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Abstract. This paper proves the well posedness of spatially periodic
solutions of the relativistic isentropic gas dynamics equations. The pres-
sure is given by a γ-law with initial data of large amplitude, provided
γ − 1 is sufficiently small. As a byproduct of our techniques, we obtain
the same results for the classical case. At the limit c → +∞, the solu-
tions of the relativistic system converge to the solutions of the classical
one, the convergence rate being 1/c2. We also construct the semigroup
of solutions of the Cauchy problem for initial data with bounded total
variation, which can be large, as long as γ − 1 is small.

1. Introduction

We consider the 2×2 hyperbolic system of conservation laws describing the
one-dimensional motion of an isentropic relativistic gas in Euler coordinates,
which reads
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Here, ρ is the gas density, v its velocity and p the pressure. We consider
the case of a polytropic gas, in which the pressure is given by the so called
γ-law, p(ρ) = ζ2 ργ , with 1 ≤ γ < 2.
The main result of this paper states the existence of a Standard Riemann

Semigroup (SRS, cf. [4]) of periodic solutions to (1.1), which may have large
amplitude, provided γ − 1 is sufficiently small. In particular, this means
that the initial value problem with periodic initial data is well posed in L1

globally in time, as long as γ − 1 is sufficiently small. In this case, the
total variation per period of the initial data may be taken arbitrarily large,
according to the smallness of γ − 1.
While proving the L1-stability of periodic solutions, we also construct

the SRS for the Cauchy problem. So, our results contain, in particular, the
existence of a SRS for the Cauchy problem, with initial data with arbitrarily
large amplitude and total variation, as long as γ − 1 is sufficiently small.
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The above system has been considered in the literature by many authors,
such as [9, 10, 15] and, in the case γ = 1, [3, 11, 18].
It is immediate to see that in the classical limit c → +∞, system (1.1)

formally converges to the classical Euler equations of isentropic gas dynamics

(1.2)

{
∂tρ+ ∂x(ρ v) = 0

∂t(ρ v) + ∂x

(
ρ v2 + p(ρ)

)
= 0

p(ρ) = ζ2 ργ .

The present analytical techniques apply (more easily) also to the non-rela-
tivistic case (1.2) yielding, in particular, the well posedness of the solutions
constructed in [16, 18] and, more importantly, the well posedness of the peri-
odic solutions constructed in [15]. Furthermore, we prove that in the classical
limit c → +∞, the SRS generated by (1.1) converges to that of (1.2), the
rate of convergence being 1/c2, recovering, in particular, the results in [9].
In the next section we state the main results of the paper, and at the

end we describe the sections along which the main results, as well as the
additional results concerning the non-relativistic case and the limit as c →
+∞, are presented.

2. Statements of the Main Results

Bakhvalov introduced in [2] a class of 2 × 2 strictly hyperbolic and gen-
uinely non-linear systems, characterized by the particular geometry of the
shock curves in the plane of Riemann invariants, for which a global existence
result can be proved for initial data with large oscillation and only locally
bounded total variation.
Namely, consider a strictly hyperbolic, genuinely nonlinear 2× 2 system

(2.1) ∂tu+ ∂xf(u) = 0,

where u = (u1, u2) and f(u) = (f1(u), f2(u)). Let z, w be a pair of Riemann
invariants for (2.1) such that the map (u1, u2) 7→ (z, w) is one-to-one in its
domain. Parametrize the shock curves of the first and second family by

(2.2)
z = R1(w; z0, w0), w ≤ w0; z = L1(w; z0, w0), w ≥ w0;

z = R2(w; z0, w0), w ≤ w0; z = L2(w; z0, w0), w ≥ w0.

In (2.2), the state (z, w) can be connected on the left by Li and on the right
by Ri to (z0, w0) by a shock of the i-th family. Finally, for fixed W,Z ∈ R,
let

(2.3) Ω =
{
(z, w) : z ≥ Z and w ≤W

}
.

The next hypotheses impose conditions on the shock curves under which the
solvability of the Cauchy problem with locally bounded variation is obtained.
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A1: max
i=1,2

sup
(z,w)∈Ω

∣∣λi(z, w)
∣∣ <∞.

A2: ∀(z, w) ∈ Ω with w 6= w0, 1 <
∂R1
∂w

,
∂L1
∂w

< +∞, 0 < ∂R2
∂w

,
∂L2
∂w

< 1.

A3: For i = 1, 2, let zr = Ri(wr; zl, wl). Then the shock curves z =
Ri(w; zl, wl), for w ≤ wl, and z = Li(w; zr, wr), for w ≥ wr, intersect
only in the points (zl, wl), (zr, wr).

A4: If four points (zl, wl), (zr, wr), (zm, wm) and (ẑm, ŵm) satisfy zm =
R2(wm; zl, wl), zr = R1(wr; zm, wm), ẑm = R1(ŵm; zl, wl) and zr =
R2(wr; ẑm, ŵm), then (zl− ẑm)+(ŵm−wr) ≤ (wl−wm)+(zm− zr).

System (2.1) belongs to Bakhvalov’s class over Ω if it satisfies A1 - A4.

Theorem 2.1 ([2, Theorem 1]). Fix Ω as in (2.3) with Z,W ∈ R
2. Let

system (2.1) be strictly hyperbolic and genuinely nonlinear in Ω. If (2.1) be-
longs to Bakhvalov’s class over Ω, then for all uo ∈ BVloc(R; Ω), the Cauchy
problem for (2.1) with datum uo admits a global weak entropy solution.

Remark 2.1. The region considered by Bakhvalov is a subset of Ω, so his
theorem is a little stronger than the above statement.

The proof of Theorem 2.1 involves the construction of a functional F , non-
increasing in time, defined on approximate solutions obtained by the Glimm
scheme, see [2]. This functional is constant along solutions to Riemann
problems and, hence, may be seen as a function of the two initial states. Let
ul and ur be the left and right constant states of a given Riemann problem
whose solution consists of a shock (or rarefaction) wave of first family, say
σ1, followed be a shock (or rarefaction) wave of second family, say σ2.

Definition 2.1. Define F (ul,ur) = [[∆z(σ1) ]]
−
+[[∆w(σ2) ]]

−
, with [[ s ]]

−
=

max{−s, 0} denoting the negative part of s.
As usual, the Riemann coordinates are assumed to have a positive incre-

ment across rarefactions and a negative one across a shock.

Lemma 2.1 ([2, Lemma 1]). Under the same assumptions of Theorem 2.1,
for any three states ul, um and ur in Ω,

(2.4) F (ul,ur) ≤ F (ul,um) + F (um,ur).

The equality holds in (2.4) if and only if um is a value attained by the solution
corresponding to the Riemann data ul, for x < 0, and ur, for x > 0.

As in [15], it is sufficient to use a local version of the above lemma. For any
set B in the (z, w) plane, define R[B] to be the set of all values attained by
the solution to any Riemann problem with initial data in B. The following
is [15, Lemma 3.2].

Lemma 2.2. Let B0 and B1 be rectangles in the (z, w) plane with the prop-
erty that R[R[B0]] ⊂ B1 and system (2.1) verifies Bakhvalov conditions Ai,
i = 1, .., 4, when restricted to B1. Then for any three states ul, um and ur

in B0 we have

(2.5) F (ul,ur) ≤ F (ul,um) + F (um,ur),
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z

∆z

∆ẑ
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Figure 1. Hypothesis B4.

and equality holds in (2.4) if um is a value assumed by the Riemann solution
corresponding to the Riemann data ul, for x < 0, and ur, for x > 0.

It is convenient to substitute condition A4 by the following stronger con-
dition introduced by DiPerna in [12]. Define

R1(z0, w0) =
{
(z, w) : z = R1(w; z0, w0), w ≤ w0

}
,

L2(z0, w0) =
{
(z, w) : z = L2(w; z0, w0), w ≥ w0

}
,

and
∆w = w − w0, ∆ŵ = ŵ − ŵ0, ∆z = z − z0, ∆ẑ = ẑ − ẑ0.

Condition B4 consists of the following
B4.1: Let (ẑ0, ŵ0) ∈ R1(z0, w0). If z = L2(w; z0, w0), ẑ = L2(ŵ; ẑ0, ŵ0)

and ∆ŵ = ∆w, then ∆ẑ ≥ ∆z.
B4.2: Let (ẑ0, ŵ0) ∈ L2(z0, w0). If z = R1(w; z0, w0), ẑ = R1(ŵ; ẑ0, ŵ0)

and ∆ẑ = ∆z, then ∆ŵ ≥ ∆w.
The above conditions depend on the choice of the pair of Riemann invariants.
System (1.1) falls within (2.1) by setting

(2.6)

u1 = ρ
1 +

(
v
c

)2 p(ρ)
c2ρ

1−
(
v
c

)2

u2 = ρ v
1 + p(ρ)

c2ρ

1−
(
v
c

)2

f(u1, u2) =




ρ v
1 + p(ρ)

c2ρ

1−
(
v
c

)2

ρ v2 + p(ρ)

1−
(
v
c

)2



.

The characteristic speeds of (1.1) are:

λ1 =
v −

√
p′(ρ)

1− v
√

p′(ρ)

c2

and λ2 =
v +

√
p′(ρ)

1 +
v
√

p′(ρ)

c2

.

For later use, introduce the physically relevant set

(2.7) U =
{
u ∈ R̊

+ × R : ρ > 0, p′ < c2, v2 < c2
}
.
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It is immediate to verify that if u ∈ U , then −c < λ1(u) < λ2(u) < c.
Throughout the paper, u ∈ U denotes the conserved variables (2.6), while
v ∈ V, with V = v(U), denotes the Riemann coordinates v = (v1, v2),
see [10, formulæ (2.24)-(2.25)]:

(2.8) v1 =
c

2
log

c+ v

c− v −
∫ ρ

0

√
p′(r)

r + p(r)
c2

dr, v2 =
c

2
log

c+ v

c− v +
∫ ρ

0

√
p′(r)

r + p(r)
c2

dr.

We remark that v is defined only for |v| < c and that the vacuum state
corresponds to the line v1 = v2, while v2 > v1 corresponds to ρ > 0. In the
case of the γ-law p = ζ2ργ , the above integrals can be explicitly computed:

∫ ρ

0

√
p′(r)

r + p(r)
c2

dr = c
2
√
γ

γ − 1 arctan
(
ζ

c
ρ(γ−1)/2

)
if γ ∈ ]1, 2] ,

∫ ρ

ρ∗

√
p′(r)

r + p(r)
c2

dr =
ζ

1 +
(

ζ
c

)2 ln(ρ/ρ∗) if γ= 1.

In [15, Theorem 4.1], it is established the existence of domains Uγ , 1 <
γ < 2, satisfying:

(i) For any compact K ⊂ U , we have K ⊂ Uγ , for γ − 1 sufficiently
small;

(ii) In Vγ := v(Uγ) it is possible to define new Riemann invariants

z = z(v1, γ), w = w(v2, γ)

with respect to which the corresponding shock curves satisfy the
Bakhvalov’s conditions, recalled in what follows.

The referred result in [15] extends to the relativistic system (1.1) a previ-
ous result of DiPerna [12] for the corresponding non-relativistic system (1.2).
With the classical Riemann coordinates (v1, v2), (see (2.8)), system (1.1)

satisfies conditions A1 - A3. This follows from the lemmas in [15, Section 2].
However, neither B4 nor A4 hold for the classical Riemann invariants v1
and v2 of system (1.1). The situation is parallel to that of the system of
non-relativistic isentropic gas dynamics, in which DiPerna showed in [12]
that it is still possible to find a pair of Riemann invariants z = z(v1, γ),
w = w(v2, γ) for which the system satisfies A1 - A3 and B4, at least locally.
Using these new Riemann invariants z = z(v1, γ) and w = w(v2, γ) we

next define a functional on periodic piecewise constant functions

(2.9) ū(x) =
N∑

α=0

uαχ]xα−1,xα](x),
x ∈ Π u0 = uN

uα ∈ U , α = 0, . . . , N,

where Π denotes the interval of periodicity. We set

(2.10) L[ū] :=
N∑

α=1

F (uα−1,uα),

where F is as in Definition 2.1.
The construction of wave front tracking approximate solutions does not

use the exact Riemann solution, but an approximate solution, which de-
pends on the approximation parameter ε > 0 (see [5]). Accordingly, we use
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a function F ε(ul,ur) whose definition is similar to that of F (ul,ur) with
the only difference that instead of the exact Riemann solution it uses the
approximate one. Coherently, we define

(2.11) Lε[ū] :=
N∑

α=1

F ε(uα−1,uα).

For the construction of periodic wave front-tracking approximate solutions
of (1.1), uε(t), through an interval [0, T ], for any T > 0, if ε > 0 is sufficiently
small, a key point is the fact that Lε[uε(t)] is non-increasing for t ∈ [0, T ].
Let BVΠ(R,U) be the space of periodic functions on R, with periodic

interval Π, assuming values in U , of bounded total variation per period.
Given uΠ ∈ U , our approximate SRS, Sε

t , “almost” preserves the domains
D′γ ⊂ BVΠ(R,U), consisting of Π-periodic piecewise constant functions u(x)
satisfying L[u] < M ′

γ , for some M
′
γ > 0, with M

′
γ →∞, as γ → 1, and

(2.12)
1

Π

∫

Π
u(x) dx = uΠ,

in the sense that Lε[Sε
tu] < M ′

γ , for t ∈ [0, T ], and∥∥∥∥
1

Π

∫

Π
Sε
tu(x) dx− uΠ

∥∥∥∥ < δ, t ∈ [0, T ],

for any δ > 0, if ε > 0 is sufficiently small.
We measure the total variation per period of a periodic function u : R →

U , denoted TV (u|Π), by means of the sum of the total variations in one
period of each of the Riemann coordinates:

(2.13) TV (u|Π) = sup
{ 2∑

i=1

N∑

α=1

∣∣∣vi
(
u(xα)

)
− vi

(
u(xα−1)

)∣∣∣,

N ∈ N, xα−1 < xα, x0, . . . , xN ∈ Π
}
.

We can now state our main theorem establishing the existence of a Stan-
dard Riemann Semigroup of periodic solutions with large oscillation and
total variation per period. The definition of SRS in the periodic case is the
obvious adaptation from [4, Definition 9.1].

Theorem 2.2. Let uΠ ∈ U and 1 < γ < 2. Then, there exist domains
Uγ ⊂ U , and constants Mγ > 0 satisfying Mγ → ∞ as γ → 1, p′(ρ) < c2

for u ∈ Uγ and, for any given compact K ⊂ U , K ⊂ Uγ, provided γ − 1
is sufficiently small. Moreover, there exists a Standard Riemann Semigroup
S : [0,+∞[×Dγ → Dγ, in the sense that

(a): For any u ∈ Dγ,

(2.14) ‖Stu− St′u‖L1(Π) ≤ C
∣∣t− t′

∣∣ , for t, t′ ∈ [0,∞[ ,
for a constant C > 0 depending only on the functions in Dγ;

(b): For u,u′ ∈ Dγ,

(2.15)
∥∥Stu− Stu

′
∥∥
L1(Π)

≤ eCt
∥∥u− u′

∥∥
L1(Π)

,

also for some constant C > 0 depending only on bounds on the func-
tions in Dγ;
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(c): If u ∈ Dγ is piecewise constant, then for T > 0 sufficiently small,
Stu (t ∈ [0, T ]) coincides with the function obtained by piecing to-
gether the Riemann solutions corresponding to each of the jump dis-
continuities in u.

Further, we have also the following properties:

(d): Dγ ⊇
{
u ∈ BVΠ(R,Uγ) :

1
Π

∫
Π u(x) dx = uΠ , TV (u|Π) ≤Mγ

}
.

(e): for all u ∈ Dγ, the trajectory t 7→ Stu coincides with the Glimm
solution constructed in [15].

Theorem 2.2 follows immediately from two major results which are stated
subsequently. The first one, Theorem 2.3, establishes the existence of peri-
odic wave front tracking approximate solutions, ūε(t, ·) = Sε

t ū, defined for
t ∈ [0, T ], for any T > 0, and any periodic piecewise constant function ū
assuming values in U , provided that ε > 0 and γ − 1 > 0 are sufficiently
small. The second one, Theorem 2.4, establishes the stability in L1(Π) of
the periodic wave front tracking approximate solutions with respect to their
initial data.

Theorem 2.3. Given any periodic piecewise constant function u : R → U
of the form (2.9) and any T > 0, it is possible to construct periodic wave
front tracking approximate solutions, uε(t, ·) = Sε

tu, defined for t ∈ [0, T ],
for any T > 0, provided that ε > 0 and γ− 1 > 0 are sufficiently small. The
approximate solutions satisfy

Lε[Sε
t′u] ≤ Lε[Sε

tu], for 0 ≤ t < t′ ≤ T,(2.16)
∫

Π

∣∣Sε
tu− Sε

t′u
∣∣ dx ≤ C

∣∣t− t′
∣∣ , for t, t′ ∈ [0, T ],(2.17)

where C > 0 is a constant depending only on TV (u|Π), and uΠ is given
by (2.12). Moreover, there exists a subsequence εi → 0 for which Sεi

t u →
u(t, ·) =: Stu as εi → 0, where u(t, ·) is an entropy solution of (1.1) with
initial data u.

Theorem 2.4. For uΠ ∈ U and γ ∈ ]1, 2[, there exist constants Mγ > 0,
with Mγ → ∞, as γ → 1+, and domains Uγ ⊂ U , with Uγ ⊃ K, for any
compact K ⊂ U , for γ sufficiently close to 1, with the following property. If
u′,u′′ are two periodic piecewise constant functions, of the form (2.9), with
mean values

u′Π :=
1

|Π|

∫

Π
u′(x) dx, u′′Π :=

1

|Π|

∫

Π
u′′(x) dx, u′Π,u

′′
Π ∈ Uγ ,

respectively, assuming values in Uγ, with
∣∣u′Π − uΠ

∣∣,
∣∣u′′Π − uΠ

∣∣,TV (u|Π),TV (u′|Π) < Mγ ,

then Sε
tu and S

ε
tu
′ are defined for t ∈ [0, T ], for any T > 0, provided that

ε > 0 is sufficiently small. Moreover, we have

(2.18)

∫

Π

∣∣Sε
tu(x)− Sε

tu
′(x)

∣∣ dx ≤ eCt

∫

Π

∣∣u(x)− u′(x)
∣∣ dx,

for some constant C > 0 depending only on Mγ.
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The fact that Stu coincides with the Glimm solution constructed in [15]
follows from well known uniqueness theorems, cf. [4, 6, 7, 8, 14].
The rest of this paper is organized as follows. In Section 3, we construct

the wave front tracking approximate solutions and prove Theorem 2.3.
Section 4 is devoted to the proof of Theorem 2.4. The latter involves

the construction of wave front tracking approximate solutions for the usual
Cauchy problem with initial data of bounded total variation, and the proof of
the L1-stability of such approximate solutions. In Section 5, we briefly show
how our results immediately apply also to the non-relativistic system (1.2).
Finally, in Section 6, we show the convergence of the semigroup solutions of
the relativistic system (1.1) to the semigroup solution of (1.2) when c→∞.

3. Periodic Wave Front Tracking Approximate Solutions

This section is devoted to the proof of Theorem 2.3. The latter is based
on the fact that, with respect to the new Riemann invariants z(v1, γ) and
w(v2, γ), system (1.1) satisfies Bakhvalov’s conditions A1 - A4. We recall
that conditions A1 - A3 are satisfied also by v1, v2 (see [10, 15]).
The precise definition of z(v1, γ) and w(v2, γ) is given in [15, formula (4.2)]

and is immaterial for our purposes here. Only those relevant properties of the
functions z(v1, γ) and w(v2, γ) stated in the following lemma are sufficient,
see [15, Section 6] for more details. Remember the definition (2.7) of U .

Lemma 3.1. The new Riemann invariants z(v1, γ), w(v2, γ), with respect to
which system (1.1) satisfies Bakhvalov’s conditions A1 - A4, may be defined
for v belonging to a domain Vγ and u ∈ Uγ := v−1(Vγ), Uγ ⊂ U and
Uγ ⊃ K, for any compact K ⊂ U , provided that γ − 1 > 0 is sufficiently
small. Moreover, after a suitable normalization, z(v1, γ) and w(v2, γ) satisfy

(3.1)

lim
γ→1

z(v1, γ) = v1 lim
γ→1

w(v2, γ) = v2

lim
γ→1

∂z

∂v1
(v1, γ) = 1 lim

γ→1

∂w

∂v2
(v2, γ) = 1

lim
γ→1

∂kz

∂vk1
(v1, γ) = 0 for k ≥ 2 lim

γ→1

∂kw

∂vk2
(v2, γ) = 0 for k ≥ 2

locally uniformly in v1 and v2, respectively.

Although the conserved variable u depends on γ through the pressure
p = pγ(ρ) = ζ2ργ , we may consider u as independent of γ, because of the
nice behavior of pγ as γ → 1+, on compact subsets of ]0,+∞[, as stated in
the following lemma, whose elementary proof is left to the reader.

Lemma 3.2. As γ → 1+, the pressure law pγ converges to p1 uniformly in

Ck, for any k ∈ N, on any compact subset of ]0,+∞[.

In the following, we will always use the Riemann coordinates z(v1, γ),
w(v2, γ), whose relevant properties are described in Lemma 3.1, but hence-
forth we denote them simply by v1 and v2, respectively. Except for the fact
that now we assume that the pair (v1, v2) also satisfies A4, for any other
property that will be needed in the following, we can mix up these two pairs
of Riemann coordinates without any problem, due to (3.1).
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Lemma 3.3. In the Riemann coordinates, the Lax curves of (1.1) departing
from v can be parametrized as

PSfrag replacements

ψ

ψ σ

v̄

vo

Figure 2. The construction of the parametrization (3.2).

(3.2)
L1(v, σ) =

(
v1 + σ + ψ(v, γ, σ), v2 + ψ(v, γ, σ)

)

L2(v, σ) =
(
v1 + ψ(v, γ, σ), v2 + σ + ψ(v, γ, σ)

)

with a suitable function ψ of class C2,1 such that ψ(v, γ, σ) = 0 for all σ ≥ 0
and ψ(v, γ, σ)→ ϕ(σ) in C2 uniformly on compact sets as γ → 1, where

(3.3) ϕ(σ) =

{
0 σ ≥ 0,
−σ
2 + c arcsinh

(
2ζc
c sinh

σ
4ζc

)
σ ≤ 0, ζc =

ζ

1 + (ζ/c)2
.

Moreover, ψ is locally Lipschitz, for all σ ≤ 0, ψ ≤ 0, ∂σψ ≥ 0 and setting

(3.4) H(γ,M,u−,u+) = sup

{
∂σψ(v, γ, σ) :

v ∈ V, γ ∈ [1, γ̄]
and ψ(v, γ, σ) ∈ K

}
,

where K is any compact subset of V, we have H(γ,M,u−,u+) < +∞ and

lim
γ→1

H(γ,M,u−,u+) = H(1,M,u−,u+).

Proof. 1. We observe that when γ > 1, the shock curves are not translation
invariant as in the case γ = 1 (see [11, 18]) and therefore the function ψ
depends also on v.

2. The parametrization (3.3) is in [11, Section 4], see Figure 2 for its geo-
metric construction. The regularity of Ψ follows from that of pγ and, hence,
of the flux function defining (1.1), see also [18, Proposition 1].

3. The inequalities ψ ≤ 0 and ∂σψ ≥ 0 are consequences of the following
two facts. First, a tedious but straightforward computation shows that

ϕ(0) = ϕ′(0) = ϕ′′(0) = 0, lim
σ→0−

ϕ′′′(σ) > 0.

It is also easy to see that, for each fixed v ∈ V, limγ→1+ ∂
k
σψ(v, γ, σ) =

ϕk(σ), uniformly in [−M, 0[, for anyM > 0, k ∈ N. Hence, given δ > 0 such
that ϕ′′′(σ) > 0 for σ ∈ [−δ, 0[, we conclude that

∂3σψ(v, γ, σ) > 0, for σ ∈ [−δ, 0[ ,
for and all γ > 1 sufficiently close to 1. We thus obtain, in particular,

∂2σψ(v, γ, σ) < 0, ∂σψ(v, γ, σ) > 0, for σ ∈ [−δ, 0[ .

4. Second, note that for σ ≤ −δ we have
2ζc
c
· sinh σ

4ζc
< sinh

(
2ζc
c
· σ
4ζc

)
where

2ζc
c
∈ ]0, 1[ and σ

2c
< 0 .
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The latter inequality follows from the strict concavity of s → sinh s for
s ≤ −δ. Moreover, we have ∂σϕ < 0 since

cosh
σ

4ζc
>

√

1 +

(
2ζc
c

)2
sinh2

σ

4ζc

which holds thanks to 2ζc/c ∈ ]0, 1[. Hence, we obtain the corresponding
inequalities for ψ(v, γ, σ) and ∂σψ(v, γ, σ), for each fixed v ∈ V, for σ ∈
[−δ,−M ], for any M > 0, if γ > 1 is sufficiently close to 1.

5. The boundedness of H(γ,M,u−,u+) follows from the regularity of ψ
and the compactness of K. The final limit is a consequence of the locally
uniform convergence γ → 1, see Lemma 3.2. ¤

Following [5], for a fixed ε > 0, we are lead to consider the interpolation
between the i-shock and the i-rarefaction wave (i = 1, 2) (approximate Lax
curves):

PSfrag replacements

ψ

ψ σ

v̄

vo

Figure 3. The parametrization of the approximate Lax curves (3.5).

(3.5)
Lε
1(v, σ) =

(
v1 + σ + ψε(v, γ, σ), v2 + ψε(v, γ, σ)

)

Lε
2(v, σ) =

(
v1 + ψε(v, γ, σ), v2 + σ + ψε(v, γ, σ)

)

where

(3.6) ψε(v, γ, σ) = Φ(σ/
√
ε) ψ(v, γ, σ)

and Φ is any C∞ function satisfying

Φ(s) = 1 for s ≤ −2
Φ(s) = 0 for s ≥ −1
Φ(s) ∈ [0, 1], Φ′(s) ∈ [−2, 0] for s ∈ [−2,−1] .

We note that the interpolated Lax curves admit the parametrization (3.5)
for ε sufficiently small. Indeed, ∂σLε

1(v, 0) = [1 0]T , hence the half-line
exiting v̄ and parallel to v1 = v2 does not intersect the approximate Lax
curve between v̄ and vo, see Figure 3, provided ε is sufficiently small. We
thus have the following analog of Lemma 3.3.

Lemma 3.4. There exist γo ∈ ]1, γ̄], εo > 0 such that for ε ∈ ]0, εo] and
γ ∈ [1, γo], the function ψε in (3.6) satisfies ψε ≤ 0, ∂σψε ≥ 0 and, for any
compact K ⊂ V,

Hε(γ,M,u−,u+) = sup

{
∂σψε(v, γ, σ) :

v ∈ K, ψε(v, γ, σ) ∈ K
and γ ∈ [1, γo]

}
< +∞ .

Moreover, ψε(·, γ, ·)→ ψ and Hε(γ,M,ul,ur)→ H(γ,M,ul,ur) as ε→ 0,
uniformly on compact sets.
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Given ε > 0, a left and right state ul, ur, with Riemann coordinates
vl = (vl1, v

l
2) and v

r = (vr1, v
r
2), as in [11, Section 2] or [10, Theorem 4.1],

we construct an approximate solution of the Riemann problem associated
to (1.1). First, determine the unique values σ1 and σ2 and a middle state
vm such that vr = Lε

2(v
m, σ2) and v

m = Lε
1(v

l, σ1). If σ1 ≥ 0, then the
states vl and vm are connected by a 1-rarefaction wave. We approximate
this rarefaction wave introducing a fixed ε grid in the (v1, v2) plane. Let
the integers h, k be such that hε ≤ vl1 < (h + 1)ε and kε ≤ vm1 < (k + 1)ε.

Introducing the states ωj
1 = (jε, v

l
2) and ω̂

j
1 =

(
(j + 1

2)ε, v
l
2

)
for j = h, . . . , k,

we construct the ε-approximate solution through the following rarefaction
fan:

vε(t, x) =





vl if x/t ∈
]
−∞, λ1(ω̂h

1 )
]

ωj
1 if x/t ∈

]
λ1(ω̂

j−1
1 ), λ1(ω̂

j
1)
[
, j = h+ 1, . . . , k

vm if x/t ∈
[
λ(ω̂k

1 ),+∞
[
.

On the other hand, if σ1 < 0, the states v
l and vm are connected by a shock:

vε(t, x) =

{
vl if x < λΦ1 (v

l, σ1)t
vm if x > λΦ1 (v

l, σ1)t .

Let λ1(v, σ) denote the Rankine-Hugoniot speed of the (exact) shock be-
tween the states v and L1(v, σ). Then, the shock speed λΦ1 is defined as

λΦ1 (v
l, σ1) = Φ

(
σ1√
ε

)
λs1(v

l, σ1) +

(
1− Φ

(
σ1√
ε

))
λr1(v

l, σ1),

λs1(v
l, σ1) = λ1

(
vl,L1(vl, σ1)

)

λr1(v
l, σ1) =

∑

j

meas
(
[jε, (j + 1)ε] ∩ [vm1 , vl1]

)

|σ1|
λ1(ω̂

j
1).

The construction of the ε-approximate solution for waves of the second fam-
ily is analogous to the previous case, we refer to [5, 11] for details.
Let now u(x) be a periodic piecewise constant initial condition as in (2.9).

A piecewise constant ε-approximate solution to the Cauchy problem for (1.1)
is constructed as follows. At time τ0 = 0 solve the Riemann problems defined
by the jumps in u(x) using the above algorithm. This yields a piecewise
constant approximate solution (t, x) 7→ uε(t, x) defined up to the time τ1 >
τ0 where the first set of interactions takes place. The Riemann problems
arising at time τ1 are again approximately solved using the algorithm above.
Then, uε can be defined up to the time τ2 when the next interaction takes
place, etc. As usual, we denote Sε

tu := uε(t, ·).
Of great importance in the wave front tracking technique is the control of

the interactions. Aiming at continuous dependence, the usual slight modifi-
cations of the wave speeds to avoid multiple interactions cannot be adopted.
On the other hand, we treat below in details the case of simple interactions,
leaving to the inductive procedures developed in [5, 11] in the case of many
waves interacting simultaneously.
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Let D̄ be the set of periodic piecewise constant functions with values in
U as in (2.9). We denote by σi,α (i = 1, 2) the total size of the waves of the
i-th family in the ε-approximate solution of the Riemann problem for (1.1)
at xα with states uα and uα+1. In the Riemann coordinates, this means

(3.7) vα = Lε
2

(
Lε
1(v

α−1, σ1,α), σ2,α

)
for α = 0, . . . , N ,

where u0 = uN . Given u−,u+ ∈ U , let v−,v+ be their respective im-
ages in the plane of Riemann coordinates. We solve the corresponding ε-
approximate Riemann problem obtaining v+ = Lε

2

(
Lε
1(v−, σ1), σ2

)
. Define,

similarly to Definition 2.1,

(3.8) F ε(u−,u+) := [[∆v1(σ1) ]]
−
+ [[∆v2(σ2) ]]

−
,

with the same notation as in Definition 2.1. Now if u(·) ∈ D̄, we define

Lε[u] :=
N∑

α=1

F ε(uα−1,uα).

Proof of Theorem 2.3. 1. Given any T > 0, to prove that we can construct
the approximate solution Sε

tu throughout the whole interval [0, T ] we need
to show that after all possible interactions between wave fronts in Sε

tu, as
t increases, Sε

tu keeps assuming values in Uγ , where the special Riemann
coordinates v1, v2 are defined. We achieve this by showing that TV (S

ε
tu|Π)

keeps being always uniformly bounded and that the mean value

(Sε
tu)Π :=

1

Π

∫

Π
Sε
tu(x) dx

can be made arbitrarily close to uΠ := (Sε
0u)Π = (u(·))Π if ε > 0 is suffi-

ciently small.

2. As in [13], we construct the approximate solutions in a number of time-
steps of fixed length T0, independent of ε, using (2.16)–(2.17) and the con-
vergence of the approximate solutions at each time-step as ε → 0 to an
entropy solution Stu of (1.1) with initial data u(·), in order to pass from
one time-step to the next one.

3. The control of TV (Sε
tu|Π) is achieved once we show (2.16). Observe

that, by the geometry of the approximate wave curves, both v1 and v2
decrease across approximate shocks of both families, and increase across ap-
proximate rarefactions of both families. Observe also that, because of prop-
erty A2, the absolute value of the change in v1 across approximate shocks
of the first family dominates that of v2 across the same waves, while the
absolute value of the change in v2 across approximate shocks of the second
family dominates that of v1 across the same waves. Clearly, then, Lε[Sε

tu]
is equivalent to the negative variation per period of Sε

tu. By periodicity, the
total variation per period equals twice the negative variation per period, so
Lε[Sε

tu] is equivalent to TV (S
ε
tu|Π), that is,

(3.9)
1

C
Lε[Sε

tu] ≤ TV (Sε
tu|Π) ≤ CLε[Sε

tu] ,

for some constant C > 0 depending only on (1.1) and Uγ .
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4. As usual, we say that a wave on the left approaches a wave to its right,
if the former belongs to a family of order greater than that of the latter, or
if they both belong to the same family and at least one of them is a shock.
Now, suppose that a wave connecting a state ul to a state um interacts with
a wave connecting um to ur (see Figure 4). Assume also that the interaction

PSfrag replacements

σ+1
σ+1

σ−1

σ+2

σ+2

σ−2
σ′′

σ′

ul

ul

um um

ur ur

u∗u∗

Figure 4. Notation for the interaction estimates.

produces two wave fronts of total size σ+1 and σ
+
2 , connecting the states ul

to u′m and u′m to ur, respectively. We are going to show that

(3.10) F ε(ul,ur) ≤ F ε(ul,um) + F ε(um,ur).

5. We must analyze all possibilities according whether σ′ is a shock or
rarefaction of the first or second family and σ′′ is a shock or rarefaction
of the first or second family. There are in total 10 cases of approaching
waves. Of all these cases, the most delicate is the one in which σ−2 is a shock
of the second family, and σ−1 is a shock of the first family, see Figure 4,
left. Bakhvalov’s condition A4 refers exactly to this type of interaction (see
Figure 5).

6. In the case of the γ-law systems of gas dynamics, as pointed out by
DiPerna [12], Bakhvalov’s condition A4 is satisfied in the plane of the special
Riemann coordinates introduced in [12], as a consequence of the validity of
DiPerna’s conditions B4.1, B4.2. The latter can be viewed also as follows.
Let v0 be a given reference state, let R1 := {(v1, v2) : v2 = R1(v1;v0), v1 ≤
v01} be the right shock curve of the first family departing from v0 (i.e.,
curve whose points can be connected on the right of v0 by a 1-shock). Let
L2 := {(v1, v2) : v1 = L2(v2;v0), v2 ≥ v02} be the left shock curve of the
second family departing from v0 (i.e., curve whose points can be connected
on the left of v0 by a 2-shock). If v∗ is any point in R1, the left shock
curve of the second family departing from v∗ is the graph of a function
v1 = g(v2) := L2(v2;v∗). If Tv∗ : R

2 → R
2 is the translation in the Riemann

coordinates plane taking v0 to v∗, the Tv∗-translate of L2 is the graph of
the function v1 = ḡ(v2) := v∗1 + L2(v2 − v∗2;v0). DiPerna’s condition B4.1
is equivalent to the fact that the inequality ḡ(v2) ≤ g(v2) holds. Similarly,
from any point v∗∗ ∈ L2, the right shock curve of the first family is the graph
of the function v2 = h(v1) := R1(v1;v∗∗) and the Tv∗∗-translate of R1 is the
graph of the function v2 = h̄(v1) = v∗∗2+R1(v1−v∗∗1;v0). Again, DiPerna’s
condition B4.2 means exactly that we must have h̄1(v1) ≥ h(v1). See Fig. 5
where v0 = um, v∗ = ur, v∗∗ = ul, R1 = R−1 , L2 = L−2 , L2( · ;v∗) = L+2 ,
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‖ L−

2

R−

1

um

ur

ul

L−

2

u
′

m

R+

1

L+

2

w′

z′

‖ R−

1

Figure 5. Bakhvalov’s condition A4 through DiPerna’s con-
ditions B4.1, B4.2.

R1( · ;v∗∗) = R+1 , and the translates of R1 and L2 are ‖ R−1 and ‖ L−2 ,
respectively. As we see in Fig. 5, the polygon formed by the curves L−2 , R

−
1 ,

L+2 , R
+
1 is contained in the polygon formed by the curves L

−
2 , R

−
1 , ‖ L−2 and

‖ R−1 and this implies A4 due to the validity of A2, which impose constraints
on the inclinations of the curves Ri and Li.

7. The analysis in [12], for the classical case, and [15], for the relativistic
case, shows that DiPerna’s transformation is C2-stable in the sense that if
Rε
1 := {(v1, v2) : = v2 = Rε

1(v1; v0), v1 ≤ v01} and Lε
2 := {(v1, v2) : = v1 =

Lε
2(v1; v0), v2 ≥ v02} are curves sufficiently close (in a compact interval) to
the curves R1 and L2, defined in the last step, in the C

2-norm, we still have
the inequalities between the corresponding functions g, ḡ, h and h̄, where
now v∗ runs along R

ε
1 and v∗∗ runs along L

ε
2.

8. Now, observe that we may define a parametrization similar to (3.2) for
the left wave curves departing from a given point v, that is,

(3.11)
L̃1(v, σ) =

(
v1 + σ + ψ̃(v, γ, σ), v2 + ψ̃(v, γ, σ)

)

L̃2(v, σ) =
(
v1 + ψ̃(v, γ, σ), v2 + σ + ψ̃(v, γ, σ)

)

with a suitable function ψ̃ of class C2,1 such that ψ̃(v, γ, σ) = 0 for all σ ≤ 0
which converges in C2 as γ → 1 to the function corresponding to γ = 1. We
can also define the aproximate left wave curves similarly to (3.5), that is,

(3.12)
L̃ε
1(v, σ) =

(
v1 + σ + ψ̃ε(v, γ, σ), v2 + ψ̃ε(v, γ, σ)

)

L̃ε
2(v, σ) =

(
v1 + ψ̃ε(v, γ, σ), v2 + σ + ψ̃ε(v, γ, σ)

)

where

(3.13) ψ̃ε(v, γ, σ) = Φ(−σ/
√
ε) ψ̃(v, γ, σ),

and Φ is defined as before.
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RR+

2

S−
1

S+

1

S
′
−

1

S+

1

S−
2

S+

2

S−
1

S+

1

RR−

2

RR+

2

RR−

2

Figure 6. Three examples of possible interactions.

9. To simplify the reasoning we assume here that the our wave front track-
ing approximate solution is constructed exactly as described before with
the only difference that the approximate Riemann problems are solved us-
ing the approximate right 1-wave curve Lε

1 and the approximate left 2-wave

curve L̃ε
2. This choice would not cause any change in the development of

the theory of [5]. So given vl, vr we find vm as the intersection of Lε
1(v

l, σ)

with L̃2
ε
(vr, σ), and construct the approximate Riemann solution as before.

Hence, from the considerations in steps 6. and 7. and the form in which the
approximate wave curves are defined (as convex combinations of the coordi-
nate lines and the exact wave curves, see (3.5) and (3.12)) we conclude the
following. If gε, ḡε, hε and h̄ε are the functions defined as above replacing the
exact right 1-shock and left 2-shock curves by the approximate ones, with
v∗ running along R

ε
1 and v∗∗ running along L

ε
2, we still have ḡ

ε(v2) ≤ gε(v2)
and h̄ε(v1) ≥ hε(v1). This implies that Fig. 5 also describes the interaction
between two approximate shock waves. Therefore, we conclude that (3.10)
holds for this type of interaction.

10. For the other possible types of interactions, the fact that (3.10) holds
is immediate and we only need to draw pictures to see that clearly. For
instance, Figure 6 describes three examples of possible interactions: (i) a 2-
rarefaction RR−2 with a 1-shock S

−
1 giving a 1-shock S

+
1 and a 2-rarefaction

RR+2 ; (ii) a 1-shock S−1 with a 1-shock S
′−
1 giving a 1-shock S+1 and a

2-rarefaction RR+2 ; (iii) a 2-shock S
−
2 with a 2-rarefaction RR−2 giving a

1-shock S+1 and a 2-shock S
+
2 .

11. From the validity of (3.10) at each possible interaction, we conclude
that Lε[Sε

tu] decreases at each interaction time, being constant in time in-
tervals that do not contain any interaction. Therefore, (2.16) holds.

12. Since Lε[Sε
tu] is non-increasing with time and, by construction, S

ε
tu is

spatially Π-periodic, it follows from (3.9) that the total variation per period
of Sε

t ū is uniformly bounded.

13. Now, the proof of (2.17) follows similarly to the one of the correspond-
ing property of the wave front tracking approximate solution for the usual
Cauchy problem (see [5, 11]), by using the periodicity of Sε

tu and the uniform
boundedness of TV (Sε

tu|Π).
14. The properties (2.16) and (2.17) satisfied by the Π-periodic wave front
tracking approximate solution Sε

tu allow us to repeat the reasoning in [13, 15]
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PSfrag replacements

t

xΠ

T

Figure 7. L1-stability of the periodic solution in theorem 2.2.

and construct the approximate solutions in an arbitrary time-interval [0, T ],
as long as ε > 0 is sufficiently small.

15. Indeed, from (2.16) and (2.17) we first obtain a T0 > 0 such that the
approximate solutions may be constructed in the time-interval [0, T0]. This
T0 > 0 is such that the image in the Riemann coordinates plane of the mean-
values (Sε

t ū)Π do not leave a square box Q(v0, R) whose side length equals a
certain R > 0 and is centered at a certain point v0, during the time-interval
[0, T0], as long as uΠ lies in the concentric box Q(v0, R/2) of side length
R/2. Such T0 > 0 always exists due to (2.16) and (2.17) (cf. [13, 15]).

16. Now, since the approximate solutions converge to an entropy solution
of (1.1), which follows in a standard way (see [5]), we have that, for ε > 0
sufficiently small, the mean-values (Sε

t ū)Π, for t ∈ [0, T0], will belong to
the box Q(v0, R/2) since they converge to uΠ, uniformly in t ∈ [0, T0].
Therefore, we may construct the approximate solutions also in the time-
interval [T0, 2T0] if ε > 0 is sufficiently small, and so on. In this way, we
can cover the given time-interval [0, T ] with a finite number of intervals of
the form [(k− 1)T0, kT0], k ∈ N, and obtain that the approximate solutions
can be constructed in any time-interval [0, T ], as long as ε > 0 is sufficiently
small.

17. As already mentioned, the convergence of the approximate solutions
to an entropy solution of (1.1) follows in a standard way. This concludes
the proof. ¤

4. The L1-Stability of the Periodic Wave Front Tracking

Approximate Solutions

This section is devoted to the proof of Theorem 2.4.
Since the L1-stability is a local property, in the periodic case we can

reduce its proof to the usual case of the Cauchy problem as follows.

We define approximate wave-front tracking solutions, SC,ε
t u∗, S

C,ε
t u′∗ as

in [5, 11], for initial data u∗,u
′
∗ which coincides with the Π-periodic piece-

wise constant initial data u,u′ on three period intervals, and is constant,
equal to uΠ,u

′
Π outside these intervals. So, if Π = [−L,L], these initial

data coincide on [−3L, 3L] (see Figure 7). The corresponding approximate
wave front tracking solutions, SC,ε

t u∗ and S
P,ε
t u, coincide over Π, on a time-

interval [0, T∗], where T∗ depends only on an upper bound of the character-
istic speeds, because of the finite speed of propagation property. The same

is true for the approximate solutions SC,ε
t u′∗ and S

P,ε
t u′.
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If we can prove that any two approximate solutions, such as SC,ε
t u∗ and

SC,ε
t u′∗, satisfy

(4.1)
∥∥∥SC,ε

t u∗ − SC,ε
t u′∗

∥∥∥
L1(R)

≤ C0
∥∥u∗ − u′∗

∥∥
L1(R)

,

for some constant C0 not depending on ε,u∗,u
′
∗, but only on the bounds for

the data of the problem, we then obtain

(4.2)
∥∥∥SP,ε

t u− SP,ε
t u′

∥∥∥
L1(Π)

≤ 3C0
∥∥u− u′

∥∥
L1(Π)

, t ∈ [0, T∗].

This reasoning can be repeated for the intervals [(k − 1)T∗, kT∗], k ∈ N, as

long as they are contained in the intervals [0, Tε], [0, T
′
ε], where S

P,ε
t u and

SP,ε
t u′ are defined, for which we have shown that Tε, T

′
ε → +∞ as ε → 0.

Indeed, the possibility of repeating the procedure follows from the fact that

Lε[SP,ε
t u] and Lε[SP,ε

t u′] do not increase with time, which guarantees the

uniform boundedness of TV (SP,ε
t u|Π) for t ∈ [0, Tε] and TV (SP,ε

t u′|Π) for
t ∈ [0, T ′ε].
We thus get

(4.3)
∥∥∥SP,ε

t u− SP,ε
t u′

∥∥∥
L1(Π)

≤ (3C0)k
∥∥u− u′

∥∥
L1(Π)

,

t ∈
[
(k − 1)T∗, kT∗

]
, k ∈ N,

which then gives the desired stability property (2.18).
By the above arguments, in this section we consider only the stability

property for the Cauchy problem as in [5, 11].
From now on, we follow closely the notation in [11].
Before we begin, we state the following simple proposition which shows

that we may prevent vacuum by means of a suitable bound on the total
variation of the function which we measure in the Riemann coordinates by

(4.4) TV (u) = sup





2∑

i=1

∑

α

∣∣∣vi
(
u(xα)

)
− vi

(
u(xα−1)

)∣∣∣ : xα−1 < xα



 .

Proposition 4.1. Fix a positive M and two states u−,u+ ∈ ]0,+∞[ × R

such that

(4.5)

∫ ρ−

0

√
p′(r)

r + p(r)
c2

dr >
M

4
and

∫ ρ+

0

√
p′(r)

r + p(r)
c2

dr >
M

4
.

Then, any function u : R 7→ ]0,+∞[× R satisfying

lim
x→−∞

u(x) = u− , lim
x→+∞

u(x) = u+ and TV (u) < M

does not attain as value the vacuum state.

Proof. Assume that u∗ : R 7→ ]0,+∞[ × R satisfies (4.5), limx→−∞ u∗(x) =
u−, limx→+∞ u∗(x) = u+ and moreover ρ∗(x∗) = 0 for some x∗ ∈ R. Then,
by (4.4)

TV (u∗) ≥
2∑

i=1

(∣∣∣v−i − v∗i (x∗)
∣∣∣+
∣∣∣v∗i (x∗)− v+i

∣∣∣
)
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≥
∣∣∣v−1 − v−2

∣∣∣+
∣∣∣v+1 − v+2

∣∣∣

= 2



∫ ρ−

0

√
p′(r)

r + p(r)
c2

dr +

∫ ρ+

0

√
p′(r)

r + p(r)
c2

dr




> M

completing the proof. ¤

We are going to prove the following theorem.

Theorem 4.1. Choose a positive M and states u−,u+ satisfying (4.5) for
some γ̄ ∈ ]1, 2]. Then, there exists γo ∈ ]1, γ̄] such that for all γ ∈ [1, γo[,
system (1.1) generates a Standard Riemann Semigroup S : [0,+∞[×D 7→ D.
Moreover, for a suitable κγ ∈ ]0, 1[,

(1) D ⊇ clL1



u ∈ BV(R;U) :

limx→−∞ u(x) = u−

limx→+∞ u(x) = u+

TV (u) ≤ κγ M



 ;

(2) if TV (uo) ≤ κγM , then TV (Stuo) ≤M for all t ≥ 0;
(3) limγ→1 κγ = 1/

(
1 +H(1,M,u−,u+)

)
.

Let D̄ denote the set of piecewise constant functions with values in U .
For any u ∈ D̄,
(4.6) u = u− χ

]−∞,x0]
+
∑

α

uα χ]xα−1,xα]
+ u+ χ

]xN ,+∞[
,

we denote by σi,α (i = 1, 2) the total size of the waves of the i-th family
in the ε-approximate solution of the Riemann Problem for (1.1) at xα with
states uα and uα+1, see (3.7).
Let A denote the set of all couples of approaching waves. We say that

a pair of waves (σi,α, σj,β) is approaching if either, α < β and j < i, or if
j = i, min{σi,α, σi,β} < 0, see [4, Chapter 7] or [17]. Following [11, (2.11)],
we introduce the functionals

(4.7)

V ε(u) =
∑

α

∑

i

(
1− η sgnσi,α

) ∣∣σi,α
∣∣

Qε(u) =
∑

σi,α,σj,β∈A

∣∣σi,ασj,β
∣∣

Υε(u) = V ε(u) +
1

K
·Qε(u)

where η ∈ ]0, 1[ and K > 0 are constants depending only on u−,u+,M and
their values will be defined below. The dependence of Υε on ε is due to the
dependence on ε of the wave sizes in the ε–solution to Riemann problems.
Clearly, the functional Υε(u) is equivalent to the total variation of u.
Our first goal will be to show that Υε(Sε

tu) decreases with time. The
decrease of Υε(Sε

tu) with time will then be used to prove (4.1).
To simplify the notation, in the remainder of this paper, C denotes a

generic “large” constant dependent only on the domain U where the con-
served quantities may vary. The actual value of C is unimportant for the
results obtained here.
Throughout this section, we refer to Figure 4 for the interaction estimates.
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Lemma 4.1. Let n ∈ N with n ≥ 1 and A ⊂ R
3 be a compact set with the

origin in its interior. If g ∈ C2,1(Ω;Rn) satisfies g(0, y, z) = g(x, 0, z) =
g(x, y, 1) = 0, then

∥∥g(x, y, z)
∥∥ ≤ Lip(D2g) · |x| · |y| · |z − 1| .

The proof is a straightforward extension of [4, Lemma 2.5].

Lemma 4.2. Let ul,um,ur belong to U and the waves σ−1 of the first family
and σ−2 of the second family interact. Call σ

+
1 , σ

+
2 the total sizes of the waves

exiting the interaction, see Figure 4, left. Then, there exists a constant C
dependent only on U such that

(4.8)
∣∣∣σ+1 − σ−1

∣∣∣+
∣∣∣σ+2 − σ−2

∣∣∣ ≤ C · (γ − 1) ·
∣∣∣σ−1 σ−2

∣∣∣ .

provided γ − 1 is sufficiently small. Moreover
(4.9) sgnσ+1 = sgnσ

−
1 and sgnσ+2 = sgnσ

−
2

Proof. Consider first (4.8) and introduce for a fixed vl the functions

g(σ−1 , σ
−
2 , γ) =

[
σ+1 − σ−1
σ+2 − σ−2

]
.

Clearly, g(0, σ−2 , γ) = g(σ−1 , 0, γ) = 0. Moreover, if γ = 1, the equality
g(σ−1 , σ

−
2 , 1) = 0 holds if and only if

Lε
1

(
Lε
2(v

l, σ+2 ), σ
+
1

)
= Lε

2

(
Lε
1(v

l, σ−1 ), σ
−
2

)
.

Clearly, σ−1 = σ+1 and σ−2 = σ+2 is a solution to the latter equality. It is

the unique solution, since the map (σ−1 , σ
−
2 ) →

(
σ+1 (σ

−
1 , σ

−
2 ), σ

+
2 (σ

−
1 , σ

−
2 )
)

is globally invertible by Hadamard global inverse function theorem, see [1,
Theorem 1.8] and [11, Lemma 3.2]. The estimate (4.8) now follows from
Lemma 4.1.
To prove (4.9), choose γ so that C(γ − 1)M ≤ 1/2 and apply (4.8). ¤

Lemma 4.3. Fix ul,um,ur ∈ U and let the waves σ′, σ′′ both of the first
family interact and call σ+1 , σ

+
2 the total sizes of the waves exiting the in-

teraction, see Figure 4, right. Then, if γ − 1 is sufficiently small,
(1) if σ′′ < 0 and σ′ < 0, then σ+1 − σ+2 = σ′ + σ′′;
(2) if σ′′ > 0, σ′ < 0 and σ+1 < 0, then σ+1 − σ+2 = σ′ + σ′′. Moreover

∣∣∣σ+1
∣∣∣−
∣∣σ′
∣∣ < 0

∣∣∣σ+2
∣∣∣ ≤ C(γ − 1)

∣∣σ′σ′′
∣∣+ C

(∣∣σ′
∣∣−
∣∣∣σ+1

∣∣∣
)
;

(3) if σ′ < 0, σ′′ < 0 and σ+1 > 0 , then σ+2 = 0 and σ
+
1 = σ′ + σ′′.

Moreover, whenever σ′σ′′ < 0, there exists a C > 0, depending only on U ,
such that

(4.10)
∣∣∣σ+1 − (σ′ + σ′′)

∣∣∣+
∣∣∣σ+2

∣∣∣ ≤ C ·
∣∣σ′σ′′

∣∣ ·
(∣∣σ′

∣∣+
∣∣σ′′
∣∣
)
.
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PSfrag replacements

σ′′ σ′

σ+1σ+2

PSfrag replacements

σ′′
σ′

σ+1
σ+2

Figure 8. Left, proof of 1. and, right, proof of 2. in Lemma 4.3.

Proof. The proof of 1. follows directly from the parametrization (3.5), see
Figure 8, left. Similarly, to prove the first equality in 2. see Figure 8, right.
Consider the function F (vl, γ, σ′, σ′′) = σ+2 (v

l, σ′, σ′′) − σ′′. It is known
that F (vl, 1, σ′, σ′′) < 0 for all vl, σ′, σ′′. Therefore, on the compact set U ,
if γ is sufficiently small, also F (vl, γ, σ′, σ′′) < 0. Hence,

∣∣∣σ+2
∣∣∣ < σ′′ and∣∣∣σ+1

∣∣∣−
∣∣σ′
∣∣ < 0. Moreover,

ψε(v
m, γ, σ′) = ψε(v

l, γ, σ+1 ) + σ+2 + ψε(v∗, γ, σ
+
2 )

ψε(v
m, γ, σ′) ≤ ψε(v

l, γ, σ+1 ) + σ+2

σ+2 ≥ ψε(v
m, γ, σ′)− ψε(v

l, γ, σ+1 )∣∣∣σ+2
∣∣∣ ≤

∣∣∣ψε(v
m, γ, σ′)− ψε(v

l, γ, σ′)
∣∣∣

+
∣∣∣ψε(v

l, γ, σ′)− ψε(v
l, γ, σ+1 )

∣∣∣

≤ C(γ − 1)
∣∣σ′σ′′

∣∣+ C
∣∣∣σ′ − σ+1

∣∣∣

≤ C(γ − 1)
∣∣σ′σ′′

∣∣+ C

(∣∣σ′
∣∣−
∣∣∣σ+1

∣∣∣
)

where we applied Lemma 4.1 to the function

(σ′, σ′′, γ)→ ψε

(
vm(σ′′), γ, σ′

)
− ψε(v

l, γ, σ′) .

The bound (4.10) is exactly as [11, Lemma 3.1].
The latter case 3. is immediate. ¤

Entirely analogous estimates hold for waves of the second family.
Finally, introduce the set

(4.11) Dε
M =

{
u ∈ D̄ : Υε(u) ≤ 2M

}
.

We observe that Dε
M depends only on ε, u−, u+ and M .

Lemma 4.4. If u ∈ Dε
M , Hγ is as in (3.4), Υ

ε is as in (4.7) with K ≥ M
and the total variation is measured as in (4.4), then

1− η
1 +Hγ

· TV (u) ≤ Υε(u) ≤ 2(1 + η) TV (u) .
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Proof. Write u as in (4.6). By (4.7), thanks to K ≥M and u ∈ Dε
M

Υε(u) ≤ (1 + η)
∑

i,α

∣∣σi,α
∣∣+ 1

K


∑

i,α

∣∣σi,α
∣∣


2

≤ (1 + η)
∑

i,α

∣∣σi,α
∣∣+ TV (u)

K

∑

i,α

∣∣σi,α
∣∣

≤ 2(1 + η)
∑

i,α

∣∣σi,α
∣∣ ≤ 2(1 + η) TV (u) .

Using the definition (4.4) of the total variation, the form (3.5) of the inter-
polated Lax curves and the bound on ∂σψ

ε provided by Lemma 3.4,

TV (u) =
∑

i,α

(∣∣σi,α
∣∣+
∣∣ψε(vα, γ, σi,α)

∣∣
)

≤ (1 +Hγ) ·
∑

i,α

∣∣σi,α
∣∣ ≤ 1 +Hγ

1− η ·Υε(u)

completing the proof. ¤

This allows to choose M so that all functions u of the form (4.6) satisfy-

ing (3.7) with K TV (u) +
(
TV (u)

)2 ≤M are also in Dε
M for all ε.

As usual, below we use ∆V (t) to denote the variation of the functional V
at the interaction time t, similarly for Q and Υ.

Lemma 4.5. There exist constants η ∈ ]0, 1[, K ∈ [M,+∞[, γo > 1 and
εo > 0 such that for all γ ∈ [1, γo[, for all ε ∈ ]0, εo] and at any time t̄ > 0
at which two waves σ−1 and σ

−
2 of different families interact (see Figure 4,

left), the following estimates hold:

∆Υε(t̄) ≤ − 1

2K
·
∣∣∣σ−1 σ−2

∣∣∣ .

Moreover, at any time t̄ > 0 at which two waves σ′ and σ′′ of the same
family interact (see Figure 4, right),

∆Υε(t̄) ≤ − 1

2K
·
∣∣σ′σ′′

∣∣ .

Proof. Consider the different possible interactions separately.

1. First the interaction between waves of different families. Remember (4.8)
in Lemma 4.2. Therefore,

∆V ε(t̄) = (1− η sgnσ+1 )
∣∣∣σ+1

∣∣∣+ (1− η sgnσ+2 )
∣∣∣σ+2

∣∣∣

−(1− η sgnσ−1 )
∣∣∣σ−1

∣∣∣− (1− η sgnσ−2 )
∣∣∣σ−2

∣∣∣

≤
∣∣∣σ+1 − σ−1

∣∣∣+
∣∣∣σ+2 − σ−2

∣∣∣

≤ C · (γ − 1) ·
∣∣∣σ−1 σ−2

∣∣∣ .

∆Qε(t̄) =
∑

σj,β∈A(σ
+

1
)

∣∣∣σ+1 σj,β
∣∣∣+

∑

σj,β∈A(σ
+

2
)

∣∣∣σ+2 σj,β
∣∣∣
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−
∑

σj,β∈A(σ
−

1
)\{σ−

2
}

∣∣∣σ−1 σj,β
∣∣∣−

∑

σj,β∈A(σ
−

2
)\{σ−

1
}

∣∣∣σ−2 σj,β
∣∣∣−
∣∣∣σ−1 σ−2

∣∣∣

≤
∣∣∣σ+1 − σ−1

∣∣∣
∑

σj,β∈A(σ
+

1
)

∣∣σj,β
∣∣+
∣∣∣σ+2 − σ−2

∣∣∣
∑

σj,β∈A(σ
+

2
)

∣∣σj,β
∣∣

−
∣∣∣σ−1 σ−2

∣∣∣

≤
(
CM (γ − 1)− 1

) ∣∣∣σ−1 σ−2
∣∣∣ .

∆Υε(t̄) ≤ 1

K

(
C (K +M)(γ − 1)− 1

) ∣∣∣σ−1 σ−2
∣∣∣

so that the condition γ < 1 +
(
2(K +M)C

)−1
ensures that the desired

estimate holds.
Consider an interaction between waves of the same family. Following the

same lines of [11, Lemma 3.1], we consider the different cases.

2. σ′ < 0, σ′′ < 0 and σ+1 < 0. Note that σ+2 ≥ 0. Moreover by (4.7)

∆V ε(u) ≤ −2η
∣∣∣σ+2

∣∣∣

∆Qε(u) ≤ −
∣∣σ′σ′′

∣∣+ 2M
∣∣∣σ+2

∣∣∣

∆Υε(u) ≤ 2

(
M

K
− η
) ∣∣∣σ+2

∣∣∣− 1

K

∣∣σ′σ′′
∣∣ ≤ − 1

K

∣∣σ′ σ′′
∣∣

as soon as K ≥M/η.

3. σ′ < 0, σ′′ > 0 and σ+1 < 0. Moreover, following 2. in Lemma 4.3, see
also [11, Lemma 3.1],

∆V ε(u) = (1 + η)

(∣∣∣σ+1
∣∣∣−
∣∣σ′
∣∣
)
+ (1 + η)

∣∣∣σ+2
∣∣∣− (1− η)

∣∣σ′′
∣∣

= 2

(∣∣∣σ+1
∣∣∣−
∣∣σ′
∣∣+ η

∣∣∣σ+2
∣∣∣
)

≤ 2(Cη − 1)
(∣∣σ′

∣∣−
∣∣∣σ+1

∣∣∣
)
+ Cη(γ − 1)

∣∣σ′σ′′
∣∣

∆Qε(u) ≤
(∣∣∣σ+1

∣∣∣−
∣∣σ′
∣∣
) ∑

σα∈A(σ′)

|σα|+
∣∣∣σ+2

∣∣∣M −
∣∣σ′σ′′

∣∣

≤ M

(∣∣σ′
∣∣−
∣∣∣σ+1

∣∣∣+
∣∣∣σ+2

∣∣∣
)
−
∣∣σ′σ′′

∣∣

≤ M(C + 1)

(∣∣σ′
∣∣−
∣∣∣σ+1

∣∣∣
)
+
(
CMη(γ − 1)− 1

) ∣∣σ′σ′′
∣∣

∆Υε(u) ≤
(
2Cη +

M(1 + C)

K
− 1
)(∣∣σ′

∣∣−
∣∣∣σ+1

∣∣∣
)

+
1

K

(
(K +M)Cη(γ − 1)− 1

) ∣∣σ′σ′′
∣∣

≤ − 1

2K

∣∣σ′σ′′
∣∣

as soon as η < 1/(4C), K > 2M(1 + C) and γ < 1 + 1/
(
2Cη(K +M)

)
.
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4. σ′ < 0, σ′′ > 0 and σ+1 > 0. By 3. in Lemma 4.3,

∆V ε(u) = −2
∣∣σ′
∣∣ ≤ 0

∆Qε(u) ≤
(∣∣∣σ+1

∣∣∣−
∣∣σ′′
∣∣
) ∑

σ∈A(σ+

1
)

|σ| −
∣∣σ′σ′′

∣∣ ≤ −
∣∣σ′σ′′

∣∣

∆Υε(u) ≤ − 1

K

∣∣σ′σ′′
∣∣ .

To complete the proof, we only choose the parameters K, η and γ as follows

η < 1/(4C) Case 1
K > max

{
M/η, 2M(1 + C)

}
Cases 2 and 3

γ < 1 + min
{
1/
(
2(K +M)C

)
, 1/

(
2Cη(K +M)

)}
Cases 1 and 3

to satisfy all the above requirements. ¤

We thus proved the following proposition.

Proposition 4.2. Fix M > 0. Then there exists a constant η > 0, inde-
pendent of ε, such that, for any ū ∈ Dε

M , the wave-front tracking algorithm
constructs an approximate weak solution uε : [0,+∞[×R → Ω of (1.1), with
the following properties:

(i) uε(t, ·) ∈ Dε
M for all t ≥ 0;

(ii) the function t→ Υε(uε(t, ·)) is non-increasing;
(iii) any strip of the form [0, T ] × R contains finitely many interaction

points of uε;
(iv) TV

(
uε(t, ·)

)
is uniformly bounded.

To denote the globally defined, ε-approximate solution, we use the notation

(4.12) uε(t, ·) = Sε
t ū .

The proof then works towards an estimate independent of ε of the Lips-
chitz constant for the semigroup Sε in the L1 norm. The basic technique is
to shift the locations xα of the jumps in the initial condition ū at constant
rates ξα, and estimate the rates at which the jumps in the corresponding
solution uε(t, ·) are shifted, for any fixed t > 0.
Definition 4.1. Let ]a, b[ be an open interval. An elementary path in Dε

M
is a map γ :]a, b[7→ Dε

M of the form

γ(θ) = u− χ]−∞,xθ
0
[ +

n−1∑

α=1

uα χ]xθα−1
,xθα]

+ u+ χ]xθn,+∞]
,

with xθα = x̄α + ξαθ and x
θ
α−1 < xθα for all θ ∈]a, b[ and α = 0, . . . , n.

Definition 4.2. A continuous map γ : [a, b] → L1
loc is a pseudopolygonal

if there exist countably many disjoint open intervals Jh ⊂ [a, b] such that:
(i) the restriction of γ to each Jh is an elementary path;
(ii) the set [a, b] \ ∪h≥1Jh is countable.

Moreover, as in [5, 11], we can prove the following result.

Proposition 4.3. Let γ0 be a pseudopolygonal in Dε
M . Then, for all τ > 0,

the path γτ = Sε
τγ0 is also a pseudopolygonal.
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For ε > 0, the weighted length of the elementary path γ :]a, b[→ Dε
M is

(4.13) ‖γ‖ = (b− a) ·Υε
ξ(u)

where the functional Υε
ξ will be defined below. In the above definition, ‖γ‖

does not depend on the particular choice of θ such that γ(θ) = u, since the
map θ 7→ Υε

ξ

(
γ(θ)

)
is constant along elementary paths.

Definition 4.3. The weighted length of a pseudopolygonal is the sum of the
weighted lengths of its elementary paths. For any two piecewise constant
functions u,w ∈ Dε

M , their weighted distance is

dε(u,w) = inf

{
‖γ‖ such that γ : [0, 1] 7→ Dε

M
is a pseudopolygonal joining u with w

}
.

We introduce the functional Υε
ξ used in the definition of the length of

pseudopolygonals:

(4.14)

Sε
i,α = 2


∑

β

2∑

j=1

[[σj,β ]]
−


− [[σi,α ]]

−

Rε
α =

∑

β<α

∣∣σ2,β
∣∣+

∑

β>α

∣∣σ1,β
∣∣

Υε
ξ =

∑

α

2∑

i=1

∣∣σi,α ξα
∣∣ exp

(
K1 S

ε
i,α +K2R

ε
i,α +K3Υ

ε
)

where [[ s ]]
−
= max{−s, 0} denotes the negative part of s and V ε is defined

in (4.7). The constants K1, K2 and K3 are determined below.
The basic interaction estimates on shifting interactions are the following.

Lemma 4.6. Consider an interaction as in Figure 4, left. Then

2∑

i=1

∣∣∣σ+i ξ+i
∣∣∣−
∣∣∣σ−1 ξ−1

∣∣∣ < C ·
∣∣∣σ−1 σ−2

∣∣∣ ·
(∣∣∣ξ−1

∣∣∣+
∣∣∣ξ−2
∣∣∣
)

while in case of Figure 4, right
∣∣∣σ+1 ξ+1

∣∣∣−
∣∣σ′ξ′

∣∣−
∣∣σ′′ξ′′

∣∣+
∑

α

∣∣∣σ+2,αξ+2,α
∣∣∣ < C ·

∣∣σ′σ′′
∣∣
(∣∣ξ′

∣∣+
∣∣ξ′′
∣∣
)
.

An elementary estimate that will be used throughout the forthcoming
proofs is the following:

∀ a, b ∈ R ea − eb ≤ (a− b) ea .

Lemma 4.7. There exist constants K1, K2 and K3 such that at any inter-
action Υε

ξ does not increase.

Proof. Following the lines of the proof of [11, Lemma 3.4], we consider several
different cases. For the sake of notational simplicity, we omit the dependence
on ε in the functionals below and we keep it fixed throughout this proof.
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1. Interaction between two waves of different families. Using the notation
in Figure 4, left, the estimate (4.8) and Lemma 4.5, we have:

∆Si ≤ C(γ − 1)
∣∣∣σ−1 σ−2

∣∣∣ ∆R1 = −
∣∣∣σ−2

∣∣∣
∆R2 = −

∣∣∣σ−1
∣∣∣ ∆Υ ≤ − 1

2K

∣∣∣σ−1 σ−2
∣∣∣ .

Therefore

∆Υξ

≤
2∑

i=1

(∣∣∣σ+i ξ+i
∣∣∣−
∣∣∣σ−i ξ−i

∣∣∣
)
exp

(
K1S

+
1 +K2R

+
1 +K3Υ

+
)

+
2∑

i=1

∣∣∣σ−i ξ−i
∣∣∣ (K1∆Si +K2∆Ri +K3∆Υ)×

× exp
(
K1S

+
i +K2R

+
i +K3Υ

+
)

≤ C
∣∣∣σ−1 σ−2

∣∣∣
(∣∣∣ξ−1

∣∣∣+
∣∣∣ξ−2
∣∣∣
)
exp

(
K1S

+
1 +K2R

+
1 +K3Υ

+
)

+
∣∣∣σ−1 ξ−1

∣∣∣ (K1∆S1 +K2∆R1 +K3∆Υ)×

× exp
(
K1S

+
1 +K2R

+
1 +K3Υ

+
)

+C
∣∣∣σ−1 σ−2

∣∣∣
(∣∣∣ξ−1

∣∣∣+
∣∣∣ξ−2
∣∣∣
)
exp

(
K1S

+
2 +K2R

+
2 +K3Υ

+
)

+
∣∣∣σ−2 ξ−2

∣∣∣ (K1∆S2 +K2∆R2 +K3∆Υ)×

× exp
(
K1S

+
2 +K2R

+
2 +K3Υ

+
)

≤
(∣∣∣ξ−1

∣∣∣+
∣∣∣ξ−2
∣∣∣
) ∣∣∣σ−1

∣∣∣
(
C
∣∣∣σ−2

∣∣∣+K1∆S1 +K2∆R1 +K3∆Υ

)
×

× exp
(
K1S

+
1 +K2R

+
1 +K3Υ

+
)

+

(∣∣∣ξ−1
∣∣∣+
∣∣∣ξ−2
∣∣∣
) ∣∣∣σ−2

∣∣∣
(
C
∣∣∣σ−1

∣∣∣+K1∆S2 +K2∆R2 +K3∆Υ

)
×

× exp
(
K1S

+
2 +K2R

+
2 +K3Υ

+
)

≤
(∣∣∣ξ−1

∣∣∣+
∣∣∣ξ−2
∣∣∣
) ∣∣∣σ−1

∣∣∣×

×
(
(C −K2)

∣∣∣σ−2
∣∣∣+
(
CK1(γ − 1)−

K3
2K

) ∣∣∣σ−1 σ−2
∣∣∣
)

× exp
(
K1S

+
1 +K2R

+
1 +K3Υ

+
)

+

(∣∣∣ξ−1
∣∣∣+
∣∣∣ξ−2
∣∣∣
) ∣∣∣σ−2

∣∣∣×

×
(
(C −K2)

∣∣∣σ−1
∣∣∣+
(
CK1(γ − 1)−

K3
2K

) ∣∣∣σ−1 σ−2
∣∣∣
)
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× exp
(
K1S

+
2 +K2R

+
2 +K3Υ

+
)

≤ 0

provided K2 ≥ C and γ ≤ 1 +K3/(2CKK1).

In the next cases, it is useful to separate the waves taking part to the
interaction from those on the left or on the right of the interaction point:

∆Υξ = ∆Υ
left
ξ +∆Υrightξ ∆Υintξ .

2. Interaction between shocks of the same family. Concerning the waves
on the left of the interaction point, by (4.7), (4.14) and Lemma 4.5, we have

∆Si,α = −2
∣∣∣σ+2

∣∣∣, ∆Rα = −
∣∣∣σ+2

∣∣∣, ∆Υε ≤ − 1

2K

∣∣σ′σ′′
∣∣ ,

therefore ∆Υleftξ ≤ 0.
Concerning the waves on the right of the interaction point, analogously

we get

∆Si,α = −2
∣∣∣σ+2

∣∣∣, ∆Rα =
∣∣∣σ+2

∣∣∣, ∆Υε ≤ − 1

2K

∣∣σ′σ′′
∣∣ ,

therefore, if K1 ≥ K2/2, then ∆Υ
right
ξ ≤ 0.

Now let us consider the waves entering and exiting the interaction point.
By (4.7), (4.14), 1. in Lemma 4.3, (4.10) and Lemma 4.5, we get

S+1 − S′ = −
∣∣σ′′
∣∣−
∣∣∣σ+2

∣∣∣ S+1 − S′′ = −
∣∣σ′
∣∣−
∣∣∣σ+2

∣∣∣
S+2,α − S+1 ≤

∣∣∣σ+2
∣∣∣ R+1 −R′′ = −

∣∣σ′
∣∣

R+1 = R′ R+2,α −R′ ≤
∣∣∣σ+2

∣∣∣ .

Then, thanks to Lemma 4.6, 1. in Lemma 4.3 and (4.10), we get

∆Υintξ

=
∣∣∣σ+1 ξ+1

∣∣∣ exp(K1S+1 +K2R
+
1 +K3Υ

+)

+
∑

α

∣∣∣σ+2,αξ+2,α
∣∣∣ exp(K1S+2,α +K2R

+
2,α +K3Υ

+)

−
∣∣σ′ξ′

∣∣ exp(K1S′ +K2R
′ +K3Υ

−)

−
∣∣σ′′ξ′′

∣∣ exp(K1S′′ +K2R
′′ +K3Υ

−)

=

(∣∣∣σ+1 ξ+1
∣∣∣−
∣∣σ′ξ′

∣∣−
∣∣σ′′ξ′′

∣∣
)
exp(K1S

+
1 +K2R

′ +K3Υ
−)

+
∣∣∣σ+1 ξ+1

∣∣∣ exp(K1S+1 +K2R
′)
(
exp(K3Υ

+)− exp(K3Υ−)
)

+
∣∣σ′ξ′

∣∣
(
exp(K1S

+
1 )− exp(K1S′)

)
exp(K2R

′ +K3Υ
−)

+
∣∣σ′′ξ′′

∣∣
(
exp(K1S

+
1 +K2R

′)− exp(K1S′′ +K2R
′′)
)
exp(K3Υ

−)

+
∑

α

∣∣∣σ+2,αξ+2,α
∣∣∣ exp(K1S+1 +K2R

′ +K3Υ
−)

+
∑

α

∣∣∣σ+2,αξ+2,α
∣∣∣×
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×
(
exp(K1S

+
2,α +K2R

+
2,α +K3Υ

+)− exp(K1S+1 +K2R
′ +K3Υ

−)
)

≤ C
∣∣σ′σ′′

∣∣
(∣∣ξ′

∣∣+
∣∣ξ′′
∣∣
)
exp

(
K1S

+
1 +K2R

′ +K3Υ
−
)

−K1
∣∣σ′ξ′

∣∣
(∣∣σ′′

∣∣+
∣∣∣σ+2

∣∣∣
)
exp

(
K1S

+
1 +K2R

′ +K3Υ
−
)

−K1
∣∣σ′′ξ′′

∣∣
(∣∣σ′

∣∣+
∣∣∣σ+2

∣∣∣
)
exp

(
K1S

+
1 +K2R

′ +K3Υ
−
)

+
∑

α

∣∣∣σ+2,αξ+2,α
∣∣∣
(
(K1 +K2)

∣∣∣σ+2
∣∣∣−K3/(2K)

∣∣σ′σ′′
∣∣
)
×

× exp(K1S+1 +K2R
′ +K3Υ

−)

≤ (C −K1)
∣∣σ′σ′′

∣∣
(∣∣ξ′

∣∣+
∣∣ξ′′
∣∣
)
exp(K1S

+
1 +K2R

′ +K3Υ
−)

+
∑

α

∣∣∣σ+2,αξ+2,α
∣∣∣
(
C(K1 +K2)M −K3/(2K)

) ∣∣σ′σ′′
∣∣×

× exp(K1S+1 +K2R
′ +K3Υ

−)

≤ 0

which is satisfied if K1 ≥ C and K3 ≥ 2CKM(K1 +K2).

3. Interaction between a 1-shock σ′ and a 1-rarefaction σ′′ resulting in a
1-shock. In this case, σ+2 is a 2-shock. Let us consider the waves on the left
of the interaction point. Thanks to Lemma 4.5, 2. in Lemma 4.3 and (4.10)

∆Slefti,α ≤ 2
∣∣∣σ+2

∣∣∣, ∆Rleftα ≤
∣∣∣σ+2

∣∣∣, ∆Υleft ≤ − 1

2K

∣∣σ′σ′′
∣∣ .

And therefore

K1∆S
left
i,α +K2∆R

left
α +K3∆Υ

left ≤ (2K1 +K2)
∣∣∣σ+2

∣∣∣− K3
2K

∣∣σ′σ′′
∣∣

≤
(
(2K1 +K2)CM − K3

2K

) ∣∣σ′σ′′
∣∣

so that ∆Υleftξ ≤ 0 provided K3 > 2K(2K1 +K2)CM .
Considering the waves on the right of the interaction point, we also get

∆Srighti,α ≤ 2
∣∣∣σ+2

∣∣∣, ∆Rrightα =
∣∣∣σ+2

∣∣∣, ∆Υright ≤ − 1

2K

∣∣σ′σ′′
∣∣

so that ∆Υξ ≤ 0 under the same conditions as above.
Concerning the interacting waves, using 3 in Lemma 4.3, we compute

S+1 − S′ =
∣∣∣σ+1

∣∣∣−
∣∣σ′
∣∣+ 2

∣∣∣σ+2
∣∣∣ = 3

∣∣∣σ+2
∣∣∣−
∣∣σ′′
∣∣

S+1 − S′′ =
∣∣∣σ+1

∣∣∣− 2
∣∣σ′
∣∣+ 2

∣∣∣σ+2
∣∣∣ ≤

∣∣∣σ+2
∣∣∣−
∣∣σ′
∣∣

S+2, − S+1 =
∣∣∣σ+1

∣∣∣−
∣∣∣σ+2

∣∣∣ =
∣∣σ′
∣∣−
∣∣σ′′
∣∣ ≤

∣∣σ′
∣∣

R+2 −R′′ = −
∣∣σ′
∣∣

R+1 −R′′ = −
∣∣σ′
∣∣

R′ −R′′ = −
∣∣σ′
∣∣ ≤ 0
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Therefore, by Lemma 4.5 and 2. in Lemma 4.3, we get

∆Υintξ

=

(∣∣∣σ+1 ξ+1
∣∣∣−
∣∣σ′ξ′

∣∣−
∣∣σ′′ξ′′

∣∣+
∣∣∣σ+2 ξ+2

∣∣∣
)
exp(K1S

+
1 +K2R

′′ +K3Υ
−)

+
∣∣σ′ξ′

∣∣
(
eK1S

+

1
+K2R′′+K3Υ+ − eK1S′+K2R′+K3Υ−

)

+
∣∣σ′′ξ′′

∣∣
(
eK1S

+

1
+K2R′′+K3Υ+ − eK1S′′+K2R′′+K3Υ−

)

+
∣∣∣σ+2 ξ+2

∣∣∣
(
eK1S

+

2
+K2R

+

2
+K3Υ+ − eK1S

+

1
+K2R′′+K3Υ+

)

≤ C
∣∣σ′σ′′

∣∣
(∣∣ξ′

∣∣+
∣∣ξ′′
∣∣
)
exp(K1S

+
1 +K2R

′′ +K3Υ
+)

+
∣∣σ′ξ′

∣∣
(
3K1

∣∣∣σ+2
∣∣∣−K1

∣∣σ′′
∣∣− K3

2K

∣∣σ′σ′′
∣∣
)
eK1S

+

1
+K2R′′+K3Υ+

+
∣∣σ′′ξ′′

∣∣
(
K1

∣∣∣σ+2
∣∣∣−K1

∣∣σ′
∣∣− K3

2K

∣∣σ′σ′′
∣∣
)
×

× exp(K1S+1 +K2R
′′ +K3Υ

+)

+
∣∣∣σ+2 ξ+2

∣∣∣
(
K1
∣∣σ′
∣∣−K2

∣∣σ′
∣∣
)
exp(K1S

+
1 +K2R

′′ +K3Υ
+)

≤
∣∣σ′σ′′

∣∣
(∣∣ξ′

∣∣+
∣∣ξ′′
∣∣
)
(C −K1) exp(K1S+1 +K2R

′′ +K3Υ
+)

+
∣∣σ′ξ′

∣∣
(
3CK1 −

K3
2K

) ∣∣σ′σ′′
∣∣ exp(K1S+1 +K2R

′′ +K3Υ
+)

+
∣∣σ′′ξ′′

∣∣
(
K1C −

K3
2K

) ∣∣σ′σ′′
∣∣ exp(K1S+1 +K2R

′′ +K3Υ
+)

+
∣∣∣σ+2 ξ+2

∣∣∣(K1 −K2)
∣∣σ′
∣∣ exp(K1S+1 +K2R

′′ +K3Υ
+)

≤ 0

provided K1 > C, K2 > K1 and K3 > 6CKK1.

4. Interaction between a 1-shock σ′ and a 1-rarefaction σ′′ resulting in a
1-rarefaction. As observed before, σ+2 = 0. For the waves not taking part
in the interaction we have ∆Si,α = −2

∣∣σ′
∣∣. For the waves on the left of

the interaction point: ∆Rα ≤ −
∣∣σ′
∣∣ while for waves on the right ∆Rα = 0.

Therefore ∆Υleft ≤ 0 and ∆Υright ≤ 0.
Regarding the waves entering or exiting the interaction point, we compute

S+1 − S′ ≤ −
∣∣σ′
∣∣ S+1 − S′′ ≤ −2

∣∣σ′
∣∣

R+1 −R′ ≤ −
∣∣σ′
∣∣ R+1 −R′′ ≤ −

∣∣∣σ+1
∣∣∣ .

Consequently

∆Υintξ

=

(∣∣∣σ+1 ξ+1
∣∣∣−
∣∣σ′ξ′

∣∣−
∣∣σ′′ξ′′

∣∣
)
exp(K1S

+
1 +K2R

+
1 +K3Υ

+)

+
∣∣σ′ξ′

∣∣
(
eK1S

+

1
+K2R

+

1
+K3Υ+ − eK1S′+K2R′+K3Υ−

)
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+
∣∣σ′′ξ′′

∣∣
(
eK1S

+

1
+K2R

+

1
+K3Υ+ − eK1S′′+K2R′′+K3Υ−

)

≤ C
∣∣σ′σ′′

∣∣
(∣∣ξ′

∣∣+
∣∣ξ′′
∣∣
)
exp(K1S

+
1 +K2R

+
1 +K3Υ

+)

+
∣∣σ′ξ′

∣∣
(
−(K1 + 2K3)

∣∣σ′
∣∣−K2

∣∣σ′′
∣∣
)
eK1S

+

1
+K2R

+

1
+K3Υ+

+
∣∣σ′′ξ′′

∣∣
(
−2(K1 +K3)

∣∣σ′
∣∣
)
exp(K1S

+
1 +K2R

+
1 +K3Υ

+)

≤
∣∣σ′σ′′

∣∣
(
(C −K2)

∣∣ξ′
∣∣+ (C − 2(K1 +K3)

∣∣ξ′′
∣∣
)

exp(K1S
+
1 +K2R

+
1 +K3Υ

+)

≤ 0

provided K2 > C and 2(K1 +K3) > C. ¤

Proposition 4.4. Let us consider the system (1.1) and let us take M as in
Theorem 4.1. Then there exist positive constants K1,K2 and K3, indepen-
dent of ε in (4.14), such that the following holds: if γ0 is a pseudopolygonal,
then the weighted length ‖γτ‖ of the pseudopolygonal γτ = Sε

τγ0 is a non-
increasing function of time, i.e. the map t→ Υε

ξ(S
ε
t γ) is non-increasing.

The proof is the same as in [5].

Proposition 4.5. Any two functions u, u′ in Dε
M can be joined by a pseu-

dopolygonal entirely contained in Dε
M . Moreover, the weighted length of this

pseudopolygonal is uniformly equivalent to the usual L1-distance, i.e.,

1

C
· ‖γ‖

L1 ≤ (b− a) ·Υε
ξ(γ) ≤ C · ‖γ‖

L1 .

Proposition 4.6. Let M be as in Theorem 4.1. Then, the semigroup
Sε : [0,+∞[×Dε

M → Dε
M defined by (4.12) is uniformly Lipschitz continuous

with respect to the L1 distance, with a constant independent of ε.

As in [5], to complete the proof of Theorem 4.1, we consider a sequence
of semigroups Sεn with limn→+∞ εn = 0, and construct the limit semigroup
as S = limn→+∞ Sεn . More precisely, for ū ∈ D and t ≥ 0, we define

Stū = lim
n→+∞

Sεn ,

where ū ∈ Dεn
M is any sequence converging to ū in L1. The limit is unique

and depends continuously on the initial data.
With easy computations, we can verify that if TV (uo) ≤ κγM , then

TV (Stuo) ≤M for all t ≥ 0, and limγ→1 κγ =
1

1+H(1,M,u−,u+)
; therefore the

conclusion of the proof of Theorem 4.1 follows as in [5].

5. The Classical Case

This section describes the modifications necessary to show that also the
classical case (1.2) fits in Theorem 4.1. Again, u denotes the conserved
quantities and f the flow:

u1 = ρ
u2 = ρv

f(u1, u2) =

[
ρv

ρv2 + p(ρ)

]
.
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Conditions (4.5) reduce to the known inequalities [17, (XX)]

(5.1)

∫ ρ−

0

√
p′(r)

r
dr >

M

4
and

∫ ρ+

0

√
p′(r)

r
dr >

M

4
.

All the results obtained for the relativistic system (1.1) have immediate
analogue for the classical case (1.2). For instance, Theorem 4.1 can be
restated as follows. (Recall the definition (2.7) of U).

Theorem 5.1. Choose a positive M and states u−,u+ satisfying (5.1) for
some γ̄ ∈ ]1, 2]. Then, there exists γo ∈ ]1, γ̄] such that for all γ ∈ [1, γo[,
system (1.1) generates a Standard Riemann Semigroup S : [0,+∞[×D 7→ D.
Moreover, for a suitable κγ ∈ ]0, 1[,

(1) D ⊇ clL1



u ∈ BV(R;U) :

limx→−∞ u(x) = u−

limx→+∞ u(x) = u+

TV (u) ≤ κγ M



 ;

(2) if TV (uo) ≤ κγM , then TV (Stuo) ≤M for all t ≥ 0;
(3) limγ→1 κγ =

1
1+H(1,M,u−,u+)

with H(1,M,u−,u+) as in (3.4).

The proof is entirely similar to that of Theorem 4.1, so we only sketch it.
Coherently with the limit c→ +∞ in (2.8), the Riemann coordinates are

(5.2) v1 = v −
∫ ρ

0

√
p′(r)

r
dr and v2 = v +

∫ ρ

0

√
p′(r)

r
dr

and, using the γ-law,

∫ ρ−

0

√
p′(r)

r
dr =

3− γ
γ − 1

√
γ ζ ρ(γ−1)/2 if γ > 1

∫ ρ

ρ∗

√
p′(r)

r
dr = ζ ln(ρ/ρ∗) if γ = 1 .

The function ϕ in (3.3) becomes (see [11, § 4]),

ϕ∞(σ) =

{
0 σ ≥ 0
−12σ + 2ζ sinh σ

4ζ σ < 0 .

Note that, in both cases, the relations above coincide with the formal limits
for c → +∞ of the analogous relativistic conditions. In the classical case,
Theorem 4.1 can thus be entirely rephrased, providing Lipschitz continuous
dependence to the solutions constructed in [16].

6. The Limit c→ +∞
Now, we can extend to the case “γ near to 1” the rigorous classical limit

c→ +∞ obtained in [3, Theorem 4.1] for γ = 1, see also [9]. We prove that
as c→ +∞ any solution of (1.1) converges to the corresponding solution of
the classical p-system (1.2) with 1/c2 as rate of convergence.
Below, we denote by Sc : [0,+∞[×Dco 7→ Dc the semigroup constructed

in Theorem 4.1 and by S : [0,+∞[×D 7→ D the one defined in Theorem 5.1.
Throughout this section, γ ∈ ]1, γo].
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Proposition 6.1. Fix γ ∈ [1, 3]. Let co ∈ ]0,+∞[ be fixed. Choose a
positive M and states u−, u+ satisfying (4.5) for c = co. Then, M , u

− and
u+ satisfy (4.5) for all c ∈ [co,+∞[ and also (5.1). Moreover, for all u such
that limx→−∞ u(x) = u−, limx→+∞ u(x) = u+ and TV (u) ≤ κγM ,

∥∥Sc
tu− Stu

∥∥
L1
≤ C · 1

c2
· t ,

where the constant C depends only on M , u± and TV (u).

Proof. To prove the first statement, simply observe that for all c > co
∫ ρ

0

√
p′(r)

r + p(r)
c2

dr >

∫ ρ

0

√
p′(r)

r + p(r)
co2

dr and

∫ ρ

0

√
p′(r)

r
dr >

∫ ρ

0

√
p′(r)

r + p(r)
co2

dr .

Thanks to the constructions of the SRS provided by Theorem 4.1, the latter
statement follows from [3, Corollary 2.5]. ¤
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