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1 Introduction

Given smooth mappings F : Rn → R
n and g : Rn → R

m, we consider the
following variational problem:

Find x ∈ D such that 〈F (x), y − x〉 ≥ 0 ∀ y ∈ (x+ T (x;D)), (1)

where
D = {x ∈ Rn | gi(x) ≤ 0, i = 1, . . . ,m},

and T (x;D) is the (standard) tangent cone to the set D at the point x ∈ D.
For most results of the paper, we shall assume that on the set of interest,

F is once and g is twice continuously differentiable. (2)

When for some smooth function f : Rn → R it holds that

F (x) = f ′(x), x ∈ Rn, (3)

then (1) describes (primal) first-order necessary optimality conditions for the
optimization problem

min f(x) subject to x ∈ D. (4)

When the feasible set D is convex, the variational problem (1) is equiva-
lent to the classical variational inequality:

Find x ∈ D such that 〈F (x), y − x〉 ≥ 0 ∀ y ∈ D.

In the absence of convexity, however, the meaningful form of a local varia-
tional condition (in particular, the one consistent with optimality conditions
for (4)) is given by (1).

To motivate our development consider, for the moment, the optimization
problem (4). Iterations of the fundamental sequential quadratic programming
method (SQP, e.g., [1]) for (4) consist of solving subproblems of the form

min
y∈Rn

〈f ′(xk), y − xk〉+ 1
2 〈L

′′
xx(xk, µk)(y − xk), y − xk〉

s.t. g(xk) + g′(xk)(y − xk) ≤ 0,

where
L : Rn ×Rm → R, L(x, µ) = f(x) + 〈µ, g(x)〉,

is the Lagrangian of (4), and (xk, µk) ∈ Rn × Rm
+ is the current primal-

dual iterate. Let x̄ ∈ Rn be a local solution of (4), and let M(x̄) be the set
of Lagrange multipliers associated to x̄. The minimal conditions [2] which
guarantee that the SQP method outlined above is locally well-defined and
superlinearly convergent are the existence and uniqueness of the Lagrange
multiplier µ̄ associated to x̄ (also known as the strict Mangasarian-Fromovitz
constraint qualification) and the second-order sufficient condition (SOSC)

〈L′′xx(x̄, µ̄)d, d〉 > 0 ∀ d ∈ C(x̄) \ {0}, (5)
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where

C(x̄) = {d ∈ Rn | 〈f ′(x̄), d〉 = 0, 〈g′i(x̄), d〉 ≤ 0 ∀i ∈ I(x̄)} (6)
= {d ∈ Rn | 〈g′i(x̄), d〉 = 0 ∀i ∈ I+(x̄, µ̄), 〈g′i(x̄), d〉 ≤ 0 ∀i ∈ I0(x̄, µ̄)},

is the critical cone of (4) at x̄, with

I = I(x̄) = {i = 1, . . . ,m | gi(x̄) = 0}

being the set of constraints active at x̄, and

I+(x̄, µ̄) = {i ∈ I(x̄) | µ̄i > 0}, I0(x̄, µ̄) = I(x̄) \ I+(x̄, µ̄),

being the set of strongly and weakly active constraints, respectively.
We emphasize that convergence of SQP requires certain regularity of con-

straints (specifically, the strict Mangasarian-Fromovitz constraint qualifica-
tion).

To deal with the case when constraint qualifications may be violated (and
multiplier associated to the primal solution of the optimization problem (4)
may not be unique), a stabilized version of SQP (sSQP) has been introduced
in [17]. This method can be stated [14] in the form of solving subproblems

min
(y,λ)∈Rn×Rm

〈f ′(xk), y − xk〉+ 1
2 〈L

′′
xx(xk, µk)(y − xk), y − xk〉+ σ(xk,µk)

2 ‖λ‖2

s.t. g(xk) + g′(xk)(y − xk)− σ(xk, µk)(λ− µk) ≤ 0,
(7)

where (xk, µk) ∈ Rn × Rm
+ is again the current primal-dual iterate, while

the dual stabilization parameter σ(xk, µk) > 0 is some computable quantity
measuring violation of optimality conditions for (4) by the point (xk, µk).
As is easy to see, unlike in SQP, the subproblems (7) are always feasible re-
gardless of constraint qualifications. In [17], superlinear convergence of sSQP
has been established under the Mangasarian-Fromovitz constraint qualifica-
tion (MFCQ, which is equivalent to the nonemptiness and compactness of
the multiplier set M(x̄)), SOSC (5) for all µ̄ ∈ M(x̄), and the assump-
tion that the initial dual iterate µ0 is close enough to a multiplier µ̄ such
that µ̄I(x̄) > 0 (in particular, strict complementarity is assumed). In [18,
19], superlinear convergence of sSQP has been shown without strict com-
plementarity, under MFCQ and the strong second-order sufficient condition
(SSOSC)

〈L′′xx(x̄, µ̄)d, d〉 > 0 ∀ d ∈ C+(x̄, µ̄) \ {0}, (8)

assumed for all µ̄ ∈M(x̄), where

C+(x̄, µ̄) = {d ∈ Rn | 〈g′i(x̄), d〉 = 0 ∀i ∈ I+(x̄, µ̄)}.

Superlinear convergence had also been shown under the sole assumption of
SSOSC (8) for some µ̄ ∈ M(x̄), provided that µ0 is close enough to such
µ̄ [7]; see also [5]. In fact, it was posed as an open question in [5, p. 117]
whether or not some condition weaker than SSOSC can be used to prove
sSQP convergence when no constraint qualifications are assumed. In this
paper, we answer this question is the affirmative. We show that if the starting
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point is close to (x̄, µ̄) satisfying SOSC (5), then the sSQP method is well-
defined and converges superlinearly. Moreover, our development is carried
out for the variational setting, in which sSQP for optimization is a special
case.

As other local algorithms for optimization that had been proven to be
superlinearly convergent under SOSC only, we mention [10] and [20]. The
method of [20], in particular, takes an sSQP-like step for an equality-constrained
problem, performing separately identification of active constraints. The ap-
proach of [10] is also based on active constraints identification and a reduc-
tion to local equality-constrained phase, but this local phase is not related
to sSQP.

Let us now go back to the variational problem (1). In this context, a nat-
ural extension of sSQP is the following iterative procedure, which is obtained
from the variational formulation of optimality conditions for (7). To this end,
define

Ψ : Rn ×Rm → R
n, Ψ(x, µ) = F (x) + g′(x)>µ.

Let (xk, µk) ∈ Rn × Rm
+ be the current primal-dual approximation to a

solution of (1), and define

Φk : Rn ×Rm → R
n ×Rm, Φk(y, λ) =

[
F (xk) + Ψ ′x(xk, µk)(y − xk)

σ(xk, µk)λ

]
,

and

∆k =
{
(y, λ) ∈ Rn ×Rm | g(xk) + g(xk)(y − xk)− σ(xk, µk)(λ− µk) ≤ 0

}
,

where σ(xk, µk) > 0 is the dual stabilization parameter.
Consider affine variational subproblems of the form

Find (y, λ) ∈ ∆k s.t. 〈Φk(y, λ), (z, ν)− (y, λ)〉 ≥ 0 ∀ (z, ν) ∈ ∆k. (9)

As can be easily seen, in the optimization case (3) the variational subproblem
(9) is precisely the first-order (primal) necessary optimality condition for the
sSQP subproblem (7). Thus this framework contains sSQP for optimization
as a special case. Note that the framework makes good sense also in the
variational setting, as solving the fully nonlinear problem (1) is replaced by
solving a sequence of fully affine subproblems (9) (the mapping Φk is affine
and the set ∆k is polyhedral). As in sSQP, the feasible set in (9) is always
nonempty. We shall prove that under a suitable second-order condition, the
method outlined above is locally well-defined and converges superlinearly to
a solution of the Karush-Kuhn-Tucker (KKT) system for (1), which is

0 = Ψ(x, µ) = F (x) + g′(x)>µ,
0 ≤ µ ⊥ g(x) ≤ 0, (10)

where µ ⊥ g(x) means that 〈µ, g(x)〉 = 0. We make the standing assumption
that the KKT system (10) has a primal-dual solution (in fact, if the con-
straints are degenerate, there are many dual solutions associated to the same
primal solution). The setting of existence of multipliers, while not assuming
any specific constraint qualifications that are sufficient for this, is common
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when dealing with degenerate problems, e.g., [18,5,10,20,12,11]. In optimiza-
tion, the combination of SOSC with the existence of multipliers is related to
the Guignard constraint qualification (GCQ) [6]. The latter amounts to the
existence of a multiplier for every objective function for which the point un-
der consideration is a local minimizer (the feasible set is fixed). However,
there is no equivalence, as for a given problem a multiplier may exist when
GCQ does not hold (i.e., there may exist another objective function that has
the point in question as its minimizer on the given set, but for which there
are no multipliers, e.g., Example 1 below).

The rest of the paper is organized as follows. In Section 2, we recall the
general iterative framework of Fischer [5] that will be used to prove superlin-
ear convergence of our algorithm. We note that in [5], the general framework
has been applied to the method of proximally-regularized linearizations of
monotone mixed complementarity problems (MCP), and to sSQP for KKT
systems arising from optimization. Compared to the first item, our iterations
are different (regularization is in the dual space only), and we do not as-
sume any monotonicity or convexity. Compared to the second item, we cover
KKT systems that include variational problems, and prove superlinear con-
vergence under SOSC instead of SSOSC employed in [5]. In Section 3, we
prove that subproblems (9) are locally solvable if σ(·) provides a local error
bound [15,9] on the distance to the solution set of the KKT system (10). In
Section 4, among other things, we derive a suitable error bound. The results
of Sections 3 and 4 show that the assumptions of [5], stated in Section 2, are
verified, which implies superlinear convergence of the method given by (9).
Convergence results are formally stated in Section 5.

Some words about our notation. We use 〈·, ·〉 to denote the Euclidean
inner product, ‖ · ‖ the associated norm, and B the unit ball (the space is
always clear from the context). For any matrix M , MI denotes the submatrix
of M with rows indexed by the set I. When in matrix notation, vectors are
considered columns, and for a vector x we denote by xI the subvector of x
with coordinates indexed by I. We use I to denote the identity matrix (the
dimension is always clear from the context). We use the notation ξ(t) = o(t)
for any function ξ : R+ → R

q such that limt→0 t
−1ξ(t) = 0. For a function

Ψ : Rn×Rm → R
q, we denote by Ψ ′(x̄, µ̄) the full derivative of Ψ at the point

(x̄, µ̄), and by Ψ ′x(x̄, µ̄) the partial derivative of Ψ with respect to x at (x̄, µ̄).
For a set S ⊂ Rl and a point z ∈ Rl, the distance from z to S is defined as
dist(z, S) = infs∈S ‖z − s‖. Then ΠS(z) = {s ∈ S | dist(z, S) = ‖z − s‖} is
the set of all points in S that have minimal distance to z. For a cone K ⊂ Rl,
its (positive) dual is K∗ = {u ∈ Rl | 〈u, v〉 ≥ 0∀v ∈ K}. Recall that a matrix
M ∈ Rl×l is said to be copositive on a cone K ⊂ Rl if 〈Mv, v〉 ≥ 0 for all
v ∈ K, and strictly copositive if this inequality is strict for all v ∈ K \ {0}.

2 Fischer’s general iterative framework

Let G : Rq → R
l be a continuous map, T be a closed set-valued map from

R
q to Rl, and consider the generalized equation (GE)

Find w ∈ Rq such that 0 ∈ G(w) + T (w). (11)
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Denote by Σ∗ the (nonempty) solution set of (11).
Consider a class of methods that, given s ∈ Rq, generate the next iterate

by solving a subproblem of the form

Find w ∈ Rq such that 0 ∈ A(w, s) + T (w), (12)

where A(·, s) is an approximation of G(·) around s (in [5], A(·, s) can be set-
valued; in our application it will be point-to-point). Note that when T (·) is
the normal cone associated to a closed convex set and A(·, s) is the standard
linearization of G(·) at the point s, then (12) reduces to an iteration of the
classical Josephy-Newton method [13].

Denote by
Z(s) = {w ∈ Rq | 0 ∈ A(w, s) + T (w)}

the solution set of (12). In local convergence analyses it is standard to assume
that the distance between two consecutive iterates is not too large (without
very strong assumptions, subproblems (12) may have other solutions that are
far from a given solution of (11) that is being approximated; those solutions
are irrelevant for the local analysis and should be excluded). To this end,
define

Zc(s) = {w ∈ Z(s) | ‖w − s‖ ≤ c dist(s,Σ∗)},
where c ∈ [1,+∞) is arbitrary but fixed, and consider the iterative scheme

w0 ∈ Rq, wk+1 ∈ Zc(wk), k = 0, 1, . . . (13)

Then the following holds (see [5, Theorem 1]).

Theorem 1 Let Σ∗ be the (nonempty) solution set of (11). Assume the fol-
lowing three properties:
1. (Upper Lipschitz-continuity of the solution set of GE)

There exist numbers ε1, γ, t > 0 such that, with Q = Σ0 + ε1B, it holds
that

Σ(p) ∩Q ⊆ Σ∗ + t‖p‖B ∀p ∈ γB,
where Σ0 6= ∅ is a closed subset of Σ∗, and

Σ(p) = {w ∈ Rq | 0 ∈ G(w) + T (w) + p}.

2. (Precision of approximation of G(·) by A(·, s))
There exists ε2 > 0 such that

sup {‖R(w, s)‖ : w ∈ s+ c dist(s,Σ∗)B} ≤ o (dist(s,Σ∗)) ∀s ∈ Σ0+ε2B,

where R(w, s) = G(w)−A(w, s).
3. (Solvability of subproblems)

There exists ε3 > 0 such that Zc(s) 6= ∅ for all s ∈ Σ0 + ε3B.
Then there exists ε > 0 such that for any w0 ∈ Σ0 + εB, the iterates

generated according to (13) are well defined and converge superlinearly to
some w∗ ∈ Σ∗. Furthermore, the convergence is of order β if the function
o(·) in Item 2 satisfies

o(t) ≤ c0t
β ∀t ∈ [0, 1],

for some c0 > 0 and β > 1 (in particular, convergence is quadratic if β = 2).
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To relate the proposed iterative scheme (9) to the framework above, define

G(x, µ) =
[
Ψ(x, µ)
−g(x)

]
, T (x, µ) =

[
0

N (µ)

]
, (14)

where

N (µ) =
{
{ν ∈ Rm

+ | ν ≤ 0, 〈ν, µ〉 = 0} if µ ≥ 0,
∅, otherwise,

is the normal cone to the nonnegative orthant Rm
+ at µ ∈ Rm. Let w =

(x, µ) ∈ Rn × Rm = R
q. Then the KKT system (10) for problem (1) is

equivalent to solving the generalized equation (11) with G and T given by
(14).

Since subproblem (9) of our method is an affine VI, it is equivalent to
solving the KKT system of finding (y, λ, ν) ∈ Rn ×Rm ×Rm such that

0 = F (xk) + Ψ ′x(xk, µk)(y − xk) + g′(xk)>ν,

0 = σ(xk, µk)λ− σ(xk, µk)ν,

0 ≤ ν ⊥ [g(xk) + g′(xk)(y − xk)− σ(xk, µk)(λ− µk)] ≤ 0.

Noting that λ = ν by the second relation, the above is then equivalent to
finding (y, λ) ∈ Rn ×Rm such that

0 = F (xk) + Ψ ′x(xk, µk)(y − xk) + g′(xk)>λ

= Ψ(xk, µk) + Ψ ′x(xk, µk)(y − xk) + g′(xk)>(λ− µk), (15)

0 ≤ λ ⊥ [g(xk) + g′(xk)(y − xk)− σ(xk, µk)(λ− µk)] ≤ 0.

Letting now w = (x, µ) ∈ Rn ×Rm = Rq, s ∈ Rq,

A(w, s) = G(s) +
(
G′(s) + Λ(s)

)
(w − s), Λ(s) =

[
0 0
0 σ(s)I

]
,

where G is defined in (14), we obtain that solving (15) (and thus (9)) is
equivalent to solving GE subproblems (12).

The rest of the paper proves that problem (11) and subproblem (12),
corresponding to problem (10) and subproblem (15), respectively, satisfy the
assumptions of Theorem 1. The hard part is to prove, under a (weak) second-
order condition only, the upper Lipschitz-continuity of the solution set of the
KKT system (10) and, especially, solvability of subproblems (15) (Assump-
tions 1 and 3 of Theorem 1).

Assumption 2 is easily seen to be satisfied, because

‖R(w, s)‖ = ‖G(w)−A(w, s)‖
= ‖G(w)−G(s)− (G′(s) + Λ(s))(w − s)‖

≤
∥∥∥∥∫ 1

0

[G′(s+ t(w − s))−G′(s)](w − s)dt
∥∥∥∥ + ‖Λ(s)(w − s)‖

≤
(∫ 1

0

‖G′(s+ t(w − s))−G′(s)‖dt+ σ(s)
)
‖w − s‖,
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which implies that
‖R(w, s)‖ ≤ o (dist(s,Σ∗))

when w ∈ s+ c dist(s,Σ∗)B and

σ(s) ≤ L1 dist(s,Σ∗)

for some L1 > 0. The latter inequality holds for any reasonable residual σ(·)
of the KKT system (by the Lipschitz-continuity); this will be made evident
in Section 4.

Note also that if, in addition, the derivatives F ′ and g′′ are Lipschitz-
continuous, then so is G′, and we have that

‖R(w, s)‖ ≤ L2dist(s,Σ∗)2. (16)

3 Solvability of subproblems

We next prove that KKT subproblems of the form (15) (which are equivalent
to affine variational subproblems (9)) are locally solvable if a certain second-
order condition holds, and if the dual regularization parameters σ(xk, µk) are
of the order of the distance to the solution set of the KKT system (10) for
problem (1). A specific computable way of choosing such parameters will be
discussed in Section 4.

Let x̄ be a solution of the variational problem (1), and let

M(x̄) = {µ ∈ Rm | (x̄, µ) solves (10)}

be the associated (nonempty) set of Lagrange multipliers. Let the sets of
active, strongly active and weakly active constraints (I = I(x̄), I+(x̄, µ) and
I0(x̄, µ), respectively) be defined as in Section 1.

We say that (x̄, µ̄), with µ̄ ∈ M(x̄), satisfies the second-order condition
(SOC) for the KKT system (10) if

〈Ψ ′x(x̄, µ̄)u, u〉 > 0 ∀u ∈ C(x̄;D,F )\{0}, (17)

where

C(x̄;D,F ) = {u ∈ Rn | 〈F (x̄), u〉 = 0, 〈g′i(x̄), u〉 ≤ 0 ∀ i ∈ I(x̄)}

=
{
u ∈ Rn

∣∣∣∣ 〈g′i(x̄), u〉 = 0 ∀ i ∈ I+(x̄, µ)
〈g′i(x̄), u〉 ≤ 0 ∀ i ∈ I0(x̄, µ)

}
. (18)

(As is well known, the second equality above does not depend on the choice
of µ ∈ M(x̄).) In the case of the optimization problem (4), C(x̄;D,F ) is
the standard critical cone (6) at x̄, and (17) is the standard second-order
condition (5) which is sufficient for optimality of the point x̄.

As already mentioned, we assume also that the function σ(·) satisfies the
error bound property. As Lemma 2 in Section 4 shows that under SOC (17)
(in fact, under the more general SOC (51)) the primal part x̄ of the solution
is locally unique, we can write our error bound in the following form: there
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exist a neighborhood V of (x̄, µ̄) and constants β2 ≥ β1 > 0 such that for all
(x, µ) ∈ V it holds that

β1

(
‖x−x̄‖+dist(µ,M(x̄))

)
≤ σ(x, µ) ≤ β2

(
‖x−x̄‖+dist(µ,M(x̄))

)
. (19)

More details on a computable choice of σ(·) will be given in Section 4.
We start with extending SOC (17) from the copositivity property of the

matrix in a primal cone to uniform positivity, in a neighbourhood of the point
(x̄, µ̄), of a certain function in a certain parametric primal-dual cone.

Proposition 1 Let F and g satisfy the smoothness assumptions (2). Suppose
that SOC (17) holds at (x̄, µ̄) and that σ satisfies the right-most inequality in
(19). Then there exist a constant γ1 > 0 and a neighborhood V of (x̄, µ̄) such
that for all (x, µ) ∈ V it holds that

〈Ψ ′x(x, µ)u, u〉+ σ(x, µ)‖v‖2 ≥ γ1

(
‖u‖2 + σ(x, µ)‖v‖2

)
∀(u, v) ∈ K(x, µ),

(20)
where

K(x, µ) =
{

(u, v) ∈ Rn ×R|I|
∣∣∣∣ 〈g′i(x), u〉 = σ(x, µ)vi, i ∈ I+(x̄, µ̄)
〈g′i(x), u〉 ≤ σ(x, µ)vi, i ∈ I0(x̄, µ̄)

}
.

(21)

Proof Suppose the contrary, i.e., that there exist {(xk, µk)} → (x̄, µ̄) and
(uk, vk) ∈ K(xk, µk) such that

〈Ψ ′x(xk, µk)uk, uk〉+ σk‖vk‖2 <
1
k

(‖uk‖2 + σk‖vk‖2), (22)

where σk = σ(xk, µk). Evidently, (22) subsumes that (uk, vk) 6= 0. Let ηk =
‖(uk,

√
σkv

k)‖ > 0. Passing onto a subsequence, if necessary, we can assume
that

1
ηk

[
uk

√
σkv

k

]
→

[
ū
w̄

]
6= 0. (23)

Observe that since σk → 0 by the right-most inequality in (19), while√
σkv

k/ηk is bounded, it holds that

σk
vk

ηk
=
√
σk

√
σkv

k

ηk
→ 0. (24)

Since K(xk, µk) is a cone, we have that (uk/ηk, v
k/ηk) ∈ K(xk, µk). Dividing

now relations in (21) by ηk and passing onto the limit, taking into account
(24) we obtain that

〈g′i(x̄), ū〉 = 0 ∀ i ∈ I+(x̄, µ̄), 〈g′i(x̄), ū〉 ≤ 0 ∀ i ∈ I0(x̄, µ̄),

i.e., ū ∈ C(x̄;D,F ).
On the other hand, dividing (22) by η2

k and taking limits, we have that

〈Ψ ′x(x̄, µ̄)ū, ū〉+ ‖w̄‖2 ≤ 0. (25)

This shows that 〈Ψ ′x(x̄, µ̄)ū, ū〉 ≤ 0 for ū ∈ C(x̄;D,F ). Hence, ū = 0. Now
from (25) we have that w̄ = 0 also, in contradiction with (23). ut
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Corollary 1 Let F and g satisfy the smoothness assumptions (2). Suppose
that SOC (17) holds at (x̄, µ̄) and that σ satisfies the right-most inequality
in (19). Then there exists a neighborhood V of (x̄, µ̄) such that the matrix[

Ψ ′x(x, µ) g′I(x)
>

−g′I(x) σ(x, µ)I

]
(26)

is nonsingular for all (x, µ) ∈ V such that σ(x, µ) > 0.

Proof By Proposition 1, there exists a neighborhood V of (x̄, µ̄) such that
(20) holds. Let (x, µ) ∈ V, σ(x, µ) > 0, and suppose that (u, v) is a vector in
the kernel of the matrix given in (26), i.e.,

0 = Ψ ′x(x, µ)u+ g′I(x)
>v, (27)

0 = −g′I(x)u+ σ(x, µ)v. (28)

By (28) we have that 〈g′i(x), u〉 = σ(x, µ)vi for all i ∈ I. This shows that
(u, v) ∈ K(x, µ) defined in (21). Also, multiplying (28) by v we have

〈g′I(x)u, v〉 = σ(x, µ)‖v‖2.

Multiplying by u both sides in (27), we then obtain that

0 = 〈Ψ ′x(x, µ)u, u〉+ 〈g′I(x)>v, u〉 = 〈Ψ ′x(x, µ)u, u〉+ σ(x, µ)‖v‖2.

Then, by (20), we have that 0 ≥ γ1(‖u‖2 + σ(x, µ)‖v‖2). Hence, u = 0 and
v = 0, implying that the matrix in (26) is nonsingular. ut

Our proof of existence of solutions of subproblems is done in two steps.
We start with showing that a certain part of KKT subproblem (15) has a
solution. We shall make use of the existence result in [4, Theorem 2.5.10].
More specifically, we shall need a consequence of [4, Theorem 2.5.10], which
we state as follows.

Theorem 2 Let K be a closed convex cone in Rl and M ∈ Rl×l. Suppose
that d = 0 is the unique solution of the generalized complementarity problem

K 3 d ⊥Md ∈ K∗, (29)

and that M is copositive on K.
Then for all q ∈ Rl, the generalized complementarity problem of finding

d ∈ Rl such that
K 3 d ⊥Md+ q ∈ K∗

has a nonempty compact solution set.

Clearly, if M is strictly copositive on K then (29) has the origin as the
unique solution, and all the assumptions of Theorem 2 hold.
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Proposition 2 Let F and g satisfy the smoothness assumptions (2). Suppose
that SOC (17) holds at (x̄, µ̄) and that σ satisfies the right-most inequality in
(19). Then there exists a neighborhood V of (x̄, µ̄) such that for all (x, µ) ∈ V
with σ(x, µ) > 0, the mixed complementarity problem of finding (y, λI) ∈
R

n ×R|I| such that

0 = F (x) + Ψ ′x(x, µ)(y − x) + g′I(x)
>λI ,

0 = gi(x) + 〈g′i(x), y − x〉 − σ(x, µ)(λi − µi), i ∈ I+(x̄, µ̄), (30)
0 ≤ λi ⊥ gi(x) + 〈g′i(x), y − x〉 − σ(x, µ)(λi − µi) ≤ 0, i ∈ I0(x̄, µ̄),

has a nonempty compact solution set.

Proof Define

M =
[
Ψ ′x(x, µ) 0

0 σ(x, µ)I

]
, q =

[
F (x)− Ψ ′x(x, µ)x

0

]
,

bi = gi(x)− 〈g′i(x), x〉+ σ(x, µ)µi, i ∈ I,
and the |I| × (n+ |I|) matrix A with rows given by

ai =
[

g′i(x)
−σ(x, µ)ei

]
,

where ei ∈ R|I| is the i-th vector of the canonical basis. With this notation,
it can be seen that (30) is equivalent to solving the following affine variational
inequality:

Find z̄ ∈ Q s.t. 〈Mz̄ + q, z − z̄〉 ≥ 0 ∀ z ∈ Q, (31)

where

Q = {z ∈ Rn ×R|I| | AI+z + bI+ = 0, AI0z + bI0 ≤ 0},

I+ = I+(x̄, µ̄), I0 = I0(x̄, µ̄).
Let (ũ, ṽI) be the unique solution of the linear system[

Ψ ′x(x, µ) g′I(x)
>

−g′I(x) σ(x, µ)I

] [
u
vI

]
=

[
−F (x)− g′I(x)

>µI
gI(x)

]
,

which exists due Corollary 1. Define z̃ = (x+ ũ, µI + ṽI). For each i ∈ I we
then have that

〈ai, z̃〉 = 〈g′i(x), x〉 − σ(x, µ)µi + 〈g′i(x), ũ〉 − σ(x, µ)ṽi

= 〈g′i(x), x〉 − σ(x, µ)µi − gi(x)
= −bi.

In particular, z̃ ∈ Q and all the constraints defining the polyhedral set Q
are active at z̃. Note that, in the adopted notation, the cone K = K(x, µ)
defined in (21) can be written as

K = {d ∈ Rn ×R|I| | AI+d = 0, AI0d ≤ 0}.
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Hence,

Q = {z ∈ Rn ×R|I| | AI+(z − z̃) = 0, AI0(z − z̃) ≤ 0} = z̃ +K.

We can then write (31) in the following form:

Find d̄ ∈ K s.t. 〈Md̄+Mz̃ + q, d− d̄〉 ≥ 0 ∀ d ∈ K,

which is the generalized complementarity problem

K 3 d̄ ⊥Md̄+Mz̃ + q ∈ K∗. (32)

Furthermore, the copositivity property (20)-(21) with K = K(x, µ), can
be written in the form

〈Md, d〉 ≥ γ1〈Ed, d〉 ∀ d ∈ K, (33)

where

E =
[
I 0
0 σ(x, µ)I

]
.

By Proposition 1, there exists a neighborhood V of (x̄, µ̄) such that (33)
holds for all (x, µ) ∈ V. This shows that if σ(x, µ) > 0 then M is strictly
copositive on the cone K. Now Theorem 2 implies that (32) has a nonempty
compact solution set. ut

We next show that the step given by solving the system (30), which is
part of our subproblem (15), satisfies the localization property appearing in
the iterative framework of Section 2.

Proposition 3 Let F and g satisfy the smoothness assumptions (2). Suppose
that SOC (17) holds at (x̄, µ̄) and that σ satisfies both inequalities in (19).
Then there exist a neighborhood V of (x̄, µ̄) and a constant γ3 > 0 such that
for all (x, µ) ∈ V ∩ (Rn ×Rm

+ ) with σ(x, µ) > 0, it holds that∥∥∥∥[
y − x
λI − µI

]∥∥∥∥ ≤ γ3σ(x, µ),

where (y, λI) is any solution of (30).

Proof Suppose the contrary, i.e., that there exists a sequence {(xk, µk)} ⊂
R

n ×Rm
+ such that

(xk, µk) → (x̄, µ̄) and ηk =
∥∥∥∥[

yk − xk

λk
I − µk

I

]∥∥∥∥ > kσk,

where σk = σ(xk, µk) > 0 and (yk, λk
I) satisfies

0 = F (xk) + Ψ ′x(xk, µk)(yk − xk) + g′I(x
k)>λk

I , (34)

0 = gi(xk) + 〈g′i(xk), yk − xk〉 − σk(λk
i − µk

i ), i ∈ I+(x̄, µ̄), (35)

0 ≤ λk
i ⊥ gi(xk) + 〈g′i(xk), yk − xk〉 − σk(λk

i − µk
i ) ≤ 0, i ∈ I0(x̄, µ̄).(36)
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By the assumption above,
σk

ηk
<

1
k
→ 0. (37)

Note first that, by (19), it holds that

‖gI(xk)‖ = ‖gI(xk)− gI(x̄)‖ ≤ c1‖xk − x̄‖ ≤ c2σk, (38)

‖g′I(xk)− g′I(x̄)‖ ≤ c3‖xk − x̄‖ ≤ c4σk. (39)

Denote µ̂k = ΠM(x̄)(µk). Since µ̂k
i = 0 for all i /∈ I, we have that

‖F (xk) + g′I(x
k)>µk

I‖ = ‖F (xk) + g′I(x
k)>µk

I − F (x̄)− g′I(x̄)
>µ̂k

I‖
≤ c5

(
‖xk − x̄‖+ ‖µk

I − µ̂k
I‖

)
≤ c6σk, (40)

where the first inequality follows from the Lipschitz-continuity of the func-
tions involved, and the last follows from (19).

Taking a subsequence, if necessary, we can assume that

1
ηk

[
yk − xk

λk
I − µk

I

]
→

[
u
w

]
6= 0. (41)

Using (34), we have that

0 = F (xk) + g′I(x
k)>µk

I + Ψ ′x(xk, µk)(yk − xk) + g′I(x
k)>(λk

I − µk
I).

Dividing by ηk and taking the limits, using (37) and (40) we obtain that

0 = Ψ ′x(x̄, µ̄)u+ g′I(x̄)
>w. (42)

By (35) and (36), using also that µk
I ≥ 0, we have that

〈λk
I , gI(x

k) + g′I(x
k)(yk − xk)− σk(λk

I − µk
I)〉 = 0,

〈µk
I , gI(x

k) + g′I(x
k)(yk − xk)− σk(λk

I − µk
I)〉 ≤ 0.

Hence,

〈λk
I − µk

I , gI(x
k) + g′I(x

k)(yk − xk)− σk(λk
I − µk

I)〉 ≥ 0.

Dividing by η2
k and taking the limits, using (37) and (38) we obtain that

〈w, g′I(x̄)u〉 ≥ 0. (43)

Also, from (35) and (36), dividing by ηk and taking the limits we have
that

〈g′i(x̄), u〉 = 0, i ∈ I+(x̄, µ̄), 〈g′i(x̄), u〉 ≤ 0, i ∈ I0(x̄, µ̄).

Thus u ∈ C(x̄;D,F ).
Multiplying by u in (42) and using (43), we obtain

0 ≥ 〈Ψ ′x(x̄, µ̄)u, u〉,
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so that SOC (17) implies that u = 0. Hence,

0 = g′I(x̄)
>w. (44)

Consider the QR-factorization of g′I(x̄), that is

g′I(x̄) = [U V ]
[
R
0

]
,

where [U V ] ∈ R|I|×|I| is an orthogonal matrix and R> has zero kernel (in
particular, columns of V give an orthonormal basis for ker g′I(x̄)

>).
Since

gI(xk) = gI(x̄)+g′I(x̄)(x
k−x̄)+O(‖xk−x̄‖2) = g′I(x̄)(x

k−x̄)+O(‖xk−x̄‖2)

and
V >g′I(x̄) = 0, (45)

we have that
V >gI(xk) = O(‖xk − x̄‖2).

By (19), we then have that

‖V >gI(xk)‖ ≤ c7σ
2
k. (46)

By (44), we have that 0 = g′I(x̄)
>w = R>U>w. Thus U>w = 0. Hence,

w = UU>w + V V >w = V V >w. (47)

Let

Ik = {i ∈ I | gi(xk) + 〈g′i(xk), yk − xk〉 − σk(λk
i − µk

i ) = 0}.

Evidently, there exists an index set J such that Ik = J for infinitely many
indices k. From now on, we consider the subsequence such that Ik = J ,
without introducing further subindices.

If i /∈ J then λk
i = 0, so that λk

i −µk
i = −µk

i ≤ 0. Thus from (41), wi ≤ 0
for all i /∈ J .

Let us define the cone

Q = {ξ ∈ R|I| | ξi = 0, i ∈ J , ξi ≥ 0, i /∈ J }.

Since wi ≤ 0 for i /∈ J , it holds that

−w ∈ Q∗.

By (35) and (36), we have that

−gI(xk)− g′I(x
k)(yk − xk) + σk(λk

I − µk
I) ∈ Q.

Multiplying this relation by V >, dividing by ηkσk and using (45), gives

−V
>gI(xk)
ηkσk

− V >(g′I(x
k)− g′I(x̄))
σk

(yk − xk)
ηk

+
V >(λk

I − µk
I)

ηk
∈ V >Q.
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Taking the limits, using (46), (39), (37) and the facts that (yk − xk)/ηk →
u = 0 and that the set V >Q is closed, we obtain that

V >w ∈ V >Q.

Then there exists ξ ∈ Q such that V >w = V >ξ. Since −w ∈ Q∗ and
w = V V >w, we conclude that

0 ≥ 〈w, ξ〉 = 〈V V >w, ξ〉 = 〈V V >ξ, ξ〉 = ‖V >ξ‖2.

Thus V >w = V >ξ = 0, so that (47) implies that w = 0.
Then (u,w) = 0, in contradiction with (41). ut

We now extend the solution of (30) to the solution of our subproblem
(15), showing also that the needed localization property holds.

Theorem 3 Let F and g satisfy the smoothness assumptions (2). Suppose
that SOC (17) holds at (x̄, µ̄) and that σ satisfies both inequalities in (19).

Then there exist a neighborhood V of (x̄, µ̄) and a constant γ4 > 0 such
that for all (x, µ) ∈ V ∩ (Rn × Rm

+ ) with σ(x, µ) > 0, there exists (ȳ, λ̄), a
solution of the mixed complementarity problem of finding (y, λ) ∈ Rn ×Rm

such that

0 = F (x) + Ψ ′x(x, µ)(y − x) + g′(x)>λ,
0 ≤ λ ⊥ [g(x) + g′(x)(y − x)− σ(x, µ)(λ− µ)] ≤ 0, (48)

satisfying ∥∥∥∥[
ȳ − x
λ̄− µ

]∥∥∥∥ ≤ γ4σ(x, µ). (49)

Proof By Proposition 3, there exist a neighborhood V of (x̄, µ̄) and a constant
γ3 > 0 such that ∥∥∥∥[

y − x
λI − µI

]∥∥∥∥ ≤ γ3σ(x, µ), (50)

for any (x, µ) ∈ V such that σ(x, µ) > 0 and any solution (y, λI) of (30).
Set ȳ = y, λ̄I = λI and λ̄i = 0 for all i /∈ I. Evidently, with this

choice, (30) implies the first equality in (48), as well as the complementarity
conditions in (48) for the indices in I0(x̄, µ̄).

For i /∈ I, we have that

gi(x) + 〈g′i(x), ȳ − x〉 − σ(x, µ)(λ̄i − µi) = gi(x) + 〈g′i(x), ȳ − x〉+ σ(x, µ)µi

≤ gi(x̄)/2 < 0

if (x, µ) is sufficiently close to (x̄, µ̄) (so that σ(x, µ) is small enough and, con-
sequently, so is (ȳ−x), by (50)). This verifies the complementarity conditions
in (48) for the indices not in I.

Given the second relation in (30), it remains to check the nonnegativity
of λ̄i, i ∈ I+(x̄, µ̄). For i ∈ I+(x̄, µ̄), we have that

λ̄i = µi + (λ̄i − µi) ≥ µ̄i/2 > 0
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if (x, µ) is sufficiently close to (x̄, µ̄) (so that σ(x, µ) is small enough and,
consequently, so is (λ̄I − µI), by (50)).

This concludes the proof of the existence of a solution of (48). Finally, let
µ̂ = ΠM(x̄)(µ). For i /∈ I, we have that

|λ̄i − µi| = |µi| = |µi − µ̂i| ≤
1
β1
σ(x, µ),

by (19). Combining this with (50) proves that (49) holds. ut

Theorem 3 establishes that Assumption 3 of Theorem 1 is satisfied for
Σ0 = {(x̄, µ̄)}. In particular, subproblems given by (9) (equivalently, by (15))
are locally solvable, and the distance between consecutive iterates can be
bounded above by a measure of violation of KKT conditions for the original
problem (1).

4 Upper Lipschitz-continuity of the solution set and a new error
bound for KKT systems

This Section verifies Assumption 1 of Theorem 1 under SOC

〈Ψ ′x(x̄, µ̄)u, u〉 6= 0 ∀u ∈ C(x̄;D,F )\{0}, (51)

which is an extension of (17) used in Section 3 (Note that since the cone
C(x̄;D,F ) is convex, (51) means that the inequality holds either with the
positive sign for all u ∈ C(x̄;D,F )\{0}, or with the negative sign).

We also show that the so-called natural residual [15]

σ : Rn ×Rm → R+, σ(x, µ) =
∥∥∥∥[

Ψ(x, µ)
min{−g(x), µ}

]∥∥∥∥ , (52)

where the minimum is applied component-wise, provides a local error bound
(19) for the solution set of the KKT system (10) under SOC (51), see Theorem
4 below. We note that there are a number of related error bound results
in the literature for KKT systems of optimization problems. In particular,
for optimization, [20, Theorem 3.1] establishes essentially the same result
as ours under SOC (17) (i.e., (51) with the positive sign). See also [3,8,
5,9] for related work. However, apart from our error bound being valid in
the more general variational context, we note that while SOC (51) with
the positive sign has the obvious counterpart in SOSC (5) for minimization,
SOC (51) with the negative sign has no optimization counterpart (neither
for minimization neither for maximization). For this reason, our error bound
result is not an obvious translation from the optimization case.

Our result on upper Lipschitz-continuity of the solution set of KKT sys-
tems is an extension of the analysis in [8] for optimization to the variational
setting.

We start with considering the following problem with affine constraints:
find (x, µ) ∈ Rn ×Rm such that

0 = F (x) +A>µ,
0 ≤ µ ⊥ Ax+ b ≤ 0, (53)
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where A ∈ Rm×n and b ∈ Rm. This is the KKT system associated to the
variational problem

Find x ∈ D̃ s.t. 〈F (x), y − x〉 ≥ 0 ∀ y ∈ D̃, (54)

D̃ = {x ∈ Rn | Ax+ b ≤ 0}.

We first prove local uniqueness of the primal part of the solution of (53) under
SOC (51). Note that in the case of affine constraints, Ψ ′x(x̄, µ̄) = F ′(x̄). Our
result is an extension of [8, Proposition 1], where the optimization case (4)
under the assumption that F ′(x̄) = f ′′(x̄) is strictly copositive on the critical
cone C(x̄) is considered.

Proposition 4 Let F be continuously differentiable at a solution x̄ of (54)
such that

〈F ′(x̄)u, u〉 6= 0 ∀ u ∈ C(x̄; D̃, F )\{0}.

Then there exists a neighborhood V of x̄ such that if x ∈ V and (x, µ) is a
solution of (53), then x = x̄.

Proof Suppose the contrary, i.e., that there exists a sequence {(xk, µk)} of so-
lutions of (53) such that xk → x̄, xk 6= x̄. Taking a subsequence, if necessary,
we can assume that

xk − x̄

‖xk − x̄‖
→ u 6= 0.

Using that I(xk) ⊂ I(x̄) for k sufficiently large, we have that if i /∈ I(x̄)
then i /∈ I(xk) and, hence, µk

i = 0. Thus if i /∈ I(x̄) then µk
i (Ax̄ + b)i = 0

for all k sufficiently large. Since this equality holds trivially for i ∈ I(x̄), we
conclude that

〈µk, Ax̄+ b〉 = 0 (55)

for all k sufficiently large.
Since (xk, µk) is a solution of (53), we have that

0 = 〈F (xk) +A>µk, xk − x̄〉 = 〈F (xk), xk − x̄〉+ 〈µk, A(xk − x̄)〉
= 〈F (xk), xk − x̄〉+ 〈µk, Axk + b〉 − 〈µk, Ax̄+ b〉
= 〈F (xk), xk − x̄〉, (56)

where in the last equation we use (55) and the complementarity condition
for (xk, µk). Dividing (56) by ‖xk − x̄‖ and taking the limits, we obtain that

〈F (x̄), u〉 = 0. (57)

If i ∈ I(x̄), then (A(xk − x̄))i = (Axk + b)i ≤ 0. Dividing this inequality
by ‖xk − x̄‖ and taking the limits, we obtain that

(Au)i ≤ 0 ∀ i ∈ I(x̄). (58)

Together with (57) this shows that u ∈ C(x̄; D̃, F )\{0}.
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Also, note that

〈F (xk), u〉 = −〈A>µk, u〉 = −
∑

i∈I(xk)

µk
i (Au)i ≥ 0, (59)

where in the last inequality we use (58) and the fact that I(xk) ⊂ I(x̄).
Using now (57) and (59) we have that

0 = 〈F (x̄), u〉 = 〈F (xk) + F ′(xk)(x̄− xk), u〉+ o(‖xk − x̄‖)
≥ 〈F ′(xk)(x̄− xk), u〉+ o(‖xk − x̄‖).

Dividing this relation by ‖xk − x̄‖ and taking the limit, we conclude that

0 ≤ 〈F ′(x̄)u, u〉.

On the other hand, using (56), the fact that x̄ is a solution of the varia-
tional problem (54) while xk ∈ D̃, we have

0 = 〈F (xk), xk − x̄〉 = 〈F (x̄), xk − x̄〉+ 〈F ′(x̄)(xk − x̄), xk − x̄〉+ o(‖xk − x̄‖2)

≥ 〈F ′(x̄)(xk − x̄), xk − x̄〉+ o(‖xk − x̄‖2).

Dividing this relation by ‖xk − x̄‖2 and taking the limit, we obtain that

0 ≥ 〈F ′(x̄)u, u〉.

Hence,
〈F ′(x̄)u, u〉 = 0

for u ∈ C(x̄; D̃, F )\{0}, in contradiction with the assumption. ut

Let now F̃ (x) = Mx + q, where M ∈ Rn×n and q ∈ Rn. Consider the
KKT system: find (x, µ) ∈ Rn ×Rm such that

0 = Mx+ q +A>µ,
0 ≤ µ ⊥ Ax+ b ≤ 0, (60)

associated to the affine variational problem

Find x ∈ D̃ s.t. 〈F̃ (x), y − x〉 ≥ 0 ∀ y ∈ D̃.

Define

N(x, µ) =
[
Mx+A>µ

−Ax

]
and ψ =

[
q
b

]
,

so that (60) is equivalent to the generalized equation

ψ ∈ N(x, µ) + T (x, µ), (61)

where T is defined in (14).
The following is an extension of [8, Lemma 1], where M is assumed to be

symmetric and strictly copositive on C(x̄; D̃, F̃ ), to variational setting. Once
Proposition 4 has been established, the argument is essentially the same as
in [8]; we include it for completeness.
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Lemma 1 Suppose that (x̄, µ̄) is a solution of (61) for ψ̄ and that

〈Mu, u〉 6= 0 ∀u ∈ C(x̄; D̃, F̃ )\{0}.

Then there exist β > 0 and neighborhoods V of x̄ and U of ψ̄ such that if
(x, µ) is a solution of (61) for ψ ∈ U and x ∈ V, then

‖x− x̄‖ ≤ β‖ψ − ψ̄‖.

Proof As is well known [16], the function F(x, µ) = N(x, µ) + T (x, µ) and
its inverse

F−1(ψ) = {ω ∈ Rn ×Rm | 0 ∈ F(ω)− ψ},
are polyhedral multifunctions. Furthermore, the function P such that P(x, µ) =
x is polyhedral, and so is the composition P ◦ F−1.

By [16, Proposition 1], polyhedral multifunctions are locally upper Lip-
schitzian at every point, and the Lipschitz constant is independent of the
point. Thus there exist a constant β > 0 and a neighborhood U of ψ̄ such
that

P ◦ F−1(ψ) ⊂ P ◦ F−1(ψ̄) + β‖ψ − ψ̄‖B ∀ψ ∈ U . (62)
Since P ◦ F−1(ψ) is the set of x-components of solutions of (60), by

Proposition 4 there exists a neighborhood V of x̄ such that

P ◦ F−1(ψ̄) ∩ V = {x̄}.

Let ρ = dist(x̄,P ◦ F−1(ψ̄)\{x̄}), and choose V smaller if necessary so
that V ⊂ {x̄}+ ρ

3B. Choose U sufficiently small so that

{x̄}+ β‖ψ − ψ̄‖B ⊂ V ∀ψ ∈ U .

If ψ ∈ U and x ∈ P ◦ F−1(ψ) ∩ V, we obtain from (62) that there exist
x̂ ∈ P ◦ F−1(ψ̄) and p ∈ B such that x = x̂+ β‖ψ − ψ̄‖p. But then

‖x̄− x̂‖ =
∥∥x̄− x+ β‖ψ − ψ̄‖p

∥∥ ≤ ‖x− x̄‖+ β‖ψ − ψ̄‖ ≤ ρ

3
+
ρ

3
< ρ,

implying that x̂ = x̄. Hence, x = x̄+ β‖ψ − ψ̄‖p for some p ∈ B, i.e.,

‖x− x̄‖ ≤ β‖ψ − ψ̄‖.

ut

Thus for our main problem (11) we can state the following error estimates,
that verify the upper Lipschitz-continuity property of the solution set of KKT
systems. The argument is the same as in [8, Lemma 2]; we include it for
completeness.

Lemma 2 Let F be differentiable and g twice differentiable at x̄, and suppose
that there exists µ̄ ∈M(x̄) such that (x̄, µ̄) satisfies SOC (51).

Then there exist a neighborhood V of (x̄, µ̄) and constants γ, τ > 0 such
that for every (x, µ) ∈ V and for each p ∈ γB satisfying

0 ∈ G(x, µ) + T (x, µ) + p, (63)

where G and T are defined in (14), it holds that

‖x− x̄‖+ ‖µ−ΠM(x̄)(µ)‖ ≤ τ‖p‖.
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Proof Consider the affine variational problem (61) with

M = Ψ ′x(x̄, µ̄) and A = g′(x̄).

Let F(x, µ) = N(x, µ) + T (x, µ).
Define ψ1 = N(x, µ) − G(x, µ) − p, where p satisfies (63). Then (x, µ) ∈

F−1(ψ1). Define ψ2 = N(x̄, µ) − G(x̄, µ). Since F (x̄) + A>µ̄ = 0, we have
that

ψ2 =
[
Mx̄+A>µ− F (x̄)−A>µ

−Ax̄+ g(x̄)

]
=

[
Mx̄+A>µ̄

−Ax̄

]
+

[
0

g(x̄)

]
.

As g(x̄) ∈ N (µ̄), this shows that (x̄, µ̄) ∈ F−1(ψ2).
By the differentiability assumptions, ψ1 is close to ψ2 when (x, µ) is close

to (x̄, µ̄) and p is close to 0. Consequently, by choosing V and γ sufficiently
small, Lemma 1 gives us the estimate

‖x− x̄‖ ≤ β0‖ψ1 −ψ2‖ = β0 ‖G(x, µ)−G(x̄, µ)− (N(x, µ)−N(x̄, µ)) + p‖ ,
(64)

for all (x, µ) ∈ V and p ∈ γB.
Given any ε > 0, using the differentiability assumptions and taking V

sufficiently small, we obtain that

‖G(x, µ)−G(x̄, µ)−N(x− x̄, 0)‖ ≤ ε‖x− x̄‖ ∀ (x, µ) ∈ V.
Combining this with (64), we have that

‖x− x̄‖ ≤ β0ε‖x− x̄‖+ β0‖p‖.
Thus, taking ε < 1/β0, we obtain

‖x− x̄‖ ≤ β1‖p‖. (65)

where β1 = β0
1−εβ0

. Consider the decomposition p = (u, v) ∈ Rn × Rm. If
i /∈ I then gi(x̄) < 0. Thus we can take V and γ small enough, so that
gi(x) − vi < 0. From (63) we have that g(x) − v ∈ N (µ). Hence, µi = 0 for
all i /∈ I and µi ≥ 0 for i ∈ I. Since

M(x̄) = {ν ∈ Rm | F (x̄) + g′(x̄)>ν = 0; νi ≥ 0, i ∈ I; νi = 0, i /∈ I},
by Hoffman’s error bound for linear systems we obtain that

‖µ− µ̂‖ ≤ β2‖F (x̄) + g′(x̄)>µ‖ = β2‖Ψ(x̄, µ)‖, (66)

where µ̂ = ΠM(x̄)(µ).
From (63), we have that Ψ(x, µ) + u = 0. Then using the differentiability

assumptions and taking V smaller if necessary, we have

‖Ψ(x̄, µ)‖ ≤ ‖Ψ(x, µ)‖+ ‖Ψ(x̄, µ)− Ψ(x, µ)‖ ≤ ‖u‖+ β3‖x− x̄‖.
Since ‖u‖ ≤ ‖p‖, using (65), we obtain

‖Ψ(x̄, µ)‖ ≤ (1 + β1β3)‖p‖.
Combining this with (65) and (66) gives

‖x− x̄‖+ ‖µ− µ̂‖ ≤ τ‖p‖,
for τ = β1 + β2(1 + β1β3). ut
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This result verifies Assumption 1 of Theorem 1 for Σ0 = {(x̄, µ̄)}. More-
over, by [5, Theorem 2], it now also follows that the natural residual (52)
provides a valid local error bound for the KKT system (10) (as for the right-
most inequality in (19), it follows from Lipschitz-continuity of the functions
involved and the fact that σ(x̄, µ̄) = 0 for any µ̄ ∈ M(x̄).) Specifically, we
have the following.

Theorem 4 Let F be differentiable and g twice differentiable at x̄, and sup-
pose there exists µ̄ ∈M(x̄) such that (x̄, µ̄) satisfies SOC (51).

Then there exist a neighborhood V of (x̄, µ̄) and constants β2 ≥ β1 > 0
such that for all (x, µ) ∈ V the function σ defined in (52) satisfies the error
bound (19).

We note that Theorem 4 gives the first error bound for KKT systems
in variational context that does not subsume some regularity-type assump-
tions about the constraints. Concerning the relations with error bounds for
optimization, e.g., [20, Theorem 3.1], we point out that SOC (51) with the
negative sign does not have a counterpart in any sufficiency condition for
optimization problems. We refer the reader to [9] for a detailed discussion
and comparisons of error bounds for KKT systems.

5 Convergence Results

The results established in Sections 3 and 4 complete the proof of superlinear
convergence of our method, that we formalize as follows.

Theorem 5 Let F and g satisfy the smoothness assumptions (2), and sup-
pose that there exists µ̄ ∈M(x̄) such that (x̄, µ̄) satisfies SOC (17).

Then there exist a neighborhood V of (x̄, µ̄) such that for any (x0, µ0) ∈
V ∩ (Rn × Rm

+ ), the iterates defined by (13) are well defined and converge
superlinearly to (x̄, µ), where µ is some element of M(x̄). Furthermore, the
convergence rate is quadratic if F ′ and g′′ are Lipschitz-continuous in a neigh-
borhood of x̄.

We illustrate our convergence result with the following example.

Example 1 Consider the optimization problem

min x1x2 − x2
2/2

s.t. x2
2 ≤ 0,

−2x1 + x2 ≤ 0,
x1 − 2x2 ≤ 0.

(67)

It can be seen that x̄ = (0, 0) is the unique solution of this problem, and that
the associated set of Lagrange multipliers is given by

M(x̄) = {(µ1, µ2, µ3) ∈ R3 | µ1 ≥ 0, µ2 = µ3 = 0}.

In particular, MFCQ does not hold (incidentally, it can be seen that GCQ
mentioned in Section 1 also does not hold). Furthermore, SOSC (5) holds at
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Table 1 Distance to solution on last 5 iterations

‖x− x̄‖+ dist(µ,M(x̄))

1.5891e-001
1.0599e-002
7.3688e-005
6.3242e-009
8.4865e-017

(x̄, µ̄) for any µ̄ ∈M(x̄) with µ̄1 > 0, but SSOSC (8) is not satisfied for any
multiplier.

We have written a Matlab implementation of sSQP, using the built-in
subroutine quadprog for solving subproblems (7). Experiments were per-
formed choosing random starting points x0

i ∈ [−1/2, 1/2], i = 1, 2, and
µ0

j ∈ [0, 1], j = 1, 2, 3. The stopping criteria was σ(xk, µk) < 10−15.
In about 10% of the cases, the sequence converged linearly to (x̄, µ̄) with

µ̄1 = 0 (SOSC is not valid at this solution). Such cases appear to correspond
to the choices of starting points that are not close enough to a solution (so
that Theorem 5 does not apply). About 3% of the starting points produced
unsolvable subproblems at the first iteration (for the same reason as above –
starting points not being close enough to a solution). All the remaining runs
converged superlinearly to a primal-dual solution satisfying SOSC. Table 1
shows the average values of ‖xk− x̄‖+dist(µk,M(x̄)) for the last 5 iterations
in the cases of convergence to a primal-dual solution satisfying SOSC.

The approach presented here can be used also to prove the uniqueness
of solutions of subproblems (15), extending the result for optimization under
SSOSC (8) obtained in [7] (see also [5]). In our case, for this purpose we shall
assume the stronger version of SOC (17), i.e., that

〈Ψ ′x(x̄, µ̄)u, u〉 > 0 ∀u ∈ C+(x̄, µ̄) \ {0}, (68)

where
C+(x̄, µ̄) = {u ∈ Rn | 〈g′i(x̄), u〉 = 0 ∀i ∈ I+(x̄, µ̄)}.

Theorem 6 Suppose that the assumptions of Theorem 5 are satisfied, with
SOC (17) replaced by SSOC (68).

Then all the assertions of Theorem 5 hold and, in addition, solutions of
subproblems (15) are locally unique.

Proof We shall provide the main steps, indicating the changes needed in the
preceding analysis.

Regarding the proof of Proposition 1, it can be seen that under SSOC
(68) there exists a constant γ2 > 0 such that for all (x, µ) in a neighborhood
of (x̄, µ̄) it holds that

〈Ψ ′x(x, µ)u, u〉+ σ(x, µ)‖v‖2 ≥ γ2

(
‖u‖2 + σ(x, µ)‖v‖2

)
∀(u, v) ∈ K+(x, µ),

(69)
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where

K+(x, µ) =
{

(u, v) ∈ Rn ×R|I| | 〈g′i(x), u〉 = σ(x, µ)vi, i ∈ I+(x̄, µ̄)
}
.

(70)
Since C(x̄;D,F ) ⊂ C+(x̄, µ̄), we have that SOC (17) and, thus, Proposi-

tions 1 and 2 hold. In particular, in the proof of Proposition 2, the generalized
complementarity problem

Find d̄ s.t. K 3 d̄ ⊥Md̄+Mz̃ + q ∈ K∗,

where K is given by (21), has a nonempty compact solution set. Let d1 and
d2 be solutions of this complementarity problem. Then

〈M(d1 − d2), d1 − d2〉 = 〈Md1 +Mz̃ + q − (Md2 +Mz̃ + q), d1 − d2〉
= −〈Md1 +Mz̃ + q, d2〉 − 〈Md2 +Mz̃ + q, d1〉
≤ 0. (71)

Since K+(x, µ) is a subspace and d1, d2 ∈ K ⊂ K+(x, µ), we have that

d1 − d2 ∈ K+(x, µ).

Since (69) implies that M is strictly copositive on K+(x, µ), from (71) we
conclude that d1 − d2 = 0. Hence, the mixed complementarity problem (30)
has the unique solution.

Let us now show that under SSOC (68), for (x, µ) sufficiently close to
(x̄, µ̄) we have that (ȳ, λ̄) ∈ Rn ×Rm

+ , where λ̄i = 0, i /∈ I and (ȳ, λ̄I) is the
solution of (30), is the unique solution of (48) satisfying (49). By Theorem
3, (ȳ, λ̄) ∈ Rn ×Rm

+ defined in this way is a solution of (48) satisfying (49).
Conversely, if (ȳ, λ̄) ∈ Rn ×Rm

+ is a solution of (48) satisfying (49), and if
(x, µ) is sufficiently close to (x̄, µ̄), we have that

gi(x) + 〈g′i(x), ȳ − x〉 − σ(x, µ)(λ̄i − µi) < 0 ∀ i /∈ I,

λ̄i > 0 ∀ i ∈ I+(x̄, µ̄).

Then by the complementarity conditions in (48), we obtain that

λ̄i = 0 ∀ i /∈ I,

gi(x) + 〈g′i(x), ȳ − x〉 − σ(x, µ)(λ̄i − µi) = 0 ∀ i ∈ I+(x̄, µ̄).

Hence, (ȳ, λ̄I) is a solution of (30), which has been established to be unique.
ut
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