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ON THE DEGREE OF POLAR TRANSFORMATIONS

AN APPROACH THROUGH LOGARITHMIC FOLIATIONS

T. FASSARELLA AND J. V. PEREIRA

Abstract. We investigate the degree of the polar transformations associated
to a certain class of multi-valued homogeneous functions. In particular we
prove that the degree of the pre-image of generic linear spaces by a polar
transformation associated to a homogeneous polynomial F is determined by
the zero locus of F . For zero dimensional-dimensional linear spaces this was
conjecture by Dolgachev and proved by Dimca-Papadima using topological
arguments. Our methods are algebro-geometric and rely on the study of the
Gauss map of naturally associated logarithmic foliations.

1. Introduction

Given a homogeneous polynomial F ∈ C[x0, ..., xn] one can naturally associate
to it the rational map induced by its linear system of polars. Explicitly this map
can be written as

∇F : P
n

99K P
n

x 7→

(
∂F

∂x0
(x) : ... :

∂F

∂xn

(x)

)
,

and is the so called polar transformation or polar map of F .
The particular case when ∇F is a birational map is of particular interest [9, 10, 4]

and in this situation the polynomial F is said to be homaloidal. The classification
of reduced homaloidal polynomials in three variables was carried out by Dolgachev
in [8]. It says that F ∈ C[x0, x1, x2] is a reduced homaloidal polynomial if, and
only if, its (set theoretical) zero locus V (F ) ⊂ P2 has one of the following forms:

(1) a smooth conic;
(2) the union of three lines in general position;
(3) the union of a smooth conic and a line tangent to it.

In loc. cit. it is conjectured that the reduceness of F is not necessary to draw
the same conclusion. More precisely it is conjectured that the degree of ∇F can be
written as a function of V (F ).

Dimca and Papadima [6] settled Dolgachev’s conjecture by proving that for a
polynomial F ∈ C[x0, . . . , xn] the complement D(F ) = Pn\V (F ) is homotopically
equivalent to a CW-complex obtained from D(F ) ∩ H by attaching deg(∇F ) cells
of dimension n, where H ⊂ Pn is a generic hyperplane. In particular the degree of
∇F can be expressed as

deg(∇F ) = (−1)
n
χ(D(F )\H) .

Key words and phrases. Polar Transformations, Gauss Map, Foliations.
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Their proof is topological and relies on complex Morse Theory. In [7], as well as in
[4], the problem of giving an algebro-geometric proof of Dolgachev’s conjecture is
raised. Partial answers have been provided by [12] and [1].

The main goal of this paper is to provided one such algebro-geometric proof, cf.
Theorem 3, by relating the degree of ∇F to the degree of the Gauss map of some
naturally associated logarithmic foliations.

Our method allow us also to deal with the higher order degrees of ∇F — the
degrees of the closure of pre-images of generic linear subspaces — and with more
general functions than the polynomial ones, cf. §4.

The paper is organized as follows. In §2 we recall some basic definitions concern-
ing holomorphic foliations and their Gauss map and prove Theorem 1 that express
the higher order degrees of such Gauss maps in terms of the topological degree of
the Gauss maps of generic linear sections of the corresponding foliations. In §3
we study the Gauss maps of logarithmic foliations and prove that their topological
degrees — under suitable hypotheses — can expressed in terms of the top chern
class of certain sheaves of logarithmic differentials. In §4 we prove Theorem 2 that
relates the degrees of the polar map with the ones of a naturally associated log-
arithmic foliation. Finally, in §5 we prove Theorem 3 — our main result — and
make a couple of side remarks.

Acknowledgements: We first heard about the degree of polar maps from Francesco
Russo. We thank him for calling our attention to the problem of giving an algebro-
geometric proof of Dolgachev’s conjecture and for his interest in this work. We also
thanks Charles Favre and Dominique Cerveau. The first for enquiring us about the
higher order degrees of polar maps and the second for suggesting that something
like Corollary 3 should hold true.

2. Foliations and Their Gauss Maps

A codimension one singular holomorphic foliation, from now on just foli-
ation, F of a complex manifold M is determined by a line bundle L and an element
ω ∈ H0(M, Ω1

M ⊗ L) satisfying

(i) codimSing(ω) ≥ 2 where Sing(ω) = {x ∈ M |ω(x) = 0};
(ii) ω ∧ dω = 0 in H0(M, Ω3

M ⊗ L⊗2).

If we drop condition (ii) we obtain the definition of a codimension one singular

holomorphic distribution D on M . Although we will state the results of this
section for foliations they can all be rephrased for distributions.

The singular set of F , for short Sing(F), is by definition equal to Sing(ω). The
integrability condition (ii) determines in an analytic neighborhood of every point
p ∈ M \Sing(F) a holomorphic fibration with relative tangent sheaf coinciding with
the subsheaf of TM determined by the kernel of ω. Analytic continuation of the
fibers of this fibration describes the leaves of F .

In our study the isolated singularities of F will play a key role. One of the
most basic invariants attached to them is their multiplicity m(F , p) defined as
the intersection multiplicity at p of the zero section of Ω1

M ⊗L with the graph of ω.
In this paper we will focus on the case M = Pn. The degree of a foliation of

Pn is geometrically defined as the number of tangencies of F with a generic line
ℓ ⊂ P

n. If ι : ℓ → P
n is the inclusion of such a line then the degree of F is the
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degree of the zero divisor of the twisted 1-form ι∗ω ∈ H0(ℓ, Ω1
ℓ ⊗ L|ℓ). Thus the

degree of F is nothing more than deg(L) − 2.

2.1. The Gauss Map. The Gauss map of a foliation F of Pn is the rational map

G(F) : P
n

99K P̌
n

p 7→ TpF

where TpF is the projective tangent space of the leaf of F through p.
It follows from Euler’s sequence that a 1-form ω ∈ H0(Pn, Ω1(deg(F) + 2)) can

be interpreted as a homogeneous 1-form on C
n+1, still denoted by ω,

ω =
n∑

i=0

aidxi

with the coefficients ai being homogenous polynomials of degree deg(F) + 1 and
satisfying Euler’s relation iRω = 0, where iR stands for the interior product with
the radial (or Euler’s) vector field R =

∑n
i=0 xi

∂
∂xi

.

If we interpret [dx0 : . . . : dxn] as projective coordinates of P̌n then the Gauss
map of the corresponding F can be written as G(F)(p) = [a0(p) : . . . : an(p)].

2.2. Linear Sections of Foliations. Assume that 1 ≤ k < n and let ι : Pk → Pn

be a linear embedding. If ι∗ω = 0 then we say that ι(Pk) is left invariant by
F . Otherwise, after dividing ι∗ω (here interpreted as a 1-form on Ck+1) by the
common factor of its coefficients, one obtains a foliation i∗F = F|Pk on Pk.

Notice that according to our definitions there is only one foliation of P1 and it
is induced by the homogeneous 1-form x0dx1 − x1dx0 on C2. This odd remark will
prove to be useful when we define the numbers ek

i (F) below. On the other hand if
k ≥ 2 and ι : Pk → Pn is generic then there is no need to divide ι∗ω: one has just
to apply the following well-known lemma n − k times.

Lemma 1. Let n ≥ 3. If H ⊂ P
n is a generic hyperplane and F is a foliation of

Pn then the degree of F|H is equal to the degree of F and, moreover,

Sing(F|H) = (Sing(F) ∩ H) ∪ G(F)−1(H)

with G(F)−1(H) being finite and all the corresponding singularities of F|H have
multiplicity one.

Proof. The proof follows from Bertini’s Theorem applied to the linear system defin-
ing G(F), or equivalently, from Sard’s Theorem applied to G(F). For the details
see [2]. �

Notice that the conclusion of Lemma concerning the multiplicities can be rephrased
by saying that H is a regular value of G(F) restricted to its domain of definition.

2.3. Degrees of the Gauss Map. For a rational map φ : Pn
99K Pn recall that

degi(φ) is the cardinality of φ−1
|U (Li) ∩ Σn−i, where U ⊂ Pn is a Zariski open set

where φ is regular, Li ⊂ P
n is a generic linear subspace of dimension i of the target

and Σn−i ⊂ Pn is generic linear subspace of dimension n − i of the domain.
On the remaining part of this section we will study the numbers ek

i (F), for pairs
of natural numbers (k, i) satisfying 1 ≤ k ≤ n and 0 ≤ i ≤ k − 1, defined as

ek
i (F) = degi(G(F|Pk)).
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where Pk ⊂ Pn is generic.
Notice that en

0 (F) is equal to the topological degree of G(F) and Lemma 1 implies
that e2

0(F) = deg(F). More generally, for every 0 ≤ i ≤ n − 1, en
i (F) coincides

with the degree of the (n − i)-th polar class of F defined in [13] mimicking the
corresponding definition for projective varieties, cf. for instance [14].

Our main result concerning the numbers ek
i (F) is the following.

Theorem 1. If F is a foliation of Pn and (k, i) is a pair of natural numbers
satisfying 2 ≤ k ≤ n and 1 ≤ i ≤ k − 1 then

ek
i (F) = ek−i

0 (F) + ek−i+1
0 (F).

The corollary below follows immediately from Theorem 1.

Corollary 1. For natural numbers s, k, i satisfying s ≥ 1, s + 2 ≤ k ≤ n and
2 ≤ i ≤ k − 1 we have that

ek
i (F) = ek−s

i−s (F) .

Notice that this is as an analogous of the invariance of the polar classes of
hypersurfaces under hyperplane sections — a particular case of [14, Theorem 4.2].

2.4. Proof of Theorem 1. It clearly suffices to consider the case k = n. Set
U = Pn \ Sing(F) and G = G(F)|U .

Let Li ⊂ P̌n be a generic linear subspace of dimension i, V i = G−1(Li) ⊂ U and
Σn−i−1 = Ľi, i.e.,

Σn−i−1 =
⋂

H∈Li

H .

Thanks to Bertini’s Theorem we can assume that V i is empty or smooth of dimen-
sion i. Moreover, thanks to Lemma 1, we can also assume that all the singularities
of F|Σn−i−1 contained in U have multiplicity one.

Lemma 2. If Σn−i is a generic projective subspace of dimension n − i (i ≥ 1)
containing Σn−i−1 then

V i ∩ Σn−i = U ∩
(
Sing(F|Σn−i) ∪ Sing(F|Σn−i−1)

)
.

Moreover Σn−i intersects V i transversally.

Proof. By definition V i =
{
p ∈ U |TpF ⊇ Σn−i−1

}
. Clearly the points p ∈ Σn−i−1

belonging to V i coincides with Sing(F|Σn−i−1). Similarly a point p ∈ Σn−i \Σn−i−1

belongs to V i if, and only if, TpF contains the join of p and Σn−i−1. Since
Join(p, Σn−i−1) = Σn−i the set theoretical description of V i ∩ Σn−i follows.

It remains to prove the transversality statement. First take a point p ∈ Σn−i−1∩
Vi. If for every Σn−i containing Σn−i−1 the intersection of V i with Σn−i is not
transverse then TpV

i ∩ TpΣ
n−i−1 6= 0. Without loss of generality we can assume

that Σn−i−1 = {x0 = . . . = xi = 0}. In this situation the variety V i is defined by
the projectivization of {ai+1 = . . . = an = 0} where ω =

∑n
i=0 aidxi is a 1-form

defining F on C
n+1.

If v ∈ TpV
i then an arbitrary lift v to Cn+1 satisfies daj(v) = 0 for every

i + 1 ≤ j ≤ n. Since F|Σn−i−1 is defined by the 1-form

n∑

j=i+1

aj(0, . . . , 0, xi+1, . . . , xn)dxj
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then it follows that dG(F|Σn−i−1)p · (v) = 0 for every v ∈ TpΣ
n−i−1 ∩ TpV

i. If this
latter intersection has positive dimension then m(F|Σn−i−1 , p) > 1 contrary to our

assumptions. Therefore for a generic Σn−i ⊇ Σn−i−1 the intersection of V i with
Σn−i along Σn−i−1 is transversal.

Let now p ∈ Σn−i \ Σn−i−1. If G ⊂ aut(Pn) is the subgroup that preserves
Σn−i−1 then Pn \ Σn−i−1 is G-homogeneous. It follows from the transversality
of a generic G-translate (cf. [11]) that a generic Σn−i ⊇ Σn−i−1 intersects V i

transversally along Σn−i \ Σn−i−1. �

The Theorem will follow from the Lemma once we show that the closure of V i

in Pn cannot intersect Σn−i ∩ Sing(F).

For a generic Σn−i ⊃ Σn−i−1 it is clear that V i∩ (Σn−i \Σn−i−1)∩Sing(F) = ∅.
One has just to take a Σn−i transversal to V i with the maximal number of isolated
singularities contained in U .

Our argument to ensure that V i ∩ Σn−i−1 ∩ Sing(F) = ∅ is more subtle. Let
G : X → P

n be a resolution of the rational map G(F), i.e, π : X → P
n is a

composition of smooth blow-ups and G is define through the commutative diagram
below.

X

π

��

G

��

Pn
G(F)

//___

P̌
n

Let also I ⊂ Pn × P̌n be the incidence variety, Gi(P̌
n) be the Grassmanian of

i-dimensional linear subspaces of P̌n and

U =

{
(Li, x, H) ∈ Gi(P̌

n) × P
n × P̌

n
∣∣∣H ∈ Li, x ∈ Ľi =

⋂

H∈Li

H

}
.

Notice that U ⊂ Gi(P̌
n) × I.

If E ⊂ X is an exceptional divisor then the set of i-dimensional linear subspaces
Li ⊂ P̌n for which G−1(Li) ∩ π−1(Ľi) ∩ E 6= ∅ is given by the image of the mor-
phism σ defined below, where the unlabeled arrows are the corresponding natural
projections.

E ×I U

σ

))

��

// U

��

// Gi(P̌
n)

E
π×G

// I

Notice that I is a aut(Pn)-homogeneous space under the natural action and that
the vertical arrow U → I is a aut(Pn)-equivariant morphism. The transversality of
the general translate, cf. [11], implies that

dimE ×I U = dimE + dimU − dim I = dim Gi(P̌
n) − 1.

It follows that σ is not dominant. Repeating the argument for every exceptional
divisor of π we obtain an open set contained in Gi(P̌

n) with the desired property.
This concludes the proof of Theorem 1. �



6 T. FASSARELLA AND J. V. PEREIRA

3. Degrees of the Gauss Map of Logarithmic Foliations

Let F1, . . . , Fk ∈ C[x0, . . . , xn] be reduced homogeneous polynomials. If λ =
(λ1, . . . , λk) ∈ Ck satisfies

k∑

i=1

λi deg(Fi) = 0

then the rational 1-form on Cn+1

ωλ = ω(F, λ) =
k∑

i=1

λi

dFi

Fi

induces a rational 1-form on Pn. Formally it is equal to the logarithmic derivative of
the degree 0 multi-valued function Fλ1

1 · · ·Fλk

k . Being ωλ closed, and in particular
integrable, it defines Fλ a singular holomorphic foliation of Pn. The corresponding
1-form is obtained from (

∏
Fi)ωλ after clearing out the common divisors of its

coefficients. The level sets of the multi-valued function Fλ1

1 · · ·Fλk

k are union of
leaves of Fλ.

If the divisor D of Pn induced by the zero locus of the polynomial
∏

Fi has at
most normal crossing singularities and all the complex numbers λi are non zero then
the singular of Fλ has a fairly simple structure, cf. [3, 5], which we recall in the next
few lines. It has a codimension two part corresponding to the singularities of D and
a zero dimensional part away from the support of D. To obtain this description one
has just to observe that under the hypothesis the sheaf Ω1(log D) is a locally free
sheaf of rank n and that the rational 1-form ωλ has no zeros on a neighborhood of
|D| when interpreted as an element of H0(Pn, Ω1(log D)). Moreover, under these
hypotheses, the length of the zero dimensional part of the singular scheme of Fλ is
measured by the top Chern class of Ω1(log D).

In order to extend the above description of sing(Fλ) to a more general setup let

π : (X, π∗D) → (Pn, D),

be an embedded resolution of D, i.e., π is a composition of blow-ups along smooth
centers contained in the total transforms of D and the support of π∗D has at most
normal crossings singularities.

Due to the functoriality of logarithmic 1-forms the pull-back π∗ωλ is a global
section of H0(X, Ω1

X(log π∗D)). To each irreducible component E of π∗D there is a
naturally attached complex number — the residue of π∗ωλ — that can be defined
as

λ(E) = λ(E, ωλ) =
1

2πi

∫

γi

π∗(ωλ)

where γ : S1 → X \ |π∗D| is a naturally oriented closed path surrounding the
support of E. If E is the strict transform of V (Fi) then, clearly, λ(E) = λi. More
generally one has the following lemma.

Lemma 3. For every irreducible component E ⊂ X of the exceptional divisor there
exists natural numbers m1, . . . , mk ∈ N such that

λ(E) =
k∑

i=1

miλi .
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Proof. Let π1 : (X1, π
∗
1D) → (Pn, D) the first blow up in the resolution process of

D with center C1 ⊂ D and let E1 = π∗(C1) be the exceptional divisor.

If Di = V (Fi) and D̃i denotes the strict transform of Di then we can write

π∗
1Di = niE1 + D̃i

where ni is the natural number measuring the multiplicity of V (Fi) along C1.
Moreover if, over a generic point p ∈ |E1|, we take t as a reduced germ of regular
function cutting out E1 then

π∗
1(ωλ) =

(
∑

i

λini

)
dt

t
+ α ,

for some closed regular 1-form α. The proof follows by induction on the number of
blow ups necessary to resolve D. �

Definition 1. The complex vector λ = (λ1, . . . , λk) ∈ Ck is non resonant (with
respect to π) if λ(E) 6= 0 for every irreducible component E of π∗D.

The arguments of [3, 5] yields the following description of the singular set of Fλ

for non resonant λ. We reproduce them below thinking on reader’s ease.

Lemma 4. If λ is non resonant then the restriction to the complement of D of the
singular set of Fλ is zero-dimensional. Moreover the length of the corresponding
part of the singular scheme is cn(Ω1

X(log π∗D)) .

Proof. Since λ is non resonant the 1-form π∗ωλ, seen as a section of Ω1
X(log π∗D),

has no zeros on a neighborhood of |π∗D|.
Suppose that there exists a positive dimensional component of the singular set

of Fλ not contained in |π∗D|. Being the divisor π∗D ample this component has to
intersect the support of π∗D. This leads to contradiction ensuring that the singular
set of Fλ has no positive dimensional components in the complement of |π∗D|.

The assertion concerning the length of the singular scheme follows from the fact
that Ω1

X(log π∗D) is a locally free sheaf of rank n. �

Let Σs ⊂ P
n be a generic linear subspace of dimension s and denote by Xs =

π−1(Σs) and Ds = (π∗D)|Xs
. It follows from Bertini’s Theorem that Xs is smooth

and Ds is a divisor with at most normal crossings.

Proposition 1. If λ is non resonant then

deg0(G(Fλ)) = cn−1(Ω
1
Xn−1

(log Dn−1))

and, for 1 ≤ i ≤ n − 1

degn−i(G(Fλ)) = ci−1(Ω
1
Xi−1

(log Di−1)) + ci(Ω
1
Xi

(log Di)) .

Proof. If H ⊂ P
n is a generic hyperplane then, according to Lemma 1, G(Fλ)−1(H)

coincides with the isolated singularities of F|H that are not singularities of F . By
choosing H on the complement of the dual variety of the support of D we can
assume that these isolated singularities are away from the support of D.

If πn−1 : Xn−1 → H is the restriction of π : X → Pn to Xn−1 then πn−1 is
an embedded resolution of Dn−1 and, moreover, for every exceptional divisor of E
intersecting π−1(H) we have that the residue of π∗

n−1(ωλ|H) along any irreducible
component of E ∩ Xn−1 is equal to the residue of π∗ωλ along E. Therefore the
logarithmic 1-form ωλ|H is non resonant with respect to πn−1.
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It follows from Lemma 4 that the sought number of isolated singularities is
cn−1(Ω

1
Xn−1

(log Dn−1)). Similar arguments shows that

ek
0(Fλ) = ck−1(Ω

1
Xk−1

(log Dk−1)).

To conclude one has just to invoke Theorem 1.
�

4. A Logarithmic Foliation associated to a Polar Transformation

Consider the multivalued function

F
λ =

k∏

i=1

Fλi

i : P
n

99K P
1

where Fi ∈ C[x0, ..., xn] is a reduced homogeneous polynomial of degree di and

λi ∈ C∗. The function Fλ is a homogeneous function of degree deg(Fλ) =
∑k

i=1 λidi.

If deg(Fλ) = 0 then the logarithmic derivative of Fλ defines a logarithmic foliation
of P

n and the associated polar map (see below) coincides with the Gauss map of
this foliation. Although one can in principle use the results of the previous section
to control the degree of this polar map, in general, is rather difficult to control the
singular set of the corresponding logarithmic foliation without further hypothesis.
Therefore, from now on we will assume that deg(Fλ) 6= 0.

Although Fλ is not an algebraic function it is still possible to define its polar
map as the rational map

∇F
λ : P

n
99K P

n

x →

[
Fλ

0 (x)

Fλ(x)
: . . . :

Fλ
n(x)

Fλ(x)

]

where Fλ
i denotes the partial derivative of Fλ with respect to xi. Notice that when

all the λi’s are natural numbers this rational map coincides with the polar map
defined in the introduction.

Consider the foliation of Cn+1 defined by the polynomial 1-form
(

k∏

i=1

Fi

)
dF

λ

Fλ
=

(
k∏

i=1

Fi

)
k∑

i=1

λi

dFi

Fi

.

Notice that all the singularities of this foliation are contained in V (
∏

Fi) since
Euler’s formula implies that

iR

(
k∏

i=1

Fi

)
dFλ

Fλ
= deg(Fλ)

(∏
Fi

)
.

This foliation of C
n+1 naturally extends to a foliation of P

n+1. If we con-
sider F1, . . . , Fk as polynomials in C[x0, . . . , xn, xn+1], Fk+1 = xn+1 and λ =
(λ0, . . . , λn,− deg(Fλ)) then it coincides with the foliation Fλ of the previous sec-
tion induced by the 1-form

ωλ =
dF

λ

Fλ
− deg(Fλ)

dxn+1

xn+1
.

The degrees of the Gauss map of Fλ are related with those of Fλ by means of
the following Theorem.
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Theorem 2. If the degree of Fλ is not equal to zero then for i = 0, . . . , n − 1,

degi(G(Fλ)) = degi

(
∇F

λ
)

+ degi−1

(
∇F

λ
)
,

where we are assuming that deg−1

(
∇Fλ

)
= 0.

Proof. If we set F̂j =
∏k

i6=j,i=1 Fi then the Gauss map of the foliation Fλ at the

point [x0 : . . . : xn+1] can be explicitly written as


xn+1




k∑

j=1

λj F̂j

∂Fj

∂x0


 : . . . : xn+1




k∑

j=1

λjF̂j

∂Fj

∂xn


 : − deg(Fλ)




k∏

j=1

Fj




 .

Therefore if p = [0 : . . . : 0 : 1] and π : Blp(P
n+1) → Pn+1 denotes the blow-up of

Pn+1 at p then the restriction of G = G(Fλ)◦π−1 to the exceptional divisor E ∼= Pn

can be identified with ∇Fλ as soon as we identify the target of ∇Fλ with the set
Pn

p ⊂ P̌n+1 of hyperplanes containing p .
Consider the projection ρ([x0 : . . . : xn : xn+1]) = [x0 : . . . : xn] with center at p

and notice that it lifts to a morphism ρ̃ : Blp(P
n+1) → Pn. If we write

∇F
λ(x) =




k∑

j=1

λj F̂j

∂Fj

∂x0
: . . . :

k∑

j=1

λjF̂j

∂Fj

∂xn


 ,

then it is clear that the rational maps G and ∇Fλ fit in the commutative diagram
below.

Blp(P
n+1)

eρ

��

G
//_________

Pn+1

ρ

��
�

�

�

Pn ∇F
λ

//___________ Pn

Let Li ⊂ P̌n+1 be a generic linear subspace of dimension i and set

W i = G(Fλ)−1(Li), W̃ i = G−1(Li) and V i = (∇Fλ)
−1

(ρ(Li)).

If U ⊂ Pn is the complement of the hypersurface cut out by
∏

Fj then [14, lemma]

implies that V i ∩ U and W̃ i ∩ ρ̃−1(U) are dense in V i and W̃ i.

It follows at once from the diagram above that ρ̃(W̃ i) ⊂ V i. A simple computa-
tion shows that the restriction of G to a fiber of ρ̃ over U induces an isomorphisms
to the corresponding fiber of ρ. Combining this with the density of V i ∩ U and

W̃ i ∩ ρ̃−1(U) in V i and W̃ i respectively one promptly concludes that the i-cycle

ρ̃∗W̃ i is equal to the i-cycle V i.
The i-th degree of the Gauss map of Fλ can be expressed as

degi

(
G(Fλ)

)
= c1(OPn+1(1))i · W i .
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If W̃ i = G−1(Li), H denotes a generic hyperplane containing p and H̃ is its strict
transform then, thanks to the projection formula,

degi

(
GF

λ

)
= c1(π

∗OPn+1(1))i · W̃ i

= c1(ρ̃
∗OPn(1))i · W̃ i +




i∑

j=1

(
i

j

)
H̃i−j · Ej


 · W̃ i

= c1(OPn(1))i · ρ̃(W̃ i) +






i∑

j=1

(
i

j

)
H̃i−j · Ej−1


 ∩ E


 ·

(
W̃ i ∩ E

)

= c1(OPn(1))i · V i + c1(OE(1))i−1 · (W̃ i ∩ E) .

On the one hand c1(OPn(1))i · V i is clearly equal to degi(∇Fλ). On the other

hand c1(OE(1))i−1 · (W̃ i ∩ E) = degi−1(∇Fλ) since, for a generic Li, W̃ i ∩ E is

equal to G−1
|E (Li ∩ Pn

p ) as an (i − 1)-cycle on E. The Theorem follows. �

Corollary 2. If the degree of Fλ is not equal to zero then

degi(∇F
λ) = en+1−i

0 (Fλ) .

for i = 0, . . . , n − 1.

Proof. Follows at once when after comparing Theorem 1 with Theorem 2. �

5. The Main Result: Invariance of the Degrees

Theorem 3. Let λ = (λ1, . . . , λk) be an element of Ck such that H(λj) > 0 for
some R-linear map H : C → R and every j = 1, . . . , k. Let also F1, . . . , Fk be

irreducible and homogeneous polynomials in Cn+1. If Fλ =
∏

F
λj

j then

degi

(
∇F

λ
)

= degi

(
∇
(∏

Fj

))

for every i = 0 . . . , n − 1.

Proof. Let F = Fλ be the foliation on Pn+1 associated to Fλ. Corollary 2 implies

that degi(∇Fλ) is equal to the degree of the Gauss map of F|Pn+1−i for a generic

Pn+1−i ⊂ Pn+1.
If D is the divisor of Pn associated to

∏
Fj then the intersection in Pn+1 of

V (xn+1 (
∏

Fj)) and a generic Pn−i is isomorphic to the union of the intersection
of |D| with a generic Pn−i ⊂ Pn and a generic hyperplane H in Pn−i.

If π : X → Pn−i is an embedded resolution of |D| ∩Pn−i then Bertini’s Theorem
implies that it is also an embedded resolution of the union of |D| ∩ P

n−i with a
generic H . Therefore in the computation of λ(E) for an exceptional divisor of π the
residue along H , λ(H) = − deg(Fλ), plays no role since H and its strict transforms
do not contain any of the blow-up centers. Thus the hypothesis on λ together
with Lemma 3 implies that λ is non-resonant with respect to π. It follows from
Proposition 1 that

deg0(G(F|Pn+1−i)) = cn−i(Ω
1
X(log(D ∩ P

n−i + H))) .

Since the same arguments implies that the same formula holds true for the foliation
associated to F =

∏
Fj the Theorem follows. �
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The hypothesis on λ ∈ Ck can be of course weakened. Lemma 3 ensures that
there exits finitely many subvarieties of Ck defined by linear equations with coef-
ficients in N that have to be avoided. Outside these linear varieties the degree of
∇Fλ is constant.

The example below shows, for resonant λ the degree of the associated polar map
will in general decrease with respect to the non-resonant ones.

Example 1. Let F1, . . . , Fk, Fk+1 ∈ C[x, y, z] be linear forms such that F1, . . . , Fk ∈
C[x, y] and Fk+1 /∈ C[x, y]. If λ = (λ1, . . . , λk, λk+1) ∈ (C∗)k+1 is such that

k∑

i=1

λi = 0

and k ≥ 2 then the rational map ∇F
λ is homaloidal, i.e, deg

(
∇F

λ
)

= 1.

Proof. If Fk+2 is a generic linear form and λk+2 = −
∑k+1

j=1 λj = −λk+1 then

the proof of Theorem 3 shows that the degree of ∇Fλ is equal to the number of
singularities of the foliation F of P2 induced by the 1-form




k+2∏

j=1

Fj




k+1∑

j=1

λj

dFj

Fj

outside V
(∏k+2

j=1 Fj

)
.

Notice that F has degree k and that
∑

p∈Sing(F)

m(F , p) = c2(Ω
1
P2(k + 2)) = k2 + k + 1 .

On the curve cut out by
∏

Fj with (2k + 1) + 1 singularities. One of them at the
confluence of k lines and the other 2k+1 at the intersection of exactly two lines. The
latter singularities have all multiplicity one as a simple local computation shows.
The multiplicity of the latter can be computed using Van den Essen formula [15]
and is equal to k2 − k − 1. Summing up all these multiplicities one obtains k2 + k.
Thus deg(∇Fλ) = 1. �

In the example above if

k∑

i=1

λi 6= 0 and

k+1∑

i=1

λi 6= 0

then Van den Essen Formula shows that the multiplicity of the singularity contain-
ing the k lines is (k−1)2. Thus the degree of ∇Fλ is, under these hypotheses, k−1.
The first author have shown that all the homaloidal polar maps associated to a
product of lines with complex weights are of the form above. A proof will appear
elsewhere.

An easy consequence of Theorem 3 is the Corollary below. It would be interesting
to replace the maximum on the left hand side of the inequality by a sum. Indeed
[7, Proposition 5] does it for the topological degree under stronger hypothesis.

Corollary 3. Let F1, F2 ∈ C[x0, . . . , xn] be two homogeneous polynomials. If F1

and F2 are relatively prime then

degi(∇F1 · F2) ≥ max{degi(∇F1), degi(∇F2)}
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for i = 0, . . . , n − 1.

Proof. Let F1 be the foliation of Pn+1 associated to F1 and F12 the one associated
to F1F2. They are, respectively, induced by the rational 1-forms on Pn+1

ω1 =
dF1

F1
− deg(F1)

dxn+1

xn+1
and ω12 =

dF1

F1
+

dF2

F2
− (deg(F1) deg(F2))

dxn+1

xn+1
.

Let H ⊂ P̌n+1 be a generic hyperplane and ι : H → Pn+1 be the inclusion.
Recall that G(F1)

−1(H) consists of deg0(G(F1)) isolated points corresponding to
the singularities of ι∗ω1 contained in H \ V (F1). It follows from the proof of
Theorem 3 that we can assume that ι∗ω12 is non resonant (with respect to a certain
resolution).

If H , seen as a point of P̌n+1, avoids the closure of the image of V (F2) under
G(F1) then singularities of ι∗ω1 contained in the complement of V (F1) are also
contained in the complement of V (F1F2). It follows that for ǫ > 0 small enough
the 1-form ι∗(ω1 + ǫω12) has at least deg0(G(F1)) singularities contained in the
complement of V (F1F2). Since we can choose ǫ in such a way that ι∗(ω1 + ǫω12)
is non resonant the induced foliation has Gauss map with the degree as the Gauss
map of F12.

It follows from Theorem 3 that deg0(∇F1F2) ≥ deg0(∇F1). Arguing exactly in
the same way first with F2 and then with linear sections of higher codimensions the
Corollary follows. �

The Corollary above essentially reduces the problem of classification of homa-
loidal polynomials to the classification of irreducible homaloidal polynomials and
irreducible polynomials with vanishing Hessian. Although, one should not be much
optimistic about generalizing Dolgachev’s Classification to higher dimensions. Al-
ready in P3 there are examples of irreducible homaloidal polynomials of arbitrarily
high degree, cf. [4].

References

[1] A. Bruno. On homaloidal polynomials. arxiv:math.AG/0403323 (2004).
[2] C. Camacho, A. Lins Neto and P. Sad. Foliations with algebraic limit sets. Ann. of Math. 136

(1992) 429–446.
[3] F. Catanese, S. Hostem, A. Khetan and B. Sturmfels. The maximum likelihood degree, Amer.
J. Math 128 (2006), no. 3, 671–697.

[4] C. Ciliberto, F. Russo and A. Simis. Homaloidal hypersurfaces and hypersurfaces with van-
ishing Hessian. arxiv:math.AG/0701596 (2007).

[5] F. Cukierman, M. Soares and I. Vainsencher Singularities of logarithmic foliations. Compos.
Math. 142 (2006) 131–142.

[6] A. Dimca, S. Papadima Hypersurfaces complements, Milnor fibres and higher homotopy groups
of arrangements. Ann. of Math. 158 , (2003) , 473-507.

[7] A. Dimca. On Polar Cremona Transformations. An. Ştiinţ. Univ. Ovidius Constanţa Ser. Mat.
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