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NEWHOUSE PHENOMENA AND HOMOCLINIC CLASS

JIAGANG YANG

ABSTRACT. We show that there exists a generic subset R among the C! diffeomorphisms set which are
C' far away from tangency, such that for f € R and any non-trivial chain recurrent class C of f, if
C (N P§ # ¢ then C is a homoclinic class contains index 1 periodic point and there are a family of sources

converge to C' in Hausdorff topology.
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In the middle of last century, with many remarkable work, hyperbolic diffeomorphisms have been

understood very well, but soon people discovered that the set of hyperbolic diffeomorphisms are not

dense among differential dynamics, two kinds of counter examples were described, one associated with

heterdimension cycle was given by R.Abraham and Smale [3] and then given by Shub [40] and Mafié [2§],

another counter example associated with homoclinic tangency was given by Newhouse [31] [32]. In fact,

Newhouse got an open set UC C%(M) where dim(M) = 2 such that there exists a C? generic subset

R C U and for any f € R, f has infinite sinks or sources. Such complicated phenomena (there exist an

open set U in C"(M) and a generic subset R C U, such that any f € R has infinite sinks or sources) is

called C" Newhouse phenomena today, and we say C™ Newhouse phenomena happens at U.
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In last 90’s, some new examples of Newhouse phenomena were found, [33] generalized Newhouse phe-
nomena to high dimensional manifold (dimM > 2) but with the same topology C"(r > 1). [7] used a
new tool 'Blender’ to show the existence of C! Newhouse phenomena on manifold with dim(M) > 2.
Until now, all the construction of C" Newhouse phenomena relate closely with homoclinic tangency, more
precisely, all the open set U given by the construction above which happens Newhouse phenomena there
will have / C HT. We hope that it’s a necessary condition for C” Newhouse phenomena happens at U.

Pujals states it as a conjecture.
Conjecture (Pujals): If C" Newhouse phenomena happens at U, then U is contained in HTT.

When r =1 and M is a compact surface, with Mané’s work [29], Pujals’ conjecture is equivalent with

the famous C' Palis strong conjecture.

C! Palis strong conjecture : Diffeomorphisms of M exhibiting either a homoclinic tangency or het-

erodimensional cycle are C' dense in the complement of the C closure of hyperbolic systems.

In the remarkable paper [36] they proved C! Palis strong conjecture on C'*(M) when M is a boundless
compact surface, so in such case Pujals’ conjecture is right. In [37] they gave many relations between
C? Newhouse phenomena and HT!. In this paper we just consider C' Newhouse phenomena, and we

show that if C! Newhouse phenomena happens in an open set & C C*(M)\HT?, it should have some

special properties with [7)’s example, in fact, in [7] they found an open set U C (HT"') and there exists a
generic subset R C U such that any f € R has infinite sinks or sources stay near a chain recurrent class,
and such class does not contain any periodic points, such kind of chain recurrent class is called aperiodic
class now. Here we proved that in Wc, if there exists Newhouse phenomena, the sinks or sources will

just stay near a special kind of homoclinic class.

Theorem 1 There exists a generic subset R C CY*(M)\HT?, such that for f € R and C is any non-trivial
chain recurrent class of f, if C(\ Py # &, C should be a homoclinic class containing index 1 periodic

points and C is an index 0 fundamental limit.

Theorem 1 means that if we want to disprove the existence of Newhouse phenomena in C*(M)HT,
we just need study the homoclinic class containing index 1 periodic point.

In §3 we’ll state some generic properties. In §4 we’ll introduce a special minimal non-hyperbolic set
and theorem 1 will be proved in §5.
Acknowledgements: This paper is one part of the author’s thesis, I would like to thank my advisor
Professor Marcelo Viana for his support and enormous encouragements during the preparation of this
work. I would like to thank Professor Shaobo Gan for checking the details of the proof and finding out
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2. NOTATIONS AND DEFINITIONS

Let M be a compact boundless Riemannian manifold, since when M is a surface [36] has proved
that hyperbolic diffeomorphisms are open and dense in C!(M) \ HT, we suppose dim(M) = d > 2 in
this paper. Let Per(f) denote the set of periodic points of f and Q(f) the non-wondering set of f, for
p € Per(f), m(p) means the period of p. If p is a hyperbolic periodic point, the index of p is the dimension
of the stable bundle. We denote Per;(f) the set of the index 7 periodic periodic points of f, and we call
a point x is an index i preperiodic point of f if there exists a family of diffeomorphisms g, <, f, where

gn has an index i periodic point p,, and p, — x. P (f) is the set of index i preperiodic point of f, it’s

easy to know P;(f) C P(f).

Let A be an invariant compact set of f, we say A is an index ¢ fundamental limit if there exists a family
of diffeomorphisms g,, C' converging to f, p, is an index i periodic point of g,, and Orb(p,,) converge to
A in Hausdorff topology. So if A(f) is an index ¢ fundamental limit, we have A(f) C P*(f).

For two points x,y € M and some § > 0, we say there exists a §-pseudo orbit connects x and y means
that there exist points © = xg, 21, ,x, = y such that d(f(x;),ziy1) < 6 for i = 0,1,--- ,n — 1, we
denoteitxjy. Wesayx—iyifforany6>Owehavexgyanddenotexl—iyifx—iyandy—ix. A
point z is called a chain recurrent point if = H z. CR(f) denotes the set of chain recurrent points of f,
it’s easy to know that H is an closed equivalent relation on CR(f), and every equivalent class of such
relation should be compact and is called chain recurrent class. Let K be a compact invariant set of f, if
x,y are two points in K, we’ll denote x 1_<| y if for any § > 0, we have a § -pseudo orbit in K connects x
and y. If for any two points x,y € K we have x I—(i y, we call K a chain recurrent set. Let C' be a chain
recurrent class of f, we call C' is an aperiodic class if C' does not contain periodic point.

Let A be an invariant compact set of f, for 0 < A < 1 and 1 <i < d, we say A has an index i — (I, \)
dominated splitting if we have a continuous invariant splitting TaM = E @ F where dim(E,) = i for any
v €Aand || DfYg(x) | - || Df Y r(flz) |< X for all x € A. For simplicity, sometimes we just call A(f)
has an index ¢ dominated splitting. A compact invariant set can have many dominated splittings, but
for fixed i, the index ¢ dominated splitting is unique.

We say a diffeomorphism f has C” tangency if f € C"(M), f has hyperbolic periodic point p and there
exists a non-transverse intersection between W?*(p) and W*(p). HT" is the set of the diffeomorphisms
which have C" tangency, usually we just use HT denote HT!. We call a diffeomorphism f is far away
from tangency if f € CY(M)\ HT. The following proposition shows the relation between dominated

splitting and far away from tangency.

Proposition 2.1. ([42]) f is Ct far away from tangency if and only if there exists (I, \) such that P} (f)
has index i — (I, \) dominated splitting for 0 < i < d.

Usually dominated splitting is not a hyperbolic splitting, Mané showed that in some special case, one

bundle of the dominated splitting is hyperbolic.

Proposition 2.2. ([29]) Suppose A(f) has an index i dominated splitting E©F (i # 0), if A(f) P} (f) =
¢ for 0 < j < i, then E is a contracting bundle.



4 JIAGANG YANG

3. GENERIC PROPERTIES

For a topology space X, we call a set R C X is a generic subset of X if R is countable intersection
of open and dense subsets of X, and we call a property is a generic property of X if there exists some
generic subset R of X holds such property. Especially, when X = C!'(M) and R is a generic subset of
CY(M), we just call R is C! generic, and we call any generic property of C1(M) ’a C! generic property’
or 'the property is C! generic’.

Here we’ll state some well known C! generic properties.

Proposition 3.1. There is a C generic subset Ry such that for any f € Ry, one has

1) f is Kupka-Smale (every periodic point p in Per(f) is hyperbolic and the invariant manifolds of

periodic points are everywhere transverse).

CR(f) =Q = Per(f).

P (f) = F(f)

any chain recurrent set is the Hausdorff limit of periodic orbits.

any index i fundamental limit is the Hausdorff limit of index i periodic orbits of f.

any chain recurrent class containing a periodic point p is the homoclinic class H(p, f).

Suppose C' is a homoclinic class of f, and jo = min{j : C(\Per;(f) # ¢}, j1 = max{j :
C (N Per;(f) # ¢}, then for any jo < j < j1, we have C () Per;(f) # ¢.

By proposition 3.1, for any f in Ry, every chain recurrent class C of f is either an aperiodic class or
a homoclinic class. If #C = oo, we call C' is non-trivial.
Let R = Ry \ HT, we’ll show that the generic subset R of HT® will satisfy theorem 1.

4. A SPECIAL MINIMAL SET
Let f € R, C is a non-trivial chain recurrent class of f, and jo = min{j : C("\ P} # ¢}.

Definition 4.1. : An invariant compact subset A of f is called minimal if all the invariant compact
subset of A are just A and ¢. An invariant compact subset A of f is called minimal index j fundamental
limit if A is an index j fundamental limit and any invariant compact subset Ao & A is not an index j

fundamental limat.
Lemma 4.2. IfC() Pr# ¢, there always exists a minimal index j fundamental limit in C'.

Proof Let H = {[~\ : A C C is an index j fundamental limit} and we order H by inclusion. Suppose
T € CﬂPJT", then there exist g, < f, pn is index j periodic point of g, and p, — z. Denote
A, =1lim Orb(P,,), then A, is an index j fundamental limit. It’s easy to know A, is a chain recurrent set
and A, C C,s0o A, € H. It means H # ¢.

Let Hr = {A) : X € T} be a totally ordered chain of H. Then A, = (Mxer Ax is a compact invariant
set, in fact, there exists {A;}52; such that Ay, D Ax,,, and As = [);o; An,.

We claim that A, is an index j fundamental limit also.



NEWHOUSE PHENOMENA AND HOMOCLINIC CLASS 5

Proof of the claim  From generic property 5) of proposition 3.1 and f € R, for any € > 0, there
exists periodic point p; such that p; € Per;(f) and dg(Orb(p;), Ax,) < §. When i is big enough, we’ll
have dg(Ay,, Ass) < §, so for any € > 0, there exists p; € Per;(f)such that dg(Orb(p;), As) < €. O

Now by Zorn’s lemma, there exists a minimal index j fundamental limit in C. O

Suppose A is a minimal index jy fundamental limit of C, the main aim of this section is the following

lemma.

Lemma 4.3. Suppose f € R, C is a non-trivial chain recurrent class of f, jo = min{j : CO P} # ¢}
Let A be any minimal indez jo fundamental limit in C, then
a) either A is a non-trivial minimal set with partial hyperbolic splitting T|aM = E; ® EY @ Ej 1o,

b) or C contains a periodic point with index jo or jo + 1 and C is an index jo fundamental limit.

We postpone the proof of lemma 4.3 to §4.4, before that, I’ll give or introduce some results at first.
In §4.1 'l give a proof of Shaobo Gan’s lemma, in §4.2 T’ll introduce Liao’s selecting lemma and prove a

weakly selecting lemma, in §4.3 T'll introduce a powerful tool ’transition’ given by [BDP].

4.1. Shaobo Gan’s lemma. Let GL(d) be the group of linear isomorphisms of R¢, we call ¢ a periodic
sequence of linear map if £ : Z — GI(d) is a sequence of isomorphisms of R? and there exists ng > 1

such that & ,, = & for all j. We denote w(§) = min{n : {4, = §; for all j} the period of £, and we
m(§)-1
call £ has index ¢ if the map [] &; is hyperbolic and has index ¢, we say & is contracting if £ has index
j=0

d. We denote E*(*") the stable (unstable) bundle of &.

Suppose 7 is a periodic sequence of linear maps also, we call 7 is an e-perturbation of ¢ if 7(n) = 7(§)
and || 1; — & [|< = for any j.

Let {£*}ae.a be a family of periodic sequence of linear maps with index 4, we call it is bounded if there
exists K > 0 such that for any o € A and any j € Z, we have || §§a) |l< K. For a family of bounded
periodic sequences of linear maps {£*},c.4, we say it’s index stable if & (@) has index i for all & € A, and
there exists €g > 0 such that #{«| there exists n(®) is eg-perturbation of £(® and 7(® has index different
with i} < co. Especially, if it’s index 0 stable, we call £(®)|,¢ 4 is uniformly contracting.

Suppose f € CY(M) and {p,(f)} is a family of hyperbolic periodic points of f with index i, we say

Pn(f) is index i stable if {D f|orp(p, ) }ney is index i stable and lim w(p,) = oo.
Remark 4.4. Pliss has proved that if {p,(f)} is index i stable, then i # 0,d.

The following lemma was given by Shaobo Gan, and the proof comes from him also.

Lemma 4.5. ([15]) f € C*(M), suppose {p,(f)} is index i stable, then there ewists a subsequence

{pn, }321 such that pn; and py,,, are homoclinic related.

Here we just prove the following weaker statement of Gan’s lemma.
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Lemma 4.6. ( Weaker statement of Gan’s lemma) Suppose f € R, A is a non-trivial chain recurrent set
of f, {pn(f)} is index i stable and lim Orb(p,) = A, then there evists a subsequence {py,;(f)}32; such
that pp; (f) and pn,,,(f) are homoclinic related.

Before we prove lemma 4.6, we’ll give a few lemmas which will be used in the proof.

Lemma 4.7. Suppose A:(]g g) is a hyperbolic linear map with index i (i # 0,d), where B € GL(R?) is
a contracting map and D € GL(R*™") is a expanding map. If there exists B' € GL(R') an -perturbation
of B and B’ has index different with i, then A’:(%’ ©) is an e-perturbation of A with index different
with i. In fact, we’ll have ind(A’) = ind(B’).

With lemma 4.7, the following lemma is obviously.

Lemma 4.8. Suppose {£™}22 | is index i stable, then {£™)

the same time, {£™)

Ee(etm) fney 18 stable contracting, and at

Bu(em) fney 8 stable expanding.

In [29] Mané has given a necessary condition for bounded stable contracting sequence.

Lemma 4.9. (Maiié) If {£™}22, is stable contracting and bounded, then there exist No,lp,0 < Ao < 1
such that if T(£&™) > Ny we’ll have

[‘"(ﬁn)]_l

1 T e (=52
1L T &Gl <20
=0 t=0

for any 0 < s < (€M),

Proof of lemma 4.6: Since A C P} and f is far away from tangency, by proposition 2.1, A has an index
i — (I, \) dominated splitting T|aM = E @ F. In order to make the proof more simiplier, here we just

suppose | = 1. Choose a small open neighborhood U of A, when U is small enough, A= N f2(U) has
JEZL
an index i — (1, A) dominated splitting T M = E® F where A\ < A<l and E[y = E, F|y = F.
Since lim Orb(P,) = A, we can always suppose Orb(p,) C U, so Orb(P,) C A and E*|orp(p,) =
E|Orb(pn)a Fu|0rb(pn) = ﬁ|0rb(pn)-
By lemma 4.8, we know that {Df Ew(Orb(pn)) Y=t 18
stable expanding. By lemma 4.9, there exist Ny, lp,0 < Ag < 1 such that if 7(p,(f)) > No, we have

E#(Orb(py)) fnee1 18 stable contracting and {Df

[w(l%n)]_l ( )
[E]
(4-1) H ||DflO Es(fﬂOpn)H < )‘0 g
Jj=0
[w(l%n)]_l ( )
_ (2]
(4-2) H ||Df l°|Fu(f*ﬂOpn)H §>\0 o
Jj=0

Since lim Orb(p,) = A and A is not trivial, we have lim 7(p,) — oo, then we can always suppose all
n—oo n—oo

the p, satisfy (4.1) and (4.2). For simplicity, we suppose lp = 1 here.
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Choose some € > 0 and A\; < 1 such that maX{X, Ao} +e <A <\ < 1. Now we'll state Pliss lemma

in a special context.

Lemma 4.10. (Pliss[34]) Given 0 < Mg+ < A < 1 and Orb(P,) C A such that for some m € N, we

t—1
have TT IDf|gsfipopll < (Ao + )t for all s > m, there exists a sequence 0 < ny < ng < --- such that
=0

t—1
T1 (IDf s pipapll S AT for allt >myp, r=1,2,---.

J=nr

Remark 4.11. The sequence {n; };";1 we get above is called the Ay -hyperbolic time for bundle E*|oppp,) -

By (4.1),(4.2), when n is big enough, P, will satisfy the assumption of Pliss lemma, so by lemma 4.10,
t—1 t—1

there exists ¢, € Orb(pn) such that [] | Df| g i)l < Al and gy € Orb(py) such that ] ||Df_1|Fu(f,jq;)|| <
3=0 =0

j=

A for allt > 0.

Let’s denote

s—1
Snt ={m € Z: [ IDfls(pmrspnll < A for all s > 0},
=0
s—1
Sp—={meZ: [[IDf ™ [pu(pm-spll <A for all s > 0}.
=0

Then Sy, 1 is the set of A; hyperbolic time for bundle £°|o,4(p,) and Sy, — is the set of hyperbolic time for
bundle F*“|oyp(p,,)- From remark 4.11, the set S,  and S, _ are not empty. We denote S,, = Sy, 4 [ Sn,—.

Lemma 4.12. S, # ¢.

Proof: Here for a,b € Z and a < b, we denote (a,b)z = {c| c € Z and a < ¢ < b}.

Now suppose the lemma is false, we can choose {by, s, by s+1} C Sn,— such that we have by, 541 > by s,
(bn,ssbn,s+1)2 () Sn,— # ¢ and an ¢ € (bn,s,bn,s1+1)z () Sn,+, then by o, by 541 € Sn

We claim that for 0 < k < by, 511 — by s — 1, we have k]:[l |Df~1t
Proof of the claim: We’ll use induction to give a proojf.:O

When k = 1, since by, s + 1 ¢ S, —, we have ||Df~!

Now suppose the claim is true for all 1 < k < kg — 1 where 1 < kg < by, 541 — by s — 1, and we suppose

Fu,(fhn,s+.7‘+1pn)|| > Ak

Fu(fbn,s#—lpn) || > )\1.

the claim is false for kg, it means that

ko—1
“‘” {101 ool

Jj=0

Then by the assumption above that the claim is true for 1 < k < kg — 1, we have

k—1
(4.4) TTIDF o pomssinpy | = AF
=0
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ko—1
By (4.3) and (4.4), we get that [ [[Df ™" pu(ponctsrry |l < M=k for 1 < k < ko — 1. It’s equivalent
j=k

to say that
k—1

(4.5) LT IDF g (omtro-ipll <A for 1<k <ko—1
§=0

By (4.3) and (4.5), we get that

(4.6) H IDf*

Fu fhn stko— 7p )H < )\k fOI‘ 1 < ]C < kO

When k > ko,by (4.6) and the fact b, s € S, —, we have

ko—1 k—ko—1
H ||Df Fu fbn s+ko— 7 || — H ||Df Fu fhn s+ko— 7)” : H ||Df Fu fbn s— 7 || < )\ko )\k ko — = A
7=0 7=0

it means b, s +ko € Sy, —, it’s a contradiction since by, s +ko € (bn,s, bn,s+1)z, so we finished the induction.
O

By the claim above, for 0 < k < by, 541 — bn,s — 1, we have

k—1

(4.7) H ||Df71|Fu(fb”~3+j+1pn)|| > Af.
3=0

Since on A, E & F is an index i — (1, X) dominated splitting, we have

k—1
LT A 5o crip 1 1DF ™ a5 pomctinn, ) < A
7=0

By (47) and E'Orb(pn) = ES'Orb(pn);ﬁ|Orb(pn) = Fu'Orb(pn)v we’ll get

k—1 Yk

A
(4.8) [T IDf g ponetipyll <5 - < A for 1<k <bpapr —bns— L
i AT (Reaz<1)

When k > by 541 — bns — 1, let k = (ant — bn,s) + (k — any), by (4.8) and ant € Sp +,

k—1 (ln,f,—bn,s—l k—(ln,t—l
[LIDS pe(gmessnll = II  IDAspneripyl - TIPS lse(panatip,yll
Jj=0 j=0 o

(49) < A‘fn,t*bn.s . )\]f*lln.t — Allﬂfbn.s

By (4.8) and (4.9), we get by,s € Sp+, 80 Sp+ () Sn,— # ¢, it’s a contradiction with our assumption, so
we finished the proof of lemma 4.12. O

Now let’s continue the proof of lemma 4.6, we need the following two lemmas to show that for a,, € S,
the point f%(p,) will have uniform size of stable manifold and unstable manifold.

Let I = (—1,1)" and I. = (—¢, ¢)¢, denote by Emb' (I, M) the set of C''-embedding of I; on M, recall
by [21] that A has a dominated splitting E @ F implies the following.

Lemma 4.13. There exist two continuous function ®¢° : A — Emb'(I, M) and & : A —

Emb (I, M) such that, with WE(x) = ®°(z)I. and W (z) = ®°(x)I., the following properties hold:



NEWHOUSE PHENOMENA AND HOMOCLINIC CLASS 9

a) T,We = E(z) and T,W" = F(x),

b) For all 0 < e < 1, there ewists €2 such that f(WS(z)) C WE(f(x)) and f~H (W (z)) C
Wer (£ @), ~

¢) For all 0 < e < 1, there exists 6 > 0 such that if y1, y2 € A and d(y1, y2) < 9, then W (y1) M
Wet(ys) # ¢.

Corollary 4.14. ([36]) For any 0 < X\ < 1, there exists € > 0 such that for x € A which satisfies
n—1
11 ||Df|E(f_7w)|| < A" for allm > 0, then diam(f"(WS°)) — 0, i.e. the central stable manifold of x with
j=0

size € is in fact a stable manifold.

Now for A1, using corollary 4.14, we can get an € > 0. It means that for any a, € S,, denote
gn = [ (pn), then W2%(q,,) is a stable manifold and W£*(g,) is an unstable manifold. For this e > 0,
use ¢) of lemma 4.13, we can fix a §. Choose a subsequence {n;} such that d(gn,,¢n,,,) < 0, then by c)
of lemma 4.13, we know W (qn,) M W(qn,,,) # ¢ and W (qn,.,) M WE(qn,) # ¢. Since the local
central stable manifold and local central unstable manifold of g,, have dynamical meaning, we know that

Orb(gn,) and Orb(gy,,,) are homoclinic related. O

Remark 4.15. In the proof of lemma 4.6 we suppose the set A has 1-step dominated splitting, that means
Il =1, and we suppose lo = 1 there also, they are just in order to make the proof more simplier. In the

rest part of the paper, usually we don’t use such assumption any more, if we use it we’ll point out.
Now let’s consider a sequence of periodic points which are not index stable.

Lemma 4.16. Suppose f € R, lim g, = f, {pn(gn)}22, is a family of index i periodic points (i # 0, d)
n—oo

and lim 7(p,) — oo. If there exist \, — 1~ and lim I, — oo such that lim @ — 00 and
n—oo n—oo n

n—oo
[%nn)]*l [‘N(Pn)]
11 HDgi{L|E3(gﬂn(p il = An ™, then for any e > 0 and N > 0, there exists an no > N and g}, is
j:0 n n
an e-perturbation of gn, such that pn,(gn,) i an index i — 1 periodic point of gl,.

Proof: Fix N, consider the periodic sequence of linear maps {£" : £" = Dg,

B¢ (Orb(p,)) fn>N, they are
all contracting maps. We claim that {£"} are not stable contracting.

Proof of the claim: If {£"} is stable contracting, by lemma 4.9, there exist Np, lp, 0 < A9 < 1 such
that if 7(£™) > Ny, we have
[=E-1

(4.10) II IDge

Jj=0

7(Pn)
H<ag

il
Es(gil Dpn

Choose some N; big enough such that for n > Nq, we have A,, > A* > Ao for some \* € (Ao, 1), then by

lim @ — oo and lim [, — oo, when n is big enough, we have 7(p,) > [, > max{lyp, No} and
n—oo n n—o0

(-1 I (el (o) S l (=)
from jl;lo 1Dgi | ge(gtnpy | 2 An 7 > (A7) 707, we'll get jl;lo 1D g gitop sl = 2o ™ ° >

[‘N(Pn)

Ao © ], It’s a contradiction with (4.10). O
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Since {£"},>n isn’t stable contracting, for ¢ > 0, there exists a sequence {n;} and {n™} such that n™ is
an e-perturbation of £™ and 7™ has index smaller than . Since {{™} is bounded and lim 7 (p,) — oo,
by [10]’s work, for n; big enough, we can in fact get n™ with index ¢ — 1. By lemmnaiiD?, there exists
{A|orb(p,) fn>0 an e-perturbation of {Dgn|ors(p,)} such that {A]o,pep,)} has index i — 1. Now we need

the following version of Franks lemma.

Lemma 4.17. (Franks lemma) py, is a periodic point of gn, Alor(p,) i an e-perturbation of { Dgn|orb(p,)}
then for any neighborhood U of Orb(py,), there exists g, such that g, = gn on (M \ U)|JOrb(p,),
den (gmg;,) <e and {Dguorb(pn)} = {A|O7’b(pn)}'

From Franks lemma, we can change the derivative map along TOTb(pni)M to be {A|orb(p,)} and get a

new map g;,. such that py,(gn,) is index ¢ — 1 periodic point of gj, . O

4.2. Weakly selecting lemma. Liao’s selecting lemma is a powerful shadowing lemma for non-uniformly
hyperbolic system, with it, we can not only get a lot of periodic points like what the standard shadowing
lemma can do, we can even let the periodic points have hyperbolic property as weak as we like. Liao
at first used this lemma to study minimal non-hyperbolic set and proved the {2-stable conjecture for
diffeomorphisms in dimension 2 and for flow without singularity in dimension 3. [16] [17] [19] [41] use the
same idea proved structure(2) stability conjecture for flows without singularity in any dimension. Until
now, the most important papers about selecting lemma are [18],[44], [45] and there contain more details
about selecting lemma.

In this subsection and the next, we’ll show what will happen if all the conditions in weakly selecting
lemma are satisfied. The main result in this subsection is lemma 4.21 (The weakly selecting lemma).

Now let’s state the selecting lemma at first.
Proposition 4.18. (Liao) Let A be a compact invariant set of f with index i — (I, \) dominated splitting
E¢ @ Fe“. Assume that
n—1
a) there is a point b € A satisfying [] ||Dfl|Eus(szb)|| >1 for alln > 1.
3=0
b) (The tilda condition) there are A1 and Ao with A < A\ < A2 < 1 such that for any x € A

n—1
satisfying ] ||Dfl|Ecs(sz,m)|| > X" for all n > 1, w(z) contains a point ¢ € A satisfying
§=0

n—1
II ||Dfl|Eus(ijc)|| < AP forallm > 1.
j=0

Then for any Az and Ay with A2 < A3 < Ay < 1 and any neighborhood U of A, there exists a hyperbolic
periodic orbit Orb(q) of f of index i contained entirely in U with a point ¢ € Orb(q) such that

m—1
(4.11) LT IDF e pigpl < AP for m=1,---, m(q)
=0
m(q)—1
(4.12) [T IDF e gl = 2597 for m=1,---, m(q)
j=mi(q)—m

where (q) is the period of q for the map f'. The similar assertion for F holds respecting f~*.
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Remark 4.19. It’s easy to know m(q) > m(q). Since f*™(9(q) = q, it’s obviously that (4.11) and (4.12)
are true for all m € N. In the selecting lemma, when A3 and Ay are fixed, we can indeed find a sequence
of periodic points {q,} satisfying (4.11) and (4.12) and lim Orb(q,) C A. If f is a Kupuka-Smale
diffeomorphism, especially when f € R, we can let nllngo m (TqL:)OO—> o0, then we’ll have HILngO 7w(gn) — 0

at the same time.

Corollary 4.20. f € R, let A be a compact chain recurrent set of f with index i — (lo, \) dominated
splitting E°* @ F* (1 < 4 < d—1). Assume that the splitting satisfies all the condition of selecting
lemma for all 1, = nly (n € N) but with the same parameters A < X1 < Ay < 1, then for any sequence
{( M35 Ana) IS, satisfying Ao < A13 < A1a < Aoz < A2z < -+ where A\, 3 —> 17, there exists a family
of periodic points {q,(f)} with index i such that

a) lim 7, (¢a(f)) — oo

b)
m—1
(4.13a) LT 1D e gtn g || < Ay
j=0
iy, (gn)—1
(4.13b) II  IDf" el = A7y formeN

j=m1, (gn)—m
¢) lim Orb(g,) C A.
d) A C H(qn(f)) for all n.

Proof : At first, let’s fix Ao < A1 3 < A1 2 < 1 and a small neighborhood U of A small enough such
that the maximal invariant set A of U has index i — (lo, X) dominated splitting with A< A2, we denote
the dominated splitting still by Ef* @ Ff. (If ¢ is an index i periodic point in A, then we denote
EF* @ F' loreq) = E° © F*|orp(q))- Now using selecting lemma, with remark 4.19, we can find a family
of periodic points {q1,m(f)}5°_; with index 7 satisfying b), lim (¢1,,) C A, lim m,(q1,n) — oo and
Orb(gim(f)) C K.

Since A has an index ¢ — (I1, A) dominated splitting £5* ® F5", from (4.13b) we can know

711 (q1,m) _ w1y (q1,m)—1 X
[T 10 el <X/ TL 1D et gl < (52" for e,
j:ﬂ'l,l (q1,'m)7t+1 j:ﬂ'l,l (q1.7n)7t 1,3

it equivalent with

m—1
A
(4.14) ITIDf " peu(s-smguoll < (=)™ for m e N.
3=0

AL3
From (4.13a), (4.13b), by lemma 4.13, Corollary 4.14 and sz < 1, we can know that for some €1, ¢1 p,
will have uniformly size of stable manifold W (¢1,,) and uniform size of unstable manifold W2 (q1,,)
and there exists a subsequence {anj }]D‘;l such that they are homoclinic related with each other, so
H(qi.n,) = H(g1,n,) = -+ -, with EOrb(an_j) C A, we know A H(q1,n;) # ¢. Since f € R, H(q1,n;)
should be a chain recurrent class.jBecause A is a chain recurrent set, we have A C H(q1,n,), let 1 = q1,n,

for some j big enough, then ¢; satisfies a), d).
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Now consider 0 < Ay < Ag3 < Aga < 1, EF¥@FL" is obviously an index i — (I2, A) dominated splitting of
A and by the assumption, the splitting satisfy the conditions of selecting lemma for I3, A < Ay < Ag < 1,
so repeat the above argument, we can get a family of periodic points {ga2,,(f)}52, satisfying b), d),
HOrb(qu,) CA ACH(ga,f)==H(gn )= and lim m,(¢2,n(f)) — co. When nyg is
ggoznough, we'll have m, (g2,n,) > 7, (1) and Orb(ga,n, ) is near Xﬁr;oore than Orb(g1). Let g2 = go.n,,

continue the above argument for I, and Ag < A3 < A4 < 1, we can get {g,}72; which we need. O

The following weakly selecting lemma shows when the conditions of the above corollary will be satisfied.

Lemma 4.21. (Weakly selecting lemma) Let f € R, A be a compact invariant set of f with index
i — (lp, A) dominated splitting E° @ F* (1 <i<d—1). Assume that

a) (Non-hyperbolic condition) the bundle E° is not contracting,
b) (Strong tilda condition) there are Ay < 1 and lj > 1 such that for any x € A, w(x) contains a

n—1 ,
point ¢ € A satisfying ] || Df']
=0

Ecs(sz,g)c)H < \¥ for allm > 1.

Then for any I, = n - (lo - Ij) and any sequence {(An.3, An.a)}2, satisfying maz{No,\a} < A3 <
AMa < <Az < Apa < --- where A\, 3 — 17, there exists a family of periodic points {qn(f)} with

index i such that

o lim 7, (an(f) — o

m—1 771,77_(‘171)71
o TT DS " |ps(pitngnll < Aty and I1 IDf!" | g (gitngunll = Xty form > 1
j=0 J=m1, (qn)—m

o EOrb(qn) CA
o AC H(gn(f)) forn > 1.

Proof Since E§* @ F* is a (lp, A) dominated splitting and 1; = I - If), it should be a (11, )\lg) dominated
splitting also. Choose A;, A1 such that max{)\lé, Ao} < A1 < Ay < A3, we'll show that the splitting
ES ® F{* and the [, Mo < A\ < A, < 1 will satisfy all conditions of corollary 4.20, equivalent, we’ll
show the splitting E{® @ FJ¥, [, and Mo < A\ < A, < 1 will satisfy the condition of selecting lemma for
alln > 1.

0) Since E@F*isa (11, )\16) dominated splitting and I, = n-l1, E & F* is a (L, /\16) dominated
splitting also.

1) Here we need the following lemma:

Lemma 4.22. Let A be a compact invariant set of f, E§® is an continuous invariant bundle on

A, and dim(E®(z)) =i for any x € A where i # 0, suppose | € N, if for any x € A, there exists

n—1
an n such that ] ||Dfl|Ecs(f_7~zw)|| < 1, then E§® is a contracting bundle.
3=0

Since we know E§° is continuous but not contracting, so for any I,,, there exists b,, such that

n—1
‘Ho ||Df,ll|Ecs(sznbn)|| > 1 for all m > 1.
ke
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nlom—1 ,
2) For any x € A, w(x) contains a point ¢, € A such that [[ [ Df%|

)|| < Ao for all
=0

a1/
E"S(_f'ﬂ'o Cn

m > 1, since

nlom—1 m—1 m—1
! !
[T 1D1% e oty | = TT DS e gontoty ey | = TTIDF [gesgitnen
j=0 j=0 §=0

m—1
we have that [T [|[Df"|ges(pitne,) | < Ao < A7 for all m > 1.
3=0

Remark 4.23. In b) of weakly selecting lemma, we don’t give any restriction on x, so b) is in fact more
stronger than the tilda condition, that’s why we call the condition b) in weakly selecting lemma the strong

tilda condition.
By 0), 1), 2) above and corollary 4.20, we proved the lemma. O

4.3. Transition. Transition was introduced in [6] at first, there they consider a special linear system
with a special property called transition and use it to study homoclinic class. Here I prefer to use a little
different way to state it, the notation and definition are basically copy from [6]. The main result in this
subsection is corollary 4.26. We begin by giving some definitions.

Given a set A, a word with letters in A is a finite sequence of A, its length is the number of letters
composing it. The set of words admits a natural semi-group structure: the product of the word [a] =
(a1, yan) by [b] = (b1, ,b;) is [a]- [b] = (a1, -+ ,an,b1, -+ ,b;). We say that a word [a] is not a power
if [a] # [b]* for every word [b] and k > 1.

Here we’ll use some special words. Let’s fix f € CY(M), for any = € Per(f), we write [xz] =
(fr@=Y(z)),- -, x) and {x} = (Df(fT@~Y(z)),--- ,Df(z)). We call a word [a] = (ay, - ,a;) with
letters in M is a finite e-pseudo orbit if d(f(a;),ai+1) < e for 1 < i < k — 1, if ¢ = 0, that means
fla;)) = aj41 for 1 < i < k — 1, then we call [a] is a finite segment of orbit. We always denote
{a} = (Df(ar),---, Df(ar)).

Suppose we have a finite orbit [a] = (an, - ,a1) and an e-pseudo orbit [b] = (b, -+ ,b1), we say [b]
is d-shadowed by [a] if n = [ and d(a;,b;) < e for 1 <1i < n. We say {a} is d-close to {b} if n = [ and
IDf(a;) — Df(b;)|| <6 for 1 <i<n.

Suppose H(p, f) is a non-trivial homoclinic class, we say H(p, f) has e-transition property if : for

any finite hyperbolic periodic points p1,--- ,p, in H(p, f) which are homoclinic related with each other,

there exist finite orbits [t97] = (t;;’(ji’j), oo 97 for any (i,7) € {1,---,n}? where k(i,7) is the length
of [t4], such that, for every m € N, | = (i1, -+ ,im) € {1,---,n}™ and @ = (a1, -+, ) € N™
where the word ((i1, 1), -, (im, @ )) with letters in N x N is not a power, the pseudo orbit [w(l, a)] =
[timoin] . [p;, ]om - [tim=1sim] [p; - ]@m=t ... [fE0E2] L [, 191 s an e-pseudo orbit and there is a periodic

orbit Orb(q(l,«)) C H(p, f) such that:
a) the length of [w(l, a)] is 7(q(l, @) and [¢(I, )] e-shadow the pseudo orbit [w(l, &)].
b) the word {q(I, )} is e-close to {w(l, a)}.

¢) there exists a word {titi+1} = (T;J(ljjjjil), co TP5) with letters in GL(RY) e close to {ti:ti+1},
let T+ = lezz;i:il) ..... Tli.m'.f-i-l7 then

T (Es(q%‘)) = Es(q?fﬂ)v aTij’iHl(Eu(qij)) = E“(qi_j+1).
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We say H(p, f) has transition property if H(p, f) has e-transition property for any € > 0.

Lemma 4.24. ([6]) f € CY(M), suppose p is an index i (i # 0,d) hyperbolic periodic point of f, then
H(p, f) has transition property.

Lemma 4.25. f € R, suppose p is an index i (i # 0,d) hyperbolic periodic point of f and H(p, f) is not

trivial. Suppose there exists a family of periodic point {p,}>2, with index i in H(p, f) homoclinic related
T, (Pn)—1
with p and 1, — 00, A, — 17 such that m, (pn) — 00 and || ||Dfl"|Es(szn(pn))|| > )\;r,l"(p"),
§=0
then H(p, f) is an index i — 1 fundamental limit.

Proof : We claim that we can find ¢, (gs) is periodic point of g, with index 4 such that:

1) lim g, = f.

2) Orby, (gn) is periodic orbit of f also (f|ors,, (¢.) = gnlorb,, (a.))> 50 We just denote it Orb(gy),
then we have Orb(g,) C H(p, f) and lim Orb(g,) = H(p, f).

3) lim —W(lq") — 00

n— 00 n
[W(z,in)]_l . [7"(‘171,)]
l7l
4) ‘Ho | Dg, B (g-,fjn(qn))H > An
Jj= "

Proof of the claim: Choose ¢, — 07T, let’s fix ng at first and choose an ¢ > 0 such that Ano +2e < 1.

There exists No > ng such that for any n > Ny, we’ll have [, > [,, and A, > A, + 2¢, then by
7Tln(p77~)_1 mlnoﬂ'ln (pn)*l
[T 1D (gl = A0 @) wehave [T ||Df™
=0 =0
then we get

ln n
gl = Ao ) for > 1,

mlnﬂ'ln (pn)*l
(4.15) H ||Dfl"°|E3(f_nn0pn)H > (Any + 26)™m0™in (Pr) for m, > 1.
7=0

Since f € R, there exists a family of periodic points {¢/}}¥, with index i, which are &,,-dense in
H(p, f) and they are homoclinic related with p and {p,}32 ;. Now use e,,-transition property for {g}(=

DPNo)s 1, ), then for {i,5} € {0,1,---, N}?, there exists finite orbit [t*V] = (t;’gi’j), - t47) such

that for I = (0,1,---,N) and ay, = (m - Iy, 1, -+, 1), the pseudo orbit [w(l,a,)] = [tV0] - [gh] -+

Ing 7y (P
[t91] - [q{)]m'l%% is an e,,-pseudo orbit and is &,,-shadowed by periodic orbit [¢(I, auy,)] whose
index is ¢, where Orb(q(l, ) C H(p, f) and {q(l, o)} is epy-near {w(l, o)}

Consider the word {@ (1, am)} = {tV OV -{gh}-- - - {tVO}-{gh} ™0, it’s £, near {w(l, )}, s0 {w (1, m)}
is 2¢,,, near with {q(l,am)}. Now use lemma 4.17 (Franks lemma), we can get a C! diffeomorphism
91, Such that d(g.a,.), f) < 2eny, Orbs(q(l, o)) is also orbit of g.q,,.), and {Dgq,a,.)orbgt,am))} =
{w(l, am)}. By ¢) of transition property, E;(") (qg) is invariant bundle of {w(l, ay,)}, so they are invariant
bundle of g q,,, that means Dggfisi’?"”))(Ej(q('))) = E%(qp) and Dngiﬁf?”L))(E;i(q{))) = E}(qp)- It's easy

to know when m is big enough, E;(u) (qo) is stable(unstable) bundle for g 4,,), so when m is big enough,

4(1,a,,) Would be an index i hyperbolic periodic point of g q,.)-
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Now choose m big enough and let gn, = q(l, m), Gno = 9(1,a,,)s it’s €asy to know gn,, gn, satisfy 1),
2). About 3), let’s notice that m(g,) > ml,, and m can be chosen arbitrary big. 4) comes from (4.15)
and m is big enough. O

Now let’s continue the proof of lemma 4.25, by the above claim and lemma 4.16, for any ¢ > 0 and
N >0, there exist an ng > N and g,,, is e-perturbation of g,, such that Orb(gy,) is index i — 1 periodic
orbit of g, and Orb(qn,) is €n,-dense in H(p, f). Since ¢ and €,, can be arbitrarily small, we get that
lim g;, = f, Orb(gn,) is index i — 1 periodic orbit of g;, . and lim Orb(g,,) = H(p, ), so H(p, f) is an

index 7 — 1 fundamental limit. O

Then main result of this subsection is the following corollary.

Corollary 4.26. f € R, C is a chain recurrent class of f, A is compact invariant set of f with index
1— (I, \) dominated splitting E° @ F* (1 < ¢ < d) and assume they satisfy all the assumption of weakly

selecting lemma, then C' contains index @ periodic point and C is an inder i — 1 funadamental limit.
Proof : It’s just a corollary from Lemma 4.21 (weakly selecting lemma) and lemma 4.25. U

4.4. Proof of lemma 4.3. Proof : When A is trivial (#(A) < 00), A is a periodic orbit, since A is an
index jo-fundamental limit, it should be an index jg hyperbolic periodic orbit, so C' contains an index jg
periodic point and it’s an index jy fundamental limit.

Now we suppose A is not trivial, by generic property 5 of proposition 3.1, there exists a family of
index jop periodic points {p,(f)}32, such that nllngo Orb(p,(f)) = A. Since A is not trivial, we have
7(pn(f)) — oc.

If A isn’t an index jo+ 1 fundamental limit, we know that {p,(f)} is index j, stable, then by lemma 4.6
(Gan’s lemma), there exits a subsequence {py, (f)}i2; such that p,, (f) and p,,(f) are homoclinic related,
so H(pn,, [) = H(pn,, f) = ---, especially, by lim Orb(p,(f)) = A, we know that A C H(p,,, f), by
generic property 6) of proposition 3.1, C = H (pr;:o;”), so C contains index jy periodic point and it’s an
index jo fundamental limit.

So from now, we suppose A is an index jo + 1 fundamental limit also, then A C P} N P} 4, since f
is far away from tangency, by proposition 2.1, A has an index jo dominated splitting E5*(A) © E", ; (A)
and an index jo + 1 dominated splitting FS°, ; (A) @ ES* 5(A). Let Ef(A) = ES 1 (A) (N ES®,1(A), then

Jo+1 Jo+2 Jo+1 Jo+1
on A we have the following dominated splitting: T|aM = Ej;(A)® Ef(A) & £S5 o(A). Since C(\ P = ¢

for j < jo, by proposition 2.2, ¥’ is in fact contracting, so we prefer denoting it £ . Now on A we have

the dominated splitting T|aM = Ej (A) ® Ef(A) © ES, 5(A).

Remark 4.27. Since A is index jo fundamental limit, E{(A) is not contracting, that means that the

bundle (E5 & ET)|a is not contracting also.

When jo + 1 = d, especially, the dominated splitting on A should be T[yM = E; (A) ® Ef(A). In
this case, if A is not minimal, there exists an xo € A such that w(zg) & A. By the definition of A and
jo =d—1, w(xp) is an index d fundamental limit but not index j fundamental limit for j < d. With

the generic property (5) of proposition 3.1, w(xg) can be converged by a family of sinks {p,(f)}, by
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remark 4.4, 7(p,(f)) should be bounded ( If it’s not bounded, there exist py,(f) and gn, < f such that
Inolors, (Pro (F) = f|O'r‘bf(pn0(f)) and Orb(pn, (f)) is a periodic orbit of g with index smaller than d, that
means w(zg) is an fundamental limit with index smaller than d, it’s a contradiction). That means w(z)
is trivial, so it’s a periodic orbit. Since f is a Kupuka-Smale diffeomorphism and w(zg) is an index d
fundamental limit, we can know that w(zg) is an index d hyperbolic periodic orbit, then C contains a
sink, it means C itself is just the orbit of sink and C' = w(xg), that’s a contradiction with C' is not trivial,
so we proved A is minimal when j, +1 = d.

Now we just consider jo + 1 < d, we claim that with all the assumptions above on A, then either A is

minimal, or C' contains periodic points with index jy 4+ 1 and C is an index jy fundamental limit.

Proof of claim: Suppose A is not minimal, it means that there exists xyp € A such that w(zp) # A.
Consider the set of compact chain recurrent subset of A: {Ay : Ay C A}aea, since w(zg) € {Aataca,
A # ¢, by generic property (4) of proposition 3.1, A, is a fundamental limit. By the definition of jg
and A, A, is an index j, fundamental limit with j, > jo + 1. Denote B={8 € A, Ag is not an index j
fundamental limit for j > jo + 1}.

Remark 4.28. : For any B € B, Ag is an index jo+ 1 fundamental limit, on Ag we have an index jo+ 1
dominated splitting ESY . 1 (M) ® E5, (Ag). Since we have Ag (| P} # ¢ for all j # jo+1, by proposition
2.2, the index jo + 1 dominated splitting is in fact a hyperbolic splitting, that means Ag is a hyperbolic

set.

Now we divide the proof of the claim to three subcases: #(B) = 0, #(B) = N; < 0o and #(B) = oc.
Case A: #(B) = 0.

That means for all a € A, A, is an index j, fundamental limit for some j, > jo + 1.

Now we need the following two results.

Lemma 4.29. ([45]) Assume f € R, let A be an index ¢ fundamental limit of f (1 < i < d—1),
E$*(A) @ EfY (A) is an index i — (I, \) dominated splitting on A given by proposition 2.1, then

n—1
1) either for any p € (X, 1), there exists ¢ € A such that T] || Df!|ges (el < p™ forn > 1,
=0 ‘

2) or E{* splits into a dominated splitting V2% & V¢ with dim(V,®) = 1 such that for any p € (A, 1),

n—1
there is ¢’ € A such that [] ||Df!
=0

Vicil(f_jz,cl)|| < u™ for allm > 1.

Lemma 4.30. Let A be an invariant compact set of f, with two dominated splitting E°° & F°* and
Es @ Feu | if dim(E) < dim(E®), then E° C E°S.

Choose pg € (A, 1), since A, is an index j, fundamental limit, proposition 2.1 gives an index j, — (I, \)

dominated splitting ES* & F7" | on A,.
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n—1
If 1) of lemma 4.29 is true for A,, then there exists ¢ € A, such that [] ||Dfl|E§:S (piteyll < pg forn > 1.
j=0 -
On A, we have another dominated splitting (£ © EY) ® EJ0*2 induced from A. Since dim(E; © Ef) =

n—1
Jo+ 1< jo =dim(Ef?), be lemma 4.30, £ @ Ef C E$°, so we have [] | Dft
§=0

E_-;‘O@E;(fﬂc)n < pg for
n>1.

n—1
If 2) of lemma 4.29 is true for A,, then there exists ¢’ such that Ho ||Dfl|%§71(f_7zcl) | <uf forn >1,
j:
recall that dim(E; © EY) = jo +1 < jo — 1 = dim(V°_;), by lemma 4.30, E5 © Ef C V*(A,), so we

n—1
have ‘Ho ||Dfl|EjO@Ef(fﬂc’)H < pg for n > 1.
j=

Remark 4.31. : By the above arguments, we know that for any o € A\ B, and for any po € (A1),
there exists ¢ € A, such that

n—1

(4.16) [T1Df!

=0
By remark 4.27and remark 4.31, the index jo + 1 — (I, A) dominated splitting (Ej & EY) ® ES*,, on A

satisfies all the conditions of weakly selecting lemma, by corollary 4.26, C' contains index jo + 1 periodic

E;O@E{,(fﬂc)ﬂ <pug  form>1

point and C' is an index jy fundamental limit.

Case B: #(B) = N; < o0
Let B={f1, -+ ,0n, }, fix A < pip < 1, then by the argument in case A, for any 8 € A\ B, there exists
¢ € A satisfies (4.16).
For 8; € B, A, should be a hyperbolic set where the bundle £ & Ef[s,, is a contracting bundle, so
there exists I’ such that for any = € Ag,, ||Dfll|(EfO®Ef)(w)H <1/2.
Let lp =11 and 1 > p; > max{puo, %}, then for any A, (a € A), there exists a point ¢ € A, such
n—1
that [] || Df'
§=0
(EjO @ ES) @ ESt o on A satisfies all the conditions of weakly selecting lemma, by corollary 4.26, C

Be ops(fioey| < pi. With remark 4.27, the index jo + 1 — (I, A) dominated splitting
J0

contains index jy + 1 periodic point and C' is an index jo fundamental limit.

Case C: #(B) = o0

In remark 4.28, we have shown that for any § € B, Ag is a hyperbolic chain recurrent set with
index jo + 1. Then there exists a family of periodic points {pg,}52; in C' with index jo + 1 and
lim Orb(ps,n) = Ag (by shadowing lemma). If Ag is trivial, that means it’s an index jo + 1 periodic
g;boii, we can let Orb(pg,n) = Ag for n > 1; if Ag is not trivial, we can let 7(pg,n) — oo.

We have the following two subcases.

e Subcase C.1: There exists § > 0 such that for any Ag, § € B, there exists a family of periodic
points {pgn o2, such that lim Orb(pg,,) = A and | Df”(pﬁv"L)|Ef(pﬁm) |< e~ 0m(Pa.n),
e Subcase C.2: For any - > 0, there exist 3,, € B and a family of periodic points {pg,, »}5,

_ L
E{’(Pﬁm.n) |> e 7n7r(pﬁm,,ﬂ).

satisfying lim Orb(pg, ») = Ag and | D f7(Psm.n)
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In the subcase C.1, let’s fix 1 > p; > po > e %. For B € B, recall that dim(E{(A)) = 1 and

7(pg,n)—1
| Df7Pan) ES(psn) 1< e 0w we'll get ][] | Dflee(ps.) 1< e~9m(Pa.n)  that means for any
=0
sm(pg,mn)—1
s > 1, we have 11 | DflEepsn) 1< e=*07sn) for s > 1. By lemma 4.10 (Pliss lemma) there
i=0

s—1
Ef(apn) |= H | DflBs(si(epny |< po for s = 1. Suppose

1=0

exists 23, € Orb(pgn) such that | Df?®

lim zg, — c3 where cg € Ag, then H | Dflge(pi(es)) |< po for s > 1. Notice that E7 [ is dominated

n—oo
t—1 ,

by E¢|s and g1 > po, there exists I’ > 1 doesn’t depend on 3 such that [] ||Df! |Beom: (rit (ol < wh
=0 Jo

fort > 1.

t—1
For o € A\ B, by the argument in case A, there exists ¢, € A, such that [] ||DflO|ET@E.s (fito (call <
Jo

i=0
tfort > 1.

Let I3 =1"- o, then for any a € A, there exists ¢, € A such that H | Df! 1|Ec@Eb (fitr (can | < 01 for
t > 1. With remark 4.27, the index jo + 1 — (I, A\) dominated bphttlng (ES © EY) ® B} 5 on A satisfies

all the conditions of weakly selecting lemma. By Corollary 4.26, C contains index jy + 1 periodic point
and C'is an index jg fundamental limit.

In the subcase C.2, since Ag,, is a hyperbolic set, we can always suppose {pg,, »}>2; is homoclinic
related with each other and pg,, » € C, so C contains index jy 4 1 periodic points. Now we’ll show C' is
an index jo fundamental limit also.

We claim that there exists a subsequence {3, }72; C {Bn} and for every f,,, there exists pg,, n, €
{Pgyn,.nnzy such that lim 7 (pg,, n,) — oo.

Proof of the claim: Let Bo={G,,: A
If #(Bo) = oo, then for any 3,,, € Bo, by Ag,,, is not trivial, we’ll have lim 7(pg,, n) — 00, SO

is given in subcase C.2 and Ag,, is not trivial. }

m

when n is big enough, we can let 7(pg,,, ») arbitrarily big.

If #(By) < oo, then for B, ¢ Bo, Ag,, is an index jo + 1 periodic orbit and Orb(pg,, n) = Ag,, for
n > 1. Since f is a Kupka-Smale diffeomorphism, the number of periodic points with fixed boundary of
period should be finite, by the fact # (B \ B,)) = oo, there are infinite of m such that A,, is index jo + 1

periodic orbits, then we can choose Ag,, is an index jo + 1 periodic orbit with arbitrarily big period. O

Now for simiplicity, we denote pg,,, n, by Pg,. -

For {pg,. nm too—1, we have lim w(pg ) — oo and
m—0o0

m-Mm

(417) |Df7r(p[im 77-171)|E(‘ e*%ﬂ'(p[gmynm).

(p["?n nm ) |

Choose {l,,}2°_; carefully, we’ll have lim [,, — oo, lim Wominm) oo and e — 0+ (after

m—00 m—0o0 m

replacing {pg,, n.. }oo—1 by a subsequence, we can always do this). Since mm(pgmmm) > HPomnm)

m

, We

have

(4.18) im m, (pg,,,n,,) — o0
m— 00



NEWHOUSE PHENOMENA AND HOMOCLINIC CLASS 19

By (4.17) and the fact [ - m;(p) is always a multiple of 7(p) for any period point p and I > 1, we have

|Dflm'7ﬂm(17ﬁm,nm )| > e~ mhm T, (Pﬁm,nm),

) |Ef(Pﬁm,nm
it’s equivalent with

Tim (pﬁ'm sTm )—1

L 17 gt pll 2 €5 P
1=0

then we get
Tlm (pﬁnL~”7n)_1

l'm _bm 1 n
H I1Df |(ETEBE§O)(f“m(Pﬁm.nm))H > e Tim Pom, ’"’)a
i=0

since lim lﬁ — 0" and by (4.18), lemma 4.25 tells us C'is an index jo fundamental limit, this finishes
m—0o0
the proof of the claim. O
Now let’s continue the proof of lemma 4.3, by the above argument, we can suppose A is minimal, not
trivial, it’s an index jo and jo + 1 fundamental limit with dominated splitting £ & Ef ® E“+2|A where
J0+2( ) 7& ¢
If B, (A) is not expanding, by lemma 4.22, we can know that there exists a point b € A such that
H |Df~ |Em+2(f(,+1>zb)|| > 1, since (B3 @ EY) @ B o|a is an index jo + 1 — (I, A) fundamental limit, it

=0
means that

E”ﬂrz(‘f("*'l)l(b))H < )\ for n > ].,

H 1D |2 @ ms o l/ H |Df

=0

50 H IDf!
=0

on A satisfies strong tilda condition, by remark 4.27, it also satisfies the non-hyperbolic condition, so

E5 GBS (f1! @enll <A™ for all n > 1. Since A is minimal, the index jo + 1 dominated splitting

it satisfies all the conditions of weakly selecting lemma, then by corollary 4.26, C' contains index jo + 1

periodic point and it’s an index jy fundamental limit. O

5. PROOF OF THEOREM 1

In order to prove theorem 1, we need the following lemma whose proof has been postponed to the end

of this section.

Lemma 5.1. Let f € R, C is any non-trivial chain recurrent class of f, suppose A C C is a non-trivial
minimal set with a codimension-1 partial hyperbolic splitting TAM = E$ & EY where dim(E{|px) = 1 and
is not contracting, then C is a homoclinic class containing index 1 periodic point and C' is an index 0

fundamental limait.

Remark 5.2. in [9], they show that for f € R, if C is a chain recurrent class of f with a codimension-1
dominated splitting Tc M = E§ @ EY where dim(ES|c) =1 and Ef|c is not hyperbolic, then C should be

a homoclinic class. We generalize this result to minimal set with Crovisier’s work on central curves.

Proof of theorem 1: Suppose C'[| Py # ¢, let A be an minimal index 0 fundamental limit, then A is
not trivial ( if A is trivial, A should be an orbit of source, then C itself is source also, that contradicts

with C is not trivial)). By lemma 4.3, either C' is a homoclinic class containing index 1 periodic point and
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C'is an index 0 fundamental limit or A is a non-trivial minimal set with codimension-1 partial hyperbolic
splitting TaM = Ef @ EY where E¢|s is not trivial. In the first case we’ve proved theorem 1, in the

second case, by lemma 5.1, we also proved theorem 1. g

In §5.1, we’ll introduce some properties for codimension-1 partial hyperbolic splitting set, in §5.2 we’ll
introduce Crovisier’s central model for the invariant compact set with partial hyperbolic splitting whose

central bundle is 1-dimension and non-hyperbolic. In §5.3 I'll give the proof of lemma 5.1.

5.1. Some properties for codimension-1 partial hyperbolic splitting. Let f € R, A is a given
non-trivial minimal set of f with a codimension-1 partial hyperbolic splitting TaM = E" & Ef, where
dim(E$(A)) = 1 and the bundle Ef|, is not hyperbolic. In this section we always suppose the dominated
splitting is 1-step and the bundle E* is 1-step expanding, it means that there exists 0 < A < 1 such that

for any v* € E"(z), v° € E{(z) where [v*| = |v°| =1, z € A, we have ‘lglf((s:))“ <A [Df(v¥)| > A7 Fix

a small neighborhood Uy of A, then the maximal invariant set Ag = [\ f7(Up) has also a codimension-1
j=—00

partial hyperbolic splitting Eu GBEIC, the dominated splitting is 1-step and the bundle EV“| Ao 18 also 1-step

expanding. We say E{(A) has an f-orientation if Ef|, is orientable and D f preserves the orientation. If
E¢|A has an f-orientation, we choose Uy small enough such that Ev’f(A) has an f-orientation also.

Here we should notice the reader that in this section, all the argument will take place just in Uy, and
we can suppose Up is small enough such that it satisfies all the properties which we need.

When Uj is small enough, we can extend the bundle EV“| Ao and Evﬂ Ao to Up such that for any x € Uy,
.M = Ev“(x) & Ev’f(x), and if E{|a is orientable, Ev’ﬂgo is orientable also. In fact, no matter Ev’ﬂvo is
orientable or not, we can always locally define an orientation of EﬂUov it means that there exists dg > 0
such that for any x € Uy, we can give an orientation for the bundle Ef|p; (x) [ Uo.

For every point z € Uy, we define two kinds of cones on its tangent space C¢(z) = {v|v € T, M, there

’

exists v’ € Evl(x) such that d(ﬁ, ﬁ) < G}i=cu- When a small enough, CSCY = ¢, Df(C¥(z)) C
Ca(f(a)) and Df~Y(Ce(a)) € C5(f~ (&) for @ € Ao

We say a submanifold D? (i = ¢,u) tangents with cone C! if dim(D?) = d — 1 when i = u and
dim(D?) = 1 when i = c and for z € D!, T,D* C C!(z). For simplicity, sometimes we call it i-disk,
especially when i = ¢, we just call D¢ a central curve. We say an i-disk D' has centrer x with size § if
x € D', and respecting the Riemannian metric restricting on D?, the ball centered on z with radius § is
in D?. We say an i-disk D? has center & with radius § if x € D?, and respecting the Riemannian metric
restricting on D?, the distance between any point y € D? and z is smaller than 6.

The following lemma shows some well-known results, it depends on a simple fact: locally the splitting
Evf @ E’v“bo looks like linear. [9] ’s subsection 4.1 gives many details about such view, from lemma 4.8 in

[9], it would be very easy to get the following properties, so here we ’ll not give a proof.

Lemma 5.3. : Let f € R, A is a non-trivial minimal set of f with a codimension-1 partial hyperbolic
splitting TAM = Ef @ E" where the bundle E{|p is not hyperbolic. Uy, do, C¥, CS are defined by the
above argument. Let U be any small neighborhood of A satisfying U C Uy, there exist two neighborhoods
Us,Uy of A such that A C Uy C U, Cc U Cc U CU C Uy and there exist ag small enough and
0<d1,3<d1,2 <11 <00/2 such that they satisfy the following properties:
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For any x € Uy, we have Bos, ,(z) C Uy, and for any x € Uy, we have Bos, ,(z) C U, then any
i-disk D* (i = c,u) with center x € Uy and radius 2611 will have D' C U.

For any x € Uy, EIC|B251Y1(30) is orientable, we can choose an orientation and call the direction
right, then the orientation of EﬂB%M(w) will give an orientation for central curves in Bas, , ().
We suppose 011 is small enough such that any central curve in Bas, | (x) will not intersect with
itself.

For two points y1,y2 € Bas, ,(x), we say y1 is on the x-right of yo if there exists a central
curve | C Bas, , (z) connects y1 and ya and in 1, y1 is on the right of y2. Then since any central
curve in Bas, | () is not self-intersection, yo is not on x-right of y1 anymore. Usually, we just
simply call yy is on the right of ys.

Let Ay = ﬁ fi(U), apply lemma 4.18 on Ay, we can get the following two kinds of submani-

folds famzlz_e; the local unstable manifolds W,

Wuu
loc

(@) zen, and the local central curves W () zea, -
Choose 61,1 properly ( small enough) we can suppose Wi () (i=uu,c) has size 011, let W6i1.1 (x)
be the ball in W} (z) with central x and radius 01,1, then we have ng (%) (zen,imeun) always

tangents with cone Ci

In fact, for A = ﬂ fi(Uy), any x € AT will have uniform size of unstable manifold Ws ' ()

which tangents with cone Cad.

By the property of strong unstable manifolds, for yi,y2 € AT, if we have W o (y1) N Wgﬁ/Q(yg)
# ¢, then y1 € Wit (y2) and y2 € Wi (y1). There exists 0 < A < 1 such that for any smooth
curve I C Wy (z) where x € AT, we’ll have length(f=(1)) < - length(l).

For any central curve D¢ and u-disk D" in U with centers in Ay and radius smaller than 261 1,
we have #{z| z € D*(\D%“} < 1. If D°( D" # ¢, then they are transverse intersect with each
other.

For any x € U, y € Bs, ,(x) N A1, ng is an i-disk with center y and radius 12, then ng C
Bs, ,(x).

For z € By, 4(x) and lgfz (2) is a central curve at the right of z with length 612 and z is one of
its extreme points, suppose lg: (2) is a central curve at the left of z with length 01,2 and z is one
of its extreme points, let I§, ,(z) = ZEL( 2) U5, (=), then #{I5, ,(z) NW3",(y)} =1 and they are
transverse intersect. Suppose z ¢ "“2( ), then if l(;1 , N gﬁ“g( ) # ¢, we say z is at x-left of y;
if lgl_z Ws (y) # ¢, we say = is at x-right of y. It’s easy to show when z is at x-right of y, it’s

not at x-right of y anymore.

For simplicity, we just call z at the left of W“*(y) or the right of W!(y).
For any x € U1, any § < 812, there exists 0* < & such that for y € Bs«(z) (A1, if we have
z € Bs«(z) (VA1 also, then #{l§(z) NWs (y)} = 1 and they are transverse intersect (I5(z) is
defined in P5).
For any 0 < 6* < 241,1, there exists a 6**such that if I is a central curve in U, with length(T) <
201,1, for z,y € I' and suppose the segment in I' connecting x and y has length bigger than 6%,

then d(z,y) > 0**.
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For any x € Uy, any central curve | in Bs, , () will have length smaller than 61,1.

Fory € Bs,,(x)AY, we can let W™ (y) () Bs, ,(x) always just have one connected compo-
nents, and Wy ,(y) divides Bs, ,(x) into two connected components: the left part and the right
part.

If 21,20 € By, , () are on the different side of Bs, ,(x) ) W /o (y) and there is a central curve
I C Bs, ,(x) connecting them, then #{l ﬂng“l/Q( )P =1.
Let x € Uy, suppose y1,y2 € Bs, ,(x) A and there exists a central curve | in Bs, ,(z) con-
nects them, so by P8) length(l) < 611, now we know W(;‘lf‘l/Q(yl)ﬂWg‘fl/Q(yg) = ¢ (other-
wise y1 € Wy (y2), then #{IOW" (y1)} > 2, it contradicts with P4), it means W5 oY1)
and ng‘l/z(yg) divide Bs, ,(x) into three connected components. Suppose y1 is at x-left of ya,
then for any point z € AT which are on the left of ng“l/?(yg)ﬂB(sL2 (z) and on the right of
W 1 (52) () Ba, o (2), we have Wi ,(2) (YWE () = & (io1.2) and Wi ,(2) (V1 # 6.
A C' curve T in Uy is called a central segment if f/(I') C Uy for all i € Z and it always tangents
with Cg . Then I' C Ay and it’s easy to know that for any x € I', we have T,I' = Evf(x) OnT
we have normally hyperbolic splitting Ef D EA”/L|1~ since T,I' = Ev’f(x), by the property of normally
hyperbolic manifold, U Wg‘lul/Q( x) is a submanifold (dim = d) with boundary, we denote it
W(;ul,l/Q(P)'
For any € > 0, if we have a family of central segment {T',,}22; with length(T',) > e, there exists
6 > 0 such that vol (W3 /2( n)) > 8, so we can findn; # n; such that Wg! /2( n;) ﬂWgL1 1/2(F )

# .

5.2. Crovisier’s central model. In this subsection, let’s fix U, Uy, Uz, A1,00/2 > 01,1 > 61,2 > 01,3 > 0,

and ag given by lemma 5.3, we’ll introduce Crovisier’s central model. By his work, we can get some

dynamical property for the central curve Wy (x) where z € A;. The main result in this subsection is

lemma 5.11.

Definition 5.4. A central model is a pair (K, f) where

)
b)
)
)

e)

K isa compact metric space called the base of the central model.
f is a continuous map from K x [0,1] into K x [0, )

F(E x {0}) = & x {0}
f is a local homeomorphism in a meighborhood of K x {0} : there exists a continuous map
g: K x [0,1] — K x [0,00) such that fog and o f are identity maps on 'gv’l(f( x [0,1]) and
F UK x [0,1]) respectively.
fis a skew product: there exits two map fl . K — K and fg . K x [0,1] — [0, 00) respectively
such that for any (x,t) € K x [0,1], one has flz,t) = (fi(2), falz, 1).

f general doesn’t preserve K x [0,1], so the dynamics outside K x {0} is only partially defined.

The central model (I~( f) has a chain recurrent central segment if it contains a segment I = {z} x [0, a

contained in a chain recurrent class of f]|z | <01

A subset S € K x [0,1] of a product K x [0,00) is a strip if for any = € K, the intersection S ({x} x

[0,00) is a non-trivial interval.
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In his remarkable paper [13], Crovisier got the following important result.

Lemma 5.5. ([13] Proposition 2.5) Let (IZ', f) be a central model with a chain transitive base, then the

two following properties are equivalent:

a) There is no chain recurrent central segment.
b) There exists some strip S in K x [0,1] that is arbitrarily small neighborhood of K x {0} and it’s
a trapping region for f or f=1 : either f(CL(S)) C Int(S) or f~1(CI(S)) C Int(S).

Remark 5.6. If the central model (K, f) has a chain recurrent central segment and K x {0} is transitive,
from Crovisier’s proof, we can know for any small neighborhood V' of K x {0}, there exists a segment

x % [0,alqa20 contained in the same chain recurrent class of flv with K x {0}.

An open strip S C f x [0, 1] satisfying F(CU(S)) C Int(S) or f~Y(CI(S)) C Int(S) will be called a
trapping strip.

Definition 5.7. Let f be a diffeomorphism of a manifold M, A, A1,U, Uy, Ur,Usz,a0,50/2 > 011 >
01,2 > 01,3 > 0 are given in §5.1, where A1 is a partial hyperbolic invariant compact set of f having
a I1-dimensional central bundle. A central model (//le,f) is a central model for (A1, f) if there exists a
continuous map T : Ay x [0,00) — M such that:
a) m semi-conjugate fand f: for=mof on A x [0,1]
b) (A x {0}) = Ay
c) The collection of map t — w(Z,t) is a continuous family of C' embedding of [0,00) into M,
parameterized by T € ;\vl
d) ForanyZ € XI, the curve ©(z,[0,00)) C U has length bigger than 61,2 but smaller than 261 1, it’s
tangent at the point x = w(x,0) € Ay to the central bundle and it’s a central curve ( that means

the curve 7(z,[0,00)) tangents with the central cone C, ).

Remark 5.8. From now, if (Kl,f) is a central model for (A1, f) and w is the projection map, we’ll
denote the central model as (1~\1,f,7r). Here I should notice the reader that w in this paper has two
different meanings, one denote the period of periodic point and another denote the projection map of

central model. If there is any confusion, I'll point out.

The following lemma shows the relation between central model and a set with codimension-1 partial

hyperbolic splitting.

Lemma 5.9. ([Cr2]) A, Ay, U, Uy are given in §5.1, then there exists a central model (A, f, ) for (A, f).
Let’s denote A C Ay satisfies 7 (A) (A1 x {0}) = A x {0}, then (A, f, ) is a central model for (A, f),

and A x {0} is minimal.

Remark 5.10. 1) When the cental bundle E/’f(Al) has an f-orientation (it means that E/’f(Al) is
orientable and D f preserves such orientation), we call the orientation ’right’, then we can get two
central models (]qr’ f*’,w"’) and (//\\f,f_,w_) for (A1, f), we call them the right model and the
left model, where ©* ;— _y is a bijection between A x {0} and A1, and for T € A}, w(F x [0, 0))

is a half of central curve at the right (i = +) or left (i = —) of x = w(Z* x {0}).



24 JIAGANG YANG

2) If f doesn’t preserve any orientation ofEA’IC(Al), thenm: Ay — Ay is two-one: any point x € Ay
has two preimages T~ and TT in Kl, the homeomorphism o of /~\1 which exchanges the preimages
T and T~ of any point x € A1 commutes with f

In § 5.1, we know any point x € Ay has a local orientation, then w(zT x [0,00)) is a central
curve on the right of x, (T~ x [0,00)) is on the left of x, the union of them is a central curve

with central at x and radius d1,1.

The following lemma is the main result in this subsection, it’s similar with [Cr]’s proposition 3.6, but

a little stronger.

Lemma 5.11. f € R, A is a non-trivial minimal set with a codimension-1 partial hyperbolic splitting
E$ @ E" where dim(ES(A)) = 1 and E{(A) is not hyperbolic. Let U, Uy, A1 be given in §5.1, by lemma
5.9, (A1, f) has a central model (1~\1, f,ﬂ), then we can choose Uy properly such that

a) either (1~X1, f,w) has a trapping region,

b) or A is contained in a homoclinic class C, C contains periodic points with index 1 and it’s an

index 0 fundamental limit.

Proof : Let A C Ay satisfy A x {0} = 7= 1(A) (A1 x {0}, then (A, f, ) is a central model for (A, f).
Since now, we just denote A x {0} by A.

At first, let’s suppose (K, f, 7) has no trapping region, then by remark 5.6, for any small neighborhood
V of Ain A x [0, 1], there exists a chain recurrent central segment = x I in V respecting the map f By
Crovisier’s result ([Cr], proposition 3.6), there exits a family of periodic points {p,} such that they all
belong to the same chain recurrent class with A and nhlr;o Orb(pn) = A, s0 A C H(pp, f)n>1. When n is
big enough, Orb(p,) C A1, so Orb(p,) has a codimension-1 partial hyperbolic splitting Ef ® E’"|Orb(pn),
that means p,, is an index 1 or 0 periodic point.

Now we claim that H(py, f) is an index 0 fundamental limit.
Proof of the claim: The argument is exactly the same with the case C' in the proof of lemma 4.3, so

here we just give a sketch of the proof, we divide the proof to two cases.

A) : there exists ¢ > 0 such that for any p,,, we have |Df”(p")|]§;(p )| < e79m(Pn),
¢ (pn

B) : for any L > 0, there exists p,,,, such that [Df™(Prm )| > e mm(Prm)

)|~
|Ef(pnm
In the first case, we use weakly selecting lemma, in case B, we use lemma 4.25. g
Now we suppose (A, f,7) has a trapping region S, we can suppose f(CI(s)) C Int(S) always. Choose
Ay an open neighborhood of A in A; small enough, we can get an open strip Sy for Ao (here open respect
Ag % [0,1]) such that:
a) for any 7 € A, Z x [0,1](S = Z x [0,1] () S,
b) for any & € Ay and f(Z) € As, we have f(CI((Z x [0,1])(S2)) C (f(Z) x [0,1]) () So-
Choose U* neighborhood of A small enough, let A* = fiT), then A* C Ay and let A* C Ay

satisfies A* = 7= 1(A*) (A1, we'll have A* C Ay. Then consider the central model (A%, f, ) for (A*, f),
Sy N(A* x [0,1]) is a trapping region for (A*, f, ).
Now replace Uy by U* and Ay by A*, we get a trapping region for (Kl, f, ). O
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5.3. Proof of lemma 5.1. Now we suppose A is a non-trivial minimal set with a codimension-1 partial
hyperbolic splitting Ef @ E* where dim(Ef) = 1 and E(A) is not hyperbolic. We divide the proof of

lemma 5.1 into two cases: Ef(A) has an f-orientation or not.

Proof of lemma 5.1 ( E$(A) has an f-orientation)

Let Uy be the small neighborhood of A given in §5.1 such that we can extend the splitting E{ @ E¥|x
to Ug, we denote the splitting T, M = E’f @ Ev (x € Tj’o). Suppose U is any small neighborhood
of A such that U C Up, then from lemma 5.3, we can get open sets Us,U; and Ay = A ﬁ fi(U,),

1=—00

ap > 0,0 < 81,3 < 01,2 < d1,1 < do/2 such that they satisfy properties P1-P11 of lemma 5.3 there.

Since ES(A) has an f-orientation, ES(A;) has an f-orientation also, by remark 5.10 we get two central
models: the right central model (/NXT, f+,7r+) and the left central model (/NXl_, f_,ﬂ_), where for any
It e Af, 7t (&t x [0,00)) is a central curve at the right of z = 7+ (ZT x {0}) and &; 5 < length(x™ (T x
[0,00))) < 261,1, s0 mF(TT x [0,00)) C Bas, , () CU. For any - € A~, we have the similar property.

At first, we consider the right central model (Kf,f"’,ﬂ*’), if the right central model doesn’t have
trapping region, by lemma 5.11, A is contained in a homoclinic class H(p, f) which contains an index 1
periodic point and the homoclinic class is an index 0 fundamental limit, then we’ve proved lemma 5.1,
so now we suppose that there exists a trapping region S* for the right central model. By the similar

argument for the left central model, we can suppose it has a trapping region S~ also.
Claim: A is an index 0 fundamental limit.

Proof of the claim: If A is not an index 0 fundamental limit, since A has a codimension-1 dominated
splitting, A should be an index 1 fundamental limit. By generic property 5 of proposition 3.1, there
exists a family of index 1 periodic points {p,} such that lim Orb(p,) = A and they are index stable,
then by Gan’s lemma, there exists a subsequence of periodril; g(j)ints {Pn,, }3°_; in C. Now with the same
argument of the case C' in the proof of lemma 4.3, we can show A satisfies weakly selecting lemma, by

weakly selecting lemma 4.21, A is an index 0 fundamental limit, that’s a contradiction. |

Since A is an index 0 fundamental limit, by generic property P5 of proposition 3.1, there exists a

family of sources {p,}>2; of f satisfying lim Orb(p,) = A. We can suppose Orb(p,) C Us always and
let pi € Al (i=+,—) such that 7@ (B, x {0}) = pn, then (f)y=®=)(pi) = pt. Denote ) % O =

(]B;t(_) x [0,00)) ST and A ) = at()(pt) x If[(_)), let v=v;7 U~ , then v, is a central curve
with center at p,. Since length(’y;f(_)) < 261,1, we have v, C Bas, , (pn) C Us.
We've suppose S* is a trapping, then f(=)(§+(5)) c Int(S+()) or (fH)~1(S+()) C Int(S+()).

In the first case, we say the trapping region is 1-step contracting, in the second case we say it’s 1-step

expanding. When S is 1-step contracting case, we have (f*)™(Pn) (5! x T;) CPh X IL, so frPe) (i) C ~%
for i = 4+, — and there exists § > 0 doesn’t depend on n such that length(y% \ f*@»)(yi)) > § for all
n > 1. If $% is 1-step expanding, we'll still have length(y: \ f~"®n)(7i)) > § for all n > 1.

Since 7% is either expanding or contracting for f7®») let T = () fi7@n)(5i) (i=+,—), we'll have
j=—00

frea (1) = T (i=+,—) where I'’’s extreme points are periodic points. When T is not trivial, we
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denote ¢!, (i=+,—) the extreme periodic point different with py,, if I is trivial, we just let ¢/ = p,. We
let Iy = T,F UL, and hi = 7, \T? ;=4 _), then I', C Ay, hl, C Uy. It’s easy to know that A% is in
the stable(unstable) manifold of ¢/, if S? is 1-step contracting(expanding). And since f is Kupka-Smale
diffwomorphism, f7®»)|r is also a Kupka-Smale diffeomorphisms and just has finite sinks and sources
(respect fTPn)|p ).

Lemma 5.12. If T, T, # ¢, then T, (\Ty, is a connected central curve, and Ty Uy, is a central

segment.
Proof : We need prove some lemmas at first.

Lemma 5.13. let © € T',, Ty, and x is not a periodic point, v1 € T, is the nearest periodic point at
the left of x and xo € '), is the nearest periodic point at the right of x. Denote I, C T',, the segment

connecting r1 and xs, then I, C Ty,

Proof : By the assumption, f™®») has no any other fixed point in I,,, so for z; and z2, one of
them is sink for f7®=)|p ~and another is source for f™®»)|p . We suppose x; is the source, then
llim fimen)(z) — x5 and lim fimPn)(z) — x;. Since T, is a periodic central segment with pe-
;"ioidO m(pm) and x € Ty, we Zhao\je fimen)mem) (2) € T, for all i € Z, so xo = llim firea)men) (3) € T,
and z; = lim f=m @)@ (3) € T,,. o

Now delr;)?e I, the central segment in I';,, connecting 1 and x».

We claim that I, = I,,.

Proof of the claim: If it’s not true, there exists y € Int(l,), z € Wg" (y) () I, and z # y.
For any € > 0, consider a = f”(p“)’r(pm)(y) where i is very big, then a € I,, and it’s near x5 very
much. Let b € Wg* (a) () Im, recall that I,, and I, are tangent at Ev’f(xg), when i is big enough, there

exists a curve [ in Wi (a) connecting a and b with length(l) <.

Wit (@)Wt (y) Wi (a) W (o)

Now it’s easy to know [~ (Pn)7(Pm)(p) € Wi (y) T By P4 of lemma 5.3, #{W3" (y) \I'n} =1,
so foim@a)mem) (h) = 2z, then f="(Pn)™(Pm)(]) is a curve connecting y and z, by P3 of lemma 5.3, we’ll
have length(f =" @n)m@m)(1)) < g . Nim(Pr)7(m)

Since € can be chosen arbitrarily small, we get y = z, that’s a contradiction. O
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By the claim, we finish the proof of lemma 5.13. |

We still need the following result.

Lemma 5.14. Let x € I',, T, and = be a fized point of f~Pn)|p, and f*Pm)|r | suppose Ty, and T,
both have points on the right of x. Let x,, € T, be the nearest fized point of f™®»)|p —on the right of x and
Ty € 'y, be the nearest fixed point of f’r(pm)|rm on the right of ©. Denote I, C T, the central segment

in Iy, connecting x and x,,, I, C T'y, the central segment in ', connecting x and ., then I, = I,,.

Proof : At first, we claim that either Wy" (zn) (\1n # ¢ or W5 (zm) (V1 In # ¢
Proof of the claim: Suppose W3* (z,,) () Im # ¢, we know that z,, is on the left of Wg* (z,), recall
that x,, is on the right of x, so by P9 of lemma 5.3, W3 (x) () In # ¢. |

Now we suppose Wit (2) (V1 I;m = y # ¢, then y € I, \ {z}, it’s easy to know frimen)m(om) (1) €
st (xn) (I, for i > 1, so [ mem) (y) =y, But lim f=7@)7®m) (y) — 2, s0 z, = y. It means

that x,, € I, \ {z}, so ©,, = &,. By the same argument in lemma 5.13, we can prove I,, = I,. O

Now let’s continue the proof of lemma 5.12.

Let ' =T, (', € T be the left extreme point of I', then by lemma 5.13, x should be a periodic
point and on the left of x, there doesn’t contain points of at least one of the segment I',, or I';,,. Let
y € I" be the right extreme point of I', then on the right of y, there doesn’t contain points of at least one
of the segments I',, or I',.

When z =y, I';, and T, are on different side of z, I';, | I}, is obviously a central segment.

When z # y, let I be the maximal central curve in ' containing z, let z be the right extreme point
in I, by lemma 5.13, z should be a periodic point. If z # y, y is on the right of z and y € T',, (T,
so by lemma 5.14, I will contain a central segment on the right of z, that’s a contradiction with the
maximalicity of I, so z = y. It means that I = I';,(\I';, is an interval, and x,y are its extreme points
on the left and right, and I';, and I';, can not both have points on the left of z, they can not both have

points on the right of y also, it’s easy to see now that I'j, |JT'y, is a central curve. |

Now we divide the proof of lemma 5.1 to three cases depending on the contracting or expanding prop-

erties of the two central models.
Case A: Two central models have 1-step erpanding properties.

In this case, for any 7,, we have f~i(y,) € U; for i > 1, it means v C Af, and any = € =, will

uu

have uniform size of unstable manifold W3* (z). Let W /2 ()= U W(;ilul/z(x), by the property of
' ' T€Yn '

normally hyperbolic submanifold, W B /Q(Wn) is a submanifold (dim = d) with boundary, it’s easy to
know that W[;Lm/z(’yn) has uniform size, that means there exists an € > 0 such that B.(p,) C Wi . (vn)
for all n > 1. Suppose nangO pn = p € A, then when n is big enough, p € B:(p,) C W§§,1/2(7")’ then
1151010 fmn)(p,) — some periodic point z € I',,, so z € A. Bust A is a non-trivial minimal set of f,

that’s a contradiction. O
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Case B: Left central model is 1-step contracting and the right central model is 1-step expanding.

Let’s consider v;5, with the same argument in case A, it has uniform size of unstable manifold

Wit 1/2(%4;) = U wgt (x) (it’s because length(y,") > length(h}) > §), so there exists an € > 0 such
1 zevt

that Vol(Wy: (7)) > €.
Now we claim that for any sequence {n;}°,, there exists ip and a sequence ig < i1 < iz < --+ such
that for any j > 0, (;‘1‘1/2(7,:7‘ N 5111/2(7720) # ¢.

Proof of the claim: Suppose that the claim is not true, then we can find a subsequence {n;, }32; such
that Wtﬁ,l/Q(’yﬁrm‘jo) (?1,1/2(7;2) = ¢ for jo € Nand j > jo, it’s a contradiction with Vol(Wg‘lyl/Q('y;fi)) >

€, since we'll have Vol(M) > > Vol(W 1/2(7;’1_)) = 0. O
j ’ J

By the above claim, we can find a subsequence {n;}:2; such that for any ic € NT, we can get
Wy 1/2(7;2) N 5 1/2(7;20) # ¢ for ¢ > ip. Since f is a Kupka-Smale diffeomorphism, on I',,, it just has
finite periodic points. So when we fix ig, we can let ¢ big enough such that p,,, ¢ Yni,- 1t means that
we can choose a subsequence {(T'y,;,T's,,)}52, such that py,, ¢ T'y,, Wi,l/z(%—;) ﬂWngyl/Q(fy;zi) % ¢ and
lim (pp,) = lim (pm,) = o for some zg € A.

1— 00 1— 00

Since Wy, (55 ) VW (i) # &, suppose g € Wi (055 VWi (k) then

lim f*jvr(pni)w(pm,;)(yi) . P:; and lim ffjvr(pni)w(pm)(yi) N F:rnm

J—00 y J—00

so 't NI, # ¢, by lemma 5.12, T'y,, (JT', is a central segment.
For simplicity, we suppose p,, is on the right of p,,, for all ¢ € N, the proof of the other case is similar.
Since py; ¢ 'y, and T'; = Ty, YT, is a central curve. py,, is on the right of qjl' also. Recall that qjl' is

r, , and bt belongs to its basin, so bt W3 o (pm,) = ¢.

Tr(pni)
a source for f i /2

Remark 5.15. : We don’t know h} C Ty, here.

We know that hj is a central curve on the right of ¢ with length bigger than &, by property
P6 of lemma 5.3, there exists a 6* such that d(g} ,pm,) > 0*.( Since if d(q;} ,pm,) < 6%, we have
Fgh)N Wit 15 # ¢ where I¥ (g} ) is any central curve at the right of ¢ with length § and ¢, is the
left extreme point of it, with the fact that py,, is on the right of ¢, we’ll have hf N gﬁ/z(pmi) # @,
that’s a contradiction because hj;i C W“(q;’;)) So especially, in the central segment I';, the distance
between p,, and p,,, is bigger than §*. By property P7 of lemma 5.3, there exists 6** > 0 such that
d(pn; s Pm;) > 0**, it’s a contradiction with 74llr&(pm) = 74111&(;07710 =1x9 € A. O

Case C: The two central models have 1-step contracting properties.
In this case, replace by a subsequence, we can suppose for {I",,}>2;, we have p, ¢ |J T;.
<n

Lemma 5.16. There exists ng big enough such that for any mi,n2 > ng, n1 # na, we always have
W ) W2 (Ta) = 6.
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Proof Suppose the lemma is not true, then we can choose n; and ny arbitrarily big and satisfying
W£,1/2(F”1) N W5 /2 (Tny) # ¢, then it’s easy to know I'y,, Ty, # ¢ and 'y, Ty, is a central curve.
We can suppose ng > n1, then by the assumption of {I',,}52,, we have p,, ¢ I, .

We just suppose py, is on the right of p,,, since ' = T',,, [JT'y, is a central curve and p,, ¢ I'y,, we
can know py,, is on the right of ¢} also, and ¢;f, € I'y,.

We know that there exists a 6 > 0 such that length(h,t(_)) > ¢§ for all n > 1. And for such 4, by
proposition P6 of lemma 5.3, there exists 0 < 6* < § such that for any z,y € Ay, if d(z,y) < §*, we have
#{Wgﬁ/?(x) N5(y)} = 1 where I§(y) is a central curve with center y and on the two sides of y both
have length §.

Suppose z € T, is the nearest periodic point on the right side of qj{l, and let I C I',, the central
segment in Ty, connecting q;F , and z.

Now we claim that length(I) > 0*.

Proof of the claim: If length(I) < 6*, then d(g;} ,x) < 6* also. By the facts that z is on the right of
gt and hf is a central curve with length bigger than d, we have hf (W™ /2(x) # ¢. Then for any

y € Int(I), Wg" ,(y) N ht # ¢.
It’s easy to know I € h;f since h;f contains no periodic point, so there exists z € h;f such that

Wi () N Int(D) =y # =

Wi j2(an,) 51 j2(2) Wi j2(2)
h+
2
|Ri_L— .
a4t a ]

Because the two central models are 1-step contracting, qj{l is a sink for f”(pnl)|pn1 , then it’s also a sink
for frPn)(Pn2)|n where T' = T, [JTn,. We can choose i big enough, such that z; = fi7Pn)7(Pn2)(2)
near g very much, let a; = Wit p(zi) (1. Since hit and I are tangent at ¢ on Ezc(qj{l), for any
€ > 0, when i big enough, there exists a curve I C Wg* , (z;) connecting a; and z; and length(l) < e.
Since f=im(Pn)™(Pna) (q;) € Wg‘lf‘l/Q(z) NI, that means f~ " Pr)7Pn2) (q;) = y and f=7Pr)7Pn2)(]) is a
curve connecting z and y. By property P3 of lemma 5.3, length(f =" (Pr)7(Pn2) (1)) < eX?. Since i can be

chosen arbitrarily big, we can get y = z, that’s a contradiction. O

Since length(I) > 0*, the segment in T' connecting p,, and p,, will have length bigger than ¢*
also, by property P7 of lemma 5.3, there exists §** > 0 such that d(pn,,pn,) > 0**. But recall that

lim p, — =z € A and n1,ny can be chosen arbitrarily big, we can get d(pn,,pn,) < 0**, that’s a

n—oo

contradiction. O

With lemma 5.16, we can chosen {I',}7%; such that if n # m, Wy 2T) AW, 5(Tn) = ¢. Then

by property P11 of lemma 5.3, lim length(I',,) = 0.
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Choose ng big enough such that for m > ng, d(pm,pn,) < 0*/4 and length(T'y,) < 6*/4, we can
suppose pp, is on the right of p,,, then by ng,l/Q(F”) N ng,l/Q(F”) = ¢, we know that p,, is on the
right of ¢, and g, is on the right of ¢ also.

Since d(q; . q;) < d(gh,Pno) + d(Gm, Pm) + d(Prg, Pm) < length(Ty,) + 6* /4 + length(T'y,) < 6%, by
Property P6 of lemma 5.3 and length(h;})) >, length(h,,) > &, we can get hf 5 jo(dm) # ¢ and
bt h Wt (g ) # ¢. Recall that bt C W*(qt ) and h,, C W*(q,,), we can know ¢, and g, are in

61,1/2
the same homoclinic class.

When m — oo, by length(T'y,) — 0 and lim p,, — x9 € A, we have ¢,, — zg also, so
x € H(qt , f)and then A C H(q;!, f). e

Now we’ll prove H(g; , f) is an index 0 fundamental limit.

Recall that Orb(q;,) C U and U can be chosen arbitrarily small, so in fact we’ve proved that there
exists a family of periodic points ¢, with index 1 such that nILH;O Orb(g,) = A and A C H(qu, f) =
H(gz, f) ="+

By the same argument with case C in the proof of lemma 4.3, we can prove H(qi, f) is an index 0

fundamental limit. O

Now let’s keep on proving the other case of lemma 5.1.
Proof of lemma 5.1(E§(A) has no any f-orientation):

In this case, we just have one central model, but locally we still have orientation for Ev’f(Al), and the
two sides have the same dynamical property: they are both 1-step expanding or they are both 1-step

contracting. All the other argument is the same with the case where Ef(A) has an f-orientation. O
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