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Abstract. We show that there exists a generic subset R among the C1 diffeomorphisms set which are

C1 far away from tangency, such that for f ∈ R and any non-trivial chain recurrent class C of f , if

C
T

P ∗

0
6= φ then C is a homoclinic class contains index 1 periodic point and there are a family of sources

converge to C in Hausdorff topology.
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1. Introduction

In the middle of last century, with many remarkable work, hyperbolic diffeomorphisms have been

understood very well, but soon people discovered that the set of hyperbolic diffeomorphisms are not

dense among differential dynamics, two kinds of counter examples were described, one associated with

heterdimension cycle was given by R.Abraham and Smale [3] and then given by Shub [40] and Mañé [28],

another counter example associated with homoclinic tangency was given by Newhouse [31] [32]. In fact,

Newhouse got an open set U⊂ C2(M) where dim(M) = 2 such that there exists a C2 generic subset

R ⊂ U and for any f ∈ R , f has infinite sinks or sources. Such complicated phenomena (there exist an

open set U in Cr(M) and a generic subset R ⊂ U , such that any f ∈ R has infinite sinks or sources) is

called Cr Newhouse phenomena today, and we say Cr Newhouse phenomena happens at U .
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In last 90’s, some new examples of Newhouse phenomena were found, [33] generalized Newhouse phe-

nomena to high dimensional manifold (dimM > 2) but with the same topology Cr(r > 1). [7] used a

new tool ’Blender’ to show the existence of C1 Newhouse phenomena on manifold with dim(M) > 2.

Until now, all the construction of Cr Newhouse phenomena relate closely with homoclinic tangency, more

precisely, all the open set U given by the construction above which happens Newhouse phenomena there

will have U ⊂ HT . We hope that it’s a necessary condition for Cr Newhouse phenomena happens at U .

Pujals states it as a conjecture.

Conjecture (Pujals): If Cr Newhouse phenomena happens at U , then U is contained in HT r.

When r = 1 and M is a compact surface, with Mañé’s work [29], Pujals’ conjecture is equivalent with

the famous C1 Palis strong conjecture.

C1 Palis strong conjecture : Diffeomorphisms of M exhibiting either a homoclinic tangency or het-

erodimensional cycle are C1 dense in the complement of the C1 closure of hyperbolic systems.

In the remarkable paper [36] they proved C1 Palis strong conjecture on C1(M) when M is a boundless

compact surface, so in such case Pujals’ conjecture is right. In [37] they gave many relations between

C2 Newhouse phenomena and HT 1. In this paper we just consider C1 Newhouse phenomena, and we

show that if C1 Newhouse phenomena happens in an open set U ⊂ C1(M)\HT 1, it should have some

special properties with [7]’s example, in fact, in [7] they found an open set U ⊂ (HT 1) and there exists a

generic subset R ⊂ U such that any f ∈ R has infinite sinks or sources stay near a chain recurrent class,

and such class does not contain any periodic points, such kind of chain recurrent class is called aperiodic

class now. Here we proved that in HT
c
, if there exists Newhouse phenomena, the sinks or sources will

just stay near a special kind of homoclinic class.

Theorem 1 There exists a generic subset R ⊂ C1(M)\HT 1, such that for f ∈ R and C is any non-trivial

chain recurrent class of f , if C
⋂

P ∗
0 6= φ, C should be a homoclinic class containing index 1 periodic

points and C is an index 0 fundamental limit.

Theorem 1 means that if we want to disprove the existence of Newhouse phenomena in C1(M)HT ,

we just need study the homoclinic class containing index 1 periodic point.

In §3 we’ll state some generic properties. In §4 we’ll introduce a special minimal non-hyperbolic set

and theorem 1 will be proved in §5.

Acknowledgements: This paper is one part of the author’s thesis, I would like to thank my advisor

Professor Marcelo Viana for his support and enormous encouragements during the preparation of this

work. I would like to thank Professor Shaobo Gan for checking the details of the proof and finding out

an essential gap in the original argument which is crucial to the work. I also thank Professor Jacob Palis,
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2. Notations and definitions

Let M be a compact boundless Riemannian manifold, since when M is a surface [36] has proved

that hyperbolic diffeomorphisms are open and dense in C1(M) \ HT , we suppose dim(M) = d > 2 in

this paper. Let Per(f) denote the set of periodic points of f and Ω(f) the non-wondering set of f , for

p ∈ Per(f), π(p) means the period of p. If p is a hyperbolic periodic point, the index of p is the dimension

of the stable bundle. We denote Peri(f) the set of the index i periodic periodic points of f , and we call

a point x is an index i preperiodic point of f if there exists a family of diffeomorphisms gn
C1

−→ f , where

gn has an index i periodic point pn and pn −→ x. P ∗
i (f) is the set of index i preperiodic point of f , it’s

easy to know Pi(f) ⊂ P ∗
i (f).

Let Λ be an invariant compact set of f , we say Λ is an index i fundamental limit if there exists a family

of diffeomorphisms gn C1 converging to f , pn is an index i periodic point of gn and Orb(pn) converge to

Λ in Hausdorff topology. So if Λ(f) is an index i fundamental limit, we have Λ(f) ⊂ P ∗
i (f).

For two points x, y ∈ M and some δ > 0, we say there exists a δ-pseudo orbit connects x and y means

that there exist points x = x0, x1, · · · , xn = y such that d(f(xi), xi+1) < δ for i = 0, 1, · · · , n − 1, we

denote it x a
δ

y. We say x a y if for any δ > 0 we have x a
δ

y and denote x à y if x a y and y a x. A

point x is called a chain recurrent point if x à x. CR(f) denotes the set of chain recurrent points of f ,

it’s easy to know that à is an closed equivalent relation on CR(f), and every equivalent class of such

relation should be compact and is called chain recurrent class. Let K be a compact invariant set of f , if

x, y are two points in K, we’ll denote x a
K

y if for any δ > 0, we have a δ -pseudo orbit in K connects x

and y. If for any two points x, y ∈ K we have x a
K

y, we call K a chain recurrent set. Let C be a chain

recurrent class of f , we call C is an aperiodic class if C does not contain periodic point.

Let Λ be an invariant compact set of f , for 0 < λ < 1 and 1 ≤ i < d, we say Λ has an index i − (l, λ)

dominated splitting if we have a continuous invariant splitting TΛM = E ⊕F where dim(Ex) = i for any

x ∈ Λ and ‖ Df l|E(x) ‖ · ‖ Df−l|F (f lx) ‖< λ for all x ∈ Λ. For simplicity, sometimes we just call Λ(f)

has an index i dominated splitting. A compact invariant set can have many dominated splittings, but

for fixed i, the index i dominated splitting is unique.

We say a diffeomorphism f has Cr tangency if f ∈ Cr(M), f has hyperbolic periodic point p and there

exists a non-transverse intersection between W s(p) and Wu(p). HT r is the set of the diffeomorphisms

which have Cr tangency, usually we just use HT denote HT 1. We call a diffeomorphism f is far away

from tangency if f ∈ C1(M) \ HT . The following proposition shows the relation between dominated

splitting and far away from tangency.

Proposition 2.1. ([42]) f is C1 far away from tangency if and only if there exists (l, λ) such that P ∗
i (f)

has index i − (l, λ) dominated splitting for 0 < i < d.

Usually dominated splitting is not a hyperbolic splitting, Mañé showed that in some special case, one

bundle of the dominated splitting is hyperbolic.

Proposition 2.2. ([29]) Suppose Λ(f) has an index i dominated splitting E⊕F (i 6= 0), if Λ(f)
⋂

P ∗
j (f) =

φ for 0 ≤ j < i, then E is a contracting bundle.
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3. Generic properties

For a topology space X , we call a set R ⊂ X is a generic subset of X if R is countable intersection

of open and dense subsets of X , and we call a property is a generic property of X if there exists some

generic subset R of X holds such property. Especially, when X = C1(M) and R is a generic subset of

C1(M), we just call R is C1 generic, and we call any generic property of C1(M) ’a C1 generic property’

or ’the property is C1 generic’.

Here we’ll state some well known C1 generic properties.

Proposition 3.1. There is a C1 generic subset R0 such that for any f ∈ R0, one has

1) f is Kupka-Smale (every periodic point p in Per(f) is hyperbolic and the invariant manifolds of

periodic points are everywhere transverse).

2) CR(f) = Ω = Per(f).

3) P ∗
i (f) = Pi(f)

4) any chain recurrent set is the Hausdorff limit of periodic orbits.

5) any index i fundamental limit is the Hausdorff limit of index i periodic orbits of f .

6) any chain recurrent class containing a periodic point p is the homoclinic class H(p, f).

7) Suppose C is a homoclinic class of f , and j0 = min{j : C
⋂

Perj(f) 6= φ}, j1 = max{j :

C
⋂

Perj(f) 6= φ}, then for any j0 ≤ j ≤ j1, we have C
⋂

Perj(f) 6= φ.

By proposition 3.1, for any f in R0, every chain recurrent class C of f is either an aperiodic class or

a homoclinic class. If #C = ∞, we call C is non-trivial.

Let R = R0 \ HT , we’ll show that the generic subset R of HT
c

will satisfy theorem 1.

4. A special minimal set

Let f ∈ R, C is a non-trivial chain recurrent class of f , and j0 = min{j : C
⋂

P ∗
j 6= φ}.

Definition 4.1. : An invariant compact subset Λ of f is called minimal if all the invariant compact

subset of Λ are just Λ and φ. An invariant compact subset Λ of f is called minimal index j fundamental

limit if Λ is an index j fundamental limit and any invariant compact subset Λ0  Λ is not an index j

fundamental limit.

Lemma 4.2. If C
⋂

P ∗
j 6= φ, there always exists a minimal index j fundamental limit in C.

Proof Let H = {Λ̃ : Λ̃ ⊂ C is an index j fundamental limit} and we order H by inclusion. Suppose

x ∈ C
⋂

P ∗
j , then there exist gn

C1

−→ f , pn is index j periodic point of gn and pn −→ x. Denote

Λx = limOrb(Pn), then Λx is an index j fundamental limit. It’s easy to know Λx is a chain recurrent set

and Λx ⊂ C, so Λx ∈ H . It means H 6= φ.

Let HΓ = {Λλ : λ ∈ Γ} be a totally ordered chain of H . Then Λ∞ =
⋂

λ∈Γ Λλ is a compact invariant

set, in fact, there exists {λi}
∞
i=1 such that Λλi

⊃ Λλi+1 and Λ∞ =
⋂∞

i=1 Λλi
.

We claim that Λ∞ is an index j fundamental limit also.
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Proof of the claim From generic property 5) of proposition 3.1 and f ∈ R, for any ε > 0, there

exists periodic point pi such that pi ∈ Perj(f) and dH(Orb(pi), Λλi
) < ε

2 . When i is big enough, we’ll

have dH(Λλi
, Λ∞) < ε

2 , so for any ε > 0, there exists pi ∈ Perj(f)such that dH(Orb(pi), Λ∞) < ε. �

Now by Zorn’s lemma, there exists a minimal index j fundamental limit in C. �

Suppose Λ is a minimal index j0 fundamental limit of C, the main aim of this section is the following

lemma.

Lemma 4.3. Suppose f ∈ R, C is a non-trivial chain recurrent class of f , j0 = min{j : C
⋂

P ∗
j 6= φ}.

Let Λ be any minimal index j0 fundamental limit in C, then

a) either Λ is a non-trivial minimal set with partial hyperbolic splitting T |ΛM = Es
j0
⊕ Ec

1 ⊕ Eu
j0+2,

b) or C contains a periodic point with index j0 or j0 + 1 and C is an index j0 fundamental limit.

We postpone the proof of lemma 4.3 to §4.4, before that, I’ll give or introduce some results at first.

In §4.1 I’ll give a proof of Shaobo Gan’s lemma, in §4.2 I’ll introduce Liao’s selecting lemma and prove a

weakly selecting lemma, in §4.3 I’ll introduce a powerful tool ’transition’ given by [BDP].

4.1. Shaobo Gan’s lemma. Let GL(d) be the group of linear isomorphisms of Rd, we call ξ a periodic

sequence of linear map if ξ : Z −→ Gl(d) is a sequence of isomorphisms of Rd and there exists n0 ≥ 1

such that ξj+n0 = ξj for all j. We denote π(ξ) = min{n : ξj+n = ξj for all j} the period of ξ, and we

call ξ has index i if the map
π(ξ)−1∏

j=0

ξj is hyperbolic and has index i, we say ξ is contracting if ξ has index

d. We denote Es(u) the stable (unstable) bundle of ξ.

Suppose η is a periodic sequence of linear maps also, we call η is an ε-perturbation of ξ if π(η) = π(ξ)

and ‖ ηj − ξj ‖≤ ε for any j.

Let {ξα}α∈A be a family of periodic sequence of linear maps with index i, we call it is bounded if there

exists K > 0 such that for any α ∈ A and any j ∈ Z, we have ‖ ξ
(α)
j ‖< K. For a family of bounded

periodic sequences of linear maps {ξα}α∈A, we say it’s index stable if ξ(α) has index i for all α ∈ A, and

there exists ε0 > 0 such that #{α| there exists η(α) is ε0-perturbation of ξ(α) and η(α) has index different

with i} < ∞. Especially, if it’s index 0 stable, we call ξ(α)|α∈A is uniformly contracting.

Suppose f ∈ C1(M) and {pn(f)} is a family of hyperbolic periodic points of f with index i, we say

pn(f) is index i stable if {Df |Orb(pn)}
∞
n=1 is index i stable and lim

n→∞
π(pn) = ∞.

Remark 4.4. Pliss has proved that if {pn(f)} is index i stable, then i 6= 0, d.

The following lemma was given by Shaobo Gan, and the proof comes from him also.

Lemma 4.5. ([15]) f ∈ C1(M), suppose {pn(f)} is index i stable, then there exists a subsequence

{pnj
}∞j=1 such that pnj

and pnj+1 are homoclinic related.

Here we just prove the following weaker statement of Gan’s lemma.
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Lemma 4.6. ( Weaker statement of Gan’s lemma) Suppose f ∈ R, Λ is a non-trivial chain recurrent set

of f , {pn(f)} is index i stable and lim
n→∞

Orb(pn) = Λ, then there exists a subsequence {pnj
(f)}∞j=1 such

that pnj
(f) and pnj+1(f) are homoclinic related.

Before we prove lemma 4.6, we’ll give a few lemmas which will be used in the proof.

Lemma 4.7. Suppose A=
(

B C
0 D

)
is a hyperbolic linear map with index i (i 6= 0, d), where B ∈ GL(Ri) is

a contracting map and D ∈ GL(Rd−i) is a expanding map. If there exists B′ ∈ GL(Ri) an ε-perturbation

of B and B′ has index different with i, then A′=
(

B′ C
0 D

)
is an ε-perturbation of A with index different

with i. In fact, we’ll have ind(A′) = ind(B′).

With lemma 4.7, the following lemma is obviously.

Lemma 4.8. Suppose {ξ(n)}∞n=1 is index i stable, then {ξ(n)|Es(ξ(n))}
∞
n=1 is stable contracting, and at

the same time, {ξ(n)|Eu(ξ(n))}
∞
n=1 is stable expanding.

In [29] Mañé has given a necessary condition for bounded stable contracting sequence.

Lemma 4.9. (Mañé) If {ξ(n)}∞n=1 is stable contracting and bounded, then there exist N0, l0, 0 < λ0 < 1

such that if π(ξ(n)) > N0 we’ll have

[ π(ξn)
l0

]−1∏

j=0

‖

l0−1∏

t=0

ξ
(n)
(jl0+t)+s‖ ≤ λ

[
π(ξ(n))

l0
]

0

for any 0 ≤ s < π(ξ(n)).

Proof of lemma 4.6: Since Λ ⊂ P ∗
i and f is far away from tangency, by proposition 2.1, Λ has an index

i − (l, λ) dominated splitting T |ΛM = E ⊕ F . In order to make the proof more simiplier, here we just

suppose l = 1. Choose a small open neighborhood U of Λ, when U is small enough, Λ̃ =
⋂

j∈Z

f j(U) has

an index i − (1, λ̃) dominated splitting TeΛM = Ẽ ⊕ F̃ where λ < λ̃ < 1 and Ẽ|Λ = E, F̃ |Λ = F .

Since lim
n→∞

Orb(Pn) = Λ, we can always suppose Orb(pn) ⊂ U , so Orb(Pn) ⊂ Λ̃ and Es|Orb(pn) =

Ẽ|Orb(pn), Fu|Orb(pn) = F̃ |Orb(pn).

By lemma 4.8, we know that {Df |Es(Orb(pn))}
∞
n=1 is stable contracting and {Df |Eu(Orb(pn))}

∞
n=1 is

stable expanding. By lemma 4.9, there existN0, l0, 0 < λ0 < 1 such that if π(pn(f)) > N0, we have

(4.1)

[ π(pn)
l0

]−1∏

j=0

‖Df l0|Es(fjl0pn)‖ ≤ λ
[

π(pn)
l0

]

0

(4.2)

[ π(pn)
l0

]−1∏

j=0

‖Df−l0|F u(f−jl0pn)‖ ≤ λ
[

π(pn)
l0

]

0

Since lim
n→∞

Orb(pn) = Λ and Λ is not trivial, we have lim
n→∞

π(pn) −→ ∞, then we can always suppose all

the pn satisfy (4.1) and (4.2). For simplicity, we suppose l0 = 1 here.
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Choose some ε > 0 and λ1 < 1 such that max{λ̃, λ0}+ ε < λ2
1 < λ1 < 1. Now we’ll state Pliss lemma

in a special context.

Lemma 4.10. (Pliss[34]) Given 0 < λ0 + ε < λ1 < 1 and Orb(Pn) ⊂ Λ̃ such that for some m ∈ N, we

have
t−1∏
j=0

‖Df |Es(fjpn))‖ ≤ (λ0 + ε)t for all s ≥ m, there exists a sequence 0 ≤ n1 < n2 < · · · such that

t−1∏
j=nr

‖Df |Es(fjpn))‖ ≤ λt−nr

1 for all t ≥ nr, r = 1, 2, · · · .

Remark 4.11. The sequence {nj}
∞
j=1 we get above is called the λ1-hyperbolic time for bundle Es|Orb(pn).

By (4.1),(4.2), when n is big enough, Pn will satisfy the assumption of Pliss lemma, so by lemma 4.10,

there exists q+
n ∈ Orb(pn) such that

t−1∏
j=0

‖Df |Es(fjq+
n )‖ ≤ λt

1 and q−n ∈ Orb(pn) such that
t−1∏
j=0

‖Df−1|F u(f−jq−

n )‖ ≤

λt
1 for all t > 0.

Let’s denote

Sn,+ = {m ∈ Z :

s−1∏

j=0

‖Df |Es(fm+jpn)‖ ≤ λs
1 for all s > 0},

Sn,− = {m ∈ Z :

s−1∏

j=0

‖Df−1|F u(fm−jpn)‖ ≤ λs
1 for all s > 0}.

Then Sn,+ is the set of λ1 hyperbolic time for bundle Es|Orb(pn) and Sn,− is the set of hyperbolic time for

bundle Fu|Orb(pn). From remark 4.11, the set Sn,+ and Sn,− are not empty. We denote Sn = Sn,+

⋂
Sn,−.

Lemma 4.12. Sn 6= φ.

Proof : Here for a, b ∈ Z and a < b, we denote (a, b)Z = {c| c ∈ Z and a < c < b}.

Now suppose the lemma is false, we can choose {bn,s, bn,s+1} ⊂ Sn,− such that we have bn,s+1 > bn,s,

(bn,s, bn,s+1)Z

⋂
Sn,− 6= φ and an,t ∈ (bn,s, bn,s+1)Z

⋂
Sn,+, then bn,s, bn,s+1 /∈ Sn,+.

We claim that for 0 < k ≤ bn,s+1 − bn,s − 1, we have
k−1∏
j=0

‖Df−1|F u(fbn,s+j+1pn)‖ ≥ λk
1 .

Proof of the claim: We’ll use induction to give a proof.

When k = 1, since bn,s + 1 /∈ Sn,−, we have ‖Df−1|F u(fbn,s+1pn)‖ > λ1.

Now suppose the claim is true for all 1 ≤ k ≤ k0 − 1 where 1 < k0 ≤ bn,s+1 − bn,s − 1, and we suppose

the claim is false for k0, it means that

(4.3)

k0−1∏

j=0

‖Df−1|F u(fbn,s+j+1pn)‖ ≤ λk0
1 .

Then by the assumption above that the claim is true for 1 ≤ k ≤ k0 − 1, we have

(4.4)

k−1∏

j=0

‖Df−1|F u(fbn,s+j+1pn)‖ ≥ λk
1
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By (4.3) and (4.4), we get that
k0−1∏
j=k

‖Df−1|F u(fbn,s+j+1pn)‖ < λk0−k
1 for 1 ≤ k ≤ k0 − 1. It’s equivalent

to say that

(4.5)

k−1∏

j=0

‖Df−1|F u(fbn,s+k0−jpn)‖ < λk
1 for 1 ≤ k ≤ k0 − 1

By (4.3) and (4.5), we get that

(4.6)

k−1∏

j=0

‖Df−1|F u(fbn,s+k0−jpn)‖ ≤ λk
1 for 1 ≤ k ≤ k0

When k > k0,by (4.6) and the fact bn,s ∈ Sn,−, we have

k−1∏

j=0

‖Df−1|F u(fbn,s+k0−j)‖ =

k0−1∏

j=0

‖Df−1|F u(fbn,s+k0−j)‖ ·

k−k0−1∏

j=0

‖Df−1|F u(fbn,s−j)‖ < λk0
1 · λk−k0

1 = λk
1 ,

it means bn,s+k0 ∈ Sn,−, it’s a contradiction since bn,s+k0 ∈ (bn,s, bn,s+1)Z, so we finished the induction.

�

By the claim above, for 0 < k ≤ bn,s+1 − bn,s − 1, we have

(4.7)

k−1∏

j=0

‖Df−1|F u(fbn,s+j+1pn)‖ > λk
1 .

Since on Λ̃, Ẽ ⊕ F̃ is an index i − (1, λ̃) dominated splitting, we have

k−1∏

j=0

(‖Df | eE(fbn,s+jpn)‖ · ‖Df−1| eF (fbn,s+j+1pn)‖) < λ̃k.

By (4.7) and Ẽ|Orb(pn) = Es|Orb(pn),F̃ |Orb(pn) = Fu|Orb(pn), we’ll get

(4.8)

k−1∏

j=0

‖Df |Es(fbn,s+jpn)‖ <
λ̃k

λk
1

<
(eλ<λ2

1<1)

λk
1 for 1 < k ≤ bn,s+1 − bn,s − 1.

When k > bn,s+1 − bn,s − 1, let k = (an,t − bn,s) + (k − an,t), by (4.8) and an,t ∈ Sn,+,

k−1∏

j=0

‖Df |Es(fbn,s+jpn)‖ =

an,t−bn,s−1∏

j=0

‖Df |Es(fbn,s+jpn)‖ ·

k−an,t−1∏

j=0

‖Df |Es(fan,t+jpn)‖

< λ
an,t−bn,s

1 · λ
k−an,t

1 = λ
k−bn,s

1(4.9)

By (4.8) and (4.9), we get bn,s ∈ Sn,+, so Sn,+

⋂
Sn,− 6= φ, it’s a contradiction with our assumption, so

we finished the proof of lemma 4.12. �

Now let’s continue the proof of lemma 4.6, we need the following two lemmas to show that for an ∈ Sn,

the point fan(pn) will have uniform size of stable manifold and unstable manifold.

Let I1 = (−1, 1)i and Iε = (−ε, ε)i, denote by Emb1(I, M) the set of C1-embedding of I1 on M , recall

by [21] that Λ̃ has a dominated splitting Ẽ ⊕ F̃ implies the following.

Lemma 4.13. There exist two continuous function Φcs : Λ̃ −→ Emb1(I, M) and Φcu : Λ̃ −→

Emb1(I, M) such that, with W cs
ε (x) = Φcs(x)Iε and W cu

ε (x) = Φcu(x)Iε, the following properties hold:
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a) TxW cs
ε = Ẽ(x) and TxW cu

ε = F̃ (x),

b) For all 0 < ε1 < 1, there exists ε2 such that f(W cs
ε2

(x)) ⊂ W cs
ε1

(f(x)) and f−1(W cu
ε2

(x)) ⊂

W cu
ε1

(f−1(x)).

c) For all 0 < ε < 1, there exists δ > 0 such that if y1, y2 ∈ Λ̃ and d(y1, y2) < δ, then W cs
ε (y1) t

W cu
ε (y2) 6= φ.

Corollary 4.14. ([36]) For any 0 < λ < 1, there exists ε > 0 such that for x ∈ Λ̃ which satisfies
n−1∏
j=0

‖Df | eE(fjx)‖ ≤ λn for all n > 0, then diam(fn(W cs
ε )) −→ 0, i.e. the central stable manifold of x with

size ε is in fact a stable manifold.

Now for λ1, using corollary 4.14, we can get an ε > 0. It means that for any an ∈ Sn, denote

qn = fan(pn), then W cs
ε (qn) is a stable manifold and W cu

ε (qn) is an unstable manifold. For this ε > 0,

use c) of lemma 4.13, we can fix a δ. Choose a subsequence {ni} such that d(qni
, qni+1) ≤ δ, then by c)

of lemma 4.13, we know W cu
ε (qni

) t W cs
ε (qni+1) 6= φ and W cu

ε (qni+1) t W cs
ε (qni

) 6= φ. Since the local

central stable manifold and local central unstable manifold of qni
have dynamical meaning, we know that

Orb(qni
) and Orb(qni+1 ) are homoclinic related. �

Remark 4.15. In the proof of lemma 4.6 we suppose the set Λ has 1-step dominated splitting, that means

l = 1, and we suppose l0 = 1 there also, they are just in order to make the proof more simplier. In the

rest part of the paper, usually we don’t use such assumption any more, if we use it we’ll point out.

Now let’s consider a sequence of periodic points which are not index stable.

Lemma 4.16. Suppose f ∈ R, lim
n→∞

gn = f , {pn(gn)}∞n=1 is a family of index i periodic points (i 6= 0, d)

and lim
n→∞

π(pn) −→ ∞. If there exist λn −→ 1− and lim
n→∞

ln −→ ∞ such that lim
n→∞

π(pn)
ln

−→ ∞ and

[ π(pn)
ln

]−1∏
j=0

‖Dgln
n |Es(gjln

n (pn))‖ ≥ λ
[ π(pn)

ln
]

n , then for any ε > 0 and N > 0, there exists an n0 > N and g′n0
is

an ε-perturbation of gn0 such that pn0(gn0) is an index i − 1 periodic point of g′n.

Proof: Fix N , consider the periodic sequence of linear maps {ξn : ξn = Dgn|Es(Orb(pn))}n≥N , they are

all contracting maps. We claim that {ξn} are not stable contracting.

Proof of the claim: If {ξn} is stable contracting, by lemma 4.9, there exist N0, l0, 0 < λ0 < 1 such

that if π(ξn) > N0, we have

(4.10)

[
π(pn)

l0
]−1∏

j=0

‖Dgl0
n |

Es(g
jl0
n pn)

‖ ≤ λ
[ π(pn)

l0
]

0

Choose some N1 big enough such that for n ≥ N1, we have λn ≥ λ∗ > λ0 for some λ∗ ∈ (λ0, 1), then by

lim
n→∞

π(pn)
ln

−→ ∞ and lim
n→∞

ln −→ ∞, when n is big enough, we have π(pn) � ln � max{l0, N0} and

from

[ π(pn)
l0

]−1∏
j=0

‖Dgln
n |Es(gjln

n pn)‖ ≥ λ
[ π(pn)

ln
]

n > (λ∗)[
π(pn)

ln
], we’ll get

[ π(pn)
l0

]−1∏
j=0

‖Dgl0
n |

Es(g
jl0
n pn)

‖ ≥ λ
[ π(pn)

ln
]

0 >

λ
[ π(pn)

l0
]

0 , It’s a contradiction with (4.10). �
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Since {ξn}n≥N isn’t stable contracting, for ε > 0, there exists a sequence {ni} and {ηni} such that ηni is

an ε-perturbation of ξni and ηni has index smaller than i. Since {ξni} is bounded and lim
n→∞

π(pn) −→ ∞,

by [10]’s work, for ni big enough, we can in fact get ηni with index i − 1. By lemma 4.7, there exists

{A|Orb(pn)}n≥0 an ε-perturbation of {Dgn|Orb(pn)} such that {A|Orb(pn)} has index i − 1. Now we need

the following version of Franks lemma.

Lemma 4.17. (Franks lemma) pn is a periodic point of gn, A|Orb(pn) is an ε-perturbation of {Dgn|Orb(pn)},

then for any neighborhood U of Orb(pn), there exists g′n such that g′n ≡ gn on (M \ U)
⋃

Orb(pn),

dC1(gn, g′n) < ε and {Dg′n|orb(pn)} = {A|Orb(pn)}.

From Franks lemma, we can change the derivative map along TOrb(pni
)M to be {A|Orb(pn)} and get a

new map g′ni
such that pni

(gni
) is index i − 1 periodic point of g′ni

. �

4.2. Weakly selecting lemma. Liao’s selecting lemma is a powerful shadowing lemma for non-uniformly

hyperbolic system, with it, we can not only get a lot of periodic points like what the standard shadowing

lemma can do, we can even let the periodic points have hyperbolic property as weak as we like. Liao

at first used this lemma to study minimal non-hyperbolic set and proved the Ω-stable conjecture for

diffeomorphisms in dimension 2 and for flow without singularity in dimension 3. [16] [17] [19] [41] use the

same idea proved structure(Ω) stability conjecture for flows without singularity in any dimension. Until

now, the most important papers about selecting lemma are [18],[44], [45] and there contain more details

about selecting lemma.

In this subsection and the next, we’ll show what will happen if all the conditions in weakly selecting

lemma are satisfied. The main result in this subsection is lemma 4.21 (The weakly selecting lemma).

Now let’s state the selecting lemma at first.

Proposition 4.18. (Liao) Let Λ be a compact invariant set of f with index i− (l, λ) dominated splitting

Ecs ⊕ F cu. Assume that

a) there is a point b ∈ Λ satisfying
n−1∏
j=0

‖Df l|Ecs(fjlb)‖ ≥ 1 for all n ≥ 1.

b) (The tilda condition) there are λ1 and λ2 with λ < λ1 < λ2 < 1 such that for any x ∈ Λ

satisfying
n−1∏
j=0

‖Df l|Ecs(fjlx)‖ ≥ λ2
n for all n ≥ 1, ω(x) contains a point c ∈ Λ satisfying

n−1∏
j=0

‖Df l|Ecs(fjlc)‖ ≤ λn
1 for all n ≥ 1.

Then for any λ3 and λ4 with λ2 < λ3 < λ4 < 1 and any neighborhood U of Λ, there exists a hyperbolic

periodic orbit Orb(q) of f of index i contained entirely in U with a point q ∈ Orb(q) such that

(4.11)

m−1∏

j=0

‖Df l|Ecs(fjlq)‖ ≤ λm
4 , for m = 1, · · · , πl(q)

(4.12)

πl(q)−1∏

j=πl(q)−m

‖Df l|Ecs(fjlq)‖ ≥ λ
πl(q)−m+1
3 for m = 1, · · · , πl(q)

where πl(q) is the period of q for the map f l. The similar assertion for F cu holds respecting f−1.
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Remark 4.19. It’s easy to know π(q) ≥ πl(q). Since f l·πl(q)(q) = q, it’s obviously that (4.11) and (4.12)

are true for all m ∈ N. In the selecting lemma, when λ3 and λ4 are fixed, we can indeed find a sequence

of periodic points {qn} satisfying (4.11) and (4.12) and lim
n→∞

Orb(qn) ⊂ Λ. If f is a Kupuka-Smale

diffeomorphism, especially when f ∈ R, we can let lim
n→∞

πl(qn) −→ ∞, then we’ll have lim
n→∞

π(qn) −→ ∞

at the same time.

Corollary 4.20. f ∈ R, let Λ be a compact chain recurrent set of f with index i − (l0, λ) dominated

splitting Ecs ⊕ F cu (1 ≤ i ≤ d − 1). Assume that the splitting satisfies all the condition of selecting

lemma for all ln = nl0 (n ∈ N) but with the same parameters λ < λ1 < λ2 < 1, then for any sequence

{(λn,3, λn,4)}
∞
n=1 satisfying λ2 < λ1,3 < λ1,4 < λ2,3 < λ2,3 < · · · where λn,3 −→ 1−, there exists a family

of periodic points {qn(f)} with index i such that

a) lim
n→∞

πln(qn(f)) −→ ∞.

b)

m−1∏

j=0

‖Df ln |Es(fjln qn)‖ ≤ λm
n,4(4.13a)

πln (qn)−1∏

j=πln (qn)−m

‖Df ln |Es(fjln qn)‖ ≥ λm
n,3 for m ∈ N(4.13b)

c) lim
n→∞

Orb(qn) ⊂ Λ.

d) Λ ⊂ H(qn(f)) for all n.

Proof : At first, let’s fix λ2 < λ1,3 < λ1,4 < 1 and a small neighborhood U of Λ small enough such

that the maximal invariant set Λ̃ of U has index i − (l0, λ̃) dominated splitting with λ̃ < λ2, we denote

the dominated splitting still by Ecs
i ⊕ F cu

i+1. (If q is an index i periodic point in Λ̃, then we denote

Ecs
i ⊕F cu

i+1|Orb(q) = Es ⊕Fu|Orb(q)). Now using selecting lemma, with remark 4.19, we can find a family

of periodic points {q1,m(f)}∞m=1 with index i satisfying b), lim
n→∞

(q1,m) ⊂ Λ, lim
m→∞

πl1(q1,n) −→ ∞ and

Orb(q1,m(f)) ⊂ Λ̃.

Since Λ̃ has an index i − (l1, λ̃) dominated splitting Ecs
eΛ

⊕ F cu
eΛ

, from (4.13b) we can know

πl1
(q1,m)∏

j=πl1
(q1,m)−t+1

‖Df−l1 |F cu(fjl1q1,m)‖ ≤ λ̃t/

πl1
(q1,m)−1∏

j=πl1
(q1,m)−t

‖Df l1 |Ecs(fjl1 q1,m)‖ ≤ (
λ̃

λ1,3
)t for (t∈N),

it equivalent with

(4.14)

m−1∏

j=0

‖Df−l1 |F cu(f−jl1 q1,m)‖ ≤ (
λ̃

λ1,3
)m for m ∈ N.

From (4.13a), (4.13b), by lemma 4.13, Corollary 4.14 and
eλ

λ1,3
< 1, we can know that for some ε1, q1,n

will have uniformly size of stable manifold W s
ε1

(q1,n) and uniform size of unstable manifold Wu
ε1

(q1,n)

and there exists a subsequence {q1,nj
}∞j=1 such that they are homoclinic related with each other, so

H(q1,n1) = H(q1,n2) = · · · , with lim
j→∞

Orb(q1,nj
) ⊂ Λ, we know Λ

⋂
H(q1,nj

) 6= φ. Since f ∈ R, H(q1,nj
)

should be a chain recurrent class. Because Λ is a chain recurrent set, we have Λ ⊂ H(q1,nj
), let q1 = q1,nj

for some j big enough, then q1 satisfies a), d).
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Now consider 0 < λ2 < λ2,3 < λ2,4 < 1, Ecs
Λ ⊕F cu

Λ is obviously an index i−(l2, λ) dominated splitting of

Λ and by the assumption, the splitting satisfy the conditions of selecting lemma for l2, λ < λ1 < λ2 < 1,

so repeat the above argument, we can get a family of periodic points {q2,n(f)}∞n=1 satisfying b), d),

lim
n→∞

Orb(q2,n) ⊂ Λ, Λ ⊂ H(q2,1, f) = · · · = H(q2,n, f) = · · · and lim
n→∞

πl2(q2,n(f)) −→ ∞. When n0 is

big enough, we’ll have πl2(q2,n0) > πl1(q1) and Orb(q2,n0 ) is near Λ more than Orb(q1). Let q2 = q2,n0 ,

continue the above argument for ln and λ2 < λn,3 < λn,4 < 1, we can get {qn}
∞
n=1 which we need. �

The following weakly selecting lemma shows when the conditions of the above corollary will be satisfied.

Lemma 4.21. (Weakly selecting lemma) Let f ∈ R, Λ be a compact invariant set of f with index

i − (l0, λ) dominated splitting Ecs ⊕ F cu (1 ≤ i ≤ d − 1). Assume that

a) (Non-hyperbolic condition) the bundle Ecs is not contracting,

b) (Strong tilda condition) there are λ2 < 1 and l′0 > 1 such that for any x ∈ Λ, ω(x) contains a

point c ∈ Λ satisfying
n−1∏
j=0

‖Df l′0 |
Ecs(fjl′

0c)
‖ ≤ λn

2 for all n ≥ 1.

Then for any ln = n · (l0 · l′0) and any sequence {(λn,3, λn,4)}
∞
n=1 satisfying max{λl′0 , λ2} < λ1,3 <

λ1,4 < · · · < λn,3 < λn,4 < · · · where λn,3 −→ 1−, there exists a family of periodic points {qn(f)} with

index i such that

• lim
n→∞

πln(qn(f)) −→ ∞

•
m−1∏
j=0

‖Df ln |Es(fjln qn)‖ ≤ λm
n,4 and

πln (qn)−1∏
j=πln (qn)−m

‖Df ln |Es(fjln qn)‖ ≥ λm
n,3 for m ≥ 1

• lim
n→∞

Orb(qn) ⊂ Λ

• Λ ⊂ H(qn(f)) for n ≥ 1.

Proof Since Ecs
Λ ⊕F cu

Λ is a (l0, λ) dominated splitting and l1 = l0 · l
′
0, it should be a (l1, λ

l′0) dominated

splitting also. Choose λ′
2, λ1 such that max{λl′0 , λ2} < λ1 < λ′

2 < λ1,3, we’ll show that the splitting

Ecs
Λ ⊕ F cu

Λ and the l1, λl′0 < λ1 < λ′
2 < 1 will satisfy all conditions of corollary 4.20, equivalent, we’ll

show the splitting Ecs
Λ ⊕ F cu

Λ , ln and λl′0 < λ1 < λ′
2 < 1 will satisfy the condition of selecting lemma for

all n ≥ 1.

0) Since Ecs
Λ ⊕F cu

Λ is a (l1, λl′0) dominated splitting and ln = n·l1, Ecs
Λ ⊕F cu

Λ is a (ln, λl′0) dominated

splitting also.

1) Here we need the following lemma:

Lemma 4.22. Let Λ be a compact invariant set of f , Ecs
Λ is an continuous invariant bundle on

Λ, and dim(Ecs(x)) = i for any x ∈ Λ where i 6= 0, suppose l ∈ N, if for any x ∈ Λ, there exists

an n such that
n−1∏
j=0

‖Df l|Ecs(fjlx)‖ < 1, then Ecs
Λ is a contracting bundle.

Since we know Ecs
Λ is continuous but not contracting, so for any ln, there exists bn, such that

n−1∏
j=0

‖Df l
n|Ecs(fjln bn)‖ ≥ 1 for all m ≥ 1.
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2) For any x ∈ Λ, ω(x) contains a point cn ∈ Λ such that
nl0m−1∏

j=0

‖Df l′0 |
Ecs(fjl′0 cn)

‖ ≤ λnl0m
2 for all

m ≥ 1, since

nl0m−1∏

j=0

‖Df l′0 |
Ecs(fjl′

0cn)
‖ ≥

m−1∏

j=0

‖Dfnl0l′0 |
Ecs(fjnl0l′

0cn)
‖ =

m−1∏

j=0

‖Df ln |Ecs(fjln cn)‖,

we have that
m−1∏
j=0

‖Df ln |Ecs(fjln cn)‖ ≤ λmnl0
2 ≤ λm

2 for all m ≥ 1.

Remark 4.23. In b) of weakly selecting lemma, we don’t give any restriction on x, so b) is in fact more

stronger than the tilda condition, that’s why we call the condition b) in weakly selecting lemma the strong

tilda condition.

By 0), 1), 2) above and corollary 4.20, we proved the lemma. �

4.3. Transition. Transition was introduced in [6] at first, there they consider a special linear system

with a special property called transition and use it to study homoclinic class. Here I prefer to use a little

different way to state it, the notation and definition are basically copy from [6]. The main result in this

subsection is corollary 4.26. We begin by giving some definitions.

Given a set A, a word with letters in A is a finite sequence of A, its length is the number of letters

composing it. The set of words admits a natural semi-group structure: the product of the word [a] =

(a1, · · · , an) by [b] = (b1, · · · , bl) is [a] · [b] = (a1, · · · , an, b1, · · · , bl). We say that a word [a] is not a power

if [a] 6= [b]k for every word [b] and k > 1.

Here we’ll use some special words. Let’s fix f ∈ C1(M), for any x ∈ Per(f), we write [x] =

(fπ(x)−1(x)), · · · , x) and {x} = (Df(fπ(x)−1(x)), · · · , Df(x)). We call a word [a] = (ak, · · · , a1) with

letters in M is a finite ε-pseudo orbit if d(f(ai), ai+1) ≤ ε for 1 ≤ i ≤ k − 1, if ε = 0, that means

f(ai) = ai+1 for 1 ≤ i ≤ k − 1, then we call [a] is a finite segment of orbit. We always denote

{a} = (Df(ak), · · · , Df(a1)).

Suppose we have a finite orbit [a] = (an, · · · , a1) and an ε-pseudo orbit [b] = (bl, · · · , b1), we say [b]

is δ-shadowed by [a] if n = l and d(ai, bi) ≤ ε for 1 ≤ i ≤ n. We say {a} is δ-close to {b} if n = l and

‖Df(ai) − Df(bi)‖ ≤ δ for 1 ≤ i ≤ n.

Suppose H(p, f) is a non-trivial homoclinic class, we say H(p, f) has ε-transition property if : for

any finite hyperbolic periodic points p1, · · · , pn in H(p, f) which are homoclinic related with each other,

there exist finite orbits [ti,j ] = (ti,jk(i,j), · · · , ti,j1 ) for any (i, j) ∈ {1, · · · , n}2 where k(i, j) is the length

of [ti,j ], such that, for every m ∈ N, l = (i1, · · · , im) ∈ {1, · · · , n}m and α = (α1, · · · , αm) ∈ Nm

where the word ((i1, α1), · · · , (im, αm)) with letters in N×N is not a power, the pseudo orbit [w(l, α)] =

[tim,i1 ] · [pim
]αm · [tim−1,im ] · [pim−1 ]

αm−1 · · · · · [ti1,i2 ] · [pi1 ]
α1 is an ε-pseudo orbit and there is a periodic

orbit Orb(q(l, α)) ⊂ H(p, f) such that:

a) the length of [w(l, α)] is π(q(l, α)) and [q(l, α)] ε-shadow the pseudo orbit [w(l, α)].

b) the word {q(l, α)} is ε-close to {w(l, α)}.

c) there exists a word {t̃tj,ti+1} = (T
ij ,ij+1

k(ij ,ij+1), · · · , T
ij ,ij+1

1 ) with letters in GL(Rd) ε close to {tij ,tj+1},

let T ij ,ij+1 = T
ij,ij+1

k(ij ,ij+1) · · · · · T
ij,ij+1
1 , then

T ij,ij+1 (Es(qij
)) = Es(qij+1 ), , T ij,ij+1(Eu(qij

)) = Eu(qij+1 ).
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We say H(p, f) has transition property if H(p, f) has ε-transition property for any ε > 0.

Lemma 4.24. ([6]) f ∈ C1(M), suppose p is an index i (i 6= 0, d) hyperbolic periodic point of f , then

H(p, f) has transition property.

Lemma 4.25. f ∈ R, suppose p is an index i (i 6= 0, d) hyperbolic periodic point of f and H(p, f) is not

trivial. Suppose there exists a family of periodic point {pn}
∞
n=1 with index i in H(p, f) homoclinic related

with p and ln −→ ∞, λn −→ 1− such that πln(pn) −→ ∞ and
πln (pn)−1∏

j=0

‖Df ln |Es(fjln (pn))‖ ≥ λ
πln (pn)
n ,

then H(p, f) is an index i − 1 fundamental limit.

Proof : We claim that we can find qn(gn) is periodic point of gn with index i such that:

1) lim
n→∞

gn = f .

2) Orbgn
(qn) is periodic orbit of f also (f |Orbgn (qn) = gn|Orbgn (qn)), so we just denote it Orb(qn),

then we have Orb(qn) ⊂ H(p, f) and lim
n→∞

Orb(qn) = H(p, f).

3) lim
n→∞

π(qn)
ln

−→ ∞

4)
[ π(qn)

ln
]−1∏

j=0

‖Dgln
n |Es

gn
(gjln

n (qn))‖ ≥ λ
[ π(qn)

ln
]

n

Proof of the claim: Choose εn −→ 0+, let’s fix n0 at first and choose an ε > 0 such that λn0 + 2ε < 1.

There exists N0 � n0 such that for any n ≥ N0, we’ll have ln � ln0 and λn > λn0 + 2ε, then by
πln(pn)−1∏

j=0

‖Df ln |Es(fjln pn)‖ ≥ λ
πln (pn)
n , we have

mln0πln (pn)−1∏
j=0

‖Df ln |Es(fjln pn)‖ ≥ λ
mln0πln (pn)
n for m ≥ 1,

then we get

(4.15)

mlnπln (pn)−1∏

j=0

‖Df ln0 |Es(fjln0 pn)‖ ≥ (λn0 + 2ε)mln0πln (pn) for m ≥ 1.

Since f ∈ R, there exists a family of periodic points {q′i}
N
i=1 with index i, which are εn0-dense in

H(p, f) and they are homoclinic related with p and {pn}
∞
n=1. Now use εn0-transition property for {q′0(=

pN0), q
′
1, · · · , q′N}, then for {i, j} ∈ {0, 1, · · · , N}2, there exists finite orbit [ti,j ] = (ti,jk(i,j), · · · , ti,j1 ) such

that for l = (0, 1, · · · , N) and αm = (m · ln0 , 1, · · · , 1), the pseudo orbit [w(l, αm)] = [tN,0] · [q′N ] · · · · ·

[t0,1] · [q′0]
m·lN0

lN0
·πlN0

(pN0
)

π(pN0
) is an εn0-pseudo orbit and is εn0-shadowed by periodic orbit [q(l, αm)] whose

index is i, where Orb(q(l, αm))) ⊂ H(p, f) and {q(l, αm)} is εn0-near {w(l, αm)}.

Consider the word {w̃(l, αm)} = {t̃N,0}·{q′N}·· · ·· {t̃N,0}·{q′0}
ml0 , it’s εn0 near {w(l, αm)}, so {w̃(l, αm)}

is 2εn0 near with {q(l, αm)}. Now use lemma 4.17 (Franks lemma), we can get a C1 diffeomorphism

g(l,αm) such that d(g(l,αm), f) < 2εn0 , Orbf (q(l, αm)) is also orbit of g(l,αm), and {Dg(l,αm)|Orb(q(l,αm))} =

{w̃(l, αm)}. By c) of transition property, E
s(u)
f (q′0) is invariant bundle of {w̃(l, αm)}, so they are invariant

bundle of gl,αm
, that means Dg

π(q(l,αm))
(l,αm) (Es

f (q′0)) = Es
f (q′0) and Dg

π(q(l,αm))
(l,αm) (Eu

f (q′0)) = Eu
f (q′0). It’s easy

to know when m is big enough, E
s(u)
f (q′0) is stable(unstable) bundle for g(l,αm), so when m is big enough,

q(l,αm) would be an index i hyperbolic periodic point of g(l,αm).
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Now choose m big enough and let qn0 = q(l, αm), gn0 = g(l,αm), it’s easy to know qn0 , gn0 satisfy 1),

2). About 3), let’s notice that π(qn) ≥ mln0 and m can be chosen arbitrary big. 4) comes from (4.15)

and m is big enough. �

Now let’s continue the proof of lemma 4.25, by the above claim and lemma 4.16, for any ε > 0 and

N > 0, there exist an n0 > N and g′n0
is ε-perturbation of gn0 such that Orb(qn0 ) is index i− 1 periodic

orbit of g′n0
and Orb(qn0 ) is εn0-dense in H(p, f). Since ε and εn0 can be arbitrarily small, we get that

lim
n→∞

g′nj
= f , Orb(qnj

) is index i − 1 periodic orbit of g′nj
and lim

j→∞
Orb(qnj

) = H(p, f), so H(p, f) is an

index i − 1 fundamental limit. �

Then main result of this subsection is the following corollary.

Corollary 4.26. f ∈ R, C is a chain recurrent class of f , Λ is compact invariant set of f with index

i− (l, λ) dominated splitting Ecs ⊕F cu (1 ≤ i ≤ d) and assume they satisfy all the assumption of weakly

selecting lemma, then C contains index i periodic point and C is an index i − 1 funadamental limit.

Proof : It’s just a corollary from Lemma 4.21 (weakly selecting lemma) and lemma 4.25. �

4.4. Proof of lemma 4.3. Proof : When Λ is trivial (#(Λ) < ∞), Λ is a periodic orbit, since Λ is an

index j0-fundamental limit, it should be an index j0 hyperbolic periodic orbit, so C contains an index j0

periodic point and it’s an index j0 fundamental limit.

Now we suppose Λ is not trivial, by generic property 5 of proposition 3.1, there exists a family of

index j0 periodic points {pn(f)}∞n=1 such that lim
n→∞

Orb(pn(f)) = Λ. Since Λ is not trivial, we have

π(pn(f)) −→ ∞.

If Λ isn’t an index j0+1 fundamental limit, we know that {pn(f)} is index j0 stable, then by lemma 4.6

(Gan’s lemma), there exits a subsequence {pni
(f)}∞i=1 such that pni

(f) and pnj
(f) are homoclinic related,

so H(pn1 , f) = H(pn2 , f) = · · · , especially, by lim
n→∞

Orb(pn(f)) = Λ, we know that Λ ⊂ H(pn1 , f), by

generic property 6) of proposition 3.1, C = H(pn1 , f), so C contains index j0 periodic point and it’s an

index j0 fundamental limit.

So from now, we suppose Λ is an index j0 + 1 fundamental limit also, then Λ ⊂ P ∗
j0

⋂
P ∗

j0+1, since f

is far away from tangency, by proposition 2.1, Λ has an index j0 dominated splitting Ecs
j0

(Λ) ⊕ Ecu
j0+1(Λ)

and an index j0 + 1 dominated splitting Ecs
j0+1(Λ) ⊕ Ecu

j0+2(Λ). Let Ec
1(Λ) = Ecu

j0+1(Λ)
⋂

Ecs
j0+1(Λ), then

on Λ we have the following dominated splitting: T |ΛM = Ecs
j0

(Λ)⊕Ec
1(Λ)⊕Ecu

j0+2(Λ). Since C
⋂

P ∗
j = φ

for j < j0, by proposition 2.2, Ecs
j0 is in fact contracting, so we prefer denoting it Es

j0 . Now on Λ we have

the dominated splitting T |ΛM = Es
j0

(Λ) ⊕ Ec
1(Λ) ⊕ Ecu

j0+2(Λ).

Remark 4.27. Since Λ is index j0 fundamental limit, Ec
1(Λ) is not contracting, that means that the

bundle (Es
j0
⊕ Ec

1)|Λ is not contracting also.

When j0 + 1 = d, especially, the dominated splitting on Λ should be T |ΛM = Es
j0

(Λ) ⊕ Ec
1(Λ). In

this case, if Λ is not minimal, there exists an x0 ∈ Λ such that ω(x0)  Λ. By the definition of Λ and

j0 = d − 1, ω(x0) is an index d fundamental limit but not index j fundamental limit for j < d. With

the generic property (5) of proposition 3.1, ω(x0) can be converged by a family of sinks {pn(f)}, by
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remark 4.4, π(pn(f)) should be bounded ( If it’s not bounded, there exist pn0(f) and gn0

C1

∼ f such that

gn0 |Orbf (pn0 (f)) = f |Orbf (pn0 (f)) and Orb(pn0 (f)) is a periodic orbit of g with index smaller than d, that

means ω(x0) is an fundamental limit with index smaller than d, it’s a contradiction). That means ω(x0)

is trivial, so it’s a periodic orbit. Since f is a Kupuka-Smale diffeomorphism and ω(x0) is an index d

fundamental limit, we can know that ω(x0) is an index d hyperbolic periodic orbit, then C contains a

sink, it means C itself is just the orbit of sink and C = ω(x0), that’s a contradiction with C is not trivial,

so we proved Λ is minimal when j0 + 1 = d.

Now we just consider j0 + 1 < d, we claim that with all the assumptions above on Λ, then either Λ is

minimal, or C contains periodic points with index j0 + 1 and C is an index j0 fundamental limit.

Proof of claim: Suppose Λ is not minimal, it means that there exists x0 ∈ Λ such that ω(x0) 6= Λ.

Consider the set of compact chain recurrent subset of Λ: {Λα : Λα  Λ}α∈A, since ω(x0) ∈ {Λα}α∈A,

A 6= φ, by generic property (4) of proposition 3.1, Λα is a fundamental limit. By the definition of j0

and Λ, Λα is an index jα fundamental limit with jα ≥ j0 + 1. Denote B={β ∈ A, Λβ is not an index j

fundamental limit for j > j0 + 1}.

Remark 4.28. : For any β ∈ B, Λβ is an index j0 +1 fundamental limit, on Λβ we have an index j0 +1

dominated splitting Ecs
j0+1(Λβ)⊕Ecu

j0+2(Λβ). Since we have Λβ

⋂
P ∗

j 6= φ for all j 6= j0 +1, by proposition

2.2, the index j0 + 1 dominated splitting is in fact a hyperbolic splitting, that means Λβ is a hyperbolic

set.

Now we divide the proof of the claim to three subcases: #(B) = 0, #(B) = N1 < ∞ and #(B) = ∞.

Case A: #(B) = 0.

That means for all α ∈ A, Λα is an index jα fundamental limit for some jα > j0 + 1.

Now we need the following two results.

Lemma 4.29. ([45]) Assume f ∈ R, let Λ be an index i fundamental limit of f (1 ≤ i ≤ d − 1),

Ecs
i (Λ) ⊕ Ecu

i+1(Λ) is an index i − (l, λ) dominated splitting on Λ given by proposition 2.1, then

1) either for any µ ∈ (λ, 1), there exists c ∈ Λ such that
n−1∏
j=0

‖Df l|Ecs
i (fjlc)‖ ≤ µn for n ≥ 1,

2) or Ecs
i splits into a dominated splitting V cs

i−1 ⊕V c
1 with dim(V c

1 ) = 1 such that for any µ ∈ (λ, 1),

there is c′ ∈ Λ such that
n−1∏
j=0

‖Df l|V cs
i−1(fjlc′)‖ ≤ µn for all n ≥ 1.

Lemma 4.30. Let Λ be an invariant compact set of f , with two dominated splitting Ecs ⊕ F cu and

Ẽcs ⊕ F̃ cu, if dim(Ecs) ≤ dim(Ẽcs), then Ecs ⊂ Ẽcs.

Choose µ0 ∈ (λ, 1), since Λα is an index jα fundamental limit, proposition 2.1 gives an index jα− (l, λ)

dominated splitting Ecs
jα

⊕ F cu
jα+1 on Λα.
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If 1) of lemma 4.29 is true for Λα, then there exists c ∈ Λα such that
n−1∏
j=0

‖Df l|Ecs
jα

(fjlc)‖ ≤ µn
0 for n ≥ 1.

On Λα we have another dominated splitting (Es
j0 ⊕Ec

1)⊕Ej0+2
cu induced from Λ. Since dim(Es

j0 ⊕Ec
1) =

j0 + 1 < jα = dim(Ecs
jα

), be lemma 4.30, Es
j0 ⊕ Ec

1 ⊂ Ecs
jα

, so we have
n−1∏
j=0

‖Df l|Es
j0

⊕Ec
1(fjlc)‖ ≤ µn

0 for

n ≥ 1.

If 2) of lemma 4.29 is true for Λα, then there exists c′ such that
n−1∏
j=0

‖Df l|V cs
jα−1(f

jlc′)‖ ≤ µn
0 for n ≥ 1,

recall that dim(Es
j0 ⊕ Ec

1) = j0 + 1 ≤ jα − 1 = dim(V cs
jα−1), by lemma 4.30, Es

j0 ⊕ Ec
1 ⊂ V cs

jα
(Λα), so we

have
n−1∏
j=0

‖Df l|Es
j0

⊕Ec
1(fjlc′)‖ ≤ µn

0 for n ≥ 1.

Remark 4.31. : By the above arguments, we know that for any α ∈ A \ B, and for any µ0 ∈ (λ, 1),

there exists c ∈ Λα such that

(4.16)

n−1∏

j=0

‖Df l|Es
j0

⊕Ec
1(fjlc)‖ ≤ µn

0 for n ≥ 1.

By remark 4.27and remark 4.31, the index j0 + 1− (l, λ) dominated splitting (Es
j0
⊕Ec

1)⊕Ecu
j0+2 on Λ

satisfies all the conditions of weakly selecting lemma, by corollary 4.26, C contains index j0 + 1 periodic

point and C is an index j0 fundamental limit.

Case B: #(B) = N1 < ∞

Let B={β1, · · · , βN1}, fix λ < µ0 < 1, then by the argument in case A, for any β ∈ A \B, there exists

c ∈ Λ satisfies (4.16).

For βi ∈ B, Λβi
should be a hyperbolic set where the bundle Es

j1 ⊕ Ec
1|Λβi

is a contracting bundle, so

there exists l′ such that for any x ∈ Λβi
, ‖Df l′ |(Es

i0
⊕Ec

1)(x)‖ < 1/2.

Let l0 = l · l′ and 1 > µ1 > max{µ0,
1
2}, then for any Λα (α ∈ A), there exists a point c ∈ Λα such

that
n−1∏
j=0

‖Df l0 |Es
j0

⊕Ec
1(fjl0c)‖ ≤ µn

1 . With remark 4.27, the index j0 + 1 − (l, λ) dominated splitting

(Es
j0

⊕ Ec
1) ⊕ Ecu

j0+2 on Λ satisfies all the conditions of weakly selecting lemma, by corollary 4.26, C

contains index j0 + 1 periodic point and C is an index j0 fundamental limit.

Case C: #(B) = ∞

In remark 4.28, we have shown that for any β ∈ B, Λβ is a hyperbolic chain recurrent set with

index j0 + 1. Then there exists a family of periodic points {pβ,n}
∞
n=1 in C with index j0 + 1 and

lim
n→∞

Orb(pβ,n) = Λβ (by shadowing lemma). If Λβ is trivial, that means it’s an index j0 + 1 periodic

orbit, we can let Orb(pβ,n) = Λβ for n ≥ 1; if Λβ is not trivial, we can let π(pβ,n) −→ ∞.

We have the following two subcases.

• Subcase C.1: There exists δ > 0 such that for any Λβ , β ∈ B, there exists a family of periodic

points {pβ,n}
∞
n=1 such that lim

n→∞
Orb(pβ,n) = Λβ and | Dfπ(pβ,n)|Ec

1(pβ,n) |< e−δπ(pβ,n).

• Subcase C.2: For any 1
m > 0, there exist βm ∈ B and a family of periodic points {pβm,n}

∞
n=1

satisfying lim
n→∞

Orb(pβm,n) = Λβ and | Dfπ(pβm,n)|Ec
1(pβm,n) |> e−

1
m

π(pβm,n).
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In the subcase C.1, let’s fix 1 > µ1 > µ0 > e−δ. For β ∈ B, recall that dim(Ec
1(Λ)) = 1 and

| Dfπ(pβ,n)|Ec
1(pβ,n) |< e−δπ(pβ,n), we’ll get

π(pβ,n)−1∏
i=0

| Df |Ec
1(pβ,n) |< e−δπ(pβ,n), that means for any

s ≥ 1, we have
sπ(pβ,n)−1∏

i=0

| Df |Ec
1(pβ,n) |< e−sδπ(pβ,n) for s ≥ 1. By lemma 4.10 (Pliss lemma) there

exists xβ,n ∈ Orb(pβ,n) such that | Dfs|Ec
1(xβ,n) |=

s−1∏
i=0

| Df |Ec
1(fi(xβ,n)) |< µs

0 for s ≥ 1. Suppose

lim
n→∞

xβ,n −→ cβ where cβ ∈ Λβ , then
s−1∏
i=0

| Df |Ec
1(fi(cβ)) |< µs

0 for s ≥ 1. Notice that Es
j0 |Λ is dominated

by Ec
1|Λ and µ1 > µ0, there exists l′ � 1 doesn’t depend on β such that

t−1∏
i=0

‖Df l′ |Ec
1⊕Es

j0
(fil′(cβ))‖ < µt

1

for t ≥ 1.

For α ∈ A\B, by the argument in case A, there exists cα ∈ Aα such that
t−1∏
i=0

‖Df l0 |Ec
1⊕Es

j0
(fil0(cα))‖ <

µt
1 for t ≥ 1.

Let l1 = l′ · l0, then for any α ∈ A, there exists cα ∈ A such that
t−1∏
i=0

‖Df l1|Ec
1⊕Es

j0
(fil1(cα))‖ < µt

1 for

t ≥ 1. With remark 4.27, the index j0 + 1 − (l, λ) dominated splitting (Es
j0
⊕ Ec

1) ⊕ Eu
j0+2 on Λ satisfies

all the conditions of weakly selecting lemma. By Corollary 4.26, C contains index j0 + 1 periodic point

and C is an index j0 fundamental limit.

In the subcase C.2, since Λβm
is a hyperbolic set, we can always suppose {pβm,n}

∞
n=1 is homoclinic

related with each other and pβm,n ∈ C, so C contains index j0 + 1 periodic points. Now we’ll show C is

an index j0 fundamental limit also.

We claim that there exists a subsequence {βmt
}∞t=1 ⊂ {βm} and for every βmt

there exists pβmt ,nt
∈

{pβmt ,n}
∞
n=1 such that lim

t→∞
π(pβmt ,nt

) −→ ∞.

Proof of the claim: Let B0={βm : Λβm
is given in subcase C.2 and Λβm

is not trivial. }

If #(B0) = ∞, then for any βmt
∈ B0, by Λβmt

is not trivial, we’ll have lim
n→∞

π(pβmt ,n) −→ ∞, so

when n is big enough, we can let π(pβmt ,n) arbitrarily big.

If #(B0) < ∞, then for βm /∈ B0, Λβm
is an index j0 + 1 periodic orbit and Orb(pβm,n) ≡ Λβm

for

n ≥ 1. Since f is a Kupka-Smale diffeomorphism, the number of periodic points with fixed boundary of

period should be finite, by the fact #(B \ B0) = ∞, there are infinite of m such that Λm is index j0 + 1

periodic orbits, then we can choose Λβm
is an index j0 + 1 periodic orbit with arbitrarily big period. �

Now for simiplicity, we denote pβmt ,nt
by pβm,nm

.

For {pβm,nm
}∞m=1, we have lim

m→∞
π(pβm.nm

) −→ ∞ and

(4.17) |Dfπ(pβm,nm)|Ec
1(pβm,nm )| > e−

1
m

π(pβm,nm ).

Choose {lm}∞m=1 carefully, we’ll have lim
m→∞

lm −→ ∞, lim
m→∞

π(pβm,nm )
lm

−→ ∞ and lm
m −→ 0+ (after

replacing {pβm,nm
}∞m=1 by a subsequence, we can always do this). Since πlm(pβm,nm

) ≥
π(pβm,nm )

lm
, we

have

(4.18) lim
m→∞

πlm(pβm,nm
) −→ ∞.
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By (4.17) and the fact l · πl(p) is always a multiple of π(p) for any period point p and l ≥ 1, we have

|Df lm·πlm(pβm,nm)|Ec
1(pβm,nm )| > e−

1
m

lm·πlm (pβm,nm ),

it’s equivalent with

πlm (pβm,nm )−1∏

i=0

‖Df lm |Ec
1(film (pβm,nm ))‖ ≥ e−

lm
m

·πlm (pβm,nm ),

then we get
πlm (pβm,nm )−1∏

i=0

‖Df lm |(Ec
1⊕Es

j0
)(film (pβm,nm ))‖ ≥ e−

lm
m

·πlm (pβm,nm ),

since lim
m→∞

lm
m −→ 0+ and by (4.18), lemma 4.25 tells us C is an index j0 fundamental limit, this finishes

the proof of the claim. �

Now let’s continue the proof of lemma 4.3, by the above argument, we can suppose Λ is minimal, not

trivial, it’s an index j0 and j0 + 1 fundamental limit with dominated splitting Es
j0
⊕Ec

1 ⊕Ecu
j0+2|Λ where

Ecu
j0+2(Λ) 6= φ.

If Ecu
j0+2(Λ) is not expanding, by lemma 4.22, we can know that there exists a point b ∈ Λ such that

n−1∏
i=0

‖Df−l|Ecu
j0+2(f

(i+1)lb)‖ ≥ 1, since (Es
j0
⊕Ec

1)⊕Ecu
j0+2|Λ is an index j0 + 1− (l, λ) fundamental limit, it

means that
n−1∏

i=0

‖Df l|Es
j0

⊕Ec
1(fil(b))‖/

n−1∏

i=0

‖Df−l|Ecu
j0+2(f

(i+1)l(b))‖ ≤ λn, for n ≥ 1,

so
n−1∏
i=0

‖Df l|Es
j0

⊕Ec
1(fil(b))‖ ≤ λn for all n ≥ 1. Since Λ is minimal, the index j0 + 1 dominated splitting

on Λ satisfies strong tilda condition, by remark 4.27, it also satisfies the non-hyperbolic condition, so

it satisfies all the conditions of weakly selecting lemma, then by corollary 4.26, C contains index j0 + 1

periodic point and it’s an index j0 fundamental limit. �

5. Proof of theorem 1

In order to prove theorem 1, we need the following lemma whose proof has been postponed to the end

of this section.

Lemma 5.1. Let f ∈ R, C is any non-trivial chain recurrent class of f , suppose Λ ⊂ C is a non-trivial

minimal set with a codimension-1 partial hyperbolic splitting TΛM = Ec
1 ⊕ Eu

2 where dim(Ec
1|Λ) = 1 and

is not contracting, then C is a homoclinic class containing index 1 periodic point and C is an index 0

fundamental limit.

Remark 5.2. in [9], they show that for f ∈ R, if C is a chain recurrent class of f with a codimension-1

dominated splitting TCM = Ec
1 ⊕Eu

2 where dim(Ec
1|C) = 1 and Ec

1|C is not hyperbolic, then C should be

a homoclinic class. We generalize this result to minimal set with Crovisier’s work on central curves.

Proof of theorem 1: Suppose C
⋂

P ∗
0 6= φ, let Λ be an minimal index 0 fundamental limit, then Λ is

not trivial ( if Λ is trivial, Λ should be an orbit of source, then C itself is source also, that contradicts

with C is not trivial)). By lemma 4.3, either C is a homoclinic class containing index 1 periodic point and
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C is an index 0 fundamental limit or Λ is a non-trivial minimal set with codimension-1 partial hyperbolic

splitting TΛM = Ec
1 ⊕ Eu

2 where Ec
1|Λ is not trivial. In the first case we’ve proved theorem 1, in the

second case, by lemma 5.1, we also proved theorem 1. �

In §5.1, we’ll introduce some properties for codimension-1 partial hyperbolic splitting set, in §5.2 we’ll

introduce Crovisier’s central model for the invariant compact set with partial hyperbolic splitting whose

central bundle is 1-dimension and non-hyperbolic. In §5.3 I’ll give the proof of lemma 5.1.

5.1. Some properties for codimension-1 partial hyperbolic splitting. Let f ∈ R, Λ is a given

non-trivial minimal set of f with a codimension-1 partial hyperbolic splitting TΛM = Eu ⊕ Ec
1, where

dim(Ec
1(Λ)) = 1 and the bundle Ec

1|Λ is not hyperbolic. In this section we always suppose the dominated

splitting is 1-step and the bundle Eu is 1-step expanding, it means that there exists 0 < λ < 1 such that

for any vu ∈ Eu(x), vc ∈ Ec
1(x) where |vu| = |vc| = 1, x ∈ Λ, we have |Df(vc)|

|Df(vu)| < λ, |Df(vu)| > λ−1. Fix

a small neighborhood U0 of Λ, then the maximal invariant set Λ0 =
∞⋂

j=−∞

f j(U0) has also a codimension-1

partial hyperbolic splitting Ẽu⊕ Ẽc
1, the dominated splitting is 1-step and the bundle Ẽu|Λ0 is also 1-step

expanding. We say Ec
1(Λ) has an f -orientation if Ec

1|Λ is orientable and Df preserves the orientation. If

Ec
1|Λ has an f -orientation, we choose U0 small enough such that Ẽc

1(Λ) has an f -orientation also.

Here we should notice the reader that in this section, all the argument will take place just in U0, and

we can suppose U0 is small enough such that it satisfies all the properties which we need.

When U0 is small enough, we can extend the bundle Ẽu|Λ0 and Ẽc
1|Λ0 to U0 such that for any x ∈ U0,

TxM = Ẽu(x) ⊕ Ẽc
1(x), and if Ec

1|Λ is orientable, Ẽc
1|U0

is orientable also. In fact, no matter Ẽc
1|U0

is

orientable or not, we can always locally define an orientation of Ẽc
1|U0

, it means that there exists δ0 > 0

such that for any x ∈ U0, we can give an orientation for the bundle Ẽc
1|Bδ0

(x)

⋂
U0.

For every point x ∈ U0, we define two kinds of cones on its tangent space Ci
a(x) = {v|v ∈ TxM, there

exists v′ ∈ Ẽi(x) such that d( v
|v| ,

v′

|v′| ) < a}i=c,u. When a small enough, Cc
a

⋂
Cu

a = φ, Df(Cu
a (x)) ⊂

Cu
a (f(x)) and Df−1(Cc

a(x)) ⊂ Cc
a(f−1(x)) for x ∈ Λ0.

We say a submanifold Di (i = c, u) tangents with cone Ci
a if dim(Di) = d − 1 when i = u and

dim(Di) = 1 when i = c and for x ∈ Di, TxDi ⊂ Ci
a(x). For simplicity, sometimes we call it i-disk,

especially when i = c, we just call Dc a central curve. We say an i-disk Di has centrer x with size δ if

x ∈ Di, and respecting the Riemannian metric restricting on Di, the ball centered on x with radius δ is

in Di. We say an i-disk Di has center x with radius δ if x ∈ Di, and respecting the Riemannian metric

restricting on Di, the distance between any point y ∈ Di and x is smaller than δ.

The following lemma shows some well-known results, it depends on a simple fact: locally the splitting

Ẽc
1 ⊕ Ẽu|U0

looks like linear. [9] ’s subsection 4.1 gives many details about such view, from lemma 4.8 in

[9], it would be very easy to get the following properties, so here we ’ll not give a proof.

Lemma 5.3. : Let f ∈ R, Λ is a non-trivial minimal set of f with a codimension-1 partial hyperbolic

splitting TΛM = Ec
1 ⊕ Eu where the bundle Ec

1|Λ is not hyperbolic. U0, δ0, C
u
a , Cc

a are defined by the

above argument. Let U be any small neighborhood of Λ satisfying U ⊂ U0, there exist two neighborhoods

U2, U1 of Λ such that Λ ⊂ U2 ⊂ U2 ⊂ U1 ⊂ U1 ⊂ U ⊂ U0 and there exist a0 small enough and

0 < δ1,3 < δ1,2 < δ1,1 < δ0/2 such that they satisfy the following properties:
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P1 For any x ∈ U2, we have B2δ1,1(x) ⊂ U1, and for any x ∈ U1, we have B2δ1,1(x) ⊂ U , then any

i-disk Di (i = c, u) with center x ∈ U1 and radius 2δ1,1 will have Di ⊂ U .

For any x ∈ U1, Ẽc
1|B2δ1,1

(x) is orientable, we can choose an orientation and call the direction

right, then the orientation of Ec
1|B2δ1,1

(x) will give an orientation for central curves in B2δ1,1(x).

We suppose δ1,1 is small enough such that any central curve in B2δ1,1(x) will not intersect with

itself.

For two points y1, y2 ∈ B2δ1,1(x), we say y1 is on the x-right of y2 if there exists a central

curve l ⊂ B2δ1,1(x) connects y1 and y2 and in l, y1 is on the right of y2. Then since any central

curve in B2δ1,1 (x) is not self-intersection, y2 is not on x-right of y1 anymore. Usually, we just

simply call y1 is on the right of y2.

P2) Let Λ1 =
∞⋂

i=−∞

f i(U1), apply lemma 4.13 on Λ1, we can get the following two kinds of submani-

folds families: the local unstable manifolds Wuu
loc (x) x∈Λ1 and the local central curves W c

loc(x) x∈Λ1 .

Choose δ1,1 properly ( small enough) we can suppose W i
loc(x) (i=uu,c) has size δ1,1, let W i

δ1,1
(x)

be the ball in W i
loc(x) with central x and radius δ1,1, then we have W i

δ1,1
(x) (x∈Λ1,i=c,uu) always

tangents with cone Ci
a0

.

In fact, for Λ+
1 =

∞⋂
i=0

f i(U1), any x ∈ Λ+
1 will have uniform size of unstable manifold Wuu

δ1,1
(x)

which tangents with cone Cuu
a0

.

P3) By the property of strong unstable manifolds, for y1, y2 ∈ Λ+
1 , if we have Wuu

δ1,1/2(y1)
⋂

Wuu
δ1,1/2(y2)

6= φ, then y1 ∈ Wuu
δ1,1

(y2) and y2 ∈ Wuu
δ1,1

(y1). There exists 0 < λ < 1 such that for any smooth

curve l ⊂ Wuu
δ1,1

(x) where x ∈ Λ+
1 , we’ll have length(f−1(l)) < λ · length(l).

P4) For any central curve Dc and u-disk Du in U with centers in Λ1 and radius smaller than 2δ1,1,

we have #{z| z ∈ Dc
⋂

Du} ≤ 1. If Dc
⋂

Du 6= φ, then they are transverse intersect with each

other.

P5) For any x ∈ U1, y ∈ Bδ1,3(x)
⋂

Λ1, Di
δ1,2

is an i-disk with center y and radius δ1,2, then Di
δ1,2

⊂

Bδ1,1(x).

For z ∈ Bδ1,3(x) and lc+δ1,2
(z) is a central curve at the right of z with length δ1,2 and z is one of

its extreme points, suppose lc−δ1,2
(z) is a central curve at the left of z with length δ1,2 and z is one

of its extreme points, let lcδ1,2
(z) = lc+δ1,2

(z)
⋃

lc−δ1,2
(z), then #{lcδ1,2

(z)
⋂

Wuu
δ1,2

(y)} = 1 and they are

transverse intersect. Suppose z /∈ Wuu
δ1,2

(y), then if lc+δ1,2

⋂
Wuu

δ1,2
(y) 6= φ, we say z is at x-left of y;

if lc−δ1,2

⋂
Wuu

δ1,2
(y) 6= φ, we say z is at x-right of y. It’s easy to show when z is at x-right of y, it’s

not at x-right of y anymore.

For simplicity, we just call z at the left of Wuu
loc (y) or the right of Wuu

loc (y).

P6) For any x ∈ U1, any δ < δ1,2, there exists δ∗ � δ such that for y ∈ Bδ∗(x)
⋂

Λ1, if we have

z ∈ Bδ∗(x)
⋂

Λ1 also, then #{lcδ(z)
⋂

Wuu
δ1,2

(y)} = 1 and they are transverse intersect (lcδ(z) is

defined in P5).

P7) For any 0 < δ∗ < 2δ1,1, there exists a δ∗∗such that if Γ is a central curve in U1 with length(Γ) <

2δ1,1, for x, y ∈ Γ and suppose the segment in Γ connecting x and y has length bigger than δ∗,

then d(x, y) > δ∗∗.
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P8) For any x ∈ U1, any central curve l in Bδ1,2(x) will have length smaller than δ1,1.

For y ∈ Bδ1,2(x)
⋂

Λ+
1 , we can let Wuu

δ1,1
(y)

⋂
Bδ1,2(x) always just have one connected compo-

nents, and Wuu
δ1,1/2(y) divides Bδ1,2(x) into two connected components: the left part and the right

part.

If z1, z2 ∈ Bδ1,2(x) are on the different side of Bδ1,2(x)
⋂

Wuu
δ1,1/2(y) and there is a central curve

l ⊂ Bδ1,2(x) connecting them, then #{l
⋂

Wuu
δ1,1/2(y)} = 1.

P9) Let x ∈ U1, suppose y1, y2 ∈ Bδ1,2(x)
⋂

Λ+
1 and there exists a central curve l in Bδ1,2(x) con-

nects them, so by P8) length(l) < δ1,1, now we know Wuu
δ1,1/2(y1)

⋂
Wuu

δ1,1/2(y2) = φ (other-

wise y1 ∈ Wuu
δ1,1

(y2), then #{l
⋂

Wuu
δ1,1

(y1)} ≥ 2, it contradicts with P4), it means Wuu
δ1,1/2(y1)

and Wuu
δ1,1/2(y2) divide Bδ1,2(x) into three connected components. Suppose y1 is at x-left of y2,

then for any point z ∈ Λ+
1 which are on the left of Wuu

δ1,1/2(y2)
⋂

Bδ1,2(x) and on the right of

Wuu
δ1,1/2(y1)

⋂
Bδ1,2(x), we have Wuu

δ1,1/2(z)
⋂

Wuu
δ1,1/2(yi) = φ (i=1,2) and Wuu

δ11/2(z)
⋂

l 6= φ.

P10) A C1 curve Γ in U1 is called a central segment if f i(Γ) ⊂ U1 for all i ∈ Z and it always tangents

with Cc
a0

. Then Γ ⊂ Λ1 and it’s easy to know that for any x ∈ Γ, we have TxΓ = Ẽc
1(x). On Γ

we have normally hyperbolic splitting Ẽc
1 ⊕ Ẽu|Γ since TxΓ = Ẽc

1(x), by the property of normally

hyperbolic manifold,
⋃

x∈Γ

Wuu
δ1,1/2(x) is a submanifold (dim = d) with boundary, we denote it

Wu
δ1,1/2(Γ).

P11) For any ε > 0, if we have a family of central segment {Γn}
∞
n=1 with length(Γn) > ε, there exists

δ > 0 such that vol(Wu
δ1,1/2(Γn)) > δ, so we can find ni 6= nj such that Wu

δ1,1/2(Γni
)
⋂

Wu
δ1,1/2(Γnj

)

6= φ.

5.2. Crovisier’s central model. In this subsection, let’s fix U, U1, U2, Λ1, δ0/2 > δ1,1 > δ1,2 > δ1,3 > 0,

and a0 given by lemma 5.3, we’ll introduce Crovisier’s central model. By his work, we can get some

dynamical property for the central curve W c
δ1,1

(x) where x ∈ Λ1. The main result in this subsection is

lemma 5.11.

Definition 5.4. A central model is a pair (K̃, f̃) where

a) K̃ is a compact metric space called the base of the central model.

b) f̃ is a continuous map from K̃ × [0, 1] into K̃ × [0,∞)

c) f̃(K̃ × {0}) = K̃ × {0}

d) f̃ is a local homeomorphism in a neighborhood of K̃ × {0} : there exists a continuous map

g : K̃ × [0, 1] −→ K̃ × [0,∞) such that f̃ ◦ g̃ and g̃ ◦ f̃ are identity maps on g̃−1(K̃ × [0, 1]) and

f̃−1(K̃ × [0, 1]) respectively.

e) f̃ is a skew product: there exits two map f̃1 : K̃ −→ K̃ and f̃2 : K̃ × [0, 1] −→ [0,∞) respectively

such that for any (x, t) ∈ K̃ × [0, 1], one has f̃(x, t) = (f̃1(x), f̃2(x, t)).

f general doesn’t preserve K̃ × [0, 1], so the dynamics outside K̃ × {0} is only partially defined.

The central model (K̃, f̃) has a chain recurrent central segment if it contains a segment I = {x}× [0, a]

contained in a chain recurrent class of f | eK×[0,1].

A subset S ⊂ K̃ × [0, 1] of a product K̃ × [0,∞) is a strip if for any x ∈ K̃, the intersection S
⋂
{x} ×

[0,∞) is a non-trivial interval.



NEWHOUSE PHENOMENA AND HOMOCLINIC CLASS 23

In his remarkable paper [13], Crovisier got the following important result.

Lemma 5.5. ([13] Proposition 2.5) Let (K̃, f̃) be a central model with a chain transitive base, then the

two following properties are equivalent:

a) There is no chain recurrent central segment.

b) There exists some strip S in K̃ × [0, 1] that is arbitrarily small neighborhood of K̃ × {0} and it’s

a trapping region for f̃ or f̃−1 : either f̃(Cl(S)) ⊂ Int(S) or f̃−1(Cl(S)) ⊂ Int(S).

Remark 5.6. If the central model (K̃, f̃) has a chain recurrent central segment and K̃×{0} is transitive,

from Crovisier’s proof, we can know for any small neighborhood V of K̃ × {0}, there exists a segment

x × [0, a]a6=0 contained in the same chain recurrent class of f̃ |V with K̃ × {0}.

An open strip S ⊂ f̃ × [0, 1] satisfying f̃(Cl(S)) ⊂ Int(S) or f̃−1(Cl(S)) ⊂ Int(S) will be called a

trapping strip.

Definition 5.7. Let f be a diffeomorphism of a manifold M , Λ, Λ1, U, U0, U1, U2, a0, δ0/2 > δ1,1 >

δ1,2 > δ1,3 > 0 are given in §5.1, where Λ1 is a partial hyperbolic invariant compact set of f having

a 1-dimensional central bundle. A central model (Λ̃1, f̃) is a central model for (Λ1, f) if there exists a

continuous map π : Λ̃1 × [0,∞) −→ M such that:

a) π semi-conjugate f̃ and f : f ◦ π = π ◦ f̃ on Λ̃1 × [0, 1]

b) π(Λ̃1 × {0}) = Λ1

c) The collection of map t −→ π(x̃, t) is a continuous family of C1 embedding of [0,∞) into M ,

parameterized by x̃ ∈ Λ̃1.

d) For any x̃ ∈ Λ̃1, the curve π(x̃, [0,∞)) ⊂ U has length bigger than δ1,2 but smaller than 2δ1,1, it’s

tangent at the point x = π(x̃, 0) ∈ Λ1 to the central bundle and it’s a central curve ( that means

the curve π(x̃, [0,∞)) tangents with the central cone Cc
a0

).

Remark 5.8. From now, if (Λ̃1, f̃) is a central model for (Λ1, f) and π is the projection map, we’ll

denote the central model as (Λ̃1, f̃ , π). Here I should notice the reader that π in this paper has two

different meanings, one denote the period of periodic point and another denote the projection map of

central model. If there is any confusion, I’ll point out.

The following lemma shows the relation between central model and a set with codimension-1 partial

hyperbolic splitting.

Lemma 5.9. ([Cr2]) Λ, Λ1, U, U1 are given in §5.1, then there exists a central model (Λ̃1, f̃ , π) for (Λ1, f).

Let’s denote Λ̃ ⊂ Λ̃1 satisfies π−1(Λ)
⋂

(Λ̃1 × {0}) = Λ̃ × {0}, then (Λ̃, f̃ , π) is a central model for (Λ, f),

and Λ̃ × {0} is minimal.

Remark 5.10. 1) When the cental bundle Ẽc
1(Λ1) has an f -orientation ( it means that Ẽc

1(Λ1) is

orientable and Df preserves such orientation), we call the orientation ’right’, then we can get two

central models (Λ̃+
1 , f̃+, π+) and (Λ̃−

1 , f̃−, π−) for (Λ1, f), we call them the right model and the

left model, where πi
(i=+,−) is a bijection between Λ̃i

1×{0} and Λ1, and for x̃i ∈ Λ̃i
1, π(x̃i×[0,∞))

is a half of central curve at the right (i = +) or left (i = −) of x = π(x̃i × {0}).
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2) If f doesn’t preserve any orientation of Ẽc
1(Λ1), then π : Λ̃1 −→ Λ1 is two-one: any point x ∈ Λ1

has two preimages x̃− and x̃+ in Λ̃1, the homeomorphism σ of Λ̃1 which exchanges the preimages

x̃+ and x̃− of any point x ∈ Λ1 commutes with f̃ .

In § 5.1, we know any point x ∈ Λ1 has a local orientation, then π(x̃+ × [0,∞)) is a central

curve on the right of x, π(x̃− × [0,∞)) is on the left of x, the union of them is a central curve

with central at x and radius δ1,1.

The following lemma is the main result in this subsection, it’s similar with [Cr]’s proposition 3.6, but

a little stronger.

Lemma 5.11. f ∈ R, Λ is a non-trivial minimal set with a codimension-1 partial hyperbolic splitting

Ec
1 ⊕ Eu where dim(Ec

1(Λ)) = 1 and Ec
1(Λ) is not hyperbolic. Let U, U1, Λ1 be given in §5.1, by lemma

5.9, (Λ1, f) has a central model (Λ̃1, f̃ , π), then we can choose U1 properly such that

a) either (Λ̃1, f̃ , π) has a trapping region,

b) or Λ is contained in a homoclinic class C, C contains periodic points with index 1 and it’s an

index 0 fundamental limit.

Proof : Let Λ̃ ⊂ Λ̃1 satisfy Λ̃ × {0} = π−1(Λ)
⋂

Λ̃1 × {0}, then (Λ̃, f̃ , π) is a central model for (Λ, f).

Since now, we just denote Λ̃ × {0} by Λ̃.

At first, let’s suppose (Λ̃, f̃ , π) has no trapping region, then by remark 5.6, for any small neighborhood

V of Λ̃ in Λ̃ × [0, 1], there exists a chain recurrent central segment x × I in V respecting the map f̃ . By

Crovisier’s result ([Cr], proposition 3.6), there exits a family of periodic points {pn} such that they all

belong to the same chain recurrent class with Λ and lim
n→∞

Orb(pn) = Λ, so Λ ⊂ H(pn, f)n≥1. When n is

big enough, Orb(pn) ⊂ Λ1, so Orb(pn) has a codimension-1 partial hyperbolic splitting Ẽc
1 ⊕ Ẽu|Orb(pn),

that means pn is an index 1 or 0 periodic point.

Now we claim that H(pn, f) is an index 0 fundamental limit.

Proof of the claim: The argument is exactly the same with the case C in the proof of lemma 4.3, so

here we just give a sketch of the proof, we divide the proof to two cases.

A) : there exists δ > 0 such that for any pn, we have |Dfπ(pn)|fEc
1(pn)

| < e−δπ(pn).

B) : for any 1
m > 0, there exists pnm

such that |Dfπ(pnm)|fEc
1(pnm )| > e−

1
m

π(pnm ).

In the first case, we use weakly selecting lemma, in case B, we use lemma 4.25. �

Now we suppose (Λ̃, f̃ , π) has a trapping region S, we can suppose f̃(Cl(s)) ⊂ Int(S) always. Choose

Λ̃2 an open neighborhood of Λ̃ in Λ̃1 small enough, we can get an open strip S2 for Λ̃2 (here open respect

Λ̃2 × [0, 1]) such that:

a) for any x̃ ∈ Λ̃, x̃ × [0, 1]
⋂

S = x̃ × [0, 1]
⋂

S2,

b) for any x̃ ∈ Λ̃2 and f̃(x̃) ∈ Λ̃2, we have f̃(Cl((x̃ × [0, 1])
⋂

S2)) ⊂ (f̃(x̃) × [0, 1])
⋂

S2.

Choose U∗ neighborhood of Λ small enough, let Λ∗ =
∞⋂
−∞

f i(U
∗
), then Λ∗ ⊂ Λ1 and let Λ̃∗ ⊂ Λ̃1

satisfies Λ̃∗ = π−1(Λ∗)
⋂

Λ̃1, we’ll have Λ̃∗ ⊂ Λ̃2. Then consider the central model (Λ̃∗, f̃ , π) for (Λ∗, f),

S2

⋂
(Λ̃∗ × [0, 1]) is a trapping region for (Λ̃∗, f̃ , π).

Now replace U1 by U∗ and Λ1 by Λ∗, we get a trapping region for (Λ̃1, f̃ , π). �
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5.3. Proof of lemma 5.1. Now we suppose Λ is a non-trivial minimal set with a codimension-1 partial

hyperbolic splitting Ec
1 ⊕ Eu where dim(Ec

1) = 1 and Ec
1(Λ) is not hyperbolic. We divide the proof of

lemma 5.1 into two cases: Ec
1(Λ) has an f -orientation or not.

Proof of lemma 5.1 ( Ec
1(Λ) has an f -orientation)

Let U0 be the small neighborhood of Λ given in §5.1 such that we can extend the splitting Ec
1 ⊕ Eu|Λ

to U0, we denote the splitting TxM = Ẽc
1 ⊕ Ẽu (x ∈ Ũ0). Suppose U is any small neighborhood

of Λ such that U ⊂ U0, then from lemma 5.3, we can get open sets U2, U1 and Λ1 =
∞⋂

i=−∞

f i(U1),

a0 > 0, 0 < δ1,3 < δ1,2 < δ1,1 < δ0/2 such that they satisfy properties P1-P11 of lemma 5.3 there.

Since Ec
1(Λ) has an f -orientation, Ẽc

1(Λ1) has an f -orientation also, by remark 5.10 we get two central

models: the right central model (Λ̃+
1 , f̃+, π+) and the left central model (Λ̃−

1 , f̃−, π−), where for any

x̃+ ∈ Λ̃+
1 , π+(x̃+ × [0,∞)) is a central curve at the right of x = π+(x̃+ ×{0}) and δ1,2 < length(π+(x̃+ ×

[0,∞))) < 2δ1,1, so π+(x̃+ × [0,∞)) ⊂ B2δ1,1(x) ⊂ U . For any x̃− ∈ Λ̃−, we have the similar property.

At first, we consider the right central model (Λ̃+
1 , f̃+, π+), if the right central model doesn’t have

trapping region, by lemma 5.11, Λ is contained in a homoclinic class H(p, f) which contains an index 1

periodic point and the homoclinic class is an index 0 fundamental limit, then we’ve proved lemma 5.1,

so now we suppose that there exists a trapping region S+ for the right central model. By the similar

argument for the left central model, we can suppose it has a trapping region S− also.

Claim: Λ is an index 0 fundamental limit.

Proof of the claim: If Λ is not an index 0 fundamental limit, since Λ has a codimension-1 dominated

splitting, Λ should be an index 1 fundamental limit. By generic property 5 of proposition 3.1, there

exists a family of index 1 periodic points {pn} such that lim
n→∞

Orb(pn) = Λ and they are index stable,

then by Gan’s lemma, there exists a subsequence of periodic points {pnm
}∞m=1 in C. Now with the same

argument of the case C in the proof of lemma 4.3, we can show Λ satisfies weakly selecting lemma, by

weakly selecting lemma 4.21, Λ is an index 0 fundamental limit, that’s a contradiction. �

Since Λ is an index 0 fundamental limit, by generic property P5 of proposition 3.1, there exists a

family of sources {pn}
∞
n=1 of f satisfying lim

n→∞
Orb(pn) = Λ. We can suppose Orb(pn) ⊂ U2 always and

let p̃i
n ∈ Λ̃i

1 (i=+,−) such that π(i)(p̃i
n × {0}) = pn, then (f̃ i)π(pn)(p̃i

n) = p̃i
n. Denote p̃

+(−)
n × I

+(−)
n =

(p̃
+(−)
n × [0,∞))

⋂
S+(−) and γ

+(−)
n = π+(−)(p̃+(−) × I

+(−)
n ), let γ=γ+

n

⋃
γ−

n , then γn is a central curve

with center at pn. Since length(γ
+(−)
n ) < 2δ1,1, we have γn ⊂ B2δ1,1(pn) ⊂ U1.

We’ve suppose S± is a trapping, then f̃+(−)(S+(−)) ⊂ Int(S+(−)) or (f̃+(−))−1(S+(−)) ⊂ Int(S+(−)).

In the first case, we say the trapping region is 1-step contracting, in the second case we say it’s 1-step

expanding. When Si is 1-step contracting case, we have (f̃ i)π(pn)(p̃i
n × I

i

n) ⊂ p̃i
n × Ii

n, so fπ(pn)(γi
n) ⊂ γi

n

for i = +,− and there exists δ > 0 doesn’t depend on n such that length(γi
n \ fπ(pn)(γi

n)) > δ for all

n ≥ 1. If Si is 1-step expanding, we’ll still have length(γi
n \ f−π(pn)(γi

n)) > δ for all n ≥ 1.

Since γi
n is either expanding or contracting for fπ(pn), let Γi

n =
∞⋂

j=−∞

f jπ(pn)(γi
n) (i=+,−), we’ll have

fπ(pn)(Γi
n) = Γi

n (i=+,−) where Γi
n’s extreme points are periodic points. When Γi

n is not trivial, we



26 JIAGANG YANG

denote qi
n (i=+,−) the extreme periodic point different with pn, if Γi

n is trivial, we just let qi
n = pn. We

let Γn = Γ+
n

⋃
Γ−

n and hi
n = γi

n \ Γn
i (i=+,−), then Γn ⊂ Λ1, hi

n ⊂ U1. It’s easy to know that hi
n is in

the stable(unstable) manifold of qi
n if Si is 1-step contracting(expanding). And since f is Kupka-Smale

diffwomorphism, fπ(pn)|Γn
is also a Kupka-Smale diffeomorphisms and just has finite sinks and sources

(respect fπ(pn)|Γn
).

Lemma 5.12. If Γn

⋂
Γm 6= φ, then Γn

⋂
Γm is a connected central curve, and Γn

⋃
Γm is a central

segment.

Proof : We need prove some lemmas at first.

Lemma 5.13. let x ∈ Γn

⋂
Γm and x is not a periodic point, x1 ∈ Γn is the nearest periodic point at

the left of x and x2 ∈ Γn is the nearest periodic point at the right of x. Denote In ⊂ Γn the segment

connecting x1 and x2, then In ⊂ Γm.

Proof : By the assumption, fπ(pn) has no any other fixed point in In, so for x1 and x2, one of

them is sink for fπ(pn)|Γn
and another is source for fπ(pn)|Γn

. We suppose x1 is the source, then

lim
i→∞

f iπ(pn)(x) −→ x2 and lim
i→∞

f−iπ(pn)(x) −→ x1. Since Γm is a periodic central segment with pe-

riod π(pm) and x ∈ Γm, we have f iπ(pn)π(pm)(x) ∈ Γm for all i ∈ Z, so x2 = lim
i→∞

f iπ(pn)π(pm)(x) ∈ Γm

and x1 = lim
i→∞

f−iπ(pn)π(pm)(x) ∈ Γm.

Now denote Im the central segment in Γm connecting x1 and x2.

We claim that In = Im.

Proof of the claim: If it’s not true, there exists y ∈ Int(In), z ∈ Wuu
δ1,1

(y)
⋂

Im and z 6= y.

For any ε > 0, consider a = f iπ(pn)π(pm)(y) where i is very big, then a ∈ In and it’s near x2 very

much. Let b ∈ Wuu
δ1,1

(a)
⋂

Im, recall that In and Im are tangent at Ẽc
1(x2), when i is big enough, there

exists a curve l in Wuu
δ1,1

(a) connecting a and b with length(l) < ε.

Wuu
δ1,1

(x1)W
uu
δ1,1

(y) Wuu
δ1,1

(a) Wuu
δ1,1

(x2)

x1

y a x2

z
b

In

Im

x

Now it’s easy to know f−iπ(pn)π(pm)(b) ∈ Wuu
δ1,1

(y)
⋂

Γm. By P4 of lemma 5.3, #{Wuu
δ1,1

(y)
⋂

Γm} = 1,

so f−iπ(pn)π(pm)(b) = z, then f−iπ(pn)π(pm)(l) is a curve connecting y and z, by P3 of lemma 5.3, we’ll

have length(f−iπ(pn)π(pm)(l)) < ε · λiπ(pn)π(pm).

Since ε can be chosen arbitrarily small, we get y = z, that’s a contradiction. �
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By the claim, we finish the proof of lemma 5.13. �

We still need the following result.

Lemma 5.14. Let x ∈ Γn

⋂
Γm and x be a fixed point of fπ(pn)|Γn

and fπ(pm)|Γm
, suppose Γn and Γm

both have points on the right of x. Let xn ∈ Γn be the nearest fixed point of fπ(pn)|Γn
on the right of x and

xm ∈ Γm be the nearest fixed point of fπ(pm)|Γm
on the right of x. Denote In ⊂ Γn the central segment

in Γn connecting x and xn, Im ⊂ Γm the central segment in Γm connecting x and xm, then In = Im.

Proof : At first, we claim that either Wuu
δ1,1

(xn)
⋂

Im 6= φ or Wuu
δ1,1

(xm)
⋂

In 6= φ.

Proof of the claim: Suppose Wuu
δ1,1

(xn)
⋂

Im 6= φ, we know that xm is on the left of Wuu
δ1,1

(xn), recall

that xm is on the right of x, so by P9 of lemma 5.3, Wuu
δ1,1

(xm)
⋂

In 6= φ. �

Now we suppose Wuu
δ1,1

(xn)
⋂

Im = y 6= φ, then y ∈ Im \ {x}, it’s easy to know f−iπ(pn)π(pm)(y) ∈

Wuu
δ1,1

(xn)
⋂

Im for i ≥ 1, so f−iπ(pn)π(pm)(y) = y. But lim
i→∞

f−iπ(pn)π(pm)(y) −→ xn, so xn = y. It means

that xn ∈ Im \ {x}, so xn = xm. By the same argument in lemma 5.13, we can prove In = Im. �

Now let’s continue the proof of lemma 5.12.

Let Γ = Γn

⋂
Γm, x ∈ Γ be the left extreme point of Γ, then by lemma 5.13, x should be a periodic

point and on the left of x, there doesn’t contain points of at least one of the segment Γn or Γm. Let

y ∈ Γ be the right extreme point of Γ, then on the right of y, there doesn’t contain points of at least one

of the segments Γn or Γm.

When x = y, Γn and Γm are on different side of x, Γn

⋃
Γm is obviously a central segment.

When x 6= y, let I be the maximal central curve in Γ containing x, let z be the right extreme point

in I, by lemma 5.13, z should be a periodic point. If z 6= y, y is on the right of z and y ∈ Γn

⋂
Γm,

so by lemma 5.14, I will contain a central segment on the right of z, that’s a contradiction with the

maximalicity of I, so z = y. It means that I = Γn

⋂
Γm is an interval, and x, y are its extreme points

on the left and right, and Γn and Γm can not both have points on the left of x, they can not both have

points on the right of y also, it’s easy to see now that Γn

⋃
Γm is a central curve. �

Now we divide the proof of lemma 5.1 to three cases depending on the contracting or expanding prop-

erties of the two central models.

Case A: Two central models have 1-step expanding properties.

In this case, for any γn, we have f−i(γn) ∈ U1 for i ≥ 1, it means γ ⊂ Λ+
1 , and any x ∈ γn will

have uniform size of unstable manifold Wuu
δ1,1

(x). Let Wu
δ1,1/2(γn) =

⋃
x∈γn

Wuu
δ1,1/2(x), by the property of

normally hyperbolic submanifold, Wu
δ1,1/2(γn) is a submanifold (dim = d) with boundary, it’s easy to

know that Wu
δ1,1/2(γn) has uniform size, that means there exists an ε > 0 such that Bε(pn) ⊂ Wu

δ1,1/2(γn)

for all n ≥ 1. Suppose lim
n→∞

pn = p ∈ Λ, then when n is big enough, p ∈ Bε(pn) ⊂ Wu
δ1,1/2(γn), then

lim
i→∞

f−iπ(pn)(pn) −→ some periodic point z ∈ Γn, so z ∈ Λ. Bust Λ is a non-trivial minimal set of f ,

that’s a contradiction. �
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Case B: Left central model is 1-step contracting and the right central model is 1-step expanding.

Let’s consider γ+
n , with the same argument in case A, it has uniform size of unstable manifold

Wu
δ1,1/2(γ

+
n ) =

⋃
x∈γ+

n

Wuu
δ1,1/2(x) ( it’s because length(γ+

n ) > length(h+
n ) > δ), so there exists an ε > 0 such

that V ol(Wu
δ1,1/2(γ

+
n )) > ε.

Now we claim that for any sequence {ni}
∞
i=1, there exists i0 and a sequence i0 < i1 < i2 < · · · such

that for any j > 0, Wu
δ1,1/2(γ

+
nij

)
⋂

Wu
δ1,1/2(γ

+
ni0

) 6= φ.

Proof of the claim: Suppose that the claim is not true, then we can find a subsequence {nij
}∞j=1 such

that Wu
δ1,1/2(γ

+
nij0

)
⋂

Wu
δ1,1/2(γ

+
nij

) = φ for j0 ∈ N and j > j0, it’s a contradiction with V ol(Wu
δ1,1/2(γ

+
ni

)) >

ε, since we’ll have V ol(M) >
∑
j

V ol(Wu
δ1,1/2(γ

+
nij

)) = ∞. �

By the above claim, we can find a subsequence {ni}
∞
i=1 such that for any i0 ∈ N+, we can get

Wu
δ1,1/2(γ

+
ni

)
⋂

Wu
δ1,1/2(γ

+
ni0

) 6= φ for i ≥ i0. Since f is a Kupka-Smale diffeomorphism, on Γni
it just has

finite periodic points. So when we fix i0, we can let i big enough such that pni
/∈ γni0

. It means that

we can choose a subsequence {(Γni
, Γmi

)}∞i=0 such that pmi
/∈ Γni

, Wu
δ1,1/2(γ

+
ni

)
⋂

Wu
δ1,1/2(γ

+
mi

) 6= φ and

lim
i→∞

(pni
) = lim

i→∞
(pmi

) = x0 for some x0 ∈ Λ.

Since Wu
δ1,1/2(γ

+
ni

)
⋂

Wu
δ1,1/2(γ

+
mi

) 6= φ, suppose yi ∈ Wu
δ1,1/2(γ

+
ni

)
⋂

Wu
δ1,1/2(γ

+
mi

), then

lim
j→∞

f−jπ(pni
)π(pmi

)(yi) −→ Γ+
ni

and lim
j→∞

f−jπ(pni
)π(pmi

)(yi) −→ Γ+
mi

,

so Γ+
ni

⋂
Γ+

mi
6= φ, by lemma 5.12, Γni

⋃
Γmi

is a central segment.

For simplicity, we suppose pmi
is on the right of pni

for all i ∈ N, the proof of the other case is similar.

Since pmi
/∈ Γni

and Γi = Γni

⋃
Γmi

is a central curve. pmi
is on the right of q+

ni
also. Recall that q+

ni
is

a source for fπ(pni
)|Γni

, and h+
ni

belongs to its basin, so h+
ni

⋂
Wuu

δ1,1/2(pmi
) = φ.

Remark 5.15. : We don’t know h+
ni

⊂ Γmi
here.

We know that h+
ni

is a central curve on the right of q+
ni

with length bigger than δ, by property

P6 of lemma 5.3, there exists a δ∗ such that d(q+
ni

, pmi
) > δ∗.( Since if d(q+

ni
, pmi

) < δ∗, we have

l+δ (q+
ni

)
⋂

Wuu
δ1,1/2 6= φ where l+δ (q+

ni
) is any central curve at the right of q+

ni
with length δ and q+

ni
is the

left extreme point of it, with the fact that pmi
is on the right of q+

ni
, we’ll have h+

n

⋂
Wuu

δ1,1/2(pmi
) 6= φ,

that’s a contradiction because h+
ni

⊂ Wu(q+
ni

)). So especially, in the central segment Γi, the distance

between pni
and pmi

is bigger than δ∗. By property P7 of lemma 5.3, there exists δ∗∗ > 0 such that

d(pni
, pmi

) > δ∗∗, it’s a contradiction with lim
i→∞

(pni
) = lim

i→∞
(pmi

) = x0 ∈ Λ. �

Case C: The two central models have 1-step contracting properties.

In this case, replace by a subsequence, we can suppose for {Γn}
∞
n=1, we have pn /∈

⋃
i<n

Γi.

Lemma 5.16. There exists n0 big enough such that for any n1, n2 > n0, n1 6= n2, we always have

Wu
δ1,1/2(Γn1)

⋂
Wu

δ1,1/2(Γn2) = φ.
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Proof Suppose the lemma is not true, then we can choose n1 and n2 arbitrarily big and satisfying

Wu
δ1,1/2(Γn1)

⋂
Wu

δ1,1/2(Γn2) 6= φ, then it’s easy to know Γn1

⋂
Γn2 6= φ and Γn1

⋃
Γn2 is a central curve.

We can suppose n2 > n1, then by the assumption of {Γn}
∞
n=1, we have pn2 /∈ Γn1 .

We just suppose pn2 is on the right of pn1 , since Γ = Γn1

⋃
Γn2 is a central curve and pn2 /∈ Γn1 , we

can know pn2 is on the right of q+
n1

also, and q+
n1

∈ Γn2 .

We know that there exists a δ > 0 such that length(h
+(−)
n ) > δ for all n ≥ 1. And for such δ, by

proposition P6 of lemma 5.3, there exists 0 < δ∗ � δ such that for any x, y ∈ Λ1, if d(x, y) < δ∗, we have

#{Wuu
δ1,1/2(x)

⋂
lcδ(y)} = 1 where lcδ(y) is a central curve with center y and on the two sides of y both

have length δ.

Suppose x ∈ Γm is the nearest periodic point on the right side of q+
n1

, and let I ⊂ Γm the central

segment in Γm connecting q+
n1

and x.

Now we claim that length(I) > δ∗.

Proof of the claim: If length(I) ≤ δ∗, then d(q+
n1

, x) ≤ δ∗ also. By the facts that x is on the right of

q+
ni

and h+
n1

is a central curve with length bigger than δ, we have h+
n1

⋂
Wuu

δ1,1/2(x) 6= φ. Then for any

y ∈ Int(I), Wuu
δ1,1/2(y)

⋂
h+

n1
6= φ.

It’s easy to know I * h+
n1

since h+
n1

contains no periodic point, so there exists z ∈ h+
n1

such that

Wuu
δ1,1/2(z)

⋂
Int(I) = y 6= z.

Wuu
δ1,1/2(q

+
n1

) Wuu
δ1,1/2(z) Wuu

δ1,1/2(x)

q+
n1

zi
z

h+
n1

a y x

Because the two central models are 1-step contracting, q+
n1

is a sink for fπ(pn1)|Γn1
, then it’s also a sink

for fπ(pn1)π(pn2)|Γ where Γ = Γn1

⋃
Γn2 . We can choose i big enough, such that zi = f iπ(pn1)π(pn2)(z)

near q+
n1

very much, let ai = Wuu
δ1,1/2(zi)

⋂
I. Since h+

n1
and I are tangent at q+

n1
on Ẽc

1(q
+
n1

), for any

ε > 0, when i big enough, there exists a curve l ⊂ Wuu
δ1,1/2(zi) connecting ai and zi and length(l) < ε.

Since f−iπ(pn1)π(pn2)(ai) ∈ Wuu
δ1,1/2(z)

⋂
I, that means f−iπ(pn1)π(pn2)(ai) = y and f−iπ(pn1)π(pn2)(l) is a

curve connecting z and y. By property P3 of lemma 5.3, length(f−iπ(pn1)π(pn2)(l)) < ελi. Since i can be

chosen arbitrarily big, we can get y = z, that’s a contradiction. �

Since length(I) > δ∗, the segment in Γ connecting pn1 and pn2 will have length bigger than δ∗

also, by property P7 of lemma 5.3, there exists δ∗∗ > 0 such that d(pn1 , pn2) > δ∗∗. But recall that

lim
n→∞

pn −→ x0 ∈ Λ and n1, n2 can be chosen arbitrarily big, we can get d(pn1 , pn2) < δ∗∗, that’s a

contradiction. �

With lemma 5.16, we can chosen {Γn}
∞
n=1 such that if n 6= m, Wu

δ1,1/2(Γn)
⋂

Wu
δ1,1/2(Γn) = φ. Then

by property P11 of lemma 5.3, lim
n→∞

length(Γn) = 0.
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Choose n0 big enough such that for m ≥ n0, d(pm, pn0) < δ∗/4 and length(Γm) < δ∗/4, we can

suppose pm is on the right of pn0 , then by Wu
δ1,1/2(Γn)

⋂
Wu

δ1,1/2(Γn) = φ, we know that pm is on the

right of q+
n0

and q−m is on the right of q+
n0

also.

Since d(q+
n0

, q−m) ≤ d(q+
n0

, pn0) + d(q−m, pm) + d(pn0 , pm) < length(Γn0) + δ∗/4 + length(Γm) < δ∗, by

Property P6 of lemma 5.3 and length(h+
n0

) > δ, length(h−
m) > δ, we can get h+

n0
t Wuu

δ1,1/2(q
−
m) 6= φ and

h+
m t Wuu

δ1,1/2(q
+
n0

) 6= φ. Recall that h+
n0

⊂ W s(q+
n0

) and h−
m ⊂ W s(q−m), we can know q+

n0
and q−m are in

the same homoclinic class.

When m −→ ∞, by length(Γm) −→ 0 and lim
m→∞

pm −→ x0 ∈ Λ, we have q−m −→ x0 also, so

x ∈ H(q+
n0

, f) and then Λ ⊂ H(q+
n0

, f).

Now we’ll prove H(q+
n0

, f) is an index 0 fundamental limit.

Recall that Orb(q+
n0

) ⊂ U and U can be chosen arbitrarily small, so in fact we’ve proved that there

exists a family of periodic points qn with index 1 such that lim
n→∞

Orb(qn) = Λ and Λ ⊂ H(q1, f) =

H(q2, f) = · · · .

By the same argument with case C in the proof of lemma 4.3, we can prove H(q1, f) is an index 0

fundamental limit. �

Now let’s keep on proving the other case of lemma 5.1.

Proof of lemma 5.1(Ec
1(Λ) has no any f -orientation):

In this case, we just have one central model, but locally we still have orientation for Ẽc
1(Λ1), and the

two sides have the same dynamical property: they are both 1-step expanding or they are both 1-step

contracting. All the other argument is the same with the case where Ec
1(Λ) has an f -orientation. �
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