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Abstract

In this article we introduced a filtering method, by means of topological operators,
for a representation in multiresolution of a solid object. In each level of resolution, we
have a sampling by Poisson disks with particular characteristics. With this filtering,
it is possible to control the resolution and topology changes in a unified way, through
the stellar and handle operators.
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1 Introduction

Solid objects, in our context, are compact manifolds with the same dimension
of the surrounding space. The frontier is the most significant part because it
determines both the geometric shape and the topology. Topology, in a brief
way, may be understood as the number of holes and connected components in
a solid object. Its main property is the invariance by homeomorphisms.

Our research work on solid objects relates four subjects that are well known
to the scientific community in Mathematics and in Computer Graphics. They
are: sampling, reconstruction, modeling in multiresolution and topology.

Sampling and reconstruction of Graphical Objects (1) are maxims in computer
graphics. Thanks to the Shannon sampling theorem (5), signals may be fully
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represented by samples uniformly spaced with a sampling rate lower than half
of the bandwidth.

In the context of surfaces we find equivalent results in the works by Amenta
et al. (2) and F. Bernardini et al. (3). These papers determine sampling condi-
tions that assure the existence of a simplicial reconstruction which is topologi-
cally equivalent to the original surface. In (3) the recostruction is characterized
by an alpha solid. Since we are dealing here with solid objects we will obtain
a similar result for them by means of a reconstruction based on solid alpha
complexes (6). We will see ahead that a solid alpha complex is closely related
to the alpha solid. More precisely, the boundary of a solid alpha complex is
an alpha solid.

We emphasize that differently from the Shannon theorem related to signals
where the reconstruction is a exact one, the reconstruction of a surface or a
solid object is represented by a simplicial complex, that is, only an approxima-
tion. Actually, the “exact” term is associated to the topological equivalence
property.

The scale spaces have as the fundamental idea to model a signal f : R
d → R

in a family of different scales as L : R
d×R→ R, where L is a transformation

defined as the convolution of f with the Gaussian kernel. This transformation
works as a low pass filter. As we reduce the variance of the Gaussian kernel we
also reduce the bandwidth of the transformed signal, allowing the reduction
of the sampling rate required to the reconstruction of it. Therefore, we may
represent a scale space as a family of samplings with increasing rates. The
reconstruction of the family elements generate a sequence of infinite signals
that, in the limit, converges to the original signal.

What we will propose along the next pages is something similar to represen-
tations of signals in scale spaces but in the context of solid objects. The most
challenge we find for it is to express “topological” details that can be detected
in the different scale levels. Fortunataly, we achived a nice result thanks to the
represantations by a solid alpha complex family, in different rates, of a solid
object’s samplings. As we increase the sampling rate, we are able to identify
two types of details that are emphasized: the geometrical details characterized
by the shape of the holes and a detail characterized by the quantity of holes.
The last one is what we called “topological” detail. In this article we will see a
model of multiresolution representation of solid objects that treats these two
types of details in a unified framework of topological operators.
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1.1 Related Work

There are many works related to representations of simplicial meshes in dif-
ferent scales. In the works by Kobbelt (9) and Velho et al. (10), the several
resolution levels are generated by means of subdivision rules. In the work
by Puppo (12) a study is performed on simplicial multiresolution of planar
domains. In the work by Hoppe (13) we find representations of meshes that
progressively change resolution using edge collapse operations. The limitations
of these mentioned works, besides of other similar ones, is that the topology
is already previously determined by the represented object (or by the base
mesh) in all levels of resolution. In short, there is no change of topology.

Talking about the topological treatment in a family of simplicial complexes,
the work by Edelsbrunner et al. (14) is one of the works that is more similar
to ours. They define topological persistence by means of a topological filtering.
Their results have several applications. Among them we point out the analysis
of topological noise in protein samplings and the simplification of morse-smale
complexes. One gap of this article is that there is no approach related to
multiresolution.

1.2 Contributions

Our work has as contribution, to unify the simplicial representations of bidi-
mensional solid objects in different scale levels and put some control in the
change of topology between them.

We deal with multiresolution samplings and reconstructions of solid objects
within a stochastic approach. To achieve that, we use samplings with Poisson
disks distribution because they allow us a strong control of the scale. It also
give us the interesting property that its reconstruction by means of solid alpha
complexes has a bounded aspect ratio on the triangles. This last characteristic
implies in the fact that we have a good quality in the triangulated mesh.

The main result we obtain in this article is an algorithm (with two versions)
that generates a sequence operators (11) by refining or simplification. The
topological operators may be of two types: the stellar operators which change
the resolution and combinatorial structure of the mesh and the handle opera-
tors which change the topology. As a consequense, the sequence of operators
generated by these algorithms links the resolution levels independently of their
different underlying topologies.
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1.3 Summary

The article is written as follows. On section 2 we introduce and revisit concepts
that will be used along the text. Among them we point out the simplicial con-
cepts, nested family of points, Delaunay triangulation, solid alpha complex and
Voronoi diagram. We also establish some notations. On section 3 we present
the data structure adopted to represent the triangular meshes and we survey
the topological operators that will be used to insert and to remove points in
a mesh. These operators will allow the interaction in the diffrent resolution
levels. On section 4 we submit the concepts of samplings by Poisson disks,
characterize the dual complex and exhibit conditions to have a reconstruction
topologically equivalent to the original solid object. In section 5 we establish
several other significant concepts about scaling family in order to generate a
filtering by topological operators. In one of the main theorems of this section
we state that the sequence of operations generated by the refining algorithm
is inverse to the sequence of operations generated by the simplification algo-
rithm. We proceed to extensions of previous results in order to cover a wider
class of samplings to allow us to achieve results which are more practical in
terms of implementation and mesh quality. In section 6 we present a conclusion
of the work and list the future work.

2 Preliminary Concepts and Notations

In this section we will describe some basic concepts in topology and in com-
putational geometry that will be used in this work. We will also introduce the
Solid Alpha Complex concept.

2.1 Simplicial Complexes

A k-simplex σT = conv(T ) is the convex combination of a set of points linearly
independent T ⊂ R

n, #T = k + 1; 0 ≤ k ≤ n; where # denotes cardinality. k
is the dimension of simplex σT .
Definition 1. A Simplicial Complex K is a collection of simplices that satisfy
the following properties:

(1) If σT ∈ K then σU ∈ K, if U ⊂ T . We say that σT is the face of σU .
(2) If σU , σV ∈ K, then σT∩V = σU ∩ σV .

The two properties above imply that σT∩V ∈ K. We will name |K| as the
subspace of R

n covered by K. A subcomplex L of K is a simplicial complex
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such that L ⊂ K. The dimension of a simplicial complex K is given by the
widest dimension among all simplices of K. We will represent by Ki the subset
of the simplices of K with dimension i.

A Solid Simplicial Complex does not have isolated simplexes, i.e., k-simplexes
that are not faces of a simplex of wider dimension. Given a simplicial complex
K, the collection K ⊂ K is the maximal solid simplicial complex contained in
K. We also named such complexes as meshes.

In a simplicial complex K of dimension n we say that a simplex of dimension
n − 1 is boundary if it is a face of only one simplex of dimension n. The
boundary operator ∂ of a simplicial complex K is such that ∂K = { σ ∈ K
where σ is boundary or is a face of a boundary simplex}. Observe that ∂K is
also a simplicial complex and ∂K = ∂K.

Let S ⊂ R
n be a finite set of points and K a solid simplicial complex. If

K0 ⊂ S, by simplicity we will write (S, K) as a notation (read “pair points S
and simplicial complex K” or simply “pair”). The collection F = {Si}i∈{1,2,...n}
is a nested family of points if S1 ⊂ S2... ⊂ Sn. To each of the i’s we call level.
Then lets define a nested family of meshes :
Definition 2. Let F = {Si}i∈{1,2,...n} be a nested family of points. We say that
M(F) = {(Si, Ki)}i∈{1,2,...n} is a Nested Family of Meshes.

Notice that in a nested family of meshes, the meshes have common vertices,
however, they can increase or reduce the quantity of vertices as i increases. We
will see ahead that this last definition is fundamental to formalize structures
in multiresolution with changes of topology.

Based on the structure of simplicial complexes we will define some simpli-
cial artifacts such as Delaunay Triangulations, Alpha Complexes and Alpha
Shapes.

2.2 Triangulation and Voronoi Diagram

Delaunay Triangulation of a set of points in the plane is the unique set of
triangles that connect such points and that satisfy the property of the “empty
circle”: the circunscribed circle of each triangle does not include any other
point. In a certain sense, it is the most natural manner to triangulate a set of
points. Below we will give a general definition based in simplicial complexes.
Definition 3. Given a set S ⊂ R

n in general position, the Delaunay triangu-
lation of S is the simplicial complex DT(S) that comprises only

(1) all the k-simplices, σT (0 ≤ k ≤ n) , with T ⊂ S such that the circum-
sphere (the smallest sphere, such that all points are in its boundary) of T
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does not contain no other point of S, and
(2) all the k-simplices that are faces of other simplices are also in DT(S).

We will define the Voronoi diagram and will establish its relation with Delau-
nay triangulation.
Definition 4. Let S be a set of n points in the plane. for each s ∈ S, the
Voronoi region V (s) is a set of points of the plane closest to p than other
points of S. The Voronoi diagram V (S) is the partition of the plane generated
by the regions of Voronoi of S.

We have then, the proposition below, which is well known in the literature.
Proposition 1. The Delaunay triangulation of S is the dual graph of the
Voronoi S diagram: two points of S are linked by an edge in the triangulation
of the Delaunay triangulation if and only if its regions of Voronoi are incidents
in the diagram of Voronoi of S.

Proof. See (17).

2.3 Alpha Complexes and Alpha Shapes

Alpha Complexes are simplicial complexes that describe levels of detail of
cluster points. Through the variation of a real positive number α we obtain
different shapes, from the more refined to the more coarse. The more refined
is the set of points itself, achieved when α = 0. As α increases, the shape also
increases by the addition of simplices developing cavities that may gather or
split. The coarser form is the Delaunay triangulation which is obtained for
great values of α. More precisely, the Alpha Complexes have the following
definition:
Definition 5. Let S ⊂ R

n be a set of points in a general position. For T ⊂ S
with #T ≤ n, let bT and μT be the smallest ball that contains points of T and
its radius, respectively. Given 0 ≤ α ≤ ∞, the alpha complex Cα(S) of S is
the sub complex of DT(S) where the simplex σT ∈ DT(S) is in Cα(S) if:

(1) μT < α and bT ∩ S = ∅, or
(2) σT is a face of other simplex in Cα(S).

Observing the definitions of the Delaunay triangulation and Alpha Complex,
the following properties are immediate:

P1. If α1 ≤ α2 then Cα1 ⊂ Cα2 ,
P2. Cα ⊂ DT(S), ∀α > 0 and
P3. C∞ = DT(S).

The alpha shapes Sα is defined as |Cα(S)|. Thus, as in alpha complexes we
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(a)

(c)

(b)

(d)

Fig. 1. The alfa complex (a) and its solid alpha complex (b). The alpha shape (c)
and alpha solid (d).

obtain a Delaunay triangulation for great α parameters also in alpha shapes
we achieve precisely the convex hull. In fact, an alpha shape is adequate for
the generalization of the concept of convex hull, being well adopted in many
applications. See for instance (16).

2.4 Alpha Solid and Solid Alpha Complex

In general, the alpha complex and the alpha shape are respectively simpli-
cial complexes and polytopes composed by simplexes of different dimensions.
Bernardini et al.(4) defined the solid alpha shape (or simply alpha solid) as
the alpha shape without isolated k-simplices. In a similar way we define the
Solid Alpha Complex as the solid alpha without k-simplexes isolated. It is a
type of subcomplex which is a “regularized” version of the alpha complex. As
we saw above, it is a maximal solid simplicial complex.

In figure 1 we show the difference between the alpha complex and the solid
alpha complex in the 2D case. We will denote the solid alpha complex of a set
S ⊂ R

n, given 0 ≤ α ≤ ∞, as Cα(S). Notice that the properties P1, P2 e P3
are still valid for solids alpha complexes.

3 Topological Operators and Mesh Representations

3.1 Topological Operators

Now we will introduce an unified framework of basic operations in manifolds of
dimension two with or without boundary. There are two types of operators over
meshes: handlebody operators that change the topological characteristic and
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stellar operators that change the resolution and the combinatorial structure.
We will present them under the computational point of view, i.e., as API’s,
and for a full explanation of the mathematical theory see the work by Velho
et. al(11). Our main objective is to use these operators to link the different
levels of a nested family of meshes. In a more precise way, the jump of a certain
level to a neighbor level will be a sequence of applications of these operators.

Our first operator is add(s) which returns s, where s ∈ S. It will act only over
points of S in some pair (S, K). Its functionality is to add the vertex s to the
set S. In a similar way we have remove(s) as the operator that removes the
vertex s of S and returns such vertex. These operators are an extension of the
traditional operators that we will see ahead. They supply more flexibility to
change the quantity of points between the levels without changing the mesh
structure.

The handlebody operators allow us to cut and paste pieces of surfaces. They
are:

• f = create(p0, p1, p2): creates a new face f from the points p0, p1 and p2 of
S;
• (p0, p1, p2) = destroy(f): destroys an existing face and return its three

points;
• e = glue(he0, he1): “identifies” two boundary half-edges and turns them into

an interior edge which is returned;
• (he1, he2) = unglue(e): divides an interior edge in two boundaries and re-

turns them.

The star operators allow us change the resolution (quantity of the points in
the mesh) and the mesh combinatorial structure. They are:

• e = flip(e): makes a swap in the edge e and returns the same edge. Notice
that the flip operator is defined only for internal edges;
• v = split(f): trisects the face f and returns a new vertex which is added to

S;
• f = weld(v): an inverse operator of the split operator, it returns one face and

removes a vertex from S.

Let Δ be a topological operator and consider the pair (S, K). We denote by
Δ(S, K) as the action of Δ over (S, K) that also generates a new pair (S ′, K ′).

In all, we have nine topological operators over pairs and we can clearly observe
that they are invertible. More precisely, we say that Δ−1 is the inverse of
Δ if Δ−1 ◦ Δ = Δ ◦ Δ−1 = Id, where Id is the identity operator, that is,
Id(S, K) = (S, K). All topological operators are invertible. Thus, we have:
add−1 = remove, destroy−1 = create, glue−1 = unglue, flip−1 = flip e split−1 =
weld.
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There is no commutative property between operators. In fact, if we take as an
example split ◦ create(p0, p1, p2), there is no way the operator split commute
with create because of the dependence between arguments. In this case, it is
required that the face pre-exists to the split operator actuate.

Among the topological operators, only two of them increase the resolution of
a mesh: create and split. The difference between them is that create operator
somtimes have a depedence on the vertices that are in S and needs to be
preceded of add operator. This does not take place with split operator that
only have a dependence on a face that should be in K. We can reason in the
same way when there is a decrease of resolution.

The definitions below formalize the topological junction and disjunction op-
erations over nested family of meshes.
Definition 6. Let (S0, K0) and (S1, K1) be two distincts pairs. We say that
(S1, K1) = (S0, K0) ⊕ s is a topological junction of a point s with (S0, K0) if
S1 = S0 ∪ {s} and there exists a sequence of topological operations Δi, such
that

Δn ◦Δn−1... ◦Δ1(S0, K0) = (S1, K1).

Definition 7. Let (S0, K0) and (S1, K1) be two distincts pairs. We say that
(S1, K1) = (S0, K0)� s is a topological disjunction of a point s with (S0, K0)
if S1 = S0 − {s} and there exists a sequence of topological operations Δi such
that

Δn ◦Δn−1... ◦Δ1(S0, K0) = (S1, K1).

It follows, directly from the operators invertibility that the topological junction
and disjunction are also invertible. More precisely:
Property 1. (S1, K1) = (S0, K0) ⊕ s ⇒ (S0, K0) = (S1, K1) � s. In another
way:

Δn... ◦Δ1(S0, K0) = (S1, K1)⇒ Δ−1
1 ... ◦Δ−1

n (S1, K1) = (S0, K0).

From the non commutativity of operators it follows that the order of topolog-
ical junction of points influences directly the mesh final result.

3.2 Mesh Representation

We will follow the same data structure by Velho et. al (11) to represent 2D
meshes. This structure has the advantage of unifying the functionalities of the
topological operators that will be seen on section 4. We will rewrite them
here.
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A mesh is structured as M = (V, E, F, B) where V , E, F , B are collections of
vertices, edges, faces and boundary curves, respectively.

struct Surface {
Container<Face*> faces;
Container<Edge*> edges;
Container<Vertex*> vertices;
Container<Edge*> bndries;
}

The face stores a pointer for the first half-edge of the internal cycle.

struct Face {
Half Edge* he;
}

A edge is formed by two half-edges. If it is representing a boundary edge, one
of the half-edges points to a null face.

struct Edge {
Half Edge he[2];
}

The half-edge is the core element of the data structure. It stores a pointer
for its initial vertex, a pointer for the next half-edge in the cycle of the face
and pointers for the edge and face to which it belongs. Notice that the mate
half-edge may be accessed by the parent edge pointer.

struct Half Edge {
Vertex* org;
Half Edge* next;
Face* f;
Edge* e;
}

The vertex stores a pointer for the incident half-edge.

struct Vertex {
Half Edge* star i;
Data d;
}

In the collection of boundary curves, the representative of each element is an
edge that belongs to such curve.
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(a) (b) (c)

Fig. 2. PDS’s examples: (a) quadrilateral lattice, (b) triangular lattice, (c) stochastic
sampling.

4 Solid Sampling

In this section we will treat the Poisson Disks Sampling (PDS), an important
class of stochastic sampling often used in Computer Graphics applications. For
learning reasons we will define PDS’s in two types of domains: all plane R

2

and regions R ∈ R
2 that are open, limited and connected. We will also analyze

their geometrical and topological relation with the solid alpha complexes.

4.1 PDS’s in R
2

Definition 8. Let Sα = {s1, s2, ...} be a sampling in the plane. We say that
Sα is a Poisson Disks Sampling if (i) ∪si∈SαBα(Si) = R

2 and, additionally,
(ii)Sα ∩Bα(si) = {si}, ∀i. The condition (i) will be named covering condition
and condition (ii) wil be named Poisson condition.
Proposition 2. There exists a PDS in the plane.

Proof. Trivial examples of PDS’s are the regular lattices as the quadrilateral
(figure 2.a) and the triangular (figure 2.b). More complexes examples may be
created by means of the dart throwing algorithm approach dart throwing (19).
In this approach, we have a random generator of samples in a given region
and a validator that checks if they satisfy the geometric criteria expected.
In our case we are considering the whole plane as the sampling region and
the the Poisson condition as geometric criteria. If a sample is validated, then
it is incorporated to the output, if not, we discharge it. The algorithm in-
terruption criteria would be the coverage condition, which, logically, is not
feasible because there is an infinity number of points to be sampled in the
plane. Therefore, it is only applicable for limited domains as we will define
soon. This algorithm is a typical example of stochastic sampling also known
as blue noise (20). See, for instance figure 2.c.

As follows, we will establish the relation between an PDS and its solid alpha
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complex
Proposition 3. The Solid Complex Alpha of a PDS Sα of the plane, Cα(Sα),
is a coverage of the plane.

Proof. It is sufficient to show that every triangle σ ∈ DT (Sα) satisfies rσ <
α where rσ is the circumscribed circle radius of σ. Let cσ be the center of
the circumscribed circle of σ. If, as an absurd, rσ > α then directly from
the Delaunay property we would have d(cσ, Sα) > α and, therefore, cσ /∈
∪si∈SαBα(si).

The proposition above has as consequence, two important facts. The first one
is the quality of the planar subdivision in triangles. There is an upper bound
for the aspect-ratio(σ) = L2

vol(σ)
where vol(σ) is the triangle area of σ and L is

the length of the longest edge of σ. In Medeiros et al. (7) work it is evidenced
that L2

vol(σ)
≤ 4
√

3 and the equality takes place when the wider angle is 2π/3.

The second consequence is the scale control power of the simplicial elements. It
is easy to see that by the sampling conditions, the radius of the circunscribed
circles of the triangles and the edges lengths are variating in the interval [α

2
, α].

From there, it is natural to think in multiresolution to represent the samplings
of solid regions.

4.2 PDS’s in Regions of the Plane

We will define the sampling by Poisson disks for a class regions of the plane
with boundary. The frontier has a crucial importance: it defines both the shape
and the topology of the region.
Definition 9. Let Sα = {s1, s2, ..., sn} be a sampling of the solid region R
(R = A ∪ ∂A, A limited, open and connected). We say that Sα is a Poisson
disks sampling (PDS) if R ⊂ ∪si∈SαBα(si) (covering condition) and, addition-
aly, Sα ∩ Bα(si) = {si}, ∀i (Poisson condition).

Observe that differently from the previous definition, the equality does not
hold in the coverage condition. However, depending on the sampling radius 1

we can approximate the covering to the region as much as intended. We will
see this fact more detailed in proposition 7.

As in the plane, there are PDS’s for regions. With the same idea of generating
a PDS using the dart throwing algorithm we have also the existence of an
infinity of them.

1 We will always be referring to the parameter α of Poisson disks sampling.
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From here on, whenever we refer to a solid R region, it will be open, connected
and limited unless the contrary stated.

In the definition below, each sample of a PDS of a region R may be classified
in accordance to its topology.
Definition 10. Let S be a sampling of a region R. We say that s ∈ Sα is
boundary (interior) if s ∈ ∂R (s ∈ int(R)).

Talking about the techniques to generate a PDS of a region we may classify
them as approximating and interpolating. The only difference between these
two samplings is that the interpolating take the boundary into consideration.
Definition 11. Let Sα = {s1, s2, ..., sn} be a sampling of R. We say that
Sα is an interpolanting sampling if exists A ⊂ Sα such that A ⊂ ∂R and
∂R ⊂ ∪si∈ABα(si). We will denote an interpolating PDS by S̃α.

Notice that using an adtaptation of the dart throwing by performing it in two
searated steps we can easily obtain an interpolating PDS sampling. In the
first step restrict the target sampling to the boundary of the region and later
sample the subregion defined by its interior minus the covering of the disks in
the.

Definition 9 lead us to questions about shape approximations and topology
equivalence related to the region R and its solid alpha complex recostruction
over some PDS. To enunciate and answer them first we will state some sig-
nificant definitions that will serve as tools to express and to demonstrate the
results.
Definition 12. The weighted squared distance of one point x ∈ R

2 from one
ball b is given by πb(x) = ||x − cb||2 − r2

b where cb and rb are the center and
the radius of b, respectivelly.

An important observation is that a point x ∈ R
2 belongs to a ball if and only

if πb(x) ≤ 0, and it belongs to the boundary of the ball if and only if πb(x) = 0.
Given a finit set of balls B, we can podemos divide the space into regions:
Definition 13. The Voronoi region of a ball u ∈ S is the set of points of the
plan for which u minimizes the weighted distance,

Vu = {x ∈ R
2|πu(x) ≤ πv(x), ∀v ∈ B}

The diagram comprising the Voronoi regions is called, in the literature, a power
diagram. It is not difficult to show that the set of points equally distant from
two balls u and v is a hyperplane defined by πu = πv. In the context where
we are, since we consider the disks of an PDS, we have balls with the same
radius, and, therefore, the power diagram coincides with the Voronoi diagram.
Observe that the Voronoi potential regions decompose the union of balls of
one PDS in convex regions of type V ∩ u, as it is illustrated in figure 4.
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Fig. 3. Union of nine balls, convex decomposition using power Voronoi regions and
its dual complex.

Definition 14. The dual complex K of S is a collection of simplices

K = {conv{uc|u ∈ T}|T ⊆ S,∩u∈T (u ∩ Vu) �= ∅}.
Proposition 4. The dual complex of a PDS Sα is an alpha complex.

Proof. See (15).

We have then, a different manner of defining the alpha complex of a set of
points associated to spheres, differently from what was defined in 5. Depending
on the objective to be achieved, one can use the more adequate definition.

Now, we will define some tools that will allow us to arrive to a conclusion on
the topology of the alpha complexes. Actually, what we want to discover is
what type of topological relation exists between the union of the balls of an
PDS and its dual alpha complex.
Definition 15. A deformation retraction of a space X onto a subspace A is
a family of maps ft : X → A, t ∈ [0, 1] such that f0 is the identity map,
f1(X) = A and ft|A is the identity, for all t. The family should be continuous,
in such a way that the associated map X × [0, 1] → X, (x, t) �→ ft(x) is
continuous.

In other words, starting from the original space X in time 0, we continuously
deform the space to transform it in subspace A on time 1. A retraction defor-
mation is a particular case of homotopy.
Definition 16. A homotopy is a family of maps ft : X → Y, t ∈ [0, 1],
such that its associated map F : X × [0, 1] → Y given by F (x, t) = ft(x) is
continuous. Then , f0, f1 : X → Y are homotopic via the homotopy ft. We
denote this as f0 � f1.

Let us suppose that we have a retraction as in definition 15. we consider
i : A → X an inclusion, we have that f1 ◦ i � id and i ◦ f1 � id. This will
allows us to classify X and its subspace A as having the same connectivity.
This is a special case of homotopic equivalence.
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Definition 17. A map f : X → Y is called a homotopy equivalence if there
is a map g : Y→ X, such that f ◦ g � id and g ◦ f � id. Then, X and Y are
homotpy equivalent and have the same homotopy type. This fact is denoted as
X � Y.

Now we can enunciate an important result about homotopy between two
spaces we have knowledge of.
Proposition 5. Let Sα be a PDS of a region R and B = ∪si∈SαBα(si). Then
B � |Cα(Sα)|.

Proof. It is not difficult to see that the idea of demonstration is to exhibit a
retraction that takes space B in space |Cα(Sα)|. See in (15) for more details.

The relevance of the proposition 5 is in the invariance of the homology between
the two spaces. This type of relation does not preserve the intrinsic dimension
once the alpha complexes may have isolated simplexes of smaller dimensions.
However, there is a relation stronger which is the homeomorphism and in this
case there is a coincidence of topology.
Definition 18. A homeomorphism f : X→ Y is a bijection, such that f and
f−1 are continuous. We say that X is homeomorphic in relation to Y, X ≈ Y

and that X and Y have the same topology type.

To have an assurance of topological equivalence between the region and the
solid alpha complex, we will use the idea of a medial axis and LFS - local
feature size.
Definition 19. The medial axis of a curve F is the closing of a set of points
in the plane that has two or more closest points in F .
Definition 20. The Local Feature Size, LFS(p), of a point p ∈ F is the
euclidian distance of p to the nearest point m from the medial axis.

In the proposition below we point out a condition for PDS’s of solid regions,
with smooth boundaries so that the dual complex has the same type of topol-
ogy of the region.

2

Proposition 6. If the radius of a PDS Sα (with smooth boundary) is lower
than 1

2
infp∈∂RLFS(p) then |Cα(Sα)| ≈ R.

Proof. See Medeiros (8).

2 This condition is to assure that exists ε > 0 such that LFS(p) > ε, ∀p ∈ ∂R.
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About the geometric proximity of ∂R and ∂Cα(Sα) we can establish a global
convergence from the parameter α.
Proposition 7. Let α > 0 and Sα be a PDS of R. The Hausdorff distance
dH(R, ∂|Cα(Sα)|) of region R with the region covered by the alpha complex of
Sα is lower than α.

Proof. It is sufficient to notice that if ∀p ∈ R then there exists q ∈ Sα such
that p ∈ Bα(q) therefore dH(p, |Cα(Sα)|) < α).

In the literature, the algorithms to calculate alpha complexes, generally use
the Delaunay triangulation in an intermediate stage. However, having in hands
the proposition 6 we can use the ball-pivoting algorithm restricted to the
plane (RBPA) (6) to build the solid alpha complex in linear time on the
number of points without being required to previously calculate the Delaunay
triangulation.
Proposition 8. Ler S ⊂ R

2 be a set of points in general position and Cα(S)
its solid alpha complex. Consider Tα as the output of RBPA being performed
in the plane. Then Cα(S) = Tα.

Proof. See Medeiros et al. (6).

Therefore, given α as in the proposition 6, by the previous proposition, we
calculate the solid alpha complex with the same type of topology of the region.

As it was previously seen, there are restrictions on the set of solid objects
for which exists such α > 0. In fact, when we demand that the boundary
region be smooth it is because we do not want sharp features since then we
would havepois infp∈∂RLFS(p) = 0 there is no manner to determine an upper
bound for α. We are working to extend the assurances of reconstruction in
proposition 6 to regions with a finite set of sharp features.

An important fact to be observed is that the dual complexes of approximating
PDS’s are noisier in the frontier than the dual complexes of interpolating
PDS’s (see figure 4). We will explain this fact better under section 6.

4.3 Boundary Approximation

Lets define when a α-pair (S̃α, Kα) is a good approximation of a region, re-
minding that the symbol ˜ means to say that Sα is an interpolating sampling.
Definition 21. Let (S̃α, Kα) be a α-pair of a region R. Consider P = ∂Kα.
If all vertices of P are boundary then we say that Kα is a good approximation
of R.
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(a) (b)

Fig. 4. Examples of reconstructions of an approximating sampling (a) and an inter-
polating sampling (b).

As discussed above, from the dual complexes, the approximating PDS’s are
noisier on the boundary than the interpolating PDS’s since it does not take
points which are representatives of the boundary. Consequently, when param-
eter α tends to zero the sequence given by a family of solids alpha complexes
of interpolating PDS’s that are good approximations assure convergence of
the normals, which does not take place with approximating PDS’s families.
Therefore, in geometrical terms the interpolating samplings that are good ap-
proximations are better.

Not always a α-pair (S̃α, Cα(Sα)) is a good approximation. In figure 4.b we
note that the interior point lies in the boundary of the reconstruction. In order
to turn arounf this problem, lets define a Quasi-Alpha Complex of dimension
2 with with the purpose of ensuring that it has characteristics combined of
the definitions of a Solid Alpha Complex and of a good approximation.
Definition 22. Let S be any sampling with topological informations in the
points (boundary or interior) of a region R. Given α > 0, we denote QCα(S),
as a Quasi-Solid Alpha Complex (QSAC), the solid simplicial complex of S
that satisfies the following properties:

(1) QCα(S) ⊂ Del(S)
(2) σ(si,sj ,sk) ∈ QCα(S)2 ⇐⇒

(a) or μσ < α, where μσ is the circumscribed radius of σ;
(b) or {si, sj, sk} ∩ int(R) �= ∅;
(c) or ∃ Bl e Bm, distinct connected components of the boundary R, such

that Bl ∩ {si, sj, sk} �= ∅ and Bm ∩ {si, sj, sk} �= ∅;

Notice that by property 2(a) it follows that Cα(S) ⊂ QCα(S). From defition
above, we have the following lemma:
Lemma 1. If S is an interpolant PDS of a region R then:
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Fig. 5. In this example the light gray point is in the interior and is close to the
boundary. The plotted triangle may have a very wide aspect ratio.

(1) QCα(S) is a good approximation;
(2) If Bl is a connected component of the boundary of QCα(S) then all its

points lies in the same connected component of the boundary of R.

Proof. The item (1) follows directly from property 2.b of definition 22. The
item (2) is a direct consequence of property 2.c in definition 22.

As we wish, a α-par (S̃α, QCα(S̃α)) is always a good approximation and there-
fore assures the convergence of normal. We also have that QCα(S̃α) have im-
portant properties of being a subset of the Delaunay triangulation and super
set of the solid alpha complex. The disadvantage results from the fact that
they do not have a superior limit for the aspect ratio of the set of triangles.
It is what we will try to solve in the next section.

4.4 The Aspect Ratio

The aspect ratio with no upper limit takes place because interior points sam-
pled too close to the boundary eliminate, in their neighborhood, the possibility
of sampling boundary points that would be more representatives (see figure
5). To solve this, we need a sampling strategy to assure that interior points
are not sampled in a determined neighborhood ε(α) of the boundary region.
When we tried to adopt this idea we had to use a weaker version of PDS’s
that are (α, β)-ADP’s.
Definition 23. Let Sαβ = {s1, s2, ..., sn} be a sampling of a solid region R
(R = A ∪ ∂A, A open, connected and limited) and 0 < β ≤ α. We say that
Sαβ is a (α, β)-PDS if (i)R ⊂ ∪si∈SαβBα(si) (covering condition) and, beyond,
(i)Sαβ ∩ Bβ(si) = {si}, ∀i (Poisson condition).

Notice that when parameter β approaches α, the sampling is more similar to
a PDS. The scale notion is implicit in parameter β. As follows we will exhibit
a way to generate a (α, β)-PDS of a region assuring that β = α/2.
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Proposition 9. Given α, we can generate a (α, α/2)-PDS of a region R from
the following steps:

(1) I = { PDS of R− ∪s∈∂RBα(s)};
(2) B = { PDS of ∂R};
(3) P = { “PDS” of R − ∪s∈B∪IBα(s) with conditional projection in the

boundary}. The conditional projection is made after a the generation anda
validation of a sampling s. If dist(s, ∂R) < α

2
then select s′ as the nearest

point of ∂R, else, select s.

Proof. By construction it is clear that R ⊂ ∪s∈I∪B∪P Bα(s). We will show that
β = α/2. Let s′ be the projection of s in ∂R. Let p ∈ ∂R be the sampling
point nearest to s. We know that ss′ < α/2 and that ps > α. By the triangular
inequality, we have that ps′ + ss′ > ps⇒ ps′ > ps− ss′ > α−α/2 > α. Then
β = α/2.

Observe that s ∈ int(R) and from steps 2 and 3 we conclude that dist(s, ∂R) >
α/2. Then, we can say that there exists a neighbor ε(α) = α/2 of the boundary
that does contain interior boundary points. As mentioned before this improve
the problem of existence of thin triangles, i. e., great aspect ratio along the
boundary of an α-par (S̃α, QCα(S̃α)). At this moment we are not able to show
an upper bound but we conjecture that it is ≤ 8. We have generated some
examples and all are satisfactory and below of this limit.
Definition 24. Let Sα,β = {s1, s2, ..., sn} be a sampling of a solid region R.
We say that Sα,β is a interpolating (α, β)-PDS if exists A ⊂ Sα,β such that
A ⊂ ∂R and ∂R ⊂ ∪si∈ABα(si). Lets denote a interpolating (α, β)-PDS as
S̃α,β.

It is easy to see that the (α, β)-PDS from proposition 9 is an interpolationg
one according to definition above.

5 Multiresolution with PDS’s

After the analysis of one single PDS of a region, from the next section we will
start interacting differents PDS’s using the scales given by parameter α.

5.1 Scaling Family

For a given region R there is an infinity of PDS’s depending on α and on the
randomness of the algorithm that generates the sampling. We will introduce
the concept of Scaling Family which is a particular case of nested family of
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(a) (b) (c)

Fig. 6. Exemple of a scaling family with three levels.

points. Such concept has the purpose to structure a set of PDS in such a way
that they are nested in order to give us the idea of a sampling in multiresolution
with scale change.
Definition 25. Let F = {Sαi

}i∈{1,2,...n} be a PDS family of a region R. We
say that F is a escaling family if Sα1 ⊂ Sα2 ... ⊂ Sαn, with α1 > α2 > ... > αn.
For each of the i’s we denote de scaling levels and the αi’s of scales.

For a set of positive reals α1 > α2 > ... > αn, describe an algorithm from
which a scaling family is generated is very simple: Given the sample Sαk

it is
sufficient to apply the dart throwing algorithm in (R − ∪si∈Sαk

Bαk+1
(si)). In

figure 6 we have an example of scaling family with three levels of scale.

An special case of scaling family occurs when the resolution difference between
the levels is only of one point.
Definition 26. Let F = {Sαi

}i∈{1,2,...n} be a scaling family of R. We say that
F is graded if Sαi+1

= Sαi
∪ {si} with αi+1 < αi, ∀i.

If possible, as of a scaling family, to generate one graded family, then we say
that such family is gradable.

A question that arise from the definition above is: Is every scaling family
gradeble? The answer is a negative one and we have a counter example for
that in figure 7. In 7.a we have a level of a PDS with radius

√
2

2
< α < 1

of a square of side 1. In 7.b we have a level in which the points are over a
spacing grid 1

3
with perturbation. We highlighted the best candidate to the

gradation. Under 7.c we exhibited, geometrically, the impossibility of satisfying
the coverage condition.

In spite of the fact it is not possible to grade an scaling family, we state that it
is always possible for a weaker definition of PDS’s that are the (α, β)-PDS’s.
It is what we will see under section 6.

If there are no sufficient conditions to grade a scaling family, also, there are
not assurances to generate a cadenced family using the same algorithm that
generates a scaling family, given α1 > α2 > ... > αn positive reals. This takes
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Fig. 7. Counter example for grading process.

place because the scales are already determined, so, as there is the restriction
to generate only one sample between two levels, the coverage condition may
not be satisfied. In a certain manner, there are jumps or discontinuities be-
tween the consecutive levels of the family given by the scales. The good news
are that, given a solid object, we are able to generate a graded family with
no pre-determined scales. For a better understanding of such graded family
generator, lets define a graded family with continuous scales.
Definition 27. Let F = {Sαt}t∈[a,b] be a family of PDS’s of R. we say that
F is continuously graded if exist b = α1 > α2 > ... > αn = a such that
Sαi+1

= Sαi
∪ {si} and if s ∈ (αi+1, αi) then Ss = Sαi

.

It is more natural, from the definition above, to think of an algorithm that
generates a family continuously graded, given b > a > 0. For such, we will
start with one PDS of radius b > 0. Now define f : [a, b] → R such that
f(t) = vol(R − Bt), with Bt = ∪si∈Sαt

Bαt(si). Observe that in the beginning
we have f(b) = 0 until t = t0 when then the function f will assume increasing
values. At this time t0 an infinitesimal hole was opened and the coverage
condition was undone for disks of radius t0. However, when we insert a new
point p in this hole we will have both Poisson and covering conditions satisfied
for the same radius t0. We repeat the same process until we reach the lowest
possible radius a.
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5.2 Scaling Family of Meshes

The scaling family of meshes we will introduce as follows have properties that
are directly associated to a scaling family. They are a particular case of a
nested family of meshes.
Definition 28. Let Sα be a PDS of a region R and Kα a solid siplicial complex.
If K0

α ⊂ Sα we place (Sα, Kα)( read by simplicity “α-pair”).
Definition 29. Let F = {Sαi

}i∈{1,2,...n} be a scaling family of a region R.
We say that M(F) = {(Sαi

, Kαi
)}i∈{1,2,...n} is a scaling family of meshes if

(Sαi
, Kαi

). Similarly to scaling families, for each i’s we denote scale level and
their respective αi’s of scales.
Example 1. Let F = {Sαi

}i∈{1,2,...n} be a scaling family. We say that CαF =

{(Sαi
, Cαi

(Sαi
))}i∈{1,2,...n} is a family of Scaling Solid Alpha Complexes.

In this example we have a much stronger structure: besides vertices in com-
mon, through properties P1, P2 and P3 of section 2.3, there is also a subset
of coincident faces between levels. We will exploit this example on a later
opportunity when we present filtering by topological operators.

5.3 Filtering by Topological Operators

In the PDS’s context, to insert points in a mesh means to add more details.
If the point is boundary, we will have a better definition of the frontier and
if it is interior, we will have a change in the combinatorial structure with an
increase in the quantity of triangles. Analogously we also can remove one point
of a mesh that consists in lose details. If the point is boundary, we will have
a lower definition of frontier and if is interior, there will be a decrease in the
quantity of triangles. As it was seen before, the insertion and the removal of
points are equivalent, respectively to topological junction and disjunction. In
figure 8 we exhibit examples of insertion and removal of points by means of a
sequence of topological operators.

Having in hands operations of topological junction or disjunction of points we
are able to define a sequence of graded (Sαi

, Kαi
) α-pairs.

Definition 30. Filtering by Topological Operators of a region R is a family
M(F) = {(Sαi

, Kαi
)}i∈{1,2,...n} of scaling meshes of R such that {Sαi

} is graded
and (Sαi+1

, Kαi+1
) = (Sαi

, Kαi
)⊕ si with si = Sαi+1

− Sαi
.

Definition 31. Algorithm by refinement (simplification) of a filtering by topo-
logical operators is the one that generates topological operations through a topo-
logical junction (disjunction) of points.
Theorem 1. For all family of scaling and graded Solids Alpha Complexes
CαF = {(Sαi

, Cαi
(Sαi

))}i∈{1,2,...n} there is an algorithm by refining and an
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Fig. 8. Examples of insertion and removal of points.

algorithm by simplification that generate filterings by topological operators of
CαF such that refining topological operations are inverse to the simplification
topological operations.

Proof. We will exhibit the two algorithms and later we will state that the
sequences generated are inverse.

For each algorithm we will use some auxiliary data structures. In DT (Sα) the
faces have a Boolean attribute f that will indicate if they belong or not to
the current solid alpha complex. We have a list of operators Lf that store the
output of the filtering.

Refinement algorithm: The key idea is exploit the version of Delaunay
triangulation construction algorithm which is based on insertion of points
(21). We will use a priority queue of half-edges Lhe that keeps the order in
which they will be flipped. The order of the priority queue is given by the
power (with the signal inverted) of the new point to be inserted si with the
circunscribed circle of he.mate.face.f , fol all he ∈ Lhe. In algorithm 1 we
have the pseudo code that summarizes all steps described for the insertion of
a point.

If during the construction of Lhe some half-edge he has a non negative key, then
it will not be included in Lhe. Instead of that we will compare the radius of the
circunscribed circle of he.face αi. In case of it is higher and he.face.f = true
then we generate the operation destroy and also update he.face.f to false.
In case of it is lower and he.face.f = false then we generate the operation
create and also update he.face.f to true. We call this test test triangle ref.

In each insertion of point si first we test if it falls outside of Del(Sαi−1
) or

inside of some face of DT (Sαi−1
). In case it lies inside some face σ such that

σ.f = true then we generate a split (II.R). The three new triangles will in-
herit the boolean attribute f = true. Before inserting three half-edges he1,
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Algorithm 1: Refinement algorithm: inserting a point

Input : si, αi, DT (Sαi−1
)

if si ∈ DT (Sαi−1
) then1

split(σ, si) ;2

for each new face F do3

F.f = σ.f ;4

if σ.f then5

generate split(σ, si) ;6

for he = he1, he2, he3 ∈ σ do7

\ ∗ the function apply power is described in algorithm 2 ∗ \8

apply power(si, he.next) ;9

else10

for each he visible to si in ∂DT (Sαi−1
) do11

f = create(si, he.org, he.dst) ;12

f.f = falso ;13

apply power(si, he) ;14

while Lhe �= ∅ do15

he←− Lhe.top ;16

key ←− he.key ;17

Lhe.pop ;18

if key > 0 then19

if he.mate.face.f e he.face.f then20

gerar flip(he) ;21

flip(he) ;22

apply power(si, he.next) ;23

apply power(si, he.mate.prev) ;24

else25

test triangle ref(he.face) ;26

for cada σ ∈ DT (Sαi
) do27

test triangle ref(σ);28

he2, he3 in Lhe we perform a compatibility test following the order given by
the key of these half-edges in the priority queue Lhe. This tests consists in
analyzing the boolean attributes f of adjacent faces in a flipping candidate
half-edge and follow some rules. The idea is that when both attributes are
true, then we generate a flip, which does not take place when both are false.
In case they have opposite attibutes then we perform this compatibility. If
he.mate.face.f = true then we generate the operator create for he.face and
also update he.face.f to true. Analogously, if he.mate.face.f = true then we
generate the operator destroy to he.face and also update he.face.f to false.
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To this compatibilization function we name make compatibility ref (V.R). See
figure 9 and algorithm 3. To each flip there are always two new half-edges
to be inserted in Lhe for which we perform the compatibilization following
the counterclockwise order. It is important to emphasize that this test is per-
formed always before the insertion of new half-edges in the queue. If any is
not inserted then we perform the test triangle ref in he.face.

Algorithm 2: function apply power

Input : si, half-edge he
if not he.edge.is bdry then1

key ←− power(si, he.mate.face) ;2

if key > 0 then3

make compatibility(he) ;4

Lhe.insert(he, key) ;5

else6

test triangle(he) ;7

else8

test triangle(he) ;9

Algorithm 3: make compatibility ref

Input : half-edge he

if he.mate.face = true e he.face = false then1

gerar create(he.face) ;2

he.face←− true ;3

if he.mate.face = false e he.face = true then4

gerar destroy(he.mate.face) ;5

he.mate.face←− false ;6

In case point si falls inside some face σ ∈ DT (Sαi−1
) such that σ.f = false

then we do not generate a split operator. Instead of that we generate add
(III.R). OThe algorithm proceeds then in the same way, performing flip oper-
ations and compatibility tests

In case point si lies outside DT (Sαi−1
) then an add operation is generated

(IV.R). New faces are inserted with attribute f false by means of create op-
erations following the counterclockwise order of the edges visible from point
si (see loop of line 11 of algorithm 1). At the same time, operations of com-
patibility are performed and the priority queue Lhe is updated. The algorithm
then proceeds performing flip operations with compatibility tests.

At last, when the possible operations in the neighborhood of si are finished,
we sweep the other faces of DT (Sαi

) and perform the test triangle ref in each
one of them. The calling order is given by the length of the radius of the
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Fig. 9. Cases of the function make compatibility ref. v v is the point inserted by a
split operation split, T1 and T2 are triangles to be compatibilized. The hachured
triangles have a true Boolean attribute and the non hachured have false Boolean
attributes. In (a) and (b) we have two possible cases treated by the procedure.

circumscribed circles of each face, starting from the smaller to the longer
(I.R)(see loop of line 27, algorithm 1).

Simplification algorithm: The key idea is to use an algorithm to remove the
points (18) and adapt it to what we intend. The removal algorithm must take
out all triangles incident to si and retriangulate in the “Delaunay sense” the
star-shaped polygon H = {q0, q1, ..., qk−1, qk = q0} created by these removals.
Three consecutive vertices qiqi+1qi+2 along the boundary of H are said to form
an ear if the segment qiqi+2 lies in H . An ear of H is said of Delaunay if its
circumscribed circle does not contain any vertex of H that lies in its interior.
The algorithm has the following lemma:

Lemma 2. Consider polygon H = {q0, q1, ..., qk = q0} and a point p such
that the edges qiqi+1 lies in the Delaunay triangulation of {q0, q1, ..., qk−1, p}.
If |power(p, circ(qi, qi+1, qi+2))| is minimal, then qiqi+2 is a Delaunay edge of
{q0, q1, ..., qk−1}.

Proof. See (18).

As in the refinement algorithm, we have a priority queue Lear of ears such that
their elements have an augmented structute of type candidate ear composed
by three half-edges : siqi, siqi+1, siqi+2 (see below the definition of the structure
that will be used in the algorithms 4 and 5). Then Lear keeps the order that the
edges siqi+1 will be flipped, given by the key of the priority queue evaluated as
the power of si (point to be removed) with circunscribed circle of qiqi+1qi+2.
The lemma above assures that the top of the priority queue will contain an
ear that belongs to the Delaunay triangulation.
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Algorithm 4: Simplification Algorithm: removing a point

Input : si+1, αi, DT (Sαi+1
)

for each σ ∈ DT (Sαi+1
− link(si+1)) do1

test triangle spl(σ);2

generate priority queue Lear ;3

while (Lear.size > 3 and σi ∈ DT (Sαi+1
)) or4

(Lear �= ∅ and σi ∈ ∂DT (Sαi+1
)) do

candidate ear ←− Lear.top ;5

Lear.pop ;6

if counter clockwise(candidate ear) then7

make compatibility spl(candidate ear.he2) ;8

if candidate ear.he2.face.f e candidate ear.he2.mate.face.f then9

generate flip(candidate ear.he2) ;10

flip(candidate ear.he2) ;11

Lear.update ;12

if σi ∈ int(DT (Sαi+1
)) then13

test←− test triangle spl(link(si+1)) ;14

for each neighbor face F of si+1 do15

if test and not F.f then16

generate create(F.f) ;17

if not test and F.f then18

generate destroy(F.f) ;19

if test then20

generate weld(σi) ;21

weld(σi) ;22

else23

for each neighbor face F of σi do24

if F.f then25

generate destroy(F.f) ;26

destroy(F.f) ;27

struct Candidate Ear {
Half Edge* he 1, he 2, he 3 ;
}

First, before removing a point, we apply the test triangle spl in each of the
faces of DT (Sαi+1

) outside of the neighbors of si by decreasing order of the
circumscribed circles (loop of line 1, algorithm 4). In this test we compare the
radius of the circumscribed circle of one face σ with αi. In case it is higher

27



��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
����������������
��������
��������
��������

qi

qi+1

qi+2
σ2

σ1 qi+2
qi

qi+1

e

Fig. 10. One of the possible cases of the function make compatibility spl. qiqi+1qi+2

is a candidate ear to flip that will be in the Delaunay triangulation. σ1, σ2 are faces
with false boolean attribute. Operators create are generated para σ1, σ2 and after
the operator flip flip in the edge e.

and σ.f = true we then generate operation destroy and update σ.f para falso.
In case it is lowerand σ.f = falsethen we generate the operation create and
update σ.f to true (I.S). Notice that this test is the inverse equivalent to the
refining algorithm procedure test triangle ref.

After that, we go applying the operations flip following the order of priority
queue Lear. Notice that if si ∈ DT (Sαi+1

) then we will arrive in three ears.
Given one ear qiqi+1qi+2 candidate to be fipped, before making it, we perform
the test test triangle spl in order to verify if it will be in the triangulation. Let
σ1 and σ2 be the two neighbor faces of siqi+1 following the counterclockwise or-
der. Depending on the result in the test of qiqi+1qi+2 then we verify the possible
compatibilities of σ1 and σ2 through a function called make compatibility spl
(V.S). In other words, this function analyses the faces σ1 and σ2 and make
them compatible with the result in test of qiqi+1qi+2. If σ1.f = false then
we generate the operator create and update σ1.f to true. In the same way
we make to σ2. After, we generate a flip. If qiqi+1qi+2 not pass for the test
test triangle spl then we verify if σ1.f = true, we generate the operation de-
stroy and update σ1.f to false. The same thing is also made to σ2. In this
case operator flip is not generated. See figure 10.

When all possible flips are performed, if the vertice si lies in the interior of
DT (Sαi+1

) then it will have valence three. Let q1, q2 and q3 be the three
neighbor vertices of si. If the triangle q1q2q3 pass in the test test triangle spl
then the neighbor faces to si that have boolean attribute f as false will
generate operators create and will have their attributes f updated to true.
The orde to generate such operators is given by the power of si with adjacen
faces to triangel q1q2q3.After that, we generate the operator weld (II.S). If the
triangle q1q2q3 not pass in the test then we perform the same steps, except
generate weld. In this case, we generate the operation destroy to the neighbors
triangles of si with attribute f as true and update then to false. Also they
follow the order of the power and after we generate the operator remove(III.S).
The same thing happens when the point si lies in the boundary. In this case
the operations destroy follow the clockwise order(IV.S) (loop of line 24, of

28



algorithm 5).

Algorithm 5: Function make compatibility spl

Input : ear* candidate ear

he←− candidate ear.he2 ;1

if test triangle spl(candidate ear) then2

if he.face.f = falso then3

gerar create(he.face) ;4

he.face.f = verdadeiro ;5

if he.mate.face = falso then6

gerar create(he.mate.face) ;7

he.mate.face.f = verdadeiro ;8

else9

if he.face.f = falso then10

gerar destroy(he.face) ;11

he.face.f = falso ;12

if he.mate.face = falso then13

gerar create(he.mate.face) ;14

he.mate.face.f = falso ;15

Inversion: We identified inverse operations in determined parts of the refining
and simplification algorithm. Observe that the flips are ordered in the queues
Lhe and Lear in a symmetrical way, by the point power. There is a symmetry
between the functions of compatibilization identified by (V.R), (V.S). It is
easy to see also that there is a symmetry in (I.R = I.S−1), (II.R = II.S−1),
(III.R = III.S−1) e (IV.R = IV.S−1).

The two algorithms above may be easily extended for non decreasing monotonous
functions g : R → R on the radius of the samplings amostragens in the es-
caling family. For it, All we need to do is to adapt the test triangle ref and
test triangle spl procedures to compare the radius of the circumscribed circles
of the faces segundo according to g(α). This allows us to make a topological
control in the filtering, i.e., the function g controls all topological changes
between the filtering levels.
Corollary 1. Let g : R → R be a non decreasing monotonous function. Let
F = {Sαi

} be a graded family and CαF = {Cg(αi)(Sαi
)} the Solid Alfa Com-

plexes Family of F with function g. Then, there exists a algorithm by refine-
ment and an algorithm by simplification that generate a filtering by topological
operetorsof Cg(α)F such that the refinement topological operators are inverse
to the simplification topological operators.

Notice that the Delaunay triangulation is equivalent to the corolary above
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considering the g(x) =∞.

5.4 Quasi-Scaling Family

So far we have approached PDS’s and solid alpha complexes. In this section
we will define a more general type of sampling, the (α, β)-ADP’s. We will also
extend the definition of Solid Alpha Complex to Quasi Solid Alpha Complex
where in the latter the topological information of the points (boundary or
interior) are taken into consideration. Our main goal is to arrive at Theorem 3
that extends Theorem 1 using these two new extensions.

In the same way we defined the scaling families for PDS’s, we can analogously
define a Quasi-Scaling Family (QSF) and its derivations.
Definition 32. Let F = {Sαiβi

}i∈{1,2,...n} be a family of PDS’s of a region R.
We say that F is scaling if Sα1β1 ⊂ Sα2β2... ⊂ Sαnβn, such that β1 > β2 > ... >
βn. For each one of i’s we denote as scaling levels and itss βi’s as scales.

Below we present a scheme of an algorithm that builds a particular Quasi-
scaling family.
Proposition 10. Given α1 > 0, we can generate a quasi-scaling famliy F =
{Sαiβi

}i∈{1,2,...n} of a region R such that:

(1) αi+1 = αi/2;
(2) βi+1 = βi/2;
(3) βi = αi/2.

with the following steps:

(1) Do i = 1; use proposition 9 to generate Sαiβi
; do i = i+1 and αi = αi/2;

(2) Use proposition 9 to generate Sαiβi
−Sαi−1βi−1

⊂ (R−∪sj∈Sαi−1βi−1
Bβi

(sj));

(3) Do αi+1 = αi/2; i = i + 1, and go back step 1 until i = n;

Proof. According to proposition 9 it follows that βi = αi/2 for each i.

5.5 Grading a Quasi-Scaling Family

We exposed the difficulties of grading a scaling family. To our surprise, due
to the greater generality of a quasi-scaling family this is always possible. The
main result on grading a QEF is theorem 2. First place we will define when a
QEF is graded.
Definition 33. Let F = {Sαiβi

}i∈{1,2,...n} be a Quasi-Scaling Family of R. We
say that F is Quasi-Graded if Sαi+1βi+1

= Sαiβi
∪ {si}, βi+1 < βi, αi+1 < αi

30



with βi+1 = d(Sαiβi
, si).

Theorem 2. Let F = {Sαiβi
}i∈{1,2,...n} be a Quasi-scaling family of R. Then

exists a family Fc that is a grading F .

Proof. We will show two ways of grading a Quasi-Scaling Family. In the first
one we order directly by inserting points. In the second one we order the by
removing points.

1a) Let D = Sαi+1βi+1
− Sαiβi

= {s1, s2, ..., sk}, then we generate a ordering
Dσ = {sσ(1), sσ(2), ..., sσ(k)} such that by the unicity of the distance ∃! sσ(l) ∈ D
hold:

max{d(s, Al−1) | s ∈ Dl−1} = βil

where, Dl = D − {sσ(1), sσ(2), .., sσ(l)} e Al = Sαiβi
∪ {sσ(1), sσ(2), .., sσ(l)}.

Here we will make two observations. In the first one we considerDT (Al).

The value of αil can be chosen as the lowest real positive that satisfies the
covering condition:

αil = inf{α ∈ R |R ⊂ ∪s∈Al
Bα(s)}.

2a) Given Sαi,βi
∪ {σ1, σ2, ..., σk} = Sαi+1,βi+1

, the grading algorithm of F
is inintialized from the Delaunay triangulation of Sαi+1,βi+1

. We perform the
ordering using once again the algorithm to remove the points described in
Devillers (18).

We initially built a priority queue Le that contains all edges of the triangu-
lation such that the top is the smallest one. Let lv(w) be the level of the
point w and link(w) the set composed by the neighbor edges to w in the
mesh. Let e be the edge at the topo of the priority queue Le. The point to
be removed is one of the vertices of e. Let p and q be such vertices. Then if
lv(p) > lv(q) we remove p as described in (18). Analogously, if lv(q) > lv(p)
then we remove q. In case of equality between the levels, we decided for re-
moving the one that is nearest to the neighbor vertices, not considering edge
e. Our implementation about “neighbor proximity measure” for any vertice
is the lenght of the gratest edge in its link. The longer the length, longer is
the distance. Therefore, if lv(p) = lv(q) consider ep and eq edges such that
ep = max{m(w)|w ∈ link(p)} and eq = max{m(w)|w ∈ link(q)}, where m(w)
is the length of w. If m(ep) > m(eq) then we remove q otherwise, removes p.
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Algorithm 6: Ordenation by removals

Input : Sαi+1,βi+1
.

Output: Ordenation of Sαi+1,βi+1
− Sαi,βi

.

A←− Sαi+1,βi+1
− Sαi,βi

;
M ←− DT (Sαi+1,βi+1

);
Create the a priority queue Le ;
while A �= ∅ do

e←− topo de Le ;
if lv(p) > lv(q) then

remove p from DT (Sαi+1,βi+1
) ;

A←− A− {p} ;

if lv(q) > lv(p) then
remove q from DT (Sαi+1,βi+1

);
A←− A− {q} ;

if lv(q) = lv(p) then
ep = max{m(w) | w ∈ link(p)} ;
eq = max{m(w) | w ∈ link(q)} ;
if ep > eq then

remove q from DT (Sαi+1,βi+1
);

A←− A− {q} ;

else
remove p from DT (Sαi+1,βi+1

);
A←− A− {p} ;

Update Le ;

The queue Le is updated and the algorithm proceeds in the same way. No-
tice that the value of β corresponds to the length of the top edge in Le. See
algorithm 6.

In both cases, we generate “intermediary” sublevels between the levels of a
Quasi-Scaling Family to turn it into a Quasi-Graded Family.

5.6 Quasi-Scaling Family of Meshes

Lets now define some structures associated to QSF’s.
Definition 34. Let Sαβ be a (α, β)-PDS of a region R and Kαβ a solid sim-
plicial complex. We say that (Sαβ, Kαβ) is a (α, β)-pair if K0

αβ ⊂ Sαβ.
Definition 35. Let F = {Sαiβi

}i∈{1,2,...n} be a quasi-scaling family of a region
R. we say that M(F) = {(Sαiβi

, Kαiβi
)}i∈{1,2,...n} is a Quasi-Scaling Family

of Meshes if (Sαiβi
, Kαiβi

) is a (α, β)-pair for all i. As in scaling families, for
each of i’s we denote them as scaling levels and its βi’s as scales.
Example 2. Let F = {S̃αiβi

}i∈{1,2,...n} be a Quasi-Scaling Family. We say
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that QCαF = {(S̃αiβi
, Cαi

(S̃αiβi
))}i∈{1,2,...n} is a Quasi-Scaling Family of Solid

Alpha Complexes(QSFSAC) where QCα(S̃αiβi
) is the quasi solid alpha complex

of S̃αiβi
.

Based on proposition 10 we can conclude four important facts about QSF-
SAC’s.

• The Hausdorff distance of the boundary is limited by αi in each level, as-
suring the convergence of the approximation of the solid region by QACS’;
• The convergence of the sequence given by the QSFSAC is of good approxi-

mations and therefore has convergence of normals;
• In each sampling level its respective QSAC have compatibility with the

topological information i.e. if s ∈ int(R) then s ∈ int(Cα(R)).
• in practice, the set of triangles have aspect ratio lower than 8.

5.7 Returning to Filtering

Equivalent to Theorem 1 for any QSFSAC not necessarily graded, we have
the following theorem:
Theorem 3. For any non decreasing monotonous function g : R → R and
given a QSFSAC QCg(α)F = {(S̃αiβi

, QCαi
(S̃αiβi

))}i∈{1,2,...n}, exists an algo-
rithm by refinement and an algorithm by simplification that generate topolog-
ical operators of QCαF such that the refinement operations are inverse to the
simplification operations.

Proof. First we apply theorem 2 to grade intermediate levels of F in a new
family Fc. The algorithm is the same of theorem 1 with the modification of
the function test triangle ref to refinement and the function test triangle spl to
simplification. In these functions the validation for one face be included or not
are given by the parameter g(αi) and by 2 of definition 22.

The function g allows a certain degree of control to the algorithms in the
construction of filtering by topological operators. As saw before if the function
g =∞ then the filtering corresponds to the Delaunay triangulation.

6 Conclusion

In this article we introduced a theoretical and practical framework for mul-
tiresolution with topology change control. As far as we know there are no
works on this matter.
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We analysed the boundary geometry and its topology through Poisson Disks
Sampling (PDS’s and (α, β)-PDS’s) recovered by solid alpha complexes (and
their variants) for each resolution level. With that we were able to insert
atomic operations such as stellar and handle between the resolution levels.
To this sequence of operations we gave the name of topological operations
filtering.

In figure 11 we have from on the right four resolution levels of a solid re-
gion shaped as rectangle with two holes that are circles with distinct radius.
The levels were sampled according proposition 10. As it was expected, as we
increased the resolution, the holes go appearing as well as their respective
boundaries go being more detailed. On the left are represented intermediary
levels between levels three and four. The points were ordered according to
algorithm 6.

The main result of the article brings a theorem (in two versions) that says
if it is possible to generate two filterings by topological operators either by
simplification or refining in an independent way with the property that the
sequence of operations are inverse. This theorem will allow the generation of
a representation of one mesh in variable resolution (12) that is flexible so that
functions of adaptation may generate adaptative meshes starting both from
the more simplified level and from the more refined level, depending on the
application. It is what we will do in one of our future works. They are:

• To generate a hierarchical structure between the resolution levels to com-
prise a mesh in variable resolution;
• To create adaptation functions;
• To generate applications;
• To generalize all results for dimension three.
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Fig. 11. Four levels (left) and four sublevels (right).
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