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Abstract

We develop a Ruelle-Perron-Fröbenius transfer operator approach to
the ergodic theory of a large class of non-uniformly expanding transforma-
tions on compact manifolds. For Hölder continuous potentials not too far
from constant, we prove that the transfer operator has a positive eigen-
function, piecewise Hölder continuous, and use this fact to show that there
is exactly one equilibrium state. Moreover, the equilibrium state is a non-
lacunary Gibbs measure, a non-uniform version of the classical notion of
Gibbs measure that we introduce here.

Dedicated to the memory of William Parry

1 Introduction

The theory of equilibrium states of uniformly hyperbolic (Axiom A) dynamical
systems, developed by Sinai, Ruelle, Bowen, and Parry, is a major achievement
in ergodic theory, and a spectacular application of ideas from statistical physics
in the realm of smooth dynamics. Besides its intrinsic beauty, this theory yields
a surprisingly complete picture of the behavior of such systems at the statistical
level: finitely many invariant physical (or SRB) probability measures, which
describe the asymptotic time averages of Lebesgue almost every point.

The strategy initiated by Sinai [Sin72] in the case of Anosov diffeomorphisms,
and carried out in full generality by Ruelle and Bowen [Bow75, BR75, Rue76],
may be briefly outlined as follows. Uniformly hyperbolic systems admit finite
generating Markov partitions. Via the itinerary relative to such a partition,
points in phase space are identified with configurations of a one-dimensional
lattice gas. The Gibbs distributions of the gas correspond to the equilibrium
states of the dynamical system. Later, Parry [Par88] proved that equilibrium
states can also be obtained as weighted limits of orbital measures supported on
periodic orbits.
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Extension of this approach and of the conclusions beyond the Axiom A con-
text involves some fundamental difficulties, even restricted to non-uniformly
hyperbolic systems, that is, systems such that almost every point admits an
asymptotically hyperbolic splitting of the tangent space. For one thing, gen-
erating Markov partitions are not known to exist in general. Even when they
do exist, Markov partitions usually have infinitely many atoms; this leads to
considering gases with infinitely many states, a difficult subject not yet well
understood.

Important contributions have been given recently by several authors: Bruin,
Keller [BK98], Denker, Urbański [DU91, DU92, Urb98], Pesin, Senti [PS05],
Wang, Young [WY01] for special classes of transformations, such as interval
maps, rational functions of the sphere, and Hénon-like maps; Buzzi, Maume,
Sarig [Buz99, BMD02, BS03], Sarig [Sar99, Sar01, Sar03], and Yuri [Yur99,
Yur00, Yur03], for countable Markov shifts and piecewise expanding maps; and
Leplaideur, Rios [LR06] for “horseshoes with tangencies” at the boundary of
hyperbolic systems, to mention just a few of the most recent works. Many of
these papers, and particularly [DU92, Sar03, Yur99, Yur00, Yur03], deal with
systems having neutral periodic points, a setting of non-hyperbolic dynamics
which attracted a great deal of attention over the last years. Also very recently,
Buzzi [Buz05] introduced the important notion of entropy-expansiveness, which
influenced other works such as [OV06] and [BR06].

There has also been substantial recent progress concerning physical mea-
sures. In particular, Alves, Bonatti, Viana [ABV00, BV00] proved existence
and uniqueness of SRB measures for some large classes of non-uniformly hyper-
bolic maps. One important difficulty in this context lies in the very definition of
non-uniform hyperbolicity: [ABV00] assume that Lebesgue almost every point
has only non-zero Lyapunov exponents, but it is not clear how this kind of
condition could be useful when considering more general potentials, since most
equilibrium states should be singular relative to the Lebesgue measure.

In [Oli03] the first author tackled this difficulty and proved the existence
of equilibrium states for open sets of non-uniformly expanding maps and of
continuous potentials. Roughly, the map should be expanding on most of phase
space, with possibly contracting behavior on the complement. Concerning the
potential φ, its oscillation supφ − inf φ should not be too large. This ensures,
a priori, that certain measures that are candidates to being equilibrium states
accord a (uniformly) small weight to the possibly contracting regions. Using
this fact, one can find a genuine equilibrium state within that set of candidates.
Arbieto, Matheus [AM06] have recently shown that the equilibrium states one
finds in this setting are exponentially mixing. Moreover, this approach has
been extended to random non-uniformly expanding maps by Arbieto, Matheus,
Oliveira [AMO04].

The results in the present paper are similar in flavor to those of [Oli03], but
they improve that work in some important ways. To begin with, our hypotheses
on the dynamical system are milder and more natural. In fact, they are quite
close to conditions in the Appendix of [ABV00]. In addition, we develop a
Ruelle-Perron-Fröbenius approach that provides a better understanding of the
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equilibrium states: for instance, we are able to prove that they are non-lacunary
Gibbs states, a non-uniform variation of the classical notion, closely related to
the weak Gibbs states in [Yur99]. Most important, this new approach allows us
to prove, for the first time in this setting, uniqueness of the equilibrium state
for every Hölder continuous potential whose oscillation is not too large.

Let us also mention that the special case of measures of maximal entropy,
corresponding to constant potentials, has been treated before in [OV06], where
we were able to give particularly short arguments for existence and uniqueness
under some simple conditions.

Acknowledgements: We are grateful to A. Arbieto, V. Baladi, J. Bochi,
C. Matheus, and P. Varandas for many useful conversations. Most of this work
was carried out at IMPA, Rio de Janeiro.

2 Setting and statements

Let f : M → M be a continuous transformation on a compact space M , and
φ : M → R be a continuous function.

Definition 2.1. An f -invariant measure is an equilibrium state of f for the
potential φ if it maximizes the functional

η 7→ hη(f) +
∫
φdη

among all f -invariant probabilities η.

By the variational principle [Wal82, Theorem 9.10], the supremum of this
functional over the invariant probabilities coincides with the topological pressure
P (f, φ) of f for φ.

2.1 The class of maps and potentials

Throughout this paper we take f : M →M to be a C1 local diffeomorphism on
a compact Riemannian manifold, satisfying conditions (H1) and (H2) below. A
subset D of M has finite inner diameter if there exists L > 0 such that any two
points in D may be joined by a curve of length less than L contained in D.

(H1) There are p ≥ 1, q ≥ 0, and a family R = {R1 , . . . , Rq , Rq+1, . . . , Rq+p}
of pairwise disjoint open sets whose closures have finite inner diameter
and cover the whole M , such that

– f |(R̄i ∪ R̄j) is injective whenever R̄i ∩ R̄j 6= ∅
– if f(Ri) ∩Rj 6= ∅ then f(Ri) ⊃ Rj and, hence, f(R̄i) ⊃ R̄j

– there is N ≥ 1 such that fN (Ri) = M for every i.

Let us emphasize that this Markov partition R needs not be generating:
different points may have the same itinerary relative to R. We denote by ∂R
the complement of the union of all Ri ∈ R.
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(H2) There exist σ1, σ2 > 1 such that

– ‖Df(x)−1‖−1 ≥ σ1 for every x ∈ Rq+1 ∪ · · · ∪Rq+p

– ‖Df(x)−1‖−1 ≥ σ−1
2 for every x ∈ R1 ∪ · · · ∪Rq

and σ2 is close enough to 1: the precise conditions are stated in (3) below.

In other words, the map f is never very contracting, and it is quite expanding
on the atoms Rq+1, . . . , Rq+p. We also assume that the potential φ : M → R
is not very far from being constant:

(H3) φ is Hölder continuous and supφ− inf φ < log deg(f)− log q.

This can happen only if q < deg(f). When q = 0 condition (H2) means
that f is uniformly expanding. In this case (H3) is true for every φ. Closely
related conditions have been considered by Hofbauer, Keller [HK82], for piece-
wise monotonic maps, and by Denker, Urbański [DU91], for rational maps of
the sphere. See also Przytycki, Rivera-Letelier, Smirnov [PRLS] for a recent
application in the latter context.

2.2 Non-lacunary Gibbs measures

An integer sequence nj ∈ N is called non-lacunary if it is increasing and nj+1/nj

converges to 1. For each n ≥ 1, we call cylinder of length n any non-empty set
of the form

Rn = Rn[i0, . . . , in−1] = {y ∈M : y ∈ Ri0 , f(y) ∈ Ri1 , . . . , f
n−1(y) ∈ Rin−1}.

Let Rn be the family of all cylinders of length n, and ∂Rn be the complement
of the union of its elements.

The classical notion of Gibbs measure was brought from statistical mechanics
by Sinai [Sin72] and Ruelle [Rue89]. In our setting it may be defined as follows.
A probability η is a Gibbs measure of f for φ if η(∂R) = 0 and there exist P ∈ R
and K > 0 such that

K−1 ≤
η
(
Rn(x)

)
exp

(
Snφ(x)− nP

) ≤ K for every x /∈ ∂Rn and n ≥ 1, (1)

where Snφ(x) =
∑n−1

j=0 φ(f j(x)) and Rn(x) denotes the cylinder of length n that
contains x. More generally, we define

Definition 2.2. A probability η (not necessarily invariant) is a non-lacunary
Gibbs measure of f for φ if η(∂R) = 0 and for η-almost every x ∈ M there
exists a non-lacunary sequence of values of n for which (1) is satisfied.

This notion of non-lacunary Gibbs measure is related to the notion of weak
Gibbs measures in Yuri [Yur99]. See Proposition 3.17 and the observation follow-
ing it. Here, non-lacunary sequences arise as sequences of hyperbolic times. This
latter notion was introduced by Alves [Alv00] and further developed in [ABV00]:
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Definition 2.3. Let c > 0 be fixed. We say that n ∈ N is a hyperbolic time for
x ∈M if

n−1∏
j=k

‖Df(f j(x))−1‖−1 ≥ e2c(n−k) for every 0 ≤ k ≤ n− 1. (2)

We say Rn ∈ Rn is a hyperbolic cylinder if n is a hyperbolic time for every point
x ∈ Rn. Denote by Rn

h ⊂ Rn the subset of hyperbolic cylinders.

Our particular choice of the constant c will be given in (4) below. We denote
by H the set of points x ∈M that belong to the closure R̄n of some hyperbolic
cylinder Rn for infinitely many values of n. In particular, since the inequality
(2) extends to the closure, such points admit infinitely many hyperbolic times.

2.3 Statements of main results

The Ruelle-Perron-Fröbenius transfer operator Lφ : C0(M) → C0(M) associ-
ated to f : M →M and φ : M → R is the linear operator defined on the space
C0(M) of continuous functions g : M → R by

Lφg(x) =
∑

f(y)=x

eφ(y)g(y).

We also consider the dual operator L∗φ : M(M) →M(M) acting on the space
M(M) of Borel measures in M by∫

ξ d(L∗φη) =
∫

(Lφξ) dη

for every ξ ∈ C0(M). Let λ be the spectral radius of Lφ and P = log λ. For all
our results, we assume f and φ satisfy conditions (H1), (H2), (H3) above.

Theorem A. There exists some probability measure ν such that L∗φν = λν.
Moreover, ν(H) = 1 and supp ν = H̄.

From the proofs of this and the next theorem we also get (Corollary 5.16)
that ν is a non-lacunary Gibbs measure for φ. Notice ν is usually not invariant.

Theorem B. There is a piecewise Hölder continuous function h : M → (0,∞),
bounded away from zero and infinity, such that Lφh = λh and so µ = hν is an
invariant ergodic non-lacunary Gibbs measure of f for φ.

By piecewise Hölder continuous we mean there exists a finite partition of M
such that that h is Hölder continuous on each of the atoms. From Theorems A
and B we get that µ(H) = 1, and so all the Lyapunov exponents of f are positive
at µ-almost every point.

Theorem C. The map f admits a unique equilibrium state for the potential φ,
and the equilibrium state is an invariant ergodic non-lacunary Gibbs measure.
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This is our main result on existence and uniqueness of equilibrium states.
From the proof we also get that the equilibrium state coincides with any of the
non-lacunary Gibbs measures constructed in Theorem B.

Before closing this section, let us point out that we do not really need M to
be a manifold or f to be smooth: with a little extra effort, the results stated
above extend to local homeomorphisms on compact metric spaces, subject to a
couple technical conditions that we are going to mention. Let us describe the
few changes in our arguments needed to obtain this extension.

One should assume that each f : R̄i → f(R̄i) is a homeomorphism, and its
inverse is Lipschitz continuous with respect to some choice of metrics df(R̄i) on
the f(R̄i), larger than the metric in the ambient space yet uniformly bounded:
compare (7) and (8). Then one should replace ‖Df−1‖ by the Lipschitz constant
of the relevant inverse branch of f throughout the proof: see (H2), (2), (5), (6),
Proposition 3.4, and the definitions of b(i) and A in the proof of Proposition 3.2.
The first paragraph of Section 3.3 should be omitted, as Lyapunov exponents are
not defined in this non-smooth setting. Assume that every point has the same
number of pre-images under f , so that deg(f) is well-defined. This is probably
too strong an assumption. For Lemma 6.6 we need the metric space to satisfy
the following technical condition (Lemma 6.5 means it holds for manifolds):
there exists a sequence Tk of coverings with diameter going to zero and there
exist C > 0 and d > 0 such that any set E ⊂ M with diam(E) ≤ Adiam(Tk)
intersects at most CAd elements of Tk. Again, this is probably not optimal.

3 Preliminary results

Here we introduce several auxiliary facts to the proofs of the main results.
The reader may choose to proceed directly to the next section, referring to the
present one when necessary.

3.1 Combinatorics of orbits

Given γ ∈ (0, 1) and n ≥ 1, let us consider the set I(γ, n) of all itineraries
(i0, . . . , in−1) ∈ {1, . . . , q+ p}n such that #{0 ≤ j ≤ n− 1 : ij ≤ q} > γn. Then
let

cγ = lim sup
n→∞

1
n

log #I(γ, n).

Lemma 3.1. We have lim supγ→1 cγ ≤ log q.

Proof. Observe that

#I(γ, n) ≤
∑

r>γn

(
n
r

)
pn−rqr ≤

∑
r>γn

(
n
r

)
p(1−γ)nqn.

Stirling’s formula implies (see [BV00, Section 6.3]) that there exists a universal
constant B > 0 such that

r ≥ kn

k + 1
⇒

(
n
r

)
≤ B

(
(1 +

1
k

)(1 + k)
1
k

)r ≤ B
(
(1 +

1
k

)(1 + k)
1
k

)n
.

6



Assume that γ ≥ k/(k + 1). Then

#I(γ, n) ≤
∑

r>γn

B
(
(1 +

1
k

)(1 + k)
1
k p

1
k+1 q

)n ≤ Bn
(
(1 +

1
k

)(1 + k)
1
k p

1
k+1 q

)n

and so
cγ ≤ log(1 +

1
k

) +
1
k

log(1 + k) +
1

k + 1
log p+ log q.

Now just note that the right hand side goes to log q when k →∞.

We are in a position to state our first condition on the constant σ2 in as-
sumption (H2). By assumption (H3), we may find κ > log q such that

supφ+ κ < inf φ+ log deg(f).

By Lemma 3.1, we may fix γ < 1 such that cγ < κ. Assume σ2 is close enough
to 1 that (let d denote the dimension of the manifold M)

supφ+ κ+ d log σ2 < inf φ+ log deg(f) and σ
−(1−γ)
1 σγ

2 < 1. (3)

We also fix the exponent c > 0 in Definition 2.3 once and for all, such that

σ
−(1−γ)
1 σγ

2 < e−4c < 1. (4)

This ensures that fn is uniformly expanding, in a strong sense, on orbit segments
with itineraries (i0, . . . , in−1) in the complement of I(γ, n):

‖Dfn(x)−1‖ ≤
n−1∏
i=0

‖Df(f i(x))−1‖ ≤ σ
−(1−γ)n
1 σγn

2 ≤ e−4cn (5)

for every x in the closure of Rn[i0, . . . , in−1].

Proposition 3.2. There exists θ > 0 such that, for any n ≥ 1 and any itinerary
(i0, . . . , in−1) in the complement of I(γ, n), there exists l > θn and integers
1 ≤ n1 < · · · < nl ≤ n such that Rnj [i0, . . . , inj−1] is a hyperbolic cylinder for
every j = 1, . . . , l.

Proof. The argument is based on the following result of Pliss [Pli72]:

Lemma 3.3. Given A ≥ c2 > c1 let θ = (c2 − c1)/(A− c1). Assume a1, . . . , an

are such that a1 + · · · + an ≥ c2n and as ≤ A for all s = 1, . . . , n. Then there
are integer numbers l > θn and 1 ≤ n1 < · · · < nl ≤ n such that

ak+1 + · · ·+ ani
≥ c1(ni − k) for every 0 ≤ k ≤ ni − 1 and i = 1, . . . , l.

Denote b(i) = inf{log ‖Df(x)−1‖−1 : x ∈ R̄i} for each i = 1, . . . , p + q. By
the hypothesis (H2),

b(i) ≥
{

log σ1 for i = q + 1, . . . , p+ q
− log σ2 for i = 1, . . . , q.
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Let as = b(is) for s = 0, . . . , n − 1. The hypothesis (i0, . . . , in−1) /∈ I(γ, n),
together with (4), gives

1
n

n−1∑
s=0

as ≥ (1− γ) log σ1 − γ log σ2 ≥ 4c.

Take A = supM{log ‖Df−1‖−1} and c1 = 2c and c2 = 4c. Then θ = 2c/(A− 2c)
in Lemma 3.3. From the lemma we get that there exist l > θn and integers
1 ≤ n1 < · · · < nl ≤ n such that

log
nj−1∏
s=k

‖Df(fs(x))−1‖−1 ≥
nj−1∑
s=k

b(is) =
nj−1∑
s=k

as ≥ 2c(nj − k) (6)

for every 0 ≤ k ≤ nj − 1, every j = 1, . . . , l, and every x ∈ Rnj [i0, . . . , inj−1].
This proves that Rnj [i0, . . . , inj−1] is hyperbolic, for every j = 1, . . . , l, as
claimed.

3.2 Hyperbolic times

The following crucial property of hyperbolic times was proved in [ABV00]:

Proposition 3.4. There exists δ = δ(f, c) > 0 such that, given any hyperbolic
time n ≥ 1 for a point x ∈ M and given any 1 ≤ j ≤ n, the inverse branch
f−j

x,n of f j that sends fn(x) to fn−j(x) is defined on the whole ball of radius δ
around fn(x), and satisfies

‖Df−j
x,n(z)‖ ≤ e−jc for every z in the ball B(fn(x), δ).

Here the ball of radius δ is meant with respect to the Riemann distance
d(x, y) on M . Given any path-connected domain D ⊂ M , we define the inner
distance dD(x, y) between two points x and y in D to be the infimum of the
lengths of all curves joining x to y inside D. Clearly,

dD(x, y) ≥ d(x, y) for every x and y in D. (7)

Assumption (H1) implies that the closure of Rn[i0, . . . , in−1] is also given by

R̄n[i0, . . . , in−1] = {y ∈M : y ∈ R̄i0 , f(y) ∈ R̄i1 , . . . , f
n−1(y) ∈ R̄in−1}

(recall cylinders are non-empty, by definition). Hence,

f j(R̄n[i0, . . . , in−1]) = R̄n−j [ij , . . . , in−1] for any 1 ≤ j < n.

It follows that fn(R̄n[i0, . . . , in−1]) = f(R̄in−1), and so its inner diameter is
bounded by the constant

K2 = K1 max
x∈M

‖Df(x)‖ (8)

where K1 is the maximum inner diameter of R̄i over all i = 1, . . . , p+ q.
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Corollary 3.5. For every 1 ≤ j ≤ n and x, y in the closure of any Rn ∈ Rn
h,

dfn−j(R̄n)(f
n−j(x), fn−j(y)) ≤ e−jcdfn(R̄n)(f

n(x), fn(y)) ≤ K2e
−jc.

Proof. Assumption (H1) implies that f j is a homeomorphism from fn−j(R̄n)
to fn(R̄n). Thus, any curve joining fn(x) to fn(y) inside fn(R̄n) lifts to a
unique curve joining fn−j(x) to fn−j(y) inside fn−j(R̄n). By Proposition 3.4,
the latter is shorter than the former by a factor e−cj . This proves the claim.

Corollary 3.6. Given α > 0 and any α-Hölder continuous function φ : M → R,
there exists K3 > 0 such that for every x, y in the closure of any Rn ∈ Rn

h,

|Snφ(x)− Snφ(y)| ≤ K3dfn(R̄n)(f
n(x), fn(y))α ≤ K3K

α
2 .

Proof. The assumption that φ is α-Hölder continuous means that there exists
C > 0 such that, for every 1 ≤ j ≤ n,

|φ(fn−j(x))− φ(fn−j(y))| ≤ Cd(fn−j(x), fn−j(y))α.

According to (7), we may replace the Riemann distance d(·, ·) by the inner
distance dfn−j(R̄n)(·, ·) on the right hand side. Using Corollary 3.5 we conclude
that

|Snφ(x)− Snφ(y)| ≤
n∑

j=1

Ce−αjcdfn(R̄n)(f
n(x), fn(y))α

≤ K3dfn(R̄n)(f
n(x), fn(y))α,

for some constant K3 > 0 that depends only on C, α, and c.

Remark 3.7. If m is a hyperbolic time for x then m−s is a hyperbolic time for
fs(x), for any 1 ≤ s < m. The following converse is also a simple consequence
of Definition 2.3: given n < m, if n is a hyperbolic time for x and there exists
1 ≤ s ≤ n such that m− s is a hyperbolic time for fs(x) then m is a hyperbolic
time for x. Consequently, if Rn ∈ Rn

h and Rr ∈ Rr
h then Rn ∩ f−s(Rr) ∈ Rr+s

h

for any 1 ≤ s ≤ n. Analogously, if nj(x), j ≥ 1 denotes the sequence of values
of n for which x belongs to the closure of some Rn ∈ Rn

h then, for every j and
l, there exists k ≥ j + l such that

nj(x) + nl(fnj(x)(x)) = nk(x) ≥ nj+l(x).

In principle, the inequality can be strict, because nj+l(x) is determined over a
smaller cylinder than nl(fnj(x)(x)).

3.3 Expanding measures

A probability measure η (not necessarily invariant) is expanding if η(H) = 1.
Recall that H is the set of points x ∈ M that belong to the closure of some
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hyperbolic cylinder Rn for infinitely many values n1(x) < · · · < nk(x) < · · · of
n. In particular, every x ∈ H has infinitely many hyperbolic times, and so

lim inf
n→∞

1
n

log ‖Dfn(x)−1‖ ≤ lim inf
n→∞

1
n

log
n−1∏
j=0

‖Df(f j(x))−1‖ ≥ 2c > 0.

If η is invariant then, by the sub-additive ergodic theorem (Kingman [Kin68]),
the limit exists at almost every points, and the previous inequality means that
all the Lyapunov exponents of f are larger or equal than 2c > 0 at η-almost
every point.

For each m ≥ 1, let Hm be the set of points x ∈ M for which n1(x) = m,
that is, for which m is the smallest value of n such that x belongs to the closure
of some hyperbolic cylinder Rn.

Proposition 3.8. If η is an invariant expanding measure and n1(·) is integrable
with respect to η then the sequence nj(·) is non-lacunary at η-almost every point.

Proof. Let D be the set of points for which the sequence nj(·) fails to be non-
lacunary. For each θ > 0, define Lθ(n) = {x ∈M : n1(x) ≥ θn}. If x ∈ D then
there exists a rational number θ > 0, and there are infinitely many values of i
such that ni+1(x) ≥ (1 + θ)ni(x). By Remark 3.7, the latter implies that

n1(fni(x)) ≥ ni+1(x)− ni(x) ≥ θni(x).

So, there are arbitrarily large values of n such that x ∈ f−n(Lθ(n)). In other
words, D is contained in the set

L =
⋃
θ∈Q

∞⋂
k=0

⋃
n≥k

f−n(Lθ(n)).

Since η is invariant, we have η(f−n(Lθ(n))) = η(Lθ(n)) for all n. Then

θ

∞∑
n=1

η(Lθ(n)) = θ

∞∑
n=1

∑
n1≥θn

η(Hn1) = θ

∞∑
m=1

m/θ∑
n=1

η(Hm) ≤
∞∑

m=1

mη(Hm).

Thus, using the hypothesis that n1(·) is integrable,

θ
∞∑

n=1

η(Lθ(n)) ≤
∞∑

m=1

mη(Hm) =
∫
n1(x)dη(x) <∞.

By the Borel-Cantelli lemma, this implies that L has measure zero. It follows
that η(D) = η(L) = 0, as claimed.

Remark 3.9. The same argument proves a pointwise version of the lemma: if
the first hyperbolic time is integrable, with respect to some invariant expanding
probability, then the sequence of all hyperbolic times is non-lacunary.
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For each n ≥ 1, let Qn be a covering of H by pairwise disjoint measurable
sets such that every Qn ∈ Qn satisfies Rm ⊂ Qn ⊂ R̄m for some Rm ∈ Rm

h

and m ≥ n. For instance, we may consider the family formed by all cylinders
Rm ∈ Rm

h with m ≥ n which are not contained in any Rk ∈ Rk
h with m > k ≥ n.

Since these maximal cylinders are pairwise disjoint and their closures cover H,
we may then choose a set Qn between each Rm and its closure, in such a way
that these Qn are pairwise disjoint and cover H.

Remark 3.10. In the situations we are interested in, for the measures µ and ν
in our main theorems, every Rm differs from its closure by a zero measure set
only, and so the distinction between Qn and Rm is actually irrelevant. However,
this fact will not be proven until much later.

We shall need the fact that, for any expanding measure, such a family Qn

is “generating”, in the following sense:

Lemma 3.11. Given any measurable set E ⊂ M and any δ > 0, there exist
n ≥ 1 and a subset {Qn

i : i ∈ I} of Qn such that

η
(
E∆

⋃
i∈I

Qn
i

)
≤ δ. (9)

Proof. Let L1 ⊂ E and L2 ⊂ Ec be compact sets such η(E∆L1) ≤ δ/3 and
η(Ec∆L2) ≤ δ/3. Then r = dist(L1, L2) is strictly positive. By Corollary 3.5,
we have diam(Qn) ≤ K2e

−cn < r if n is large enough. Fix such an n. Since Qn

covers the full measure set H, we may choose a subset {Qn
i : i ∈ I} of Qn that

almost covers L1:

η
(
L1 \

⋃
i∈I

Qn
i

)
≤ δ

3
.

We may assume all Qn
i do intersect L1, in which case they are disjoint from L2.

Hence,

η
(
E∆

⋃
i∈I

Qn
i

)
≤ η(E \ L1) + η

(
L1 \

⋃
i∈I

Qn
i

)
+ η(Ec \ L2) ≤ δ.

This completes the proof of the lemma.

Corollary 3.12. Given any measurable set E ⊂ M with η(E) > 0 and any
ε > 0, there exists n ≥ 1 and some Qn ∈ Qn such that

η(E ∩Qn)
η(Qn)

> 1− ε.

Proof. Given E and ε, fix δ > 0 such that εη(E) > 2δ. It is no restriction to
suppose ε < 1, in which case this implies η(E) > 2δ. Take n and {Qn

i : i ∈ I}
as in Lemma 3.11. In particular,

η(
⋃
i∈I

Qn
i ) ≥ η(E)− δ >

η(E)
2

.

11



Suppose η(Qn
i \ E) ≥ εη(Qn

i ) for all i ∈ I. Adding these inequalities we would
obtain

η(
⋃
i∈I

Qn
i \ E) ≥ εη(

⋃
i∈I

Qn
i ) ≥ ε

2
η(E) ≥ δ,

contradicting (9). Thus, η(Qn
i \ E) < εη(Qn

i ) for some i ∈ I and this implies
the conclusion of the lemma.

3.4 Relative pressure

Here we recall some basic ideas related to the variational principle. Additional
information can be found in Walters [Wal82] and Pesin [Pes97].

Let f : M → M be a continuous map on a compact space M , and let
φ : M → R be continuous. Let Λ be any subset of M that is invariant under f ,
and let U be a cover of Λ. To each finite sequence (U1, . . . , Un) of elements of
U , associate the set

U = {x ∈M : x ∈ U0, f(x) ∈ U1, . . . , f
n−1(x) ∈ Un−1} (10)

and write n(U) = n (a slight abuse of language). Given any N ≥ 1, define
SN (U) to be the family of all sets U of this form, for all values of n(U) ≥ N .
We denote by Snφ(V ) the supremum of Snφ over an arbitrary set V .

Given any α ∈ R, consider the number

mΛ(f, φ, α,U , N) = inf
G

∑
U∈G

exp
(
Sn(U)φ(U)− αn(U)

)
(11)

where the infimum is taken over all families G ⊂ SN (U) that cover Λ. Define

mΛ(f, φ, α,U) = lim
N→∞

mΛ(f, φ, α,U , N),

(the sequence is monotone increasing) and

PΛ(f, φ,U) = inf{α : mΛ(f, φ, α,U) = 0}

Definition 3.13. The pressure of f for φ relative to Λ is

PΛ(f, φ) = lim
diamU→0

PΛ(f, φ,U).

Theorem 11.1 in [Pes97] states that the limit does exist, that is, given any
sequence of covers Uk of Λ with diameter going to zero, PΛ(f, φ,Uk) converges
and the limit does not depend on the choice of the sequence.

Let IΛ denote the set of invariant probability measures η such that η(Λ) = 1.
If Λ is compact then (see [Wal82, Theorem 9.10] or [Pes97, Theorem A2.1])

PΛ(f, φ) = sup{hη(f) +
∫
φdη : η ∈ IΛ}.

12



This applies, in particular, when Λ = M . We just write P (f, φ) to mean
PM (f, φ). In the general non-compact case one inequality remains true:

PΛ(f, φ) ≥ sup{hη(f) +
∫
φdη : η ∈ IΛ}. (12)

In particular, if IΛ contains some equilibrium state then the equality holds in
(12), and PΛ(f, φ) = P (f, φ).

The next proposition is probably well-known but we could not find a proof in
the literature. The one we give here was obtained jointly with Paulo Varandas.
It uses the following alternative definition of the relative pressure, in terms of
dynamical balls.

Fix ε > 0. Set In = M ×{n} and I = M ×N. For α ∈ R and N ≥ 1, define

mα(f, φ,Λ, ε,N) = inf
G

{ ∑
(x,n)∈G

e−αn+Snφ(B(x,n,ε))
}
, (13)

where the infimum is taken over all finite or countable families G ⊂ ∪n≥NIn

such that the dynamical balls {B(x, n, ε) : (x, n) ∈ G} cover Λ. Then let

mα(f, φ,Λ, ε) = lim
N→∞

mα(f, φ,Λ,U , N)

(once more, the sequence is monotone increasing) and

PΛ(f, φ, ε) = inf {α : mα(f, φ,Λ, ε) = 0}.

By Remark 1 in [Pes97, Page 74] the limit when ε→ 0 exists and coincides with
the relative pressure:

PΛ(f, φ) = lim
ε→0

PΛ(f, φ, ε).

Remark 3.14. Since φ is uniformly continuous, the definition of PΛ(f, φ, ε)
is not affected when one replaces in (13) the supremum Snφ(B(x, n, ε)) by the
value Snφ(x) at the center point.

Proposition 3.15. Let M be a compact metric space, f : M → M be a con-
tinuous transformation, φ : M → R be a continuous function, and Λ be an
f-invariant set. Then PΛ(f `, S`φ) = `PΛ(f, φ) for every ` ≥ 1.

Proof. Fix ` ≥ 1. By uniform continuity of f , given any ρ > 0 there exists ε > 0
such that d(x, y) < ε implies d(f j(x), f j(y)) < ρ for all 0 ≤ j < `. It follows
that

Bf (x, `n, ε) ⊂ Bf`(x, n, ε) ⊂ Bf (x, `n, ρ), (14)

where Bg(x, n, ε) denotes the dynamical ball of center x, length n, and radius
ε, relative to a map g.

First, we prove the ≥ inequality. Given N ≥ 1 and any family G` ⊂ ∪n≥NIn

such that the balls Bf`(x, j, ε) with (x, j) ∈ G` cover Λ, denote

G = {(x, j`) : (x, j) ∈ G`}.

13



The second inclusion in (14) ensures that the balls Bf (x, k, ρ) with (x, k) ∈ G
cover Λ. Clearly,∑

(x,j)∈G`

e−α`j+
∑j−1

i=0 S`φ(fi`(x)) =
∑

(x,k)∈G

e−αk+
∑k−1

i=0 φ(fi(x)).

Since G` is arbitrary, and recalling Remark 3.14, this proves that

mα`(f `, S`φ,Λ, ε,N) ≥ mα(f, φ,Λ, ρ,N`).

So, mα`(f `, S`φ,Λ, ε) ≥ mα(f, φ,Λ, ρ). Then PΛ(f `, S`φ, ε) ≥ `PΛ(f, φ, ρ).
Since ε→ 0 when ρ→ 0, it follows that PΛ(f `, S`φ) ≥ `PΛ(f, φ).

For the ≤ inequality, we observe that the definition of the relative pressure
is not affected if one restricts the infimum in (13) to families G of pairs (x, k)
such that k is always a multiple of `. More precisely, let m`

α(f, φ,Λ, ε,N) be
the infimum over this subclass of families, and let m`

α(f, φ,Λ, ε) be its limit as
N →∞.

Lemma 3.16. We have m`
α(f, φ,Λ, ε) ≤ mα−ρ(f, φ,Λ, ε) for every ρ > 0.

Proof. We only have to show that m`
α(f, φ,Λ, ε,N) ≤ mα−ρ(f, φ,Λ, ε,N) for

any ρ > 0 and any sufficiently large N . Let ρ be fixed and N be large enough so
that Nρ > `(α+sup |φ|). Given any G ⊂ ∪n≥NIn such that the balls Bf (x, k, ε)
with (x, k) ∈ G cover Λ, define G′ to be the family of all (x, k′), k′ = `[k/`] such
that (x, k) ∈ G. Notice that

−αk′ + Sk′φ(x) ≤ −αk + α`+ Skφ(x) + ` sup |φ| ≤ (−α+ ρ)k + Skφ(x)

given that k ≥ N . The claim follows immediately.

Let G′ be any family of pairs (x, k) with k ≥ N` and such that every k is a
multiple of `. Define G` to be the family of pairs (x, j) such that (x, j`) ∈ G′.
The first inclusion in (14) ensures that if the balls Bf (x, k, ε) with (x, k) ∈ G′
cover Λ then so do the balls Bf`(x, j, ε) with (x, j ∈ G`). Clearly,∑

(x,k)∈G′
e−αk+

∑k−1
i=0 φ(fi(x)) =

∑
(x,j)∈G`

e−α`j+
∑j−1

i=0 S`φ(fi`(x)).

Since G` is arbitrary, and recalling Remark 3.14, this proves that

m`
α(f, φ,Λ, ε,N`) ≥ mα`(f `, S`φ,Λ, ε,N).

Taking the limit when N →∞ and using Lemma 3.16,

mα−ρ(f, φ,Λ, ε) ≥ m`
α(f, φ,Λ, ε) ≥ mα`(f `, S`φ,Λ, ε).

It follows that `
(
PΛ(f, φ, ε) + ρ

)
≥ PΛ(f `, S`φ, ε). Since ρ is arbitrary, we

conclude that `PΛ(f, φ, ε) ≥ PΛ(f `, S`φ, ε) and so PΛ(f `, S`φ) ≥ `PΛ(f, φ).
The proof of Proposition 3.15 is complete.
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3.5 Weak Gibbs measures

The next proposition is not used elsewhere in this paper. It is included to help
clarify the relation between our non-lacunary Gibbs measures and the notion of
weak Gibbs measure in [Yur99]: Yuri requires condition (15) at all points and
Kn independent of x.

Proposition 3.17. If η is a non-lacunary Gibbs measure then for η-almost
every point x ∈ M there is a sequence Kn = Kn(x) such that lim 1

n logKn = 0
and

K−1
n ≤

η
(
Rn(x)

)
exp

(
Snφ(x)− nP

) ≤ Kn for every n ≥ 1. (15)

Proof. By assumption, for almost every x ∈ M there exists an increasing se-
quence ni ∈ N such that εi = (ni+1 − ni)/ni converges to zero and

K−1 ≤
η
(
Rn(x)

)
exp

(
Snφ(x)− nP

) ≤ K whenever n = ni.

Given n ≥ n1 (clearly, we only need to consider large values of n), let i = i(n)
be such that ni ≤ n < ni+1. Then

η(Rni+1(x)) ≤ η(Rn(x)) ≤ η(Rni(x)).

Moreover,

|Snφ(x)− Sniφ(x)| ≤ (n− ni) max |φ| ≤ εinmax |φ|

and analogously for |Snφ(x)− Sni+1φ(x)|. It follows that

K−1e−εin(max |φ|+P ) ≤
η
(
Rn(x)

)
exp

(
Snφ(x)− nP

) ≤ Keεin(max |φ|+P ).

Define Kn = K exp
[
εi(n)n(max |φ|+ P )

]
. Then

lim
n→∞

1
n

logKn = lim
n→∞

1
n

logK + εi(n)(max |φ|+ P ) = 0,

and so the proof is complete.

4 Proof of Theorem A

Here we prove Theorem A and we also prepare the way toward proving that ν
is a non-lacunary Gibbs measure (which will be done near the end of Section 5).
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4.1 Eigenmeasures of the transfer operator

The Jacobian of a measure η with respect to f is the (essentially unique) function
Jηf satisfying

η(f(A)) =
∫

A

Jηfdη.

for any measurable set A such that f | A is injective. A Jacobian needs not
exist, in general.

Lemma 4.1. Suppose ν is a Borel probability such that L∗φν = λν for some
λ > 0. Then the Jacobian of ν with respect to f is given by Jνf = λe−φ.

Proof. Let A be any measurable set such that f | A is injective. Take a sequence
(gn)n of continuous functions on M such that gn → χA at ν-almost every point
and sup |gn| ≤ 2 for all n. Then,

Lφ(e−φgn)(x) =
∑

f(y)=x

eφ(y) e−φ(y)gn(y) =
∑

f(y)=x

gn(y).

The last expression converges to χf(A)(x) at ν-almost every point, because f | A
is injective. Hence, by the dominated convergence theorem,∫

λe−φgn dν =
∫
e−φgn d(L∗φν) =

∫
Lφ(e−φgn) dν → ν(f(A)).

Since the left hand side also converges to
∫

A
λe−φdν, we conclude that

ν(f(A)) =
∫

A

λe−φdν,

which proves the lemma.

Lemma 4.2. The spectral radius of the operator Lφ is at least deg(f)einf φ and
it is an eigenvalue for the dual operator L∗φ.

Proof. Let λ be the spectral radius of Lφ. Observe that

Lφ1(x) =
∑

f(y)=x

eφ(y) ≥ deg(f) einf φ = deg(f)einf φ

for every x ∈M . Since L is a positive operator, it follows that

Ln
φ1 ≥ deg(f)nen inf φ for every n ≥ 1,

and so the spectral radius is at least deg(f)einf φ, as claimed in the first part of
the lemma. The second part follows from general results in functional analysis.
A quick argument goes as follows. Let C be the cone of positive continuous
functions on M and

V = {λϕ− L(ϕ) : ϕ ∈ C0(M)}.
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Clearly, V is a linear subspace and C is an open convex set. We claim that
they are disjoint. Indeed, suppose ψ = λϕ − L(ϕ) is a positive function, for
some ϕ ∈ C0(M). By compactness and continuity, there exists δ > 0 such that
δmax(−ϕ) ≤ minψ. Then

L(−ϕ) = −λϕ+ ψ ≥ (λ+ δ)(−ϕ).

Since L is a positive operator, it follows that Ln(−ϕ) ≥ (λ+ δ)n(−ϕ) for every
n ≥ 1. This implies that the spectral radius of L is at least λ+ δ, contradicting
the definition of λ. This contradiction proves that C ∩ V = ∅, as we claimed.
Then, by Mazur’s theorem (see [Dei85, Proposition 7.2]), there exists some
continuous linear functional ν : C0(M) → R such that∫

ϕdµ > 0 for every ϕ ∈ C and
∫
ϕdµ = 0 for every ϕ ∈ V.

The first property means that ν is a measure and so, up to normalization, we
may suppose it is a probability. The second property means that∫

ϕd(L∗ν) =
∫
L(ϕ) dν =

∫
λϕdν for every ϕ ∈ C0(M),

that is, L∗ν = λν. Thus, λ is indeed an eigenvalue for the dual operator L∗.

In all that follows, λ is an eigenvalue of L∗φ larger than eκ+sup φ and
ν is an eigenmeasure associated to it. Lemma 4.2, combined with (H3),
ensures that such an eigenvalue does exist. We shall see later, in Corollary 6.3
that it is also unique, that is, λ coincides with the spectral radius of LΦ. From
Lemma 4.1 we get that

Jνf(x) = λe−φ(x) > eκ > q (16)

for all x ∈M . This property allows us to prove that ν-almost every point spends
at most a fraction γ of time inside the domain R̄1 ∪ · · · ∪ R̄q where f may fail
to be expanding.

Let B(n) be the union of all R̄[i0, . . . , in−1] corresponding to itineraries
(i0, . . . , in−1) ∈ I(γ, n), that is, such that

#{0 ≤ j ≤ n− 1 : ij ≤ q} > γn,

and G(n) be the union of those R̄[i0, . . . , in−1] corresponding to itineraries in
the complement of I(γ, n). Since the closures of all length n cylinders cover M ,
so does {B(n), G(n)}.

Proposition 4.3. The measure ν(B(n)) decreases exponentially fast when n
goes to infinity. Consequently, ν-almost every x ∈ M belongs to G(n) for all
but finitely many values of n.
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Proof. Since f is injective on the closure of every atom of R, the map fn is
injective on the closure of every Rn ∈ Rn. Then the inequality (16) implies

1 ≥ ν(fn(R̄n)) =
∫

R̄n

Jνf
n dν =

∫
R̄n

n−1∏
j=0

(Jνf ◦ f j)dν ≥ eκnν(R̄n).

This proves that every ν(R̄n) ≤ e−κn. By definition, cγ is the upper exponential
rate of growth of the cardinality of I(γ, n). Thus, given any ε > 0,

ν(B(n)) =
∑

I(γ,n)

ν(R̄n) ≤ e(cγ+ε−κ)n

for all large n. Since cγ < κ, it follows that the right hand side decays ex-
ponentially fast with n, as claimed. The second statement in the lemma is a
direct consequence, by the Borel-Cantelli lemma and the observation that G(n)
contains the complement of B(n).

4.2 Expanding property

Now we use Proposition 4.3 to prove that the measure ν is expanding:

Proposition 4.4. The measure ν is expanding and satisfies
∫
n1 dν <∞.

Proof. Proposition 3.2 implies that n1(x) ≤ n for every x ∈ G(n). Thus, the
set of points x such that n1(x) > n must be contained in the union B(n) of all
R̄n corresponding to itineraries in I(γ, n). By Proposition 4.3, the measure of
these sets decreases exponentially fast. Thus,∫

n1dν =
∞∑

n=0

ν({x : n1(x) > n}) ≤ 1 +
∞∑

n=1

ν(B(n)) <∞

and so n1(·) is ν-integrable, as claimed. We have seen in Proposition 4.3 that ν-
almost every point belongs to G(n) for every large n. By Proposition 3.2, every
point of G(n) belongs to the closure of some Rn ∈ Rn

h for l > θn values of n. It
follows that ν-almost every x ∈M belongs to the closure of some Rn ∈ Rn

h for
infinitely many values of n. In other words, H has full measure, which means
that ν is expanding.

From these arguments we also obtain, immediately,

Corollary 4.5. For ν-almost any x ∈M , the set n1(x) < · · · < nj(x) < · · · of
values of n such that x belongs to the closure of some Rn ∈ Rn

h has density at
least θ at infinity: #{j ≥ 1 : nj(x) ≤ n} ≥ θn for every large n.
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4.3 Non-lacunary Gibbs property

The results in this subsection will be used in Section 5 to prove that ν is a
non-lacunary Gibbs measure.

Lemma 4.6. There is K4 > 0 such for any x, y in the closure of any Rn ∈ Rn
h,

K−1
4 ≤ Jνf

n(x)
Jνfn(y)

≤ K4

Proof. Lemma 4.1 implies that Jνf
n(x) = λne−Snφ(x) for every n ≥ 1. Then,

by Corollary 3.6,∣∣ log
Jνf

n(x)
Jνfn(y)

∣∣ =
∣∣Snφ(y)− Snφ(x)

∣∣ ≤ K3K
α
2 .

Thus, we may take K4 = exp(K3K
α
2 ).

Proposition 4.7. There exists K5 > 0 such that for every x ∈ Rn ∈ Rn
h,

K−1
5 ≤ ν(Rn)

exp(Snφ(x)− Pn)
≤ K5.

This remains true if one replaces ν(Rn) by ν(R̄n) and considers any x ∈ R̄n.

Proof. We prove only the first claim, as the version for the closure is analogous.
By Lemma 4.1, for any Rn = Rn[i0, . . . , in−1],

ν(f(Rin−1)) = ν(fn(Rn)) =
∫

Rn

Jνf
ndν =

∫
Rn

enP−Snφ(x) dν(x).

By Lemma 4.6, there exists K4 independent of n such that for every x, y ∈ Rn

K−1
4 Jνf

n(y) ≤ Jνf
n(x) ≤ K4Jνf

n(y).

It follows that

K−1
4 ν(f(Rin−1)) ≤

ν(Rn)
exp(Snφ(x)− Pn)

≤ K4ν(f(Rin−1))

for any x ∈ Rn. The right hand side is bounded above by K4. On the other
hand, according to (H1), there exists N ≥ 1 such that every fN (Ri) = M and,
consequently, has total ν-measure. Now, we may decompose f(Ri) into finitely
many subsets such that fN−1 is injective on each one of them. Using the fact
that ν has a Jacobian, it follows that ν(f(Ri)) > 0 for every i. To finish the
proof, just take K5 = maxiK4/ν(f(Ri)) ≥ K4.

To conclude that ν is a non-lacunary Gibbs state we only have to check
that ν(∂R) = 0 and hyperbolic times form a non-lacunary sequence at ν-almost
every point. This will be done in the next section. In the meantime we deduce
the following lemma, which completes the proof of Theorem A:
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Corollary 4.8. The support of ν coincides with the closure of H.

Proof. Proposition 4.4 states that the set H has full ν-measure, and this implies
the support of ν is contained in H̄. To prove the converse, consider any x ∈ H.
Then there is a sequence ni → ∞ of values of n such that x belongs to the
closure of some hyperbolic cylinder Rni ∈ Rni . By Proposition 4.7,

ν(R̄ni) > K−1
5 exp(Snφ(x)− Pn) > 0.

By Corollary 3.5, the diameter of R̄ni converges to zero when ni → ∞. Thus,
any neighborhood of x has positive ν measure, that is, x ∈ supp ν.

5 Proof of Theorem B

In this section we prove Theorem B. The main idea is to introduce a sequence
of linear operators Tφ,n that are obtained from the iterates Ln

φ of the trans-
fer operator by considering only preimages for which n is a hyperbolic time.
The main results (Corollaries 5.2 and 5.4) state that the sequence Tφ,n1 is uni-
formly bounded and piecewise Hölder continuous, with uniform Hölder con-
stants. Thus, it admits Cesaro limits and they are piecewise Hölder continuous.
We check that any such limit is an eigenfunction h of the transfer operator,
bounded away from zero and infinity. Then µ = hν is invariant and ergodic,
and it is equivalent to ν. Using also Proposition 4.7, we deduce that both µ and
ν are non-lacunary Gibbs measures of f for φ.

5.1 Upper bound

Observe that the nth iterate of the transfer operator Lφ is given by

Ln
φg(x) =

∑
y∈f−n(x)

eSnφ(y)g(y). (17)

For each n ≥ 1, we define a new operator Tφ,n by restricting the sum in (17) to
the pre-images belonging to the closure of some hyperbolic cylinder:

Tφ,ng(x) =
∑

y∈f−n(x)∩R̄n : Rn∈Rn
h

eSnφ(y)g(y),

where y = y(x,Rn) is the unique point in f−n(x) ∩ R̄n. We also define

Tn(x) = Tφ,n1(x) =
∑

y∈f−n(x)∩R̄n : Rn∈Rn
h

eSnφ(y)

and Zn =
∑

Rn∈Rn
h

eSnφ(Rn) =
∑

Rn∈Rn
h

eSnφ(R̄n).

It is clear that Tn(x) ≤ Zn for all x ∈ M . There are two reasons why the
inequality may be strict. Firstly, is that the definition of Zn is in terms of the
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supremum Snφ(R̄n) over all y ∈ R̄n. Secondly, x needs not have pre-images in
every hyperbolic R̄n. But the converse inequality does hold up to a factor, as
we shall see in Lemma 5.6. Right now we prove

Lemma 5.1. There exists a constant K6 > 0 such that for every n ≥ 1

λ−nZn ≤ K6 and K−1
6 ≤ 1

n

n−1∑
j=0

λ−jZj ≤ K6 .

Proof. By Proposition 4.7, for every point y ∈ Rn ∈ Rn
h we have

K−1
5 ν(Rn) ≤ λ−neSnφ(y) ≤ K5ν(Rn).

Taking the supremum over y ∈ Rn and then summing over all Rn ∈ Rn
h, we get

K−1
5 ν(En) ≤ λ−nZn ≤ K5ν(En) ≤ K5,

where En denotes the union of all Rn ∈ Rn
h. Both upper inequalities in the

statement of the lemma are immediate consequences, as long as one chooses
K6 ≥ K5. We also get that

K−1
5

1
n

n−1∑
j=0

ν(Ej) ≤
1
n

n−1∑
j=0

λ−iZj . (18)

To prove the lower inequality, and finish the proof of the lemma, we only have
to check that the left hand side of (18) is uniformly bounded away from zero.
For that purpose, write

1
n

n−1∑
j=0

ν(Ej) =
∫ ∫

XEj (x) dν(x) dmn(j).

where mn is the normalized counting measure on the set {1, . . . , n}. By Corol-
lary 4.5, the sequence of hyperbolic times has density ≥ θ > 0 at infinity at
ν-almost every point. Thus,

n−1∑
j=0

XEj
(x) ≥ θn

for ν-almost every x and every large n. Take n large enough so that the set X
of points for which this holds has ν-measure at least 1/2. By Fubini’s theorem,
it follows that

1
n

n−1∑
j=0

ν(Ej) =
∫ ∫

XEj (x) dmn(j) dν(x) ≥
∫

X

θ dν(x) ≥ θ

2
> 0.

Combining this with (18), and taking K6 ≥ 2K5/θ, one obtains the lower in-
equality in the statement.

Corollary 5.2. The sequence λ−nTn is uniformly bounded from above.

Proof. Just notice that λ−nTn(x) ≤ λ−nZn ≤ K6 for all x ∈M and n ≥ 1.
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5.2 Equicontinuity

Here we show that the sequence λ−nTn is uniformly piecewise Hölder continuous,
at least for large enough n. More precisely, define

QI =
⋂
i∈I

f(R̄i) ∩
⋂

i∈Ic

f(R̄i)c,

for each I ⊂ {1, . . . , p + q}. It is clear that {QI}I is a finite partition of M .
Endow each QI with the metric

dI(x1, x2) =
∑
i∈I

df(R̄i)(x1, x2).

We have seen in (8) that the diameters of the f(R̄i) are uniformly bounded. So,
these metrics dI are uniformly bounded. We are going to show that λ−nTn is
Hölder continuous on every QI , with uniform Hölder constants.

Lemma 5.3. For every I ⊂ {1, . . . , p + q} and n ≥ 1 there exists Rn
I ⊂ Rn

such that

Tn(x) =
∑

Rn∈Rn
I

eSnφ((fn|R̄n)−1(x)) for every x ∈ QI .

Proof. It follows from (H1) that the preimage f−n(x) of a point x ∈ QI inter-
sects the closure of a cylinder Rn[i0, . . . , in−1] if and only if in−1 ∈ I. Moreover,
in that case the intersection point is unique. Consider the following equiva-
lence relation in the set of hyperbolic cylinders Rn whose last symbol belongs
to I: Rn[i0, . . . , in−1] is equivalent to Rn[j0, . . . , jn−1] if their closures contain
exactly the same point of f−n(x). We claim that this relation is independent
of the point x ∈ QI . Indeed, the injectivity condition in (H1) implies that fn

is injective on the union R̄n[i0, . . . , in−1] ∪ R̄n[j0, . . . , jn−1]. Then the preim-
ages of any other point x′ ∈ QI in the closures of the two cylinders must also
coincide, and this proves our claim. The conclusion of the lemma is then an
immediate consequence: just take Rn

I ⊂ Rn to contain exactly one cylinder in
each equivalence class.

Corollary 5.4. There is K8 > 0 such that every λ−nTn is Hölder continuous
on every QI , with Hölder constants (K8, α).

Proof. Given any x1, x2 ∈ QI and every Rn ∈ Rn
I , denote ys = (fn | R̄n)−1(xs)

for s = 1, 2. By Corollary 3.6, there is a uniform constant K3 such that

|Snφ(y1)− Snφ(y2)| ≤ K3dfn(R̄n)(x1, x2)α ≤ K3dI(x1, x2)α

(the second inequality follows from the definition of the metric dI). Then,

|eSnφ(y1) − eSnφ(y2)| = |eSnφ(y1)−Snφ(y2) − 1| eSnφ(y2) ≤ K7 dI(x1, x2)α eSnφ(y2)
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where the constant K7 > 0 depends only on K3 and a uniform upper bound on
the diameter of QI . Adding over all Rn ∈ Rn

I and recalling Lemma 5.3, we get
that

|λ−nTn(x1)− λ−nTn(x2)| ≤ λ−nK7 dI(x1, x2)α Tn(x2).

By Corollary 5.2, the right hand side is bounded by K6K7dI(x1, x2)α. Thus, it
suffices to take K8 = K6K7.

Let us consider the sequence of functions hn : M → R defined by

hn =
1
n

n−1∑
i=0

λ−iTi. (19)

Proposition 5.5. Every subsequence of (hn)n admits a subsequence converging
uniformly to some piecewise Hölder continuous function h.

Proof. By Corollaries 5.2 and 5.4, the sequence (hn)n is uniformly bounded
and equicontinuous on every QI . So, for every I, we may use the theorem of
Ascoli-Arzela to find a subsequence that converges uniformly on QI . Up to
successively refining the subsequence, we may suppose that it is the same for
all I and, hence, converges uniformly on the whole M . Clearly, the limit h is
Hölder continuous on each QI , with Hölder constants (K8, α).

5.3 Lower bound

It is clear from Corollary 5.2 that any accumulation function of the sequence
(hn)n defined in (19) is bounded from infinity. We are going to show that it is
also bounded from zero. The main step is

Lemma 5.6. There exists a constant K9 > 0 such that Zn ≤ K9Tn(x) for every
x ∈M and every n ≥ 1.

Proof. Fix N ≥ 1 as in (H1), such that fN (Ri) = M for every Ri ∈ R, and
then fix K ≥ 1 such that

σ−K
1 σN−1

2 < e−2(K+N−1)c. (20)

Let L = K + N − 1. We claim that for every Ri and Rj ∈ R there exists a
hyperbolic cylinder RL ∈ RL

h such that RL ⊂ f(Ri) and fL(RL) ⊃ Rj . Indeed,
since q < deg(f), there exists RK ∈ RK such that fK(RK) contains Rj and
fk(RK) is in the uniformly expanding region

fk(RK) ⊂ Rq+1 ∪ · · · ∪Rq+p

for every 0 ≤ k < K. Moreover, by the choice of N , there exists RL ∈ RL

contained in f(Ri) such that fN−1(RL) = RK . Condition (20) ensures that RL

is a hyperbolic cylinder, as claimed.
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Now we use the previous observation to prove the lemma. Let n ≥ 1 and
x ∈M be fixed. Firstly, we have

Tn+L(x) =
∑

Rn+L∈Rn+L
h

eSnφ(fL(z))+SLφ(z), z ∈ f−(n+L)(x) ∩ R̄n+L

≤ deg(fL)eL sup φ
∑

Rn∈Rn
h

eSnφ(y), y ∈ f−n(x) ∩ R̄n :

the inequality follows from the simple observation (see Remark 3.7) that if
z ∈ f−(n+L)(x) ∩ R̄n+L for some hyperbolic cylinder Rn+L, then y = fL(z)
belongs to f−n(x) ∩ R̄n where Rn = fL(Rn+L) is a hyperbolic cylinder. This
proves that

Tn+L(x) ≤ K10Tn(x), K10 = deg(fL)eL sup φ. (21)

Next, consider any hyperbolic cylinder Rn ∈ Rn
h. The image fn(Rn) coincides

with f(Ri) for some Ri ∈ R. Then, by the claim above (choose j such that x is
in the closure of Rj), there exists a hyperbolic cylinder RL contained in fn(Rn)
and such that fL(R̄L) contains x. Observe that Rn+L = Rn ∩ f−n(RL) is a
hyperbolic cylinder, by Remark 3.7. Let y be the unique point in the closure of
Rn+L such that fn+L(y) = x. By the bounded distortion Corollary 3.6, there
exists a uniform constant K11 > 0 such that

eSnφ(Rn) ≤ K11 e
Snφ(y) ≤ K11 e

−L inf φeSn+Lφ(y).

The correspondence Rn 7→ Rn+L thus constructed is injective, since Rn+L ⊂ Rn

and the cylinders Rn are pairwise disjoint. Combining these two observations,
we find that

Zn =
∑
Rn

eSnφ(Rn) ≤ K12

∑
Rn+L

eSn+Lφ(y) = K12Tn+L(x), (22)

where K12 = K11 e
−L inf φ. Let K9 = K10K12. Combining (21) and (22), we

obtain Zn ≤ K9Tn(x), as claimed.

Remark 5.7. In particular, Tn(x1) ≤ K9Tn(x2) for any x1, x2 ∈M and n ≥ 1.

Corollary 5.8. Any accumulation function h of the sequence (hn)n is uniformly
bounded from zero and infinity.

Proof. By Corollary 5.2, the function h is bounded from above by K6. By
Lemmas 5.1 and 5.6,

1
n

n−1∑
i=0

λ−iTi ≥ K−1
9

1
n

n−1∑
i=0

λ−iZi ≥ (K6K9)−1.

and so h is bounded from below by (K6K9)−1. The proof is complete.
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5.4 Eigenfunction

Finally, we show that any accumulation function of the sequence (hn)n defined
in (19) is an eigenfunction of the transfer operator.

Lemma 5.9. λ−l
(
LφTl − Tl+1

)
converges uniformly to zero when l→∞.

Proof. Let l ≥ 0 and x ∈M . By definition, Tl+1(x) is the sum of eSl+1φ(y) over
all y ∈ f−(l+1)(x) for which l + 1 is a hyperbolic time. On the other hand,

LφTl(x) =
∑

z∈f−1(x)

eφ(z)Tl(z) =
∑

z∈f−1(x)

eφ(z)
∑

y∈f−l(z)∩R̄l : Rl∈Rl
h

eSlφ(y)

is the sum of eSl+1φ(y) over all y ∈ f−(l+1)(x) for which l is a hyperbolic time.
Therefore,

‖(LφTl − Tl+1)(x)‖ ≤
∑

y∈f−(l+1)(x)∩R̄l+1:Rl+1∈El+1

eSl+1φ(y)

where El+1 is the collection of cylinders Rl+1[i0, . . . , il] ∈ Rl+1 \Rl+1
h such that

Rl[i0, . . . , il−1] ∈ Rl
h. Observe that

El+1 ⊂
{
Rl+1[i0, . . . , il] ∈ Rl+1 : #{0 ≤ j < l : ij ≤ q} ≥ γ(l + 1)

}
and so #El+1 ≤ const ecγ(l+1) ≤ eκl for every large l. Consequently,

‖λ−l(LφTl − Tl+1)(x)‖ ≤ λ−l
∑

Rl+1∈El+1

eSl+1φ(R) ≤ λ−leκle(l+1) sup φ.

The right hand side converges to zero, since log λ = P is larger than supφ+ κ.
Thus, the left hand side converges to 0 uniformly when l→∞, as claimed.

Corollary 5.10. Any accumulation function h of (hn)n satisfies Lφh = λh.

Proof. Let (nk)k be any subsequence such that (hnk
)k converges to some h.

Clearly,

Lφh = lim
k

1
nk

nk−1∑
i=0

λ−i
(
LφTi − Ti+1

)
− λ

nk
+
λ−nkTnk

nk
+

λ

nk

nk−1∑
i=0

λ−iTi.

Lemma 5.9 implies that the first term on the right hand side converges to zero
when n → ∞. It is clear that the second term converges to zero. Since Tn

is uniformly bounded (Corollary 5.2), the same is true about the third term.
Therefore,

Lφh = lim
k

λ

nk

nk−1∑
i=0

λ−iTi = λh,

as stated. The proof is complete.
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5.5 Invariant non-lacunary Gibbs measures

In the remainder of this section, µ = hν where h is an eigenfunction for the
transfer operator bounded away from zero and infinity (recall Corollaries 5.8
and 5.10). Then µ is equivalent to ν, and it is easy to see it is invariant under
f . Indeed, consider any integrable function ψ : M → R. Then∫

(ψ ◦ f) dµ =
∫

(ψ ◦ f)h dν =
∫

(ψ ◦ f)hλ−1 d(L∗φν).

The right hand side may be rewritten as∫
λ−1Lφ((ψ ◦ f)h) dν =

∫
ψλ−1Lφ(h) dν =

∫
ψhdν =

∫
ψ dν,

and this proves invariance. Let N ≥ 1 be as in condition (H1).

Lemma 5.11. For any full µ-measure subset E of any Rj ∈ R, the image
fN (E) has full µ-measure in M . In particular, µ(Rj) > 0 for every Rj ∈ R.

Proof. From the definition µ = hν and Lemma 4.1 we get that f admits a
Jacobian with respect to ν, namely

Jµf =
h ◦ f
h

Jνf = λ
h ◦ f
h

e−φ.

Since fN is locally injective, we may partition Rj into finitely many subsets
Ri,j , i = 1, . . . , k(j) such that fN is injective on each one of these sets. The
assumption implies µ(Ri,j ∩ Ec) = 0 and so

µ(fN (Ri,j ∩ Ec)) =
∫

Ri,j∩Ec

Jµf dµ = 0,

for every i. Observe that the fN (Ri,j ∩ Ec) cover the complement of fN (E),
because the fN (Ri,j) cover the whole M . It follows that fN (E)c has zero µ-
measure. This proves the first claim in the lemma. The second one is an easy
consequence: if Rj had zero measure then we could take E to be the empty set,
which would immediately lead to a contradiction.

Proposition 5.12. The measure µ = hν is ergodic for f .

Proof. Let A be any f -invariant set with positive µ-measure. By Corollary 3.12,
one can find a sequence Qn of measurable sets such that Rmn ⊂ Qn ⊂ R̄mn for
some hyperbolic cylinder Rmn with mn ≥ n and

µ(Qn ∩Ac)
µ(Qn)

→ 0 when n→∞.

Then, using the distortion Lemma 4.6 and the assumption that A is invariant,

µ(fmn(Qn) ∩Ac)
µ(fmn(Qn))

→ 0 when n→∞.
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Now, fmn(Qn) ⊃ fmn(Rmn) ⊃ Rjn for some jn ∈ {1, . . . , p+q}. Fix any j such
that jn = j for infinitely many values of n. By Lemma 5.11, the µ-measure of
Rj is positive. Then the previous relation implies that µ(Rj ∩ Ac) = 0. Using
Lemma 5.11 (with E = A) and the assumption that A is invariant, we conclude
that µ(A) = 1.

Corollary 5.13. We have µ(∂R) = 0.

Proof. The assumption (H1) implies that f(∂R) ⊂ ∂R. Thus, by ergodicity,
∂R has either zero or full µ-measure. In the second case, µ(Rj) would be zero
for every j, contradicting Lemma 5.11. Thus, the µ-measure of ∂R is indeed
zero.

Proposition 5.14. The measure µ = hν is an invariant non-lacunary measure
of f for the potential φ.

Proof. We have already seen that µ is invariant under f . Corollary 5.13 gives
that µ(∂R) = 0. Since h is bounded from zero and infinity, Proposition 4.7
implies the Gibbs property at hyperbolic times: there exists K9 > 0 such that

K−1
9 ≤ µ(Rn)

exp(Snφ(x)− Pn)
≤ K9. (23)

for every x ∈ Rn and every hyperbolic cylinder Rn. Proposition 3.8 asserts that
hyperbolic times constitute a non-lacunary sequence for µ-almost every point.
The proof of the proposition is complete.

We have finished the proof of Theorem B. Since µ and ν are equivalent
measures, with density bounded from above and below (Corollary 5.8), Propo-
sitions 4.4 and 5.14 yield, respectively,

Corollary 5.15. The measure µ is expanding, with integrable first hyperbolic
time.

Corollary 5.16. The measure ν is a non-lacunary Gibbs measure of f for the
potential φ.

6 Proof of Theorem C

In this section, whenever we speak of non-lacunary Gibbs measures it is implicit
that the corresponding non-lacunary sequence is the sequence of hyperbolic
times. Note that this is so for all the cases in the previous sections.

The proof of Theorem C has two parts. First we check that any invariant
non-lacunary Gibbs measure µ as in Theorem B is an equilibrium state (Propo-
sition 6.1 and Corollary 6.7). This ensures that equilibrium states do exist.
Then we show that every ergodic equilibrium state is a non-lacunary Gibbs
measure and, moreover, any two non-lacunary Gibbs measures are equivalent
(Corollary 6.12 and Lemma 6.13). This implies that there exists at most one
ergodic equilibrium state, and so the equilibrium state is unique (and ergodic).
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6.1 Existence of equilibrium states

Define H0 = H\
⋃∞

n=1 ∂Rn. Observe thatH0 is a full µ-measure subset ofM , by
Corollaries 5.13 and 5.15. To each point x ∈ H0 associate the largest hyperbolic
cylinder U(x) that contains x (that is, the one with the smallest length). These
U(x) form a partition U of the set H0, in the sense that every x ∈ H0 belongs
to exactly one of them. By (23),

K−1
9 µ(U) ≤ exp(Snφ(U)− Pn) ≤ K9µ(U) (24)

for every U ∈ U . Let Un = Sn(U) be the family of sets of the form (10). Then
Un is an increasing sequence of partitions of H0. By concatenation (Remark 3.7)
every element of Un is a hyperbolic cylinder, of length ≥ n. Hence, (24) extends
to every U ∈ Un and every n ≥ 1. Corollary 3.5 gives that

diam(Un) ≤ K2e
−cn (25)

goes to zero when n→∞. It follows that U is a generating partition for µ (see
Lemma 3.11): every measurable set coincides, up to zero measure subsets, with
some union of elements of Un, n ≥ 1.

Proposition 6.1. Every invariant expanding non-lacunary Gibbs measure µ
satisfies hµ(f) +

∫
φdµ = P .

Proof. Since U is a generating partition, the theorem of Kolmogorov, Sinai
(see § IV.4 in [Mañ87]) gives that hµ(f) = hµ(f,U). Next, by the theorem of
Shannon, McMillan, Breiman (see § IV.2 in [Mañ87]),

hµ(f,U) =
∫
h(f,U , x) dµ where h(f,U , x) = lim

n
− 1
n

logµ(Un(x))

and the limit exists at µ-almost every point. We can calculate the limit with
the help of Proposition 3.17:

lim
n
− 1
n

logµ(Un(x)) = lim
n

(
Pn− 1

n
Snφ(x)

)
= P − lim

n

1
n
Snφ(x)

for µ-almost every x ∈M . It follows that

hµ(f) = P −
∫

lim
1
n
Snφ(x) dµ = P −

∫
φdµ,

where the last equality comes from the Birkhoff ergodic theorem.

This implies that P (f, φ) ≥ P . In the sequel we prove that the two numbers
are actually equal: they both coincide with the pressure PH0(f, φ) relative to
the set H0.

Proposition 6.2. We have PH0(f, φ) = P .
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Proof. Let k, n ≥ 1 be fixed. As pointed out before, the inequalities (24) are
valid for every U ∈ Uk and, for the same reason, for every U ∈ Sn(Uk). Since
Sn(Uk) is a partition of the full µ-measure set H0, adding these inequalities we
obtain

K−1
9 ≤

∑
U∈Sn(Uk)

exp(Snφ(U)− Pn) ≤ K9

and so, recalling the definition (11),

K−1
9 ≤ mH0(f, φ, P,Uk, n) ≤ K9

for every k, n ≥ 1. Taking the limit as n → ∞, we find that mH0(f, φ, α,Uk)
is equal to zero for α > P and is equal to infinity for α < P . Consequently,
PH0(f, φ,Uk) = P for every k ≥ 1. Finally, (25) implies that the diameter of
Uk goes to zero when k → ∞, and so PH0(f, φ) = limk→∞ PH0(f, φ,Uk) = P
(recall Definition 3.13), as claimed.

Corollary 6.3. The spectral radius of Lφ is the only real eigenvalue of the
adjoint operator L∗φ larger than eκ+sup φ.

Proof. This is an immediate consequence of Lemma 4.2 and Proposition 6.2.

The proof of the next proposition was obtained jointly with Paulo Varandas.

Proposition 6.4. We have PM\H0(f, φ) < P .

Proof. The key idea is akin to the Ruelle inequality [Rue78]. It can be outlined
as follows, starting with the special case φ = 0. The entropy associated to each
inverse branch of f is bounded by log ‖Df−1‖ ≤ log σ2 and, consequently, may
be taken to be quite small. Thus, most of the entropy arises from the non-
injectivity of f . In particular, the entropy relative to M \H0 is bounded above
by the growth rate κ < P of the number of non-hyperbolic inverse branches.
That is the contents of the conclusion. Moreover, a similar estimate holds for
more general potentials, with the relative pressure bounded by supφ+ κ < P .

For the detailed argument we need a couple auxiliary lemmas.

Lemma 6.5. Let M be a compact manifold of dimension d. There exists a
sequence (Tk)k of finite triangulations of M and there exist positive constants
C1 and C2 such that diam(Tk) ≤ C12−k and, given A ≥ 1, any set E ⊂M such
that diam(E) ≤ Adiam(Tk) intersects at most C2A

d atoms of Tk.

Proof. Fix any finite triangulation T0 in M . For each T ∈ T0, let φT : T → Λd

be a diffeomorphism to the standard d-dimensional simplex Λd ⊂ Rd of size 1.
For each k ≥ 1, let Ld,k be the regular decomposition of Λd into simplices of size
2−k. Then let Tk be the triangulation of M obtained by pulling Ld,k back under
each φT . Clearly, diam Tk ≤ C12−k where the constant C1 depends only on
distortion bounds for the φT . This proves the first part of the lemma. To prove
the second one, notice the hypothesis implies that diam(φT (E ∩ T )) ≤ C ′1A2−k

for every T ∈ T 0 and some uniform constant C ′1. The whole point of the proof
is to observe that this implies φT (E∩T ) intersects at most C ′2A

d atoms of Ld,k,
for some uniform constant C ′2. The conclusion follows.
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Let (Tk)k≥1 be as in the previous lemma and, for each j ≥ 1, denote

T `,j
k =

{
T0 ∩ f−`(T1) ∩ · · · ∩ f−`(j−1)(Tj−1) : Ti ∈ Tk for 0 ≤ i < j

}
.

The crucial estimate in the proof of the proposition is given in the next lemma.

Lemma 6.6. For each `, j, and k, there exists a family G`,j,k ⊂ T `,j
k such that

1. for every `, k, and L, the union ∪j≥LG`,j,k covers the set M \H0

2. there is L ≥ 1 and for each ` there is L` ≥ 1 such that

#G`,j,k ≤ Cj
2e

(κ+d log σ2)`j# Tk for all j ≥ L and every k ≥ L`.

Proof. Recall we took γ such that cγ ≤ κ. Fix ε > 0 such that cγ + 2ε ≤ κ.
Proposition 3.2 implies that M \ H0 is covered by the closures of the cylin-
ders Rn[i0, . . . , in−1] associated to itineraries (i0, . . . , in−1) ∈ I(γ, n) with large
length n. Recall, from Lemma 3.1, that

#I(γ, n) ≤ e(cγ+ε)n if n is large. (26)

Define G`,j,k to be the family of all elements of T `,j
k that intersect R̄n[i0, . . . , in−1]

for some itinerary (i0, . . . , in−1) ∈ I(γ, n) with `(j − 1) ≤ n < `j. It is clear
from the previous observations that, given any L ≥ 1, the union of G`,j,k over
all j ≥ L covers M \H0, as stated in part 1 of the lemma.

Now we claim that, for large k and j, there are at most Cj
2σ

`j
2 #Tk elements

of T `,j
k that intersect any given R̄n[i0, . . . , in−1] as before. Indeed, let

T0 ∩ f−`(T1) ∩ · · · ∩ f−`(j−1)(Tj−1) ∈ T `,j
k

be any such element. Then, Ts ∩ f−`(Ts+1) intersects R̄n−s`[is`, . . . , in−1] for
every s = 0, 1, . . . , j − 2. Condition (H1) implies that f ` is injective on
every R̄i. Since R̄i is compact, injectivity extends to some small neighborhood.
Lemma 6.5 gives that the diameter of Tk goes to zero when k →∞. So, taking
k larger than some function of `, we can ensure that f−`(Ts+1) has exactly
deg(f) connected components and only one of them, that we denote Cs+1,
intersects the neighborhood of radius diam(Tk) around Ris`

. Condition (H2)
implies ‖Df−`‖ ≤ σ`

2, and so

diam(Cs+1) ≤ σ`
2 diam(Ts+1) ≤ σ`

2 diam(Tk).

Then, by Lemma 6.5, Cs+1 intersects at most C2σ
`d
2 atoms of Tk. Applying

this argument, successively, to s = j − 2, . . . , 1, 0, we conclude that there are
at most #Tk

(
C2σ

`d
2 )j−1 sequences (T0, . . . , Tj−1) as we have been considering.

This is even slightly better than our claim.
Combining this claim with (26) we can easily deduce part 2 of the lemma:

#G`,j,k ≤ Cj
2σ

`j
2 #Tk ·

∑̀
r=1

e(cγ+ε)(`j−r) ≤ Cj
2σ

`j
2 #Tk · C(`)e(cγ+ε)`j
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for some constant C(`) > 0. Since j is large, the right hand side is bounded by

Cj
2σ

`j
2 e

(cγ+2ε)`j #Tk ≤ Cj
2σ

`j
2 e

κ`j #Tk.

This completes the proof of Lemma 6.6.

From the lemma and the definition (10),

mα(f `, S`φ,M \H0, Tk, L) ≤
∑
j≥L

∑
U∈G`,j,k

e−αj+
∑j−1

i=0 (S`φ)◦fi`(U)

≤
∑
j≥L

e−αj+`j sup φ #G`,j,k

for every k ≥ L` and L ≥ L`. In view of Lemma 6.6, the right hand side
converges to zero when L → ∞ for all α > (supφ + κ + d log σ2) ` + logC2.
Consequently,

PM\H0(f
`, S`φ, Tk) ≤ (supφ+ κ+ d log σ2) `+ logC2

for k ≥ L`. Taking the limit when k →∞, and recalling diam(Tk) goes to zero,

PM\H0(f
`, S`φ) ≤ (supφ+ κ+ d log σ2) `+ logC2.

According to Proposition 3.15, this means that

PM\H0(f, φ) ≤ supφ+ κ+ d log σ2 +
1
`

logC2.

Taking the limit as ` → ∞ and then using the condition (3), we obtain the
conclusion of Proposition 6.4.

Corollary 6.7. We have P = PH0(f, φ) = P (f, φ).

Proof. Theorem 11.2 in [Pes97] gives that P (f, φ) = sup{PH0(φ), PM\H0(φ)}.
Thus, the statement is a direct consequence of Propositions 6.2 and 6.4.

At this point, Proposition 6.1 means that any invariant expanding non-
lacunary Gibbs measure is an equilibrium state of f for the potential φ. In
particular, equilibrium states do exist.

6.2 Uniqueness of the equilibrium state

Let η be an arbitrary equilibrium state of f for φ. Define g : M → (0,∞) by

g(x) = λ−1eφ(x) h(x)
h(f(x))

.

Observe that, for every x ∈M ,

∑
f(y)=x

g(y) =

∑
f(y)=x e

φ(y)h(y)

λh(x)
=
Lφh(x)
λh(x)

= 1 (27)
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Lemma 6.8. The measure η satisfies η(H) = 1, and so all the Lyapunov expo-
nents of f are positive at η-almost every point.

Proof. Suppose η(M \ H0) > 0. Let ξ be the normalized restriction of η to
M \ H0. We may write η = cξ + (1 − c)ζ for some 0 < c ≤ 1 and some
probability η. By (12) and Proposition 6.4,

hζ(f) +
∫
φdζ ≤ P (f, φ) and hξ(f) +

∫
φdξ ≤ PM\H0(f, φ) < P (f, φ).

Therefore,

hη(f) +
∫
φdη = c

(
hξ(f) +

∫
φdξ

)
+ (1− c)

(
hζ(f) +

∫
φdζ

)
is strictly smaller than P (f, φ), that is, η is not an equilibrium state. This proves
the first claim in the lemma. The second one is an immediate consequence, as
explained at the beginning of Section 3.3.

In the sequel we use the following elementary fact from Calculus, whose
proof we omit:

Remark 6.9. Let pi > 0 and qi > 0, i = 1, . . . , n be such that
∑n

i=1 pi = 1.
Then

∑n
i=1 pi log qi ≤ log(

∑n
i=1 piqi) and the equality holds if and only if the qi

are all equal.

The next proposition is a variation of a result in [BS03].

Proposition 6.10. We have Jηf(y) = 1/g(y) for η-almost every y ∈M .

Proof. From the assumption hη(f) +
∫
φdη = P (f, φ) = P we get that

hη(f) +
∫

log g dη = hη(f)− P +
∫

(φ+ log h− log h ◦ f) dη ≥ 0. (28)

Let us write gη = 1/(Jηf). By Lemma 6.8, the measure η is expanding, and so
we may use Rokhlin’s formula (see [OV06])

hη(f) =
∫

log Jηf dη

Replacing this formula in the previous inequality we find

0 ≤
∫

log
g

gη
dη =

∫ ∑
f(y)=x

gη(y) log
g(y)
gη(y)

dη(x), (29)

where the equality follows from the definitions of gη and the Jacobian. Take
pi = gη(yi) and qi = g(yi)/gη(yi), where the yi are the pre-images of x. The
assumption that η is invariant means that

deg(f)∑
i=1

pi =
∑

f(y)=x

gη(y) = 1 (30)
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for η-almost every x ∈ M . Thus, we may apply the first part of Remark 6.9,
together with (27), to conclude that∑

f(y)=x

gη(y) log
g(y)
gη(y)

≤ log
( ∑

f(y)=x

gη(y)
g(y)
gη(y)

)
= log

( ∑
f(y)=x

g(y)
)

= 0

at η-almost every x. Integrating with respect to η and using (29), we conclude
that the equality must hold at η-almost every point. Moreover, the equality
must hold in (29) and, consequently, in (28). That is, hη(f) − P +

∫
φdη = 0,

as claimed in part (1) of the lemma.
Moreover, using the second part of Remark 6.9, the values of g(y)/gη(y)

must be the same for all y ∈ f−1(x). In other words, for η-almost every x ∈M
there exists a number c(x) such that

g(y)
gη(y)

= c(x) for every y ∈ f−1(x).

Combining this with (27) and (30), we conclude that

c(x) =

∑
f(y)=x g(y)∑
f(y)=x gη(y)

= 1 for η-almost every x.

This shows that g = gη for every point on the pre-image of a full η-measure set.
Since η is invariant, this implies part (2) of the lemma.

For notational convenience, in what follows we write h−1 to mean 1/h.

Lemma 6.11. The measure νη = h−1η is a maximal eigenmeasure for the
adjoint transfer operator: L∗φ(h−1η) = λ(h−1η).

Proof. Given any continuous function ξ∫
ξ d(L∗φνη) =

∫
(Lφξ)h−1dη =

∫ ∑
f(y)=x

eφ(y)h(f(y))−1ξ(y) dη(x).

Using the definition of g and Proposition 6.10, we

eφ(y)h(f(y))−1 = λg(y)h(y)−1 = λJηf(y)−1h(y)−1 .

Replacing this in the previous formula,∫
ξ d(L∗φνη)) = λ

∫ ( ∑
f(y)=x

ξ(y)Jηf(y)−1h(y)−1
)
dη(x) = λ

∫
ξh−1 dη.

Since ξ is arbitrary, this implies L∗φ(νη) = λνη, as claimed.

Corollary 6.12. Any equilibrium state of φ is an invariant non-lacunary Gibbs
measure.
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Proof. Let νη = 1
hη. We have just seen that νη is an eigenmeasure of L∗φ, with

eigenvalue λ. So, by Proposition 4.7 and Corollary 5.16, νη is a non-lacunary
Gibbs measure. Since η = hνη and h is bounded from below and above, η is a
non-lacunary Gibbs measure as well.

Lemma 6.13. Any two expanding non-lacunary Gibbs measures are equivalent.

Proof. Consider expanding non-lacunary Gibbs measures ν1 and ν2. For each
R ∈ Rn

h we have

K−1eSnφ(x)−nP ≤ νi(R) ≤ KeSnφ(x)−nP , for i = 1, 2.

This implies that K−2ν2(R) ≤ ν1(R) ≤ K2ν2(R). Using Lemma 3.11 we con-
clude that the inequalities hold for every Borel set. Thus, ν1 and ν2 are equiv-
alent measures.

Now let η be any ergodic equilibrium state for φ, and let µ be any in-
variant non-lacunary Gibbs measure as constructed in Theorem B. Then η is
an invariant non-lacunary Gibbs measure, according to Corollary 6.12. Using
Lemma 6.13 we conclude that the measures µ and η are equivalent. Then, by
ergodicity, η = µ. Thus, there exists a unique ergodic equilibrium state for
φ. Since any ergodic component of an equilibrium measure is also an equilib-
rium measure, this proves uniqueness of the equilibrium state. The proof of
Theorem C is complete.

References

[ABV00] J. F. Alves, C. Bonatti, and M. Viana. SRB measures for partially hy-
perbolic systems whose central direction is mostly expanding. Invent.
Math., 140:351–398, 2000.

[Alv00] J. F. Alves. SRB measures for non-hyperbolic systems with multidi-
mensional expansion. Ann. Sci. École Norm. Sup., 33:1–32, 2000.
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