
ON FOLIATIONS WITH MORSE SINGULARITIES
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Abstract. We study codimension one smooth foliations with Morse type sin-

gularities on closed manifolds. We obtain a description of the manifold if there

are more centers than saddles. This result relies on and extends previous re-

sults of Reeb for foliations having only centers, results of Wagneur for foliations

with Morse singularities and results Ells and Kuiper for manifolds admitting

Morse functions with three singularities.

1. Introduction and main results

The interplay between the topology of a closed manifold and the combinatorics
of the critical points of a real valued function of class C2 defined on the manifold is a
well known fact of Morse Theory ([6]). It is natural to expect a similar relationship
for foliated manifolds. This became evident for the first time with the following
result of G. Reeb ([8]), a consequence of his Stability Theorem ([1], [5], [7]):

Theorem 1.1. Let M be a closed oriented and connected manifold of dimension
m ≥ 2. Assume that M admits a C1 transversely oriented codimension one foliation
F with a non empty set of singularities all of them centers. Then the singular set
of F consists of two points and M is homeomorphic to the m-sphere.

Later on Eells and Kuiper classified the closed manifolds admitting a C3 function
with exactly three non-degenerated singular points ([3], [4]):

Theorem 1.2. Let M be a connected closed manifold (not necessarily orientable)
of dimension m. Suppose M admits a Morse function f : M → R of class C3 with
exactly three singular points. Then:

(i) m ∈ {2, 4, 8, 16}

(ii) M is topologically a compactification of R
m by an

m

2
-sphere

(iii) If m = 2 then M is diffeomorphic to RP (2). For m ≥ 4 M is simply-
connected and has the integral cohomology structure of the complex projec-
tive plane (m = 4), of the quaternionic projective plane (m = 8) on of the
Cayley projective plane (m = 16).

We will call these manifolds Eells − Kuiper manifolds. In both situations we
have a closed manifold endowed with a foliation with Morse singularities where
the number of centers is greater than the number of saddles. In [2] we proved
that, in the case that the manifold is orientable of dimension three, this implies
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it is homeomorphic to the 3-sphere. The aim of this paper is to consider the n-
dimensional case. We proceed to define the main notions we use. A codimension
one foliation with isolated singularities on a compact manifold M is a pair F =
(F0, singF) where singF ⊂ M is a discrete subset and F0 is a regular foliation
of codimension one on the open manifold M\ singF . We say that F is of class
Ck if F0 is of class Ck, singF is called the singular set of F and the leaves of F
are the leaves of F0 on M\ singF . A point p ∈ singF is a Morse type singularity
if there is a function fp : Up ⊂ M → R of class C2 in a neighborhood of p such
that singF ∩ Up = {p}, fp has a non-degenerate critical point at p and the levels
of fp are contained in leaves of F . By the classical Morse Lemma ([6]) there
are local coordinates (y1, . . . , ym) in a neighborhood Up of p such that yj(p) = 0,
∀ j ∈ {1, . . . ,m} and f(y1, . . . , ym) = f(p)− (y2

1 + · · ·+ y2
r(p)) + y2

r(p)+1 + · · ·+ y2
m .

The number r(p) is called the Morse index of p. The singularity p is a center if
r(p) ∈ {0,m} and it is a saddle otherwise. The leaves of F in a neighborhood of
a center are diffeomorphic to the (m − 1)-sphere. Given a saddle singular point
p ∈ singF we have leaves of F

∣

∣

Up
that accumulate on p, they are contained in the

cone τp: y2
1 + · · · + y2

r(p) = y2
r(p)+1 + · · · + y2

m 6= 0 and there are two possibilities:

either r(p) = 1 or m−1 and then τp is the union of two leaves of F
∣

∣

Up
, or r(p) 6= 1

and m−1 and τp is a leaf of F
∣

∣

Up
. Any leaf of F

∣

∣

Up
contained in τp is called a local

separatrix of F at p, or a cone leaf at p . Any leaf of F such that its restriction to
Up contains a local separatrix of F at p is called a separatrix of F at p . A saddle
connection for F is a leaf which contains local separatrices of two different saddle
points. A saddle self-connection for F at p is a leaf which contains two different
local separatrices of F at p. A foliation F with Morse singularities is transversely
orientable if there exists a vector field X on M , possibly with singularities at singF ,
such that X is transverse to F outside singF .

Definition 1.3. A Morse foliation F on a manifold M is a transversely oriented
codimension one foliation of class C2 with singularities such that: (i) each singu-
larity of F is of Morse type and (ii) there are no saddle connections.

Basic examples of Morse foliations are given by the levels of Morse functions
f : M → R of class C2. Therefore any manifold of class C2 supports a Morse
foliation, i.e., the existence of a Morse foliation imposes no restriction on the topol-
ogy of the manifold. Nevertheless, there are restrictions which come from the nature
of the singularities of a Morse foliation F on M . Indeed, our purpose in this paper
is to show the following theorem:

Theorem 1.4. Let M be a compact connected manifold and F a Morse foliation
on M such that the number k of centers and the number ` of saddles in singF
satisfy k ≥ ` + 1. Then we have two possibilities:

(i) k = ` + 2 and M is homeomorphic to the m-sphere.
(ii) k = ` + 1 and M is an Eells-Kuiper manifold.

Our results above extend original results of E. Wagneur in [9].
Acknowledgement. We want to thank José Seade for several valuable suggestions
and the ICTP for the hospitality during the elaboration of this work. We want to
thank the anonymous referee for valuable comments and suggestions who helped
us improve the paper.
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2. Preliminaries

Let us first fix the notation we use. Let F be a Morse foliation on a manifold
M of dimension m ≥ 3. Given a center singularity p ∈ singF the nearby leaves
of F are compact diffeomorphic to Sm−1. Since m − 1 ≥ 2 any such leaf L has
trivial holonomy group and therefore by the Local Stability theorem of Reeb ([1],
[5]) there is a fundamental system of open neighborhoods V of L such that the
restriction F|V is equivalent to a product foliation G on L × (−1, 1) whose leaves
are of the form L × {t}, t ∈ (−1, 1). We introduce therefore the open subset C(F)
as the union of centers in singF and leaves of F diffeomorphic to Sm−1. The basin
of a center p ∈ singF is the connected component Cp(F) of C(F) that contains p.
We have the following basic lemma:

Lemma 2.1. Given centers p, q ∈ singF the sets Cp(F) and Cq(F) are open in M
and Cp(F)∩Cq(F) 6= ∅ if and only if Cp(F) = Cq(F). Moreover we have Cp(F) = M

if and only if ∂Cp(F) = ∅ and in this case M is homeomorphic to Sm provided that
M is orientable.

In particular M is homeomorphic to Sm or ∂Cp(F) contains some saddle singu-
larity.

In order to fix notations we shall now introduce the notion of holonomy group of
an invariant subset of codimension one. We will consider two notions of holonomy.
When we refer to the holonomy of a leaf L of F we mean the holonomy group
of L as a leaf of F0 on M \ singF . On the other hand, the notion of holonomy
can be extended to invariant subsets of the form S = τ ∪ {p}, p ∈ singF and
τ is either a cone leaf or a union of two cone leaves. Notice that, in a small
neighborhood of p, τ can consist of two components τ1 and τ2, and that this can
only happen if r(p) = 1 or m − 1. In this case S locally divides the manifold
into three connected components. One of them, say R3, is the union of (regular)
leaves which are hyperboloids of one sheet, and the others, say R1 and R2, are
the union of one of the connected components of hyperboloids of two sheets (we
can think of R1 as the region surrounded by τ1 and R2 is the region surrounded
by τ2). Let γ : [0, 1] → S be a path on S which passes through the singularity p
(from τ1 to τ2). In this case the holonomy along γ can be defined in the usual
manner (lifting paths to leaves) on R3, however, there is no canonical extension
of this holonomy to the other side in general. Thus we adopt the following notion
of holonomy. Fix a neighborhood U of p ∈ singF where F is given by a Morse
function f with a single singularity at p. Let γ : [0, 1] → S be a piecewise smooth
path (as a map γ : [0, 1] → M). Let T0 and T1 be local transversals to F at γ(0)
and γ(1) respectively. The holonomy along γ will be the mapping which assigns
t ∈ T0 to f−1(f(t)) ∩ T1 ∈ T1. This holonomy map is well-defined even if γ is not
contained in {p} ∪ τ1.

Next we study the possible intersections for the boundaries of two basins.

Lemma 2.2. Suppose p1, p2 ∈ singF are distinct centers such that ∂Cp1
(F) ∩

∂Cp2
(F) 6= ∅. Then we have the following mutually exclusive possibilities:

(i) ∂Cp1
(F) = ∂Cp2

(F) and so M = Cp1
(F) ∪ Cp2

(F).

(ii) ∂Cp1
(F) 6= ∂Cp2

(F) and there is a saddle point q ∈ ∂Cp1
(F)∩∂Cp2

(F) with
Morse index 1 or m − 1, without self connection.
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Proof. Since ∂Cp1
(F)∩∂Cp2

(F) 6= ∅, by Lemma 2.1 there is a saddle singular point

q ∈ ∂Cp1
(F) ∩ ∂Cp2

(F) . If the Morse index of q is different from 1 and m − 1
then in suitable local coordinates (y1, . . . , ym) we have q = (0, . . . , 0) and the local
separatrix τq through q is given by y2

1 + · · · + y2
r = y2

r+1 + · · · + y2
m 6= 0 where

r /∈ {1,m − 1}. In particular τq is connected.

Thus, if C is the separatrix of F at q we have ∂Cp1
(F) = ∂Cp2

(F) = C = C∪{q}
and we are in case (i).

In case the index of q is 1 or m−1, and C is a self-connection at q, then ∂Cp1
(F) =

∂Cp2
(F) = C and we are again in case (i). The remaining case is index of q is 1 or

m− 1 and q has no self-saddle connection. Consider local coordinates (y1, · · · , ym)
with q = (0, · · · , 0) and F given by the levels of the function −y2

1 + y2
2 + · · · + y2

m.
The level zero of this function bounds the regions R1: y1 < 0, y2

1 > y2
2 + · · · + y2

m,
R2: y1 > 0, y2

1 > y2
2 + · · ·+ y2

m and R3 : y2
1 < y2

2 + · · ·+ y2
m. Then Cpi

(F)∩R3 = ∅,
i=1,2, because otherwise we would have a saddle self-connection at q. On the other
hand Cp1

(F) ∩ R1 6= ∅ implies Cp1
(F) ∩ R2 = ∅ by the same reason. Therefore

∂Cp1
(F) 6= ∂Cp2

(F). This proves (ii). �

Proposition 2.3. Let F be a Morse foliation on a closed connected manifold M
of dimension m ≥ 3. Assume that k = 2 and ` = 1, i.e., F has exactly two centers
and one saddle singularity. Then M is homeomorphic to an Eells-Kuiper manifold.

Proof. We shall first prove that the nonsingular foliation F0 = F
∣

∣

M0

on M0 =

M\ singF is a proper stable foliation. There are several equivalent conditions that
define a stable foliation ([5]). We shall prove that given any leaf L0 of F0 there
is a fundamental system of open neighborhoods of L0 in M0 saturated by F0. We
claim that M = Cp1

(F) ∪ Cp2
(F) = Cp1

(F) ∪ Cp2
(F) ∪ C ∪ {q} where ∂Cp1

(F)

=∂Cp2
(F)=C. Indeed, according to Lemma 2.2 it is enough to show that case (ii)

in this same lemma cannot occur. Suppose to the contrary and let be a saddle
q ∈ ∂Cp1

(F) ∩ ∂Cp2
(F) with Morse index 1 or m − 1 and without self connection.

Denote by C the singular leaf (separatrix) that contains q and denote by C1, C2 the
two components of C \{q}. Let C+ be the leaf on the positive side of C, so that C+
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is a sphere in Cp2
(F), and let C−

1 , C−
2 be leaves on the negative side, so that C−

1 is a
sphere in Cp1

(F). Since C+ is homeomorphic to the connect sum of C−
1 and C−

2 and
since C−

1 is a sphere, then C−
2 is also a sphere. Therefore, by Reeb stability theorem

the leaf C−
2 descends to a fourth critical point what contradicts our hypothesis. This

shows that M = Cp1
(F)∪Cp2

(F) = Cp1
(F)∪Cp2

(F)∪C∪{q} as in (i) of Lemma 2.2.
If r(q) = 1 or m−1 then C is a self connection. We proceed to show that this cannot
occur. Suppose that Cp1

(F)∩R3 6= ∅, then Cp2
(F) will have nonempty intersection

with R1 and with R2. Taking a small closed ball Bq(t) of radius t > 0 centered at q
then for leaves Li of F , Li ⊂ Cpi

(F) for i ∈ {1, 2}, close enough to C, we have that

the intersection L1 ∩ (M\Bq(t)) is a union of two disjoint (m− 1)-discs. Moreover

L2∩(M\Bq(t)) is the complement of two disjoint (m−1)-discs in an (m−1)- sphere.

Since both manifolds L1 ∩ (M\Bq(t)) and L2 ∩ (M\Bq(t)) are homeomorphic to

C\(C ∩ Bq(t)) then we obtain a contradiction. Thus, r 6= 1,m − 1 and C ∩ Bq(t)
is connected for t small. Given a leaf L0 of F we have two possibilities, either
L0 ⊂ Cpi

(F) for some i ∈ {1, 2} and L0 is homeomorphic to Sm−1, or L0 = C.
In case L0 is in Cpi

(F) then, by the Reeb stability theorem, L0 has a fundamental
system of saturated neighborhoods consisting of compact leaves. This shows that
the leaves of F0 in M0\C are stable. It suffices to show that C is also a stable leaf.
We claim that the holonomy group of C ∪ {q} is a finite group conjugated to a

subgroup of Diff(R, 0). Indeed, C\Bq(t) is a disc and therefore simply-connected;

on the other hand in Bq(t) the foliation has a first integral as f = −(y2
1 + · · ·+y2

r)+

y2
r+1 + · · ·+ y2

m so that the holonomy group of F ∩Bq(t) is finite.Since C ∪{q} has
a finite holonomy group, which is a subgroup of Diff(R, 0), the holonomy group of
C ∪ {q} is either trivial or, in case F is not transversely orientable, it has order 2.
By the classical argument on stability of leaves we conclude that finite holonomy
implies that the leaf C is stable and F0 is stable in M0.
Since F0 is stable in M0 , the leaf space M0

/

F0 =: XF0
is Hausdorff and therefore

it is a 1-manifold. The choice of a differentiable submersion XF0
→ R gives then a

differentiable first integral F0 : M0 → R for F0 . Clearly F0 can be modified in order
to admit a differentiable (radial) extension to the center singularities p1, p2 ∈ singF .
It remains to show that F0 can be modified in order to admit a differentiable
extension to q. This is a consequence of the fact that by the triviality of the

holonomy group of C∪q we can extend the local first integral f = −
r
∑

j=1

y2
j +

m
∑

k=r+1

y2
k

from a ball Bq(t) to a neighborhood T of C ∪ {q} in M in such a way that ∂T is a
union of leaves of F , each leaf diffeomorphic to an (m− 1)-sphere and contained in
some basin Cpi

(F).
Thus we have proved that F is given by a Morse function F : M → R and therefore,
by Eells-Kuiper Theorem 1.2, M is an Eells-Kuiper manifold. �

3. Trivial pairings

In this section we recall and extend some notions from [2]. The aim is to introduce
and characterize an elimination procedure for suitable pairings of singularities of a
given Morse foliation. We begin in R

m with a foliation with an isolated center and

an isolated saddle of type x2
m −

m−1
∑

j=1

x2
j = 0 as in Figure 2. A first example of a

trivial pairing is obtained by rotating this figure with respect to an axis that passes
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through the center and the saddle. The arrow indicates the passage (surgery) from
the trivial pairing to the trivial foliation.

Figure 2

Other (center-saddle) pairings are depicted in Figure 3. The figure on the left
shows a (m-dimensional) disc with a center-singularity which is replaced by a disc
with three singularities: two of them are centers and one is a saddle which is in
the boundary of the basin of both centers. We get (m + 1)-dimensional versions of
this example by rotating the disc with respect to a vertical axis as indicated. This
construction gives two types of pairings, one trivial and one non-trivial. Indeed,
choose spherical leaves L1, L2, L3 as in the figure and consider only the annular
region R bounded by L1 and L2 (i.e., deleting the open ball centered at the upper
center singularity and bounded by L1) as in the figure above, then we have a pair
of singularities p0 − q which are in a non-trivial center saddle pairing. On the
other hand, if we consider the region bounded by L3 and L2 then we have a trivial
pairing as in Figure 2. The left picture in Figure 3 shows two trivial pairings, in a
foliation that can be completed to an example on the sphere by adding a center at
the infinity.

L
1

L
2

p
2
'

L
3

Figure 3

The above constructions can be performed in dimension m ≥ 3 and can be
completed to foliations on Sm. The resulting foliation satisfies 3 = k = ` + 2.

Definition 3.1 (Trivial pairing). For any r > 0 we will write B(r) = D(r)×I(r) ⊂
R

m−1 × R, where D(r) and I(r) are closed discs of radius r centered at zero. The
foliation on B(r) given by the submersion (x, t) 7→ t will be denoted by H. Let

p ∈ M be a center and let q ∈ ∂Cp(F) be a saddle point of F . We will say that p, q

form a trivial pairing if there are open neighborhoods V ⊃ V ′ ⊃ Cp(F), p, q ∈ V ′

and a diffeomorphism ϕ : V → B(1), onto B(1), such that ϕ(V
′
) = B(1/2) and

F
∣

∣

V \V ′
= ϕ∗H.



ON FOLIATIONS WITH MORSE SINGULARITIES 7

The general concept of trivial pairing is illustrated by Figures 4 and 5 where
Σ1,Σ2 represent transverse sections to the foliation and P1, P2 are plaques (discs)
of leaves meetings Σ1 and Σ2.

P
11

P
11

P
11

P
11

2
PP

2
PP

Figure 4

E

E

E

E

Figure 5

Lemma 3.2. Suppose p1, p2 ∈ M are two different centers such that ∂Cp1
(F) ∩

∂Cp2
(F) 6= ∅ and let q be the saddle point contained in this intersection. Assume

that the index of q is one and that there is no saddle self-connection at q. Then,
either p1, q or p2, q form a trivial pairing.

Proof. In a neighborhood q ∈ U there are local coordinates (y1, ..., ym) such that q =
(0, ..., 0) and the leaves of F

∣

∣

U
are given by the levels of the function f(y1, ..., ym) =

−y2
1 + (y2

2 + ... + y2
m) on R

m. As before the cone −y2
1 + (y2

2 + ... + y2
m) = 0 divides

U in three regions (see Figure 1). The regions R1 and R2 are defined by R1:
y1 < 0, y2

1 > y2
2 + ... + y2

m, R2: y1 > 0, y2
1 > y2

2 + ... + y2
m and the region R3 by

y2
1 < y2

2 + ...+ y2
m. The cone leaves τ1 and τ2 of F

∣

∣

U
bound R1 and R2 respectively

and since there is no self-connection at q there are different leaves of F , `1 and `2,
such that `1 ⊃ τ1 and `2 ⊃ τ2. Since we have two center basins Cp1

(F) and Cp2
(F)

and three regions R1, R2, R3 then some Cpi
(F) will intersect R1 or R2. Suppose

that Cp1
(F)∩R1 6= ∅. Then Cp1

(F)∩R2 = ∅ and Cp1
(F)∩R3 = ∅ because both R2

and R3 have `2 in their boundary and if either Cp1
(F)∩R2 6= ∅ or Cp2

(F)∩R3 6= ∅

this would imply a saddle self-connection at q. Thus ∂Cp1
(F) = `1. We claim that

`1 = `1 ∪ {q}. Indeed, if on the contrary, there is a regular point of F , s ∈ `1 \ `1,
and Ss denotes an arbitrarily small cross section to F centered at s, then the
number of points of intersection of `1 with Ss, n(`1, Ss), is infinite. On the other
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hand, by Reeb’s theorem, given any local transverse section S to F , the number of
points of intersection n(`, S), of a leaf ` ⊂ Cp1

(F) with S, is locally constant. Since
`1 is approached by leaves in Cp1

(F) we would obtain leaves `(k) ⊂ Cp1
(F) with

n(`(k), Ss) → ∞ as k → ∞, which is a contradiction. Therefore ∂Cp1
(F) = `1∪{q}.

We take U small enough so that `1∩U = τ1. Thus, for any leaf L ⊂ Cp1
(F) close

enough to `1, L ∩ U is connected and f
∣

∣

L∩U
= δ < 0, a constant. Write L = Lδ.

Then, as δ → 0 Lδ\U approaches `1\τ1 and this implies that `1\τ1 is homeomorphic
to Lδ\U , i.e., to an (m−1)−disc. Therefore `1 is homeomorphic to Sm−1. Moreover
for ε > 0 small enough each leaf f−1(δ) of F

∣

∣

R1∪R3

, −2ε ≤ δ ≤ 2ε, bounds an

(m − 1)−disc Dδ close to `1 \ τ1, with D0 = `1 \ τ1. The union T2ε =
⋃

−2ε≤δ≤2ε

Dδ

is a trivially foliated neighborhood of `1 \ τ1. We can extend the function f to
U ∪ T2ε by writing f

∣

∣

Dδ
= δ. We define a saturated neighborhood V0 of `1 ∪ τ2 by

V0 = f−1([−ε, ε])∪Cp1
(F) and define g = f

∣

∣

V0\Cp1
(F)

. Consider now a Riemannian

metric defined on M and a normal vector field to F that in U takes the form
N = −y1

∂
∂y1

+ y2
∂

∂y2

+ ... + ym
∂

∂ym
. For a > 0 small enough the submanifold

e = (y1 = a) ∩ τ2 is well defined and diffeomorphic to Sm−2. Let Σ be a cross
section to F , over e, i.e. Σ∩τ2 = e, Σ contained in V0 and invariant by N . We take
Σ diffeomorphic to e× [−ε, ε] by means of a map that takes each e× δ, −ε ≤ δ ≤ ε,
to the leaf (f = δ) ∩ Σ of F

∣

∣

Σ
.

Consider the region V ⊂ V0 bounded by (g = −ε) ∪ (g = ε) and Σ and define a
neighborhood ∂V ⊂ W ⊂ V , as W = (−ε ≤ g ≤ −ε/2) ∪ (ε/2 ≤ g ≤ ε) ∪ N where
N is a neighborhood of Σ ⊂ V invariant by N .

The foliation F
∣

∣

W
is trivial in the sense that on (−ε ≤ g ≤ −ε/2)∪(ε/2 ≤ g ≤ ε)

the leaves of F are levels of g, diffeomorphic to D(1) and on N the leaves of F
are levels of g (g = δ), −ε/2 ≤ δ ≤ ε/2 diffeomorphic to D(1) \ D(1/2). Moreover
in W the foliation F and the trajectories of N are everywhere transverse. Thus a
diffeomorphism ϕ : W → B(1) \B(1/2) can be easily constructed by sending leaves
of F

∣

∣

W
at the level (g = αε) onto leaves of H

∣

∣

B(1)\B(1/2)
at the level (t = α) and

orbits of N
∣

∣

W
to orbits of ∂

∂t . Then ϕ is extended to V . �

4. Proof of the Theorem

Now we prove Theorem 1.4. We will proceed by induction on the number ` of
saddle singularities. If ` = 0 then Reeb’s Theorem applies and M is homeomorphic
to Sm. Assume now that ` ≥ 1 and the result has been proven for foliations with
at most `− 1 singularities of saddle type. We have k ≥ `+1. Thus k ≥ 2. Suppose
that M is not homeomorphic to Sm. Then, by Lemmas 2.1 and 2.2, for each center
p ∈ singF there must be a saddle q(p) ∈ ∂Cp(F) .Since k ≥ ` + 1 and k ≥ 2 there
are two centers p1, p2 such that q(p1) = q(p2), i.e., there is a saddle q such that

q ∈ ∂Cp1
(F) ∩ ∂Cp2

(F) and by Lemma 2.2 we have either M = Cp1
(F) ∪ Cp2

(F) or
q has index 1 or m − 1 and is not self-connected.

In case M = Cp1
(F) ∪ Cp2

(F) then clearly Cpi
(F) ∩ singF = {pi} , i=1,2. Thus

singF = {p1, p2, q} and by Proposition 2.3 M is an Eells-Kuiper manifold.
In case q has index 1 or m−1 and no self-connection then by Lemma 3.2 we can

eliminate one saddle and one center replacing F by a Morse foliation F1 on M with
a number k1of centers and `1 of saddles given by k1 = k−1 and `1 = `−1. Therefore
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k1 ≥ `1 + 1 and ` > `1 ≥ 0. By the induction hypothesis M is homeomorphic to
Sm or to an Eells-Kuiper manifold. This proves the theorem. �
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