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Abstract. We prove that the limit of a sequence of generic semi-algebraic
sets given by a finite number of formulas always exists and is a semi-algebraic
set that can be explicitly given as a Boolean expression involving the primitives
of the additive forms of the formulas.

1. Introduction

Bishop [2] proved that the limit set of a sequence of complex purely k-dimensional
algebraic subvarieties whose real volumes are uniformly bounded is again a purely
k-dimensional algebraic subvariety. On the other hand, there are many reasons why
one should be interested in analyzing the limit sets of algebraic subvarieties with
unbounded volume. One reason is the existence of families of algebraic curves of
increasing degree that are integrals of families of polynomials differential equations
on the plane with bounded degree, a badly understood phenomenon related to the
sixteenth Hilbert Problem (see [3], for instance). Another reason is that, despite the
existence of topologically complicated limit sets of curves with unbounded volume
(see [5], for instance), much can be said about the limit sets of algebraic subvarieties
which lie in a family of subvarieties with finite complexity (see [4] for a definition
of this concept).

In this paper we consider the limit sets of one-parameter families of algebraic
subvarieties, indexed by a natural number n, defined by a finite number of equations,
each one defined by a formula. Associated to each formula there is a height, which
is the maximum number of nested n-th powers that appear in it. Here is the formal
definition:

Definition 1. Formulas and their heights are defined recursively as follows:
(1) Every F ∈ C[X1, . . . , Xm] is a formula of height zero.
(2) If F1 and F2 are formulas then F1 + F2 and F1F2 are formulas of height

max(h1, h2), where hi is the height of Fi.
(3) If F is a formula of height h, then Fn is a formula of height h + 1.

A formula of height zero is also called a primitive formula; it is simply a complex
polynomial.

The height is a measure of the complexity of the formula: it measures how the
degree increases with n. A formula of height h has degree proportional to nh. An
example of a formula of height 3 is

(((x2 − y + 1)n − 1)n + x)n + (xy)n + (yn − 1)2 + 1.
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Note that the degree is 2n3.
The same polynomial family may be given by different formulas. For instance,

(xn + y)2 = (xn)2 + 2xny + y2.

So, we shall need a normal form for formulas. A formula is in additive form when
it can be expressed as

Q1A
n
1 + Q2A

n
2 + · · ·+ QlA

n
l − P ,

where Q1, . . . , Ql, and P are primitive formulas and A1, . . . , Al are arbitrary
subformulas (necessarily of smaller height than the original formula). Additive
forms are normal forms, as the next lemma shows:

Lemma 1. Every formula can be written in additive form.

Proof. The proof is by induction on the number of operations required to obtain
the formula according to Definition 1. If F is a primitive formula, then we can take
l = 0 and P = −F . If F = An, then F is already in additive form because we can
take l = 1, Q1 = 1, A1 = A, and P = 0. If F = A + B, then by induction A and B
can be expressed in additive form, whose combination gives an additive form for F .
If F = AB, then again by induction A and B can be expressed in additive form.
By performing the multiplication AB on their additive forms, we get an additive
form for F . �

As an example, (xn +y)2 can be written in additive form as (x2)n +(2y)xn +y2.

Definition 2. The limit (as n → ∞) of a sequence (Ωn) of subsets of Cm is the
set lim Ωn of points that are limits of sequences of points lying in a subsequence
of (Ωn). More precisely,

lim Ωn = { z ∈ Cm : ∃(zn), zn → z,∃(kn), kn →∞, zn ∈ Ωkn for sufficiently large n } .

Thus, according to our definition, the family of real curves x2n + y2n = 1 con-
verges to the border of the unit square given by x2 ≤ 1, y2 ≤ 1. Actually, this
definition applies to the curves xn + yn = 1 (note that we now allow both even
and odd exponents). These curves converge to the union of the border of the unit
square with the two rays given by x = −y, x2 ≥ 1 (the curves actually alternate
between two limit sets, but our definition of limit covers this). Considered as a
family of complex curves, the family xn + yn = 1 has as limit set the subset of C2

given by ∂([|x| < 1] ∩ [|y| < 1]) ∪ [|x| = |y| > 1], as it is easy to verify.
We shall consider two situations: limit sets in Rk of families of algebraic sub-

varieties given by a finite number of formulas and limit sets in Ck of families of
complex algebraic subvarieties.

In the real case it turns out that it is easier to describe the limits of semi-algebraic
subsets, instead of algebraic subsets. An algebraic subvariety of codimension 1 is the
set of points that satisfy a polynomial equation f(z) = 0. For simplicity, we shall
write this set as [f = 0]. We shall also deal with basic closed semi-algebraic subsets,
which are the solutions of a system of polynomial inequalities: [f1 ≥ 0, . . . , fk ≥ 0],
and with basic open semi-algebraic subsets, which are given by strict inequalities :
[f1 > 0, . . . , fk > 0].

One main difficulty in the theory of semi-algebraic sets is that the closure of
a basic open semi-algebraic set is not necessarily the corresponding basic closed
semi-algebraic set obtained by relaxing the strict inequalities. Nor is the interior of
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a closed semi-algebraic set equal to the corresponding basic open semi-algebraic set
obtained by restricting the inequalities. However, these are true generically, in two
senses: (i) they are true if we perturb the polynomials slightly, and (ii) relaxing or
restricting the inequalities only adds or removes lower dimensional components. So,
we say that a basic closed semi-algebraic set is generic when it coincides with the
closure of the corresponding basic open semi-algebraic set obtained by restricting
the inequalities. In other words, a basic closed semi-algebraic set given by [f1 ≥
0, . . . , fk ≥ 0] is generic when [f1 ≥ 0, . . . , fk ≥ 0] = closure[f1 > 0, . . . , fk > 0].
A generic algebraic set is, by definition, the boundary of a generic semi-algebraic
subset.

Our main result is the following:

Theorem 1. The limit of a sequence of generic semi-algebraic sets given by a finite
number of formulas always exists and is a semi-algebraic set that can be explicitly
given as a Boolean expression involving the primitives of the additive forms of the
formulas.

The corresponding algebraic version is also valid:

Theorem 2. The limit of a sequence of generic algebraic sets given by a finite num-
ber of formulas always exists and is an algebraic set that can be explicitly given as
a Boolean expression involving the primitives of the additive forms of the formulas.

In the complex case the limit set of a family of algebraic sets given by a finite
number of formulas has also an underlying semi-algebraic structure in the sense
that it projects, by means of a rational map, onto a proper real semi-algebraic
subset defined by expressions involving the absolute values of the primitives of the
formulas. More precisely, we have the following result:

Theorem 3. The limit of a sequence of generic algebraic subsets given by a finite
number of formulas with complex coefficients always exists; it is a subset with a
complex structure obtained by means of a rational pull-back on semi-algebraic sub-
sets defined explicitly in terms of Boolean expressions involving the absolute values
of the primitives of the formulas.

Here is an example of this situation, which generalizes the xn + yn = 1 example
given above. Let A1, A2, and P be polynomials. Then

lim[An
1 + An

2 = P ] = ∂([|A1| < 1] ∩ [|A2| < 1] ∩ [P 6= 0]) ∪ [|A1| = |A2| > 1])

This limit can be also understood as the pull-back by the polynomial map

(A1, A2) : C2 → C2

of the Reinhardt preimage of the semi-algebraic subset of R2 given by the second
member of the equation above, where the axes of R2 are taken as |A1| and |A2|.

2. The real case

We start with the simplest cases. We assume that all semi-algebraic sets are
generic.

Let A and P be real polynomials. We want to describe the limit of the algebraic
subsets [A2n = P ]. As mentioned before, it is simpler to state the results for the
semi-algebraic sets Ωn = [A2n ≤ P ]. Therefore, we shall describe Ω∞ = lim Ωn .

Lemma 2. lim[A2n ≤ P ] = [A2 ≤ 1, P ≥ 0].
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Proof. Let Ωn = [A2n ≤ P ], Ω∞ = lim Ωn, and Ω = [A2 ≤ 1, P ≥ 0]. We shall
show that Ω∞ = Ω.

To show that Ω∞ ⊆ Ω, take z ∈ Ω∞. Then, by definition of Ω∞, we have
z = lim zn and kn → ∞, with zn ∈ Ωkn , that is, A2kn(zn) ≤ P (zn). Since
A2kn(zn) ≥ 0, we get P (zn) ≥ 0 and hence P (z) ≥ 0, because P is continuous.
Moreover, (P (zn)) is a bounded sequence because it converges, and so P (zn) ≤ L
for some L ≥ 0. This implies that A(zn)2 ≤ P (zn)1/kn ≤ L1/kn . Since (L1/kn)
converges to either 0 or 1 (according to whether L = 0 or L 6= 0), we conclude that
A(z)2 = lim A(zn)2 ≤ lim L1/kn ≤ 1. Hence, z ∈ Ω.

To show that Ω ⊆ Ω∞, take z ∈ Ω. Since Ω is generic, we have that z = lim zn,
with zn ∈ [A2 < 1, P > 0]. From A(zn)2 < 1 we get that A(zn)2k → 0 as k → ∞.
Since P (zn) > 0, there is kn such that A(zn)2kn < P (zn), that is, zn ∈ Ωkn . By
definition, this means that z ∈ Ω∞. (Increase kn beyond n if necessary to get
kn →∞, as required.) �

The genericity hypothesis is essential to the lemma as stated. Although the
proof of the lemma shows that Ω∞ ⊆ Ω in all cases, the reverse inclusion is not
always true because things are more complicated in the general case. We give here
an example just to give a taste of this complication. Let A = y(y − 1)2 + 1 and
P = x(x + 1). Then lim[An ≤ P ] is shown in Figure 1 . Note that [P ≥ 0] is not
the closure of [P > 0] because [P ≥ 0] contains the line [x = 1], which is not in the
closure of [P > 0] since P is negative near x = −1 (). Note that [A = 1, P ≥ 0] is
not completely contained in lim[An ≤ P ]; only [A = 1, P ≥ 1] is part of the limit
set.

In general, lim[An ≤ P ] is equal to lim[A2n ≤ P ], except that P ≥ 1 when
A = 1+ and A = 0 when P = 0− ().

*** Figure 1 here
The next lemma generalizes Lemma 2:

Lemma 3. Let A1, . . . , Ak and P be polynomials. If [A2
1 ≤ 1, . . . , A2

k ≤ 1, P ≥ 0]
is generic, then it is equal to lim[A2n

1 + · · ·+ A2n
k ≤ P ].

Proof. The proof is essentially the same as that of Lemma 2. To show that Ω∞ ⊆ Ω,
just note that Ai(zn)2n ≤ A1(zn)2n + · · · + Ak(zn)2n ≤ P (zn). To show that
Ω ⊆ Ω∞, just note that Ai(zn)2r → 0 as r → ∞ implies that Ai(zn)2r < P (zn)/k
for sufficiently large r. The rest of the proof follows as before. �

The next lemma generalizes Lemma 2 in a different direction:

Lemma 4. Let An be a formula of positive height and P be a polynomial. Then
lim[A2n

n ≤ P ] = lim[A2
n ≤ 1] ∩ [P ≥ 0].

Proof. Take z ∈ lim[A2n
n ≤ P ]. By definition, there are sequences zn → z and

kn →∞ such that Akn(zn)2kn ≤ P (zn). Clearly, P (z) = lim P (zn) ≥ 0. As before,
since (P (zn)) is bounded, we have A2kn

kn
(zn) ≤ L for some L > 0.

This implies A2
kn

(zn) ≤ L1/kn and since lim[A2
n ≤ 1] = lim[L−1/nA2

n ≤ 1] we
obtain z ∈ lim[A2

n ≤ 1]∩[P ≥ 0]. Suppose now that z ∈ lim[A2
n ≤ 1]∩[P ≥ 0]. Since

[P ≥ 0] is generic, we may assume that P > 0. Then there are sequences zn → z and
kn →∞ such that Akn(zn)2 ≤ 1 and P (zn) > 0. Since (A2kn

kn
/P (zn)) is bounded we

have Akn
(zn)2kn ≤ LP (zn), for some L > 0. Since lim[A2n

n ≤ LP ] = lim[A2n
n ≤ P ]

we conclude that z ∈ lim[A2n
n ≤ P ]. �
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Lemma 5. Suppose that An is a formula of positive height h and P is a primitive
formula. Then, lim[A2n

n ≥ P ] = [P ≤ 0] ∪ [lim[A2
n ≥ 1], P ≥ 0]

Proof. Take z ∈ lim[A2n
n ≥ P ]. Then z = lim zn and there is kn → ∞ such that

A2kn

kn
(zn) ≥ P (zn). So, either P (z) ≤ 0, or P (z) > 0 and A2

kn
≥ P (zn)1/kn . Since

lim[P−1/nA2
n ≥ 1] = lim[A2

n ≥ 1], we obtain z ∈ [P ≤ 0] ∪ [lim[A2
n ≥ 1], [P ≥ 0]].

Conversely, take z ∈ [lim[A2
n ≥ 1], [P ≥ 0]]. Since [P ≥ 0] is generic, we may

assume P (zn) > 0 and that there are sequences zn → z, and kn → ∞ such that
Akn(zn)2 ≥ 1 and P (zn) > 0). The sequence (Akn(zn)2kn/P (zn)) is bounded
below by L > 0, i.e., A2kn

kn
(zn) ≥ LP (zn). Since lim[A2n

n ≥ LP ] = lim[A2n
n ≥ P ],

we conclude that z ∈ lim[A2n
n ≥ P ]. �

Lemma 6. Suppose that An is a formula of positive height and P and Q are
primitive formulas. Then

lim[QA2n
n ≤ P ] = ([Q > 0]∩lim[A2n

n ≤ P ])∪([Q < 0]∩lim[An ≥ −P ])∪[Q = 0, P ≥ 0].

Proof. If Q(z) > 0 and z ∈ lim[QA2n
n ≤ P ], then there are sequences zn → z

and kn → ∞ such that Q(zn)Akn(zn)2kn ≤ P (zn) ≤ L, with L > 0. Since
lim[(QL−1)1/nA2

n ≤ 1] = lim[A2
n ≤ 1] and P (z) ≥ 0, we obtain that z ∈ [Q >

0] ∩ lim[A2n
n ≤ P ]. If Q(z) < 0, there are sequences zn → z, kn → ∞ such

that Akn(zn)2kn ≥ −P (zn)/Q(zn). By Lemma 5, either −P (z)/Q(z) ≤ 0 or
z ∈ lim[A2

n ≥ 1,−P/Q ≥ 0], or equivalently P (z) ≤ 0 or lim[A2
n ≥ 1, P (z) ≥ 0],

i.e., z ∈ lim[A2n
n ≥ −P ]. �

By setting Q = A in the limit above, we get an expression for lim[A2n+1 ≤ P ],
and from this an expression for lim[An ≤ P ], which should convince the reader that
restricting to even powers is a good thing.

Lemma 7. Suppose that An and Bn are formulas of positive height and let P be a
primitive formula. Then

lim[A2n
n ≤ P + B2n

n ] = lim[B2
n < 1] ∩ lim[A2n

n ≤ P ] ∪ lim[B2
n ≥ 1] ∩ lim[A2n

n ≤ B2n
n ]

Proof. Take z ∈ lim[A2n
n ≤ P + B2n

n ]. Then, there are sequences zn → z and kn →
∞ such that Akn(zn)2kn ≤ P (zn)+Bkn(zn)2kn . If lim B2

kn
< 1, then Bkn(zn)2kn →

0 and we have P (z) ≥ 0 and Akn
(zn)2kn ≤ L, where L is a constant. Thus

Akn(zn)2 ≤ L1/kn and so z ∈ [P ≥ 0]∩lim[A2
n ≤ 1] = lim[A2n

n ≤ P ] by Lemma 4. So
we get z ∈ lim[B2

n ≤ 1]∩lim[A2n
n ≤ P ]. If lim Bkn

(zn)2 ≥ 1, then for n large P (zn) ≤
KBkn(zn)2kn for some constant K > 0. Thus Akn(zn)2kn ≤ (K + 1)Bkn(zn)2kn ,
so z ∈ lim[A2n

n ≤ B2n
n ]. On the other hand, if z ∈ lim[B2

n < 1] ∩ lim[A2n
n ≤

P ], then there are sequences zn → z, kn → ∞ such that Akn
(zn)2kn ≤ P (zn) ≤

P (zn) + Bkn(zn)2kn . Moreover, if z ∈ lim[B2
n ≥ 1] ∩ lim[A2n

n ≤ B2n
n ], then we

have two possibilities: either P (z) > 0 and then Akn
(zn)2kn ≤ Bkn(zn)2kn ≤

Bkn(zn)2kn +P (zn) or P (z) ≤ 0 and then for n large Bkn(zn)2kn > −2P (zn). Since
lim[A2n

n ≤ B2n
n ] = lim[2A2n

n ≤ B2n
n ] we can write 2Akn(zn)2kn ≤ Bkn(zn)2kn =

2Bkn(zn)2kn−Bkn(zn)2kn < 2Bkn(zn)2kn +2P (zn), i.e., Akn(zn)2kn ≤ Bkn(zn)2kn +
P (zn). �
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Lemma 8. Suppose that A1, . . . , Ak, B1, . . . , Bl are formulas of positive height.
Then

lim[A2n
1 + · · ·+ A2n

k ≤ P + B2n
1 + · · ·+ B2n

l ] =

=
k⋂

i=1

lim[A2n
i ≤ P + B2n

1 + · · ·+ B2n
l ]

=
k⋂

i=1

l⋃
j=1

lim[A2n
i ≤ P + B2n

j ].

Proof. Define P1 := P + B2n
1 + · · ·+ B2n

l . We proceed to show that

lim[A2n
1 + · · ·+ A2n

k ≤ P1] =
k⋂

i=1

lim[A2n
i ≤ P1].

Indeed, if z ∈ lim[A2n
1 + · · · + A2n

k ≤ P1], since A2n
i ≤ A2n

1 + · · · + A2n
k ≤ P1, we

have z ∈
⋂k

i=1 lim[A2n
i ≤ P1]. On the other hand, if z ∈

⋂k
i=1 lim[A2n

i ≤ P1], since
lim[A2n

i ≤ P1] = lim[A2n
i ≤ (1/k)P1], then z ∈ lim[A2n

1 + · · · + A2n
k ≤ P1]. We

proceed to show now that

lim[A2n ≤ P + B2n
1 + · · ·+ B2n

l ] =
l⋂

j=1

lim[A2n ≤ P + B2n
j ].

On one hand it is clear that lim[A2n ≤ P +B2n
j ] ⊂ lim[A2n ≤ P +B2n

1 + · · ·+B2n
l ].

On the other hand, if z ∈ lim[A2n ≤ P + B2n
1 + · · · + B2n

l ], then we have a
relation Bi1(z)2 ≤ · · · ≤ Bil

(z)2, where i1, . . . , il = 1, . . . , l. Then A(zn)2kn ≤
P (zn) + B1(zn)2kn + · · · + Bl(zn)2kn ≤ P (zn) + lBil

(zn)2kn , i.e., z ∈ lim[A2n ≤
P + lB2n

il
] = lim[A2n ≤ P + B2n

il
] �

The next lemma is similar to Lemma 6, and we leave its proof to the reader.

Lemma 9. Suppose that A1, . . . , Ak, B1, . . . , Bl are formulas of positive height
and P is a primitive formula. Then

lim[Q1A
2n
1 + · · ·+ QkA2n

k ≤ P + R1B
2n
1 + . . . + RlB

2n
l ]

= lim[A2n
1 + · · ·+ A2n

k ≤ P + B2n
1 + · · ·+ B2n

l ]

provided that the primitive formulas Q1, . . . , Qk, R1, . . . , Rl are positive.

Proof of Theorem 1. By Lemma 1, a formula can be expressed in additive form and
the question is reduced to determining

lim[Q1A
2n
1 + · · ·+ QkA2n

k ≤ P + R1B
2n
1 + · · ·+ RlB

2n
l ],

where the Q′
is and the R′js are positive, since the complete limit can be written

as a finite union of expressions as above. On the other hand, by Lemma 9 it is
enough to find lim[A2n

1 + · · · + A2n
k ≤ P + B2n

1 + · · · + B2n
l ], where A2n

1 + · · · +
A2n

k − P − B2n
1 − · · · − B2n

l is a formula of height h ≥ 1. Since lim[A2n
1 + · · · +

A2n
k ≤ P + B2n

1 + · · · + B2n
l ] =

⋂k
i=1

⋃l
j=1 lim[A2n

i ≤ P + B2n
j ], it is enough

to find the limit of expressions of the type lim[A2n ≤ P + B2n]. Proceeding by
induction on the height h of An − Bn − P , we have by Lemma 7 that for h = 0
lim[A2n ≤ P + B2n] = [B2 < 1] ∩ [A2 ≤ 1] ∩ [P ≥ 0] ∪ [B2 ≥ 1] ∩ [A2 ≤ B2] and
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so this limit can be given by a Boolean expression in terms of the primitives of
the formula. Again, by Lemma 7 if h > 0, then lim[A2n

n ≤ P + B2n
n ] = lim[B2

n ≤
1] ∩ lim[[A2

n ≤ 1] ∩ [P ≥ 0] ∪ lim[B2
n ≥ 1] ∩ lim[A2

n ≤ B2
n] is expressed in terms

of limits of formulas of height smaller than h. Thus by induction hypothesis we
conclude that lim[A2n ≤ P +B2n] exists, has a semi-algebraic structure, and can be
given in terms of a Boolean expression involving the primitives of the formula. �

3. The Complex Case

Consider now a formula of height h ≥ 1 written in additive form: Q1A
n
1 + · · ·+

QlA
n
l −P , whereQ1, . . . , Ql, and P are complex polynomials in m variables and A1,

. . . , Al are formulas of height ≤ h−1. We wish to describe lim[Q1A
n
1 +· · ·+QlA

n
l =

P ]. We start with the simplest situation, lim[An
1 = P ].

Lemma 10. Let A, P be complex polynomials in m variables. Suppose that P 6≡ 0
and A and P are independent in the sense that P - dP ∧ dA in the region where
|A| < 1. Then lim[An = P ] = ∂([|A| < 1] ∪ [P 6= 0]).

Proof. Let z ∈ lim[An = P ]. Then z = lim zn and there is a sequence kn →∞ such
that A(zn)kn = P (zn). There are two possibilities: |A(z)| < 1, then |A(zn)| < 1 for
large n and P (z) = lim P (zn) = 0, i.e., z ∈ [|A| < 1, P = 0]; and |A(z)| = 1, then
z ∈ [|A| = 1] = [|A| = 1] ∪ [P 6= 0]. Since ∂([|A| < 1] ∩ [P 6= 0]) = [|A| < 1] ∩ [P =
0] ∪ [|A| = 1] ∩ [P 6= 0], we obtain that z ∈ ∂([|A| < 1] ∩ [P 6= 0]). Conversely, we
wish to prove that |A| < 1] ∩ [P = 0] ∪ [|A| = 1] ∩ [P 6= 0] ⊂ lim[An = P ]. Since
lim[An = P ] is closed, it is enough to show that [|A| < 1]∩ [P = 0]∪ [|A| = 1]∩ [P 6=
0] ⊂ lim[An = P ]. First take z ∈ [|A| < 1]∩[P = 0]. Then |A(z)| < 1 and P (z) = 0.
In the plane (A,P ) the graph Gkn of the map P = Akn approaches any point(A, 0)
with|A| < 1 as kn →∞. Thus given ε > 0 there is N such that for each n ≥ N the
point (A(z), ξn) ∈ Gkn satisfies |ξn| < ε. Since S := A−1(A(z)) ∩ P−1(P (z)) is an
algebraic subvariety of codimension ≥ 2, there is a 1-disc z ∈ Uε ⊂ A−1(A(z)) , in
general position with S such that P |Uε is a covering map of Uε over a neighborhood
of 0 ∈ C. Thus for kn large enough there is wn ∈ Uε such that P (wn) = ξn. Since
A(wn) = A(z) and (A(z), ξn) ∈ Gkn we obtain that P (wn) = A(wn)kn . Clearly
wn → z and so z ∈ lim[An = P ].

Figure 2
Suppose now that z ∈ [|A| = 1] ∩ [P 6= 0]. Then |A(z)| = 1 and P (z) 6= 0.

In the plane (A,P ) the horizontal line through the point (0, P (z)) intersects the
graph Gkn of the map P = Akn in kn points over the points An = {P (z)1/kn} in
the A- axis. For each of the points w ∈ A−1(An) we have P (z) = P (w) = A(w)kn .
Since |P (z)|1/kn → 1, the graph Gkn approaches the set|A| = 1, thus the set An

tends to fill the unitary circle. Therefore for each n we can find wn ∈ A−1(An) ,
wn → z, such that P (wn) = A(wn)kn . �

Lemma 11. lim(|A|n = |P |) = ∂([|A| < 1] ∩ [|P | 6= 0]) = lim[An = P ].

Proof. Same as above. �

Lemma 12. Suppose P and Q are polynomials, not identically zero, and let An

be a formula of positive height h. Assuming for n large that P - dP ∧ dAn and
Q - dQ ∧ dAn, we have

lim[QAn = P ] = ∂(lim[|An| < 1] ∩ [P 6= 0]) ∪ ∂([lim[|An| > 1] ∩ [Q 6= 0])
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Proof. Take z ∈ lim[QAn
n = P ]. Then there are sequences zn → z and kn → ∞

such that Q(zn)Akn(zn)kn = P (zn). We have the following possibilities:

• lim |Akn | < 1. Then for n large |Akn(zn)| < 1 and P (z) = lim P (zn) = 0.
Thus z ∈ lim[|An| < 1] ∩ [P = 0].

• lim |Akn(zn)| = 1. Then z ∈ lim[|An| = 1] = lim[|An| = 1] ∩ [P 6= 0] =
lim[|An| = 1] ∩ [Q 6= 0]

• lim |Akn(zn)| > 1. Then for n large |Akn | > 1 and Q(z) = lim Q(zn) =
lim P (zn)A−kn

kn
= 0.

Reciprocally, if z ∈ lim[|An| < 1] ∩ [P = 0] then there are sequences zn → z and
kn → ∞ such that P (z) = 0 and lim |Akn(zn)| < 1. Assume that Q(z) 6= 0. Let
D = {w : |Akn(w)| ≤ 1, n ≥ 1}. Then D 6= ∅ and since (Akn) is bounded in D, it
is a normal family. Then there is a subsequence, say (Akn), which converges to a
holomorphic function A, i.e., lim Akn(w) = A(w). Since |A(z)| < 1, we have ξn =
A(z)ln → 0 as ln →∞. As by hypothesis Sn := A−1

kn
(A(z))∩(P/Q)−1((P/Q)(z)) is

a codimension 2 algebraic subvariety for n large, then there is a neighborhood z ∈ U
such that (P/Q)|U∩A−1

kn
(A(z)) projects onto a neighborhood of 0 ∈ C. Thus, there is

wn ∈ U ∩ A−1
kn

(A(z)), such that (P/Q)(wn) = ξn. Therefore P (wn) = Q(wn)ξn =
Q(wn)A(z)ln = Q(wn)Akn(wn)ln . Clearly, wn → z and so z ∈ lim[QAn

n = P ].
Similarly, if z ∈ lim[|An| = 1] we have that z ∈ lim[QAn

n]. On the other hand,
if z ∈ lim[|An| > 1] ∩ [Q = 0] then Q(z) = 0 and lim |Akn

(zn)| > 1. If P = 0
then z ∈ lim[QAn

n = P ]. We assume P (z) 6= 0. Define the domain D̃ = {w :
|Akn

(w)−1| < 1, n > 1}. On D̃ the sequence (A−1
kn

) is normal and converges to a
holomorphic function B, i.e., lim Akn(w)−1 = B(w)−1. Thus |B(z)| > 1 and ηn =
B(z)−ln → 0 as ln → ∞. By hypothesis A−1

kn
(B(z)) ∩ Q−1(0) is a codimension 2

algebraic subvariety for n large. Then, since P (z) 6= 0, there is a neighborhood
z ∈ U such that Q/P |−1

U∩Akn
(B(z)) projects over a neighborhood of 0 ∈ C. Thus

there is wn ∈ A−1
kn

(B(z)) ∩ U such that (Q/P )(wn) = ηn = B(z)−ln = Akn(wn)−ln

or Q(wn)Akn
(wn)ln = P (wn). Clearly, wn → z and so z ∈ lim[QAn

n = P ]. �

Example. Let us compute lim[(An + P1)n = Q].

lim[(An + P1)n = Q] = ∂(lim[|An + P1| < 1] ∩ [Q 6= 0])

= lim[|An + P1| < 1] ∩ [Q = 0]) ∪ (lim[|An| = 1] ∩ [Q 6= 0])
lim[|An + P1| < 1] = lim[|A|n < 1 + |P1]

= [|A|2 < 1]
lim[|A|n = 1] = [|A| = 1]

Thus,

lim[(An + P1)n = Q] = [|A|2 ≤ 1] ∩ [Q = 0] ∪ [|A| = 1] ∩ [Q 6= 0]
= [|A|2 ≤ 1] ∩ [Q = 0] ∪ [|A| = 1].

Figure 3
Thus this limit is the pull back by a rational map of a Reinhardt variety over a

semi-algebraic subset of R2. This example reflects pretty well the general picture
described in Theorem 3.
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Suppose that Q1, . . . , Ql, P ∈ C[x1, . . . , xm]. In what follows we will write

QAn = [Q1A
n
1 + · · ·+ QlA

n
l = P ]

QAn(̂i) = [Q1A
n
1 + · · ·+ Q̂iAn

i + · · ·+ QlA
n
l = P ]

Lemma 13. Suppose that Q1, . . . , Ql, P ∈ C[x1, . . . , xm] and assume that ZQi ,
ZQj , ZQk

intersect in general position if i 6= j 6= k 6= i. Let A1, . . . , Al be formulas
of positive height h. Then,

(1) lim[Q1A
n
1 + · · · + QlA

n
l = P ] =

⋃l
i,j=1 lim[|Ai| = |Aj | > 1] ∪ (ZQi ∩

ZQj )
⋃l

i=1 lim[|Ai| < 1] ∩ lim[Q1A
n
1 + · · ·+ Q̂iAn

i + · · ·+ QlA
n
l = P ]

(2) lim[Q1A
n
1 + · · ·+ QlA

n
l = P ] =

⋃l
i,j=1 lim[|Ai| = |Aj | > 1] ∪ (ZQi ∩ ZQj ) ∪

∂(lim[|A1| < 1] ∩ · · · ∩ lim[|Al| < 1] ∩ [P 6= 0])

Proof. Write R1:=
⋃l

i=1 lim[|Ai| < 1, R2:=
⋂l

i=1 lim[|Ai| ≥ 1]. Then Lemma 13
follows from the next two lemmas. �

Lemma 14.

lim[Q1A
n
1 + · · ·+ QlA

n
l = P ] ∩R1

=
l⋃

i=1

lim[|Ai| < 1] ∩ lim[Q1A
n
1 + · · ·+ Q̂iAn

i + · · ·+ QlA
n
l = P ]

= ∂(lim[|A1| < 1] ∩ · · · ∩ lim[|Al| < 1] ∩ [P 6= 0])

Proof. Let z ∈ lim[Q1A
n
1 + · · ·+QlA

n
l = P ]∩R1. Then there are sequences zn → z,

kn →∞ such that Q1(zn)A1kn
(zn)kn + · · ·+ Ql(zn)Alkn

(zn)kn = P (zn). Suppose
first that lim |A1kn

(zn)| < 1. Then εn(zn) = Q1(zn)A1kn
(zn)kn → 0 as n →∞ and

if we define

fn(zn) := P (zn)−Q2(zn)A2kn
(zn)kn − · · · −Ql(zn)Alkn

(zn)kn

we have fn(zn) = εn(zn). Let Zn = f−1
n (0) and Z = lim Zn. We claim that

z ∈ Z. Indeed, if z /∈ Z then there are neighborhoods z ∈ V and Z ⊂ W with
V ∩W = ∅. For n large zn ∈ V and f−1

n (εn) ⊂ W , a contradiction since fn(zn) = εn

and fn(zn) = εn and zn → z. Then there is wn ∈ Zn = f−1
n (0), wn → z, i.e.,

fn(wn) = 0, wn → z. This means,

Q2(wn)A2kn
(wn)kn + · · ·+ Ql(wn)Alkn

(wn)kn = P (wn)

or what is the same, z ∈ lim[|A1| < 1] ∩ lim[Q2A
n
2 + · · ·+ QlA

n
l = P ]. Similarly, if

z ∈ R1, then

z ∈
l⋃

i=1

lim[|Ai| < 1] ∩ lim[Q1A
n
1 + · · ·+ Q̂iAn

i + · · ·+ QlA
n
l = P ]

Conversely, suppose there are sequences zn → z and wn → z such that fn(wn) =
0 and εn(zn) → 0, then denoting again by Zn = f−1

n (0) then Zn → Z and since
wn ∈ Zn and wn → z then z ∈ Z. Therefore for any δ small positive there is
yn ∈ ε−1

n (δ) ∩ f−1
n (δ) 6= ∅, i.e., εn(yn) = fn(yn). We will show now that for the
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points in the region R1 we have,

∂([|A1| < 1] ∩ · · · ∩ [|Al| < 1] ∩ [P 6= 0]) =

=
l⋃

i=1

[|Ai| < 1] ∩ lim[Q1A
n
1 + · · ·+ Q̂iAn

i + · · ·+ QlA
n
l = P ] (∗∗)

= lim[Q1A
n
1 + · · ·+ QlA

n
l = P ].

We proceed by induction on l. For l = 2 we have by Lemma 12,

∂[[|A1| < 1] ∩ [|A2| < 1 ∩ [P 6= 0]] =
= [|A1| < 1] ∩ ∂([|A2| < 1] ∩ [P 6= 0]) ∪ [|A2| < 1] ∩ ∂([|A1| < 1] ∩ [P 6= 0])
= [|A1| < 1] ∩ lim[Q2A

n
2 = P ] ∪ [|A2| < 1] ∩ lim[Q1A

n
1 = P ]

= lim[Q1A
n
1 + Q2A

n
2 = P ].

For l > 2, we have

∂([|A1| < 1)] ∩ · · · ∩ (|Al| < 1) ∩ [P 6= 0]) =

=
l⋃

i=1

(|Ai| < 1) ∩ ∂([|A1| < 1] ∩ · · · ∩ (̂|Ai|) ∩ · · · ∩ (|Al| < 1) ∩ [P 6= 0])

=
l⋃

i=1

(|Ai| < 1) ∩ lim[Q1A
n
1 + · · ·+ Q̂iAn

i + · · ·+ QlA
n
l = P ]

= lim[Q1A
n
1 + · · ·+ QlA

n
l = P ] = lim[Q1A

n
1 + · · ·+ QlA

n
l = P ],

where the last two equalities are derived by induction hypothesis on (∗∗). �

Lemma 15.

lim[Q1A
n
1 + · · ·+ QlA

n
l = P ] ∩R2 =

l⋃
i,j=1

lim[|Ai| = |Aj | > 1] ∪ (ZQi ∩ ZQj )

Proof. Suppose now that

z ∈ lim[|A1| > 1] ∩ · · · ∩ lim[|Aq| > 1] ∪ lim[|Aq+1| = 1] ∩ · · · ∩ lim[|Al| = 1]

Then, q 6= 1 and,

Q1(zn)(A1)kn(zn)kn + · · ·+ Qq(zn)(Aq)kn(zn)kn = R(zn),

where

R(zn) := P (zn)−Qq+1(zn)(Aq+1)kn(zn)kn − · · · −Ql(zn)(Al)kn(zn)kn

is locally bounded at z. For any i, j = 1, . . . , q, i 6= j, we can write the next
inequality where, for simplicity, we wrote i = 1 and j = 2:

|Q1(zn)||(A1)kn
(zn)|kn−|Q2(zn)||(A2)kn

(zn)|kn ≤
q∑

t=3

|Qt(zn)||(At)kn(zn)|kn+|R(zn)|

Thus, dividing both members of this expression by
∏q

t=3 |At(zn)|kn we obtain a left
member locally bounded at z. Then there is a bounded sequence{λn}such that

|Q1(zn)||A1(zn)|kn/

q∏
t=3

|At(zn)|kn = λn|Q2(zn)||A2(zn)|kn/

q∏
t=3

|At(zn)|kn ,
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i.e.,
|Q1(zn)||A1(zn)|kn = λn|Q2(zn)||A2(zn)|kn

Thus, either z ∈ ZQ1∩ZQ2 , or |A1(zn)| = (λn|Q2(zn)|/|Q1(zn)|)1/knA2(zn). There-
fore, lim[|A1kn

(zn)|] = lim[|A2kn
(zn)|]. Thus, z ∈

⋃q
i,j=1[lim[|Ai|] = lim[|Aj |]] ∪

(ZQi ∩ ZQj ). This shows that for l > 1,

lim[Q1A
n
1 + · · ·+ QlA

n
l = P ] ∩R2 ⊂ [lim[|Ai|] = lim[|Aj |]] ∪ (ZQi ∩ ZQj ) (∗)

We proceed to show now the converse to (∗). Suppose z ∈ [|Ai| = |Aj | >
1] ∪ (ZQi ∩ ZQj ). For simplicity take i = 1, j = 2 and z ∈ [|A1| = |A2| > 1],
|Ai(z)| > 1, i = 1, . . . , k, |Aj(z)| ≤ 1, j = k + 1, . . . , l. Consider the expression

an := Q1(A1/A3 . . . Ak)n + Q2(A2/A3 . . . Ak)n

We claim that the curve an = 0 approaches z as n → ∞. Indeed, from an(w) = 0
we obtain

(A1/A2)n(w) = −(Q2/Q1)(w).

For any w close to z such that arg(−Q2/Q1)(w) is irrational we have that (−Q2/Q1)(w)1/n

approaches the circle of center 0 ∈ C and radius one as n → ∞. Therefore
(A1/A2)(z) is in the closure of the sequence ((−Q2/Q1(w))1/n)n. On the other
hand, if

bn := P/(A3 · · ·Ak)n − 1/(A3 · · ·Ak)n
l∑

j=3

QjA
n
j

then bn(z) → 0 as n → ∞. Therefore the curve bn = 0 approaches z as n → ∞.
Thus there is zn ∈ [an = bn], zn → z, i.e.,

(Q1A
n
1/(A3 · · ·Ak)n+Q2A

n
2/(A3 · · ·Ak)n)(zn) = 1/(A3 · · ·Ak)n(P−

l∑
j=3

QjA
n
j )(zn)

or Q1(zn)A1(zn)n + · · ·+ Ql(zn)Al(zn)n = P (zn). �

Lemma 16. Suppose that Q1A
n
1 + · · · + QlA

n
l is a formula of positive height h.

Then,

lim[|Q1A
n
1 + · · ·+ QlA

n
l | < 1]

=
l⋃

i=1

lim[|Ai < 1|] ∩ lim[|Q1A
n
1 + · · ·+ Q̂iAn

i + · · ·+ QlA
n
l | < 1]

l⋃
i,j=1,i 6=j

[lim |Ai|???

= lim |Aj | > 1] ∪ (ZQi ∩ ZQj ).

Proof. Let z ∈ lim[|Q1A
n
1 + · · · + QlA

n
l | ≤ 1]. There is zn → z and kn → ∞ such

that |Q1(zn)A1(zn)kn +· · ·+Ql(zn)Al(zn)kn | < 1. Suppose that lim |A1kn
(zn)| < 1,

then εn = |Q1A1(zn)kn | → 0 and there is wn → z such that |Q2(wn)A2(wn)kn+· · ·+
Ql(wn)Al(wn)kn | < 1. Therefore, z ∈

⋃l
i=1 lim[|Ai| < 1], then z ∈

⋃l
i=1 lim[|Ai|] ∩

lim[|Q1A
n
1 +· · ·+Q̂iAn

i +· · ·+QlA
n
l | < 1. On the other hand, if z ∈

⋂q
i=1 lim[|Ai| >

1]
⋂l

j=q+1 lim[|Aj |], then Q1(zn)A1kn
(zn)kn + · · ·+ Qq(zn)Aqkn

(zn)kn ≤ 1 + S(zn),

where S(zn) = |
∑l

j=q+1 Qj(zn)Aj(zn)kn |, is locally bounded at z. Proceeding as
in Lemma 13 we obtain that for any i, j = 1, . . . , q either z ∈ (lim |Ai| = lim |Aj |)
or z ∈ ZQi ∩ ZQj . The proof of the converse follows the same line of arguments of
Lemma 13 �
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Proof of Theorem 2. In order to describe lim[Q1A
n
1 + · · · + QlA

n
l = P ] we first

use induction on l by means of Lemma 13 which reduces the problem to describe
lim[QAn = P ] and lim[|A| < 1] where QAn−P has height h ≥ 1. Then we proceed
by induction on h. For h = 1 Lemma 12 gives lim[QAn = P ] = ∂(lim[|An| <
1)∩ (P 6= 0)]∪∂(lim[|An| > 1]∩ [Q 6= 0]) which reduces the problem to height h−1
It only remains to find lim[|An| < 1] and this follows from Lemma 14.

Thus we have shown that this limit can be expressed by algebraic relations
between |A1|, . . . , |Al| and |P |. �

4. Algebraic curves as integrals of differential equations

Lemma 17. Given polynomials A and P , there is a family (Xn) of polynomial
vector fields of fixed degree such that [A2n = P ] is an integral curve of Xn.

Proof. Let Xn be the field corresponding to the following differential equation:

ẋ = −2nPAy + PyA, ẏ = 2nPAx − PxA.

Let f = A2n − P . Then

ẋfx + ẏfy = 2n(PyAx − PxAy)f,

as can be easily verified. This shows that [f = 0] is an integral curve of Xn. �

Thus, we have curves of increasing degree that are integral curves of polynomial
fields of fixed degree. The next lemma says that in this case the field is essentially
unique. The following proof is essentially due to B. Scárdua.

Lemma 18. Suppose that [fn = 0] is a family of polynomial curves indexed by their
degree. Assume that each curve is an integral curve of two differential equations of
bounded degree: ωn = 0 and Ωn = 0. Then, for n large enough, ωn = 0 and Ωn = 0
define the same foliation.

Proof. Forget the indices, for simplicity.
The hypotheses imply that

df ∧ ω = f`dx ∧ dy

df ∧ Ω = fLdx ∧ dy,

where ` and L are polynomials.
Assume that ω ∧ Ω 6= 0.
If df ∧ Ω 6= 0, then we can write

ω = αdf + βΩ.

The coefficients α and β are determined as follows:

ω ∧ Ω = αdf ∧ Ω ⇒ α =
ω ∧ Ω
df ∧ Ω

df ∧ ω = βdf ∧ Ω ⇒ β =
df ∧ ω

df ∧ Ω
.

Therefore
β =

`

L
, α =

ω ∧ Ω
fLdx ∧ dy

and so
ω =

ω ∧ Ω
dx ∧ dy

· df

fL
+

`

L
Ω,
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or

Lω =
ω ∧ Ω

dx ∧ dy
· df

f
+ `Ω.

Assume that f is irreducible. Since Lω − `Ω has bounded degree, we must have
that fdx ∧ dy divides ω ∧ Ω, that is,

ω ∧ Ω = fµdx ∧ dy,

for some polynomial µ. Hence, Lω = µdf + `Ω.
Now ∂` = ∂ω − 1 and ∂L = ∂Ω − 1, and so µdf has bounded degree. Since

dfn →∞ we conclude that µn = 0 for large n.
If df∧Ω = 0, then we take df∧ω 6= 0. If both expressions vanish identically, then

ω, Ω, and df define the same foliation. �

Moreover, as the next lemma indicates, formulas that are more complicated than
A2n = P are not likely to be integral curves of fields of fixed degree.

Lemma 19. Let A, B, and P be bivariate polynomials such that A(0, 0) = 0 =
B(0, 0) and (A,B) = 1. Then, the curves in the family An + Bn = P are not
integral curves of a family of polynomial fields of degree 2.

Proof. Suppose that A and B have degree k and P has degree j. Let f = An +
Bn − P . Suppose that f is an integral curve of the 1-form

ω = adx + bdy,

with a and b polynomials of degree 2. Then,

df ∧ ω = fLdx ∧ dy,

with L a polynomial of degree 1. This equation is equivalent to

(nAn−1Ax + nBn−1Bx −Px)b− (nAn−1Ay + nBn−1By −Py)a = (An + Bn −P )L.

For n large, because A(0, 0) = 0 = B(0, 0), we obtain

Pxb− Pya = PL(1)

nAn−1(Axb−Aya) + nBn−1(Bxb−Bya) = (An + Bn)L.(2)

Because (A,B) = 1, we get

n(Axb−Aya) = AL(3)
n(Bxb−Bya) = BL

(The proof is at the end.)
Suppose that P is homogeneous of degree j, A and B are homogeneous of de-

gree k, and a and b are homogeneous of degree 2, in equations (1) and (3). This is
not a restriction because it suffices to compare the homogeneous parts of highest
degree in these equations.

Equation (3) can be written as

n

(
−Ay Ax

−By Bx

) (
a
b

)
= L

(
A
B

)
If ∆ = AxBy −AyBx, then

n

(
a
b

)
=

L

∆

(
Bx −Ax

By −Ay

) (
A
B

)
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Since, by Euler’s formula, kA = Axx + Ayy and kB = Bxx + Byy, we get

n

(
a
b

)
=

L

k∆

(
Bx −Ax

By −Ay

) (
Ax Ay

Bx By

) (
x
y

)
=

L

k∆

(
0 −∆
∆ 0

) (
x
y

)
=

L

k

(
−y
x

)
,

which implies that

a = − L

kn
y, b =

L

kn
x.

From (1), we get

Px
L

kn
x + Py

L

kn
y = PL,

that is,
Pxx + Pyy = nkP,

which implies that P is homogeneous of degree nk. Since n is arbitrarily large and
P has a fixed degree, this is cannot happen. Therefore, f is not an integral curve
of ω.

We still have to prove that (2) implies (3). In fact, let α = Axb − Aya and
β = Bxb−Bya. Then

nAn−1α + nBn−1β = L(An + Bn),

that is,
An−1(nα− LA) = Bn−1(−nβ + LB).

Since (A,B) = 1, this implies that An−1|(−nβ +LB) and Bn−1|(nα−LA). Hence,
there is a polynomial λ such that

λAn−1 = −nβ + LB

λBn−1 = (nα− LA)

Comparing degrees, we get λ = 0 for large n. Therefore,

(−nβ + LB) = 0 = (nα− LA),

as claimed.
�

Remark
Define the length of a formula as the minimum number of its primitives of degree
≥ 1. So, for instance, the formula

(x + 1)2n + ((x− y − 1)n + y)n + y2 − 1

has length 4.
Suppose that C is a family of curves given by the zeros of a formula of positive

height. Let l be the length of the formula and assume that the curves defined by
the zeros of its primitives intersect transversely in the complex domain. If V is a
family of vector fields of degree k such that the elements of C are integral curves of
the corresponding elements of V , then l ≤ k2 + k + 1, as this last expression is the
number of singular points of the elements of V. In particular if l > k2 + k + 1 the
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elements in C can not be integral curves of a family of polynomial vector fields of
degree ≤ k.

Theorem 4. Every generic basic closed one-dimensional semi-algebraic set in the
plane is the limit of an family of algebraic curves that are integral curves of a family
of polynomial vector fields of fixed degree.

Proof. Let Ω be a generic basic closed semi-algebraic set. It is known (but hard to
prove) that every basic open semi-algebraic set in the plane can actually be given
by two inequalites [?]. Since Ω is generic, this also applies to Ω and we can write
Ω = [P ≥ 0, Q ≥ 0]. We shall show that Ω = lim[A2n

n ≤ P ] for

An =
Q

n
− 1.

Indeed,

[A2
n ≤ 1] = [(

Q

n
− 1)2 ≤ 1] = [0 ≤ Q ≤ 2n]

Hence, {
z : A2

n(z) ≤ 1, for sufficiently large n
}

= [Q ≥ 0].
and so{

z : P (z) ≥ 0, A2
n(z) ≤ 1, for sufficiently large n

}
= [P ≥ 0, Q ≥ 0].

Lemma ?? then says that

lim[A2n
n ≤ P ] = [P ≥ 0, Q ≥ 0] = Ω,

if [A2
n ≤ 1, P ≥ 0] is generic for sufficiently large n. (***)

As mentioned in Section 4, the curves [A2n
n = P ] are integral curves of a family

of polynomial vector fields of fixed degree. (Note that, although An has coefficients
that depend on n, the vector fields are still of fixed degree.) �
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