obtain the rightmost inequality in (44). O

The remaining convergence properties of the sequences {z7}, {#’},{v7} are established in the
following proposition.

Proposition 5.7. Consider EP(f, K). Assume that f satisfies P1-P/ and also any one among
Pj’, P47 and P4*. Take g : B — R satisfying HI-H5, and an ezogenous sequence {y;} C (0,7],
where 0 is the undermonotonicity constant in P4. Let {z7} be the sequence generated by Algorithm
II. If EP(f, K) has solutions, then

i) For all z* € S(f,K), Dy(z*,z7) is nonincreasing and convergent.
ii) {z7} is bounded.
iii) Z;‘io vj_l<vj,a~cj — z*) < oo where vJ given by (45).
w) D270 Dy(#,27) < oo.

v) 3720 Dy(#,291) < 00 .
vi) {#9 — 27} converges strongly to 0, and consequently {37} is bounded,

vii) {9t — 29} converges strongly to 0.
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viii) {v7} converges strongly to 0.

Proof. Take z* € S(f,K). By Proposition 5.6, {Dy(z*,27)} is a nonnegative and nonincreasing
sequence, henceforth convergent, and {2’} is contained in a level set of Dy(z*,), which is bounded
by H1, establishing (i)-(ii). Invoking again Proposition 5.6,

0 <7 0!, @ — 2%) + (1 — 0) Dy (3, 27) < Dyg(a*,27) — Dy(a*,27T1),

from which (iii) and (iv) follow easily. Item (v) follows from (iv) and (47). For (vi) and (vii),
observe that lim; oo Dg(77,27) = limj_,00 Dg(7’,27%1) = 0 as a consequence of (iv), (v). Since
{27} is bounded by (i), we can apply Proposition 2.6 to obtain the strong convergence of {7/ — 27}
and {#/ — 27t} to 0, which entails the strong convergence of {2/ — z/*!'} to 0. Finally, (viii)
is obtained from (vii) and (46) taking limits with j — oo, using the facts that H3 holds and

{7} € (0,7 O
The following theorem completes the convergence analysis of Algorithm II.

Theorem 5.8. Consider EP(f, K). Assume that f satisfies P1-Pj and also any one among Pj’,
P47 and P4*. Take g : B — R satisfying HI-H5, and an exogenous sequence {v;} C (6,7%], where
6 is the undermonotonicity constant in Pj. Let {x’} be the sequence generated by Algorithm IL If
EP(f, K) has solutions, then

i) {#7} is an asymptotically solving sequence for EP(f, K).

ii) If f(-,y) is weakly upper semicontinuous for all y € K, then all cluster points of {27} solve
EP(f,K).

i) If in addition g satisfies H6, then the whole sequence {z7} is weakly convergent to some
solution z* of EP(f, K).

Proof. The proof is similar to the one of Theorem 5.5, using now Proposition 5.7 instead of Propo-
sition 5.4. ]

We comment that when B is a strictly convex and smooth Banach space and we take g(z) =

||z||%, then we have an explicit formula for (¢') !, in term of ¢', where ¢ is defined as ¢(z) = L ||z|?

Iz
with % + % = 1. Indeed, (¢') ! = ¢! P¢'.

Now we look at the two additional conditions imposed in items (ii) and (iii) of Theorems 5.5 and
5.8. Not much can be done about assumption H6 on g, required for uniqueness of the weak limit
points of {27}: it is rather demanding (as mentioned before, functions satisfying it are known only
in very special Banach spaces), but it seems to be inherent to proximal point methods in Banach
spaces, even in the exact version of the method for finding zeroes of monotone operators (e.g., in
[7]). The situation is different in connection with weak upper semicontinuity of f(-,y), required for
establishing that the weak limit points of {z/} are solutions of the equilibrium problem. Tt is also
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quite demanding, but we mention that it holds at least in two significant cases: when B is finite
dimensional (where it follows from P3, since in this case weak and strong continuity coincide) and
when f(-,y) is concave for all y € K. Moreover, it is possible to replace it but a much weaker
hypothesis, through a reformulation of the equilibrium problem, to be developed in the following
section, but only for the case of a monotone f, i.e. satisfying P4*® instead of P4.

6 A Reformulation of the Equilibrium Problem

We will establish here that S(f, K) coincides with the set of zeroes of a certain point-to-set operator.
We will prove then that when f is monotone the graph of this operator has a certain property,
namely demiclosedness, which enables us to get rid of the weak upper semicontinuity of f(-,y) in
the convergence analysis of our algorithms.

We denote as Ng : B — P(B*) the normal operator of K, i.e. the subdifferential of the
indicator function I, which vanishes at points of K and takes the value +o0o outside K. The
explicit formula of Nk given by

{z€B*| (z,y—z)<0,Vye K} ifzecK

51
1) otherwise. (51)

NK(.’E) == {

We also assume that 0F;(y) # 0 for all z,y € K. This is the case, for instance, if f(z,-) can be
extended, preserving its convexity, to some open subset W of B, containing K, for all x € K. We
associate to EP(f, K) the operator T/ : B — P(B*) defined as

T/ (z) = 0F,(z) + Nk(z), (52)
where F is as in (13), i.e. Fy(y) = f(z,y), and 0F,(y) denotes its subdifferential at the point y.
Proposition 6.1. The set of zeroes of T is equal to S(f, K).

Proof. By definition, we have that z* € S(f, K) if and only if F«(z*) = f(z*,2*) = 0 < f(z*,y) =
Fy-(y) for ally € K. So, z* € S(f, K) if and only if z* minimizes the function Fy« over K. Since
F,« and K are convex, the necessary and sufficient condition for z* to be a minimizer of Fy« over
K is the existence of v* € 0F,«(z*) such that (v*,y — z*) > 0 for all y € K. In view of (51), that
is precisely equivalent to saying that 0 € OF,« (z*) + N (z*) = T/ (z*). O

Corollary 6.2. Consider the sequence {37} generated by either Algorithm I or II. Then & is the
zero of T3 | as defined in (52), with f5 as in (20), i.e.

¢/ +7ly'(27) — ¢ (#7)] € OF3 (') + Nk (2). (53)
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Proof. Since %/ is the solution of EP( %, K), by Proposition 6.1 it is a zero of T/7. The rules of
subdifferential calculus applied to the convex function

o(y) = fi(z,y) = f(z,9) +75(g'(z) — g'(27),y — z) — (¢/,y — =)

lead to (53), after taking x = 7/ and evaluating both N and the subdifferential of ¢ at the same
point, namely /. O

Corollary 6.2 allows us to rewrite the iterative step of our algorithms. For the case of Algorithm
I, Step 2 is equivalent to finding a pair (%4, e’) such that

el +,1g'(z7) — ¢'(57)] € OFy; (&) + Nk (i), (54)

1], < {mjpg(g&j,zi) if |27 — & < 1 (55)

oyjvg(29,1) if Hwﬂ - jJH > 1.

Now we must explore the connection between the monotonicity properties of f and T7/. Consider
6 =0, g: B — R satisfying H1-H5 and define U/ : B — P(B*) as

OF;(x) ifre K
flg) =
U'le) {@ otherwise. (56)

It is essential to note that US is not the subdifferential of a convex function; rather, at each
point z it is the subdifferential of a certain convex function, namely F, but this function changes
with the argument of the operator. Thus, the monotonicity of U is not granted “a priori”, but we
have the following elementary result.

Proposition 6.3. If f satisfies P1-P3 and P4*, then U/ is monotone.

Proof. In view of (56), we only need to worry with points z,y € K. Take z,y € K,u € U/(z) and
v € Uf(y). Using, P1, P2 and the definition of OF,, we obtain

(u,y —z) < Fi(y) — Fe(z) = f(z,y) — f(z,2) = f(z,y), (57)

(v, 2 —y) < Fy(z) — Fy(y) = f(y,2) — fy,9) = f(y, %) (58)
Adding (57) and (58) we get

_<U_U’$_y> = <uay_$> + <Ua$_y> < f(xay) +f(y,:v) < 07 (59)

using P4° in the last inequality. We conclude from (59) that 0 < (u — v,z — y), establishing
monotonicity of U7, O
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In order to establish the desired demiclosedness property, we need maximal monotonicity of U/ .
This is less elementary, and we will invoke again the existence result in Proposition 3.1.

The following result has been established in Theorem 4.5.7 of [6] for the case of g(z) =
(1/2) ||lz||%, A = 1. See also Remark 10.8 in [31].

Proposition 6.4. If T : B — P(B*) is monotone, g : B — R satisfies H2 and the operator T + \g'
is onto for some X\ > 0, then T is mazimal monotone.

Proof. Take a monotone operator T such that T C T, and a pair (v,z) such that v € T(z). We
must show that v € T'(z). Define b = v+ Ag’(z). Since T+ Ag’ is onto, there exists z € B such that

b=v+ A (2) €T(x) + A (z) C T(x) + N (). (60)

On the other hand, since v € T(z), we have that
b=v+ X (2) € T(2) + N (2). (61)
Since ¢' is strictly monotone by H2, the same holds for T+ \g', and it follows therefore from (60) and

(61) that z = z. Thus, making z = z in the first inclusion of (60), we get v+ Ag'(2) € T'(2) + Ag'(2),
which implies that v € T'(z). It follows that 7" C T, and hence T is maximal. O

Now we use Propositions 3.1 and 6.4 to establish maximal monotonicity of T'f.

Proposition 6.5. If f satisfies P1-P3, P4* and g satisfies H1-H2, H}-H5, then T7, as defined in
(52), is mazimal monotone.

Proof. Consider T/ = Uf 4+ N as in (52). We want to use Proposition 6.4, for which we need to
show that 7 is monotone and that 7/ + \g’ is onto for some A > 0. Note that U/ is monotone by
Proposition 6.3. Since Nk is certainly monotone, it follows that 77 is monotone as well. Now we
address the surjectivity issue. Take any A > 0 and b € B*. We want to prove the existence of some
z € K such that b € (T + A¢')(z). Consider f as in (10) with e = 0, Z € B and y = ) satisfying
d(@) =A71b, ie. )

F(z,y) = f(z,y) + Md'(z) = X"'b,y — z). (62)
Note that such an Z exists by H4, and that EP(f, K) has a unique solution by Proposition 3.1,
say #. Since f(z,y) > 0 for all y € K and f(z,z) = 0, # solves the following convex minimization
problem: min f (z,) s.t. y € K. Thus, & satisfies the first order optimality condition for this
problem, which is, in view of (62) and the differentiability of g,

0 € OF3(2) + Mg’ (2) — \71b] + N (&),

or equivalently
b e 0F3(2) + Mg (&) + Nx(2) = T (&) + Mg (2).

We have established surjectivity of T + \g'. We now apply Proposition 6.4 to conclude that T/ is
maximal monotone. O
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We introduce now the demiclosedness property announced above.

Definition 6.6. Given T : B — P(B*), the graph of T is said to be demiclosed, when the following
property holds: if {z7} C B is weakly convergent to z* € B, {v?} C B* is strongly convergent to
v* € B* and v/ € T(27) for all j, then v* € T(z*).

Proposition 6.7. If T : B — P(B*) is mazimal monotone, then its graph is demiclosed.
Proof. See, e.g., [27], p- 105. O
Now we can get rid of the weak upper semicontinuity assumption in Theorems 5.5, 5.8.
Theorem 6.8. Assume that
i) f satisfies P1, P2, P3, and Pj*,
ii) g : B — R satisfies H1-HS,
iii) {7;} is contained in (0,7] for some v > 0,
w) f(z,-) can be extended, for all z € K, to an open set W D K, while preserving its convexity,
v) EP(f, K) has solutions,

then, for all z° € K, the sequence {x’} generated by either Algorithm I or Algorithm II is bounded
and all its weak cluster points are solutions of EP(f, K). If moreover g satisfies H6, then {z’} is
weakly convergent to a solution of EP(f, K).

Proof. We are within the assumptions of Propositions 5.4, 5.7 with § = 0. Clearly, P4°® is the
same as P4 with # = 0, and, as discussed in Section 2, P4°® implies P4*, for instance. Consider
first Algorithm I. The sequence {z/} is bounded by Proposition 5.4(ii). Let Z be a cluster point
of {z7}. Let {z%} be a subsequence of {2/} weakly convergent to Z. By Proposition 5.4(v), the
subsequence {z%} is also weakly convergent to Z. In view of Corollary 6.2, (23) and (52), we have
v% € T/(#%). By Proposition 5.4(vi), {v%} is strongly convergent to 0. Since 77 is maximal
monotone by Proposition 6.5, its graph is demiclosed by Proposition 6.7. It follows from Definition
6.6 that 0 € 77/(z), and therefore z € S(f, K), in view of Proposition 6.1. Uniqueness of the weak
cluster point of {z7} when g satisfies H6 follows exactly as in the proof of Theorem 5.5(iii). The case
of Algorithm IT is dealt with in a similar way, invoking now Proposition 5.7 instead of Proposition
5.4. ]

We remark that the difference between Theorems 5.5, 5.8 on one side, and Theorem 6.8, besides
the fact that the proof of the latter requires the reformulation of the equilibrium problem as a
variational inequality one, lies in the technical assumption on the extension of f(z,-) to an open
set containing K, which replaces weak upper semicontinuity of f(-,y), as the tool for establishing
optimality of the weak cluster points of the generated sequence.
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At this point we mention that, under the reformulation, Algorithms I and II coincide with
Algorithms I and IT in [15], designed for finding zeroes of maximal monotone operators in Banach
spaces. Thus, we could have omitted the proof of Theorem 6.8, which has been included just for
making this paper more self-contained. On the other hand, the results in [15] demand monotonicity
of the operator, akin to monotonicity of f in the case of equilibrium problems, while in Section
5 we worked under the weaker assumptions of pseudomonotonicity and #-undermonotonicity (cf.
Example 2.8). An inexact proximal point method for finding zeroes of non-monotone operators
in Banach spaces has appeared in [14], but in this reference the operator is assumed to be 6-
hypomonotone. In the context of equilibrium problems, this is the same as stating that (Tf )+
8¢’ is monotone, while our f-undermonotonicity assumption entails that 7/ + ¢’ is monotone.
Also, the relations between 6 and the regularization parameters v; in [14] and in this paper are
different. A thorough discussion on the connection between our algorithms and the use of proximal
point methods for finding zeroes of operators applied to solving equilibrium problems via the
reformulation can be found in [20].

The reformulation is also useful for visualizing the way in which our error criteria work. In
practice, one assumes that one has some algorithm for solving the subproblem EP(f;, K), which
generates a sequence, say {77F} cn. At each iteration, one should check whether z7* satisfies the
error criteria in order to be accepted as an approximate solution of EP(f;, K). In view of (54),
(55), for the case of Algorithm I one should verify whether there exists some e/ such that the pair
(z7k, e7) satisfies

e +1lg'(27) — ¢ (275)] € OF s (07%) + Nic(a7%),

”ejH < 07 Dy (z7*, 27) if”xj - xj’k” <1
7 | oyve(af, 1) if |27 — 27F|| > 1.

If so, we take #/ = z* and continue with the computation fo z/1!; otherwise we take another step
of the inner loop and repeat the check with z7¢+1,

In order to support the given notion of approximate solution, it is important to verify that, at
least in some “nice” cases, any feasible point close enough to the exact solution of the subproblem
EP(f;, K) will satisfy our criterion for an approximate solution, i.e. will solve EP( 5K ) for some
appropriate e/. In such a case, if we use in the inner loop an algorithm known to converge to the
exact solution of the subproblem, after a finite number of steps of the auxiliary algorithm we will
end up with a vector satisfying our criteria for being an approximate solution.

We show next that this situation occurs in the smooth case, by which we mean that the function
Fy(y) := f(z,y) is continuously Fréchet differentiable and that the boundary 0K of K is smooth,
in the following sense:

Definition 6.9. We say that the boundary of a closed and convex set K, denoted by 0K, is smooth
if there exists a Fréchet differentiable convex function h : B — R such that K = {z € B : h(z) < 0}
and h'(z) # 0 for all x € OK.

23



Proposition 6.10. If the boundary of K is smooth then Nk (z) = {th'(z) : t > 0} for all z € OK.

Proof. Take z € K. The fact that the halfline through h'(z) is contained in Nk (z) follows easily
from (51) and convexity of h. For the reverse inclusion, assume that there exists w € Ng(z) such
that w and h/(z) are linearly independent. It follows from the Convex Separation Theorem that
there exists z € B such that

(W (z),2) <0, (63)

(w,z) >0, (64)
because otherwise Ker w = Ker h'(z), contradicting the linear independence of w and h'(z) (cf.

Lemma 3.9 in [30]). Let y = = + tz. It follows from (63) and differentiability of h that y € K for
small enough ¢ > 0, so that, in view of (51), 0 > (w,y — ) = t(w, z), which contradicts (64). O

Theorem 6.11. Under the hypotheses of Theorems 5.5, 5.8, assume additionally that K has smooth
boundary, Fy is continuously Fréchet differentiable and that (g')~! is continuous (for Algorithm II).
Let {27} be the sequence generated either by Algorithm I or II. Assume that 7 is not a solution
of EP(f,K) and let 37 be the unique solution of EP(f;, K) with f; as defined in (5). Then there
exists 6; > 0 such that

i) if 37 belongs to int(K), then any z € B(#7,8;) N K solves the subproblem (21)-(22) in the
case of Algorithm I and (26)-(27) in the case of Algorithm II,

i) if 27 belongs to OK, then any x € B(27,4;) N OK solves the subproblem (21)-(22) in the case
of Algorithm I and (26)-(27) in the case of Algorithm II.

Proof. Note that if we take e/ = 0, then EP( £, K) reduces to EP(f;, K). If {z*} is a sequence
generated by either Algorithm I or II, define A; : B — B* as

Aj(z) = —Fy(z) = lg' () — ¢' (")), (65)

where F! denotes the Fréchet derivative of F.

i) We first consider the case of Algorithm I. Note that 47 is the unique solution of EP(f;, K) by
Proposition 3.1. Define ®; : B — R as ®,(z) = oy, min{Dy(z,27),v4(27,1)}. Since 27 # 37,
because otherwise z7 solves EP(f, K), we have that Dy(27,z7) > 0 and, by H2,

®;(27) > 0. (66)

Assume that 27 € int(K). In this case, there exists §; > 0 such that B(47, ;) C K and Nk (z) = {0}
for all z € B(27,6;). Since &7 is the exact solution of the j-th subproblem, it satisfies (53) with
e/ =0, Ni(27) = 0, which implies, in view of (65), that

A7) = 0. (67)
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Define ¥; : K = R as ¥;(z) = ||Aj(z)|], — ®(z). By (66), (67),
T,(#7) = —9;(37) < 0. (68)

Continuity of F, and ¢’ ensure continuity of both A; and ®;, and therefore of ¥; as well. By
(67) and continuity of ¥; we can choose the above ¢; small enough such that ¥;(z) < 0 for all
z € B(#7,6;) N K or equivalently ||A;(z)||, < ®;(z) for all z € B(27,46;) N K. In such a case, any
pair (z,e) with = € B(37,4;), e = A;(w), will satisfy (54), (55), with (z, €) substituting for (37, e’).
Thus any such z can be taken as the #/ required by Algorithm I.

For the case of Algorithm II, we replace ¥; by \Tfj : K — R defined as

Uj(z) = Dy(z, (¢)"'lg'(27) — 7 ' Fp(2)]) — oDy(z,27),

and proceed with the same argument.
ii) We start with Algorithm I. Assume that 2/ € OK. Since %/ is the exact solution of the j-th
subproblem, it satisfies (53) with e/ = 0, so that, in view of (65), A(2/) € Ng(#7). Since 0K is
smooth, we get from Proposition 6.10 that Ng (27) = {th'(27) : t > 0}, so that there exists t* > 0
such that A;(47) = t*h'(&7). Since h'(27) # 0 by Definition 6.9, we get t* = ||A;(&7)||, / ||7' (&%),
and therefore ,

14, (@7)]]

R (27) — Aj(47) = 0. (69)
1Al !
Define \ilj :K =+ Ras
; 1A ()l
@) = [ @ - @) -
’ 1B (), A
¥, is continuous by our smoothness assumption, and ¥;(i7) = —®;(47) < 0 by (69). Therefore,
we can choose §; > 0 such that ¥;(z) <0 for all z € B(#7,8;) N 0K or equivalently
145 @),
T b () = ()| < 95(), (70)
‘ [P (), E R

for all z € B(47,6;) N OK. Let now &(z) = ||Aj(z)||, / |#'(z)|], and consider now a pair (z,e) with
z € B(#9,6;) NOK and e = £(z)h'(z) — A;(z). It follows from (70) that this pair satisfies (22) and
(53), and henceforth (21) (with z instead of #7), establishing the result.

For the case of Algorithm II, we define, instead of \i!j, the function \i/j :K —>Ras

5(0) = Dy (,(¢)7 [3/0) 495 Asta) =7 EENEN @) ) - 0Dya,2),

and then argue as above. O
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The following example illustrates the fact that if 0K is not smooth then the result of Theorem
6.11 fails to hold. We consider only Algorithm I (a similar example can be constructed for Algorithm
IT).

Example 6.12. Consider K = [5,1] x [$,1] C R2. Take z = (z1,72) € K and y = (y1,2) € K.
Define f : K x K - R as f(z,y) = (z,z — y) = z1(z1 — 11) + z2(22 — ¥2).

Note that f satisfies P1-P4 with g(z) = %||:v||§ In fact, one can easily show that f is 1-
undermonotone. It is clear that K is not smooth. We also have that S(f,K)= {(1,1)}. Put
0 = (%a%), Yo = % >1=60and 0 = % Then we have fo(z,y) = (%xo - %x,m — y) and
S(fo, K)={(1,1)}. Take €® = (€?,€9) € R, so that f¢(z,y) = (%wo - %:c + €%z — ). We claim
that the unique solution of EP(f¢, K) is (1,1), independently of the error vector e/, thus falsifying

the result of Theorem 6.11. Indeed, we need to verify that (3,3) + €® € Ni((1,1)) for all * € R?

such that ||60H2 < $Dy((1,1),(3,3)) = 5. Since Ng((1,1)) = RZ, as can be easily checked, the
condition above becomes (%, %) + e > 0, which certainly holds whenever ”60H2 < %.
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