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Abstract

We propose and analyze a proximal point method for equilibrium problems in Hilbert spaces,
which extends the well known proximal point method for variational inequalities. We prove
global weak convergence of the generated sequence to a solution of the problem, assuming
existence of solutions and rather weak monotonicity properties of the bifunction which defines
the equilibrium problem. We also present a reformulation of equilibrium problems as variational
inequalities ones, under the same assumptions on f.
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1 Introduction

Let H be a Hilbert space. Take a closed and convex set K C H and f : K x K — R such that
Pl: f(z,z)=0for allz € K,
P2: f(-,y) : K — R is upper semicontinuous for all y € K,

P3: f(z,-): K — R is convex and lower semicontinuous for all z € K.

The equilibrium problem EP(f, K) consists of finding z* € K such that f(z*,y) > 0 for all
y € K. The set of solutions of EP(f, K) will be denoted as S(f, K).

The equilibrium problem encompasses, among its particular cases, convex optimization prob-
lems, variational inequalities (monotone or otherwise), Nash equilibrium problems, and other prob-
lems of interest in many applications.
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The prototypical example of an equilibrium problem is a variational inequality problem. Since
it plays an important role in the sequel, we describe it now in some detail. Consider a continuous
T : H — H, and define f(z,y) = (T'(z),y —z). Then f satisfies P1-P3, and EP(f, K) is equivalent
to the variational inequality problem VIP(T, K), consisting of finding a point z* € K such that
(T(z*),z —z*) > 0 for all z € K. We can consider also the case of a point-to-set operator
T : H — P(H), if it is maximal monotone. In this case VIP(T, K) consists of finding z* € K
such that that (v*,z — z*) > 0 for some v* € T(z*) and all z € K. In this situation, we define
f(z,y) = subyer(s){u,y — x). Though it is less immediate, this f is well defined and it still satisfies
P1-P3. Finiteness of f follows from monotonicity of 7', and upper semicontinuity of f(-,y) from
maximality (via demi-closedness of the graph of maximal monotone operators).

The issue of necessary and/or sufficient conditions for existence of solutions of EP was the
starting point in the study of the problem. In 1972, Ky Fan proved existence of solutions assuming
compactness of K (see [8]), and a short time afterward the same result was established in [5]
assuming instead some form of coerciveness of f.

EP has been extensively studied in recent years, with emphasis on existence results (e.g. [1],
(2], [3], [4], [9], [10], [11], [22], [23]). Recently, a new necessary (and in some cases also sufficient)
condition for existence of solutions was proposed in [16], and later on simplified and furtherly
analyzed in [14]. This condition plays a significant role in our analysis, and appears as condition
P5 in Section 2. Its proof is based upon another important theorem by Ky Fan, presented in [7].

Specific algorithms for EP(f, K) do not abound in the literature. Among those of interest, we
mention here the methods introduced in [17] and [21]. In this paper, we extend the proximal point
method for solving monotone variational inequalities to the case of equilibrium problems in Hilbert
spaces. We comment next on this method.

The proximal point algorithm, whose origins can be traced back to [19] and [20], attained its
basic formulation in the work of Rockafellar [27]. The algorithm generates a sequence {z*} C H,
starting from some z° € H, where z¥*! is the unique zero of the operator T% defined as T*(z) =
T (z) 4+, (z—x*), with {;} being a bounded sequence of positive real numbers, called regularization
coefficients. Tt has been proved in [27] that for a maximal monotone T', the sequence {z*} is weakly
convergent to a zero of T' when 7' has zeroes, and is unbounded otherwise. Such weak convergence
is global, i.e. the result just announced holds in fact for any z° € H.

2 Preliminary results

We will need in the sequel certain monotonicity properties of f. We consider the following alter-
natives:

P4: f(z,y) + f(y,z) <0 for all z,y € K.
P4*: Whenever f(z,y) > 0 with z,y € K, it holds that f(y,z) <0.
P4®: There exists # > 0 such that f(z,y) + f(y,z) < 8|z —y||* for all z,y € K.



If f(z,y) = suPyer(z)(u,y —z) for some T': H — P(H), it is easy to check that P4 is equivalent
to monotonicity of T'. Thus, a function f satisfying P4 will be said to be monotone.

We remind that an operator 7' : H — P(H) is said to be pseudo-monotone when (u,z —y) <0
for some z,y € H and some u € T'(z) implies that (v,z —y) > 0 for all v € T'(y). It is easy to
check that if T' is pseudo-monotone then f, defined as f(z,y) = sup,er(s)(u,y — z), satisfies P4*
(the converse statement does not hold in general, but it does when T' is point-to-point). For this
reason, a function f satisfying P4* will be said to be pseudo-monotone. Along the same line, a
function f satisfying P4°® will be said to be #-undermonotone (some rationale behind this notation
will be presented in Section 4).

We discuss now the relations among P4, P4* and P4*. We start with:

Proposition 1. Under P1-P3, Pj implies P4*.
Proof. Elementary. O

On the other hand, P4* does not imply P4, as the following example shows.
Example 1. Let K =[1/2,1] C R and define f: K x K — R as

f(z,y) = 2(z —y) (1)

Note that f(z,y) + f(y,z) = (z — y)? so that f is not monotone, but it is immediate that it is
1-undermonotone. The fact that it satisfies P1, P2 and P3 is also immediate. For P4*, note that
f(z,y) > 0 with z,y € K implies, since z > 1/2, that x — y > 0, in which case, using now that
y > 1/2, one has f(y,z) = y(y — ) < 0. This example will be relevant in our analysis.

Now we define our regularization procedure for equilibrium problems. Fix vy € Ry, and Z € H.
To any f satisfying P1-P3, we will associate another bifunction f : K x K — R which will be
called a regularization of f. It is defined as

f(z,y) = f(z,y) +v(z — 2,y — ). (2)
The following existence result is essential for establishing that EP(f, K) has solutions.

Proposition 2. Assume that f satisfies P1, P2, P83, P}*, and additionally the following condition;
P5: for any sequence {z™} C K satisfying lim,_, ||z"|| = +o0, there exists u € K and ng € N
such that f(z",u) <0 for all n > ny;

then EP(f,K) has solutions.

Proof. See Theorem 4.3 in [14]. O

In view of Proposition 1, the result of Proposition 2 also holds with P4 substituting for P4*.
The following two propositions establish some regularizing properties of f, as compared to f, under
P4°® and P4* respectively. For a convex set C C H, ri(C) will denote the relative interior of C.



Proposition 3. Take f satisfying P1, P2, P3 and P/*. Assume thaty > 0. Then EP(f,K) has
a unique solution.

Proof. First we prove existence of solutions. We claim that f satisfies the assumptions of Propo-
sition 2. It follows easily from (2) that f inherits P1, P2 and P3 from f. We claim now that f
satisfies P4. Note that

F(z,y) + fly.2) = fe,9) + fly,2) =7 llz =yl < (0 =) lz —yl* <0, 3)

using (2) in the equality, the fact that f satisfies P4® in the first inequality and the assumption that
4 > 0 in the second one. In view of Proposition 1, f satisfies P4*. In order to apply Proposition 2,
it suffices to establish that f satisfies P5. Take a sequence {z"} such that lim, o ||z"|| = co, and
let u = Px(z), where Px : H — K denotes the orthogonal projection onto K.

Note that

f@",u) = f («", P (2)) +v(z" — 2, Pk (7) — 2") =
f(@", Pk (%)) + v(z" — Pk(Z), Pk (Z) — ") + v(Pk (Z) — Z, Pk () — 2") <
f (", Pi(2)) =y || Px () — 2™|* < —f (Pi(&),2") + 0 || P (%) — 2"||* = || Px (&) — 2| =

—f (Px(2),2") — (v = 0) | Pxc(z) — 2| = —f (u,z") — (v = 0) [[u —z"||”, (4)

using (2) in the first equality, the fact that {z"} C K, together with the well known “obtuse angle”
property of orthogonal projections, in the first inequality, and P4°® in the second inequality. We
introduce now some notation for the marginals of f. For each ¢ € K, define g, : K — R as

9:(y) = f(z,y)- (5)

Take & € ri(K), so that £ belongs to the relative interior of the effective domain of g,. Since g,
is convex by P3, its subdifferential at &, namely g, (%), is nonempty. Take ¥ € dg,(Z). By the
definition of subdifferential,

(0,2" — ) < gu(z") — gu(2) = f(u,2") — f(u, 2). (6)
In view of (6),

—fu, ") < (0,2 —z") — f(u, ) <||9]] 2 — 2" - f(u,2) <

121 12 = ull + 18] [lu — «"[| = f(u, 2). (7)
Replacing (7) in (4),

f@®u) < lz" —u| 3] = (v = 0) 2" — ul] + 15[ |# — ull = f(u,2). (8)



Since 7 — 0 > 0 and lim,,_, ||2"] = o0, so that lim, , |[|[z" — u|| = oo, it follows easily from (8)
that lim, s f(z",u) = —o0, so that f(z",u) < 0 for large enough n. We have verified that f
satisfies all the assumptions of Proposition 2, and hence EP( f , K) has solutions.

Now we prove uniqueness of the solution. Assume that both Z and ' solve EP( f ,K). In view
of (2),

ng(-ia'%,) :f(q;,j;')-{—*y(i;—:i‘,j:’—j), (9)
0 < f(@, i) = f(&@,7) + (@ — 7,5 — 7). (10)

Adding (9) and (10),
0 < f(&,&)+ f(#,8) — ||z -7 <0 -7 |z -7 <0, (11)

using P4 in the second inequality and the fact that v > 6 in the third one. It follows from (11)
that (0 — ) ||Z — Z'|| = 0, and hence & = ', because y # 6. O

Proposition 4. Asume that f satisfies P1, P2, P8 and P{*. If & € S(f,K) and z* € S(f,K)
then ||& — 2*||” + ||z — &||* < ||z — 2*||?

Proof. Let & be a solution of EP(f, K) and z* a solution of EP(f, K). Since # € S(f, K), we have

R

0< f(%,27) = f(&,27) +v(Z — Z,2" - F),
and therefore
_f('%ax*) S 7(53 - .’i‘,.’L‘* - ‘%>7 (12)

Since z* solves EP(f,K), we have f(z*,y) > 0 for all y € K. It follows from P4* that
f(y,z*) <0 for all y € K, and hence

f(z,2%) 0. (13)
Combining (12) and (13),

0<~y&—z,2"—I) =

o[

—112 ~112 ~ —112
[z = 2 = lla* = 31 = |1z — ]|,

from which the result follows immediately. O



3 A proximal point method for equilibrium problems

Now we propose the following proximal point method, to be denoted as PPEP, for solving any
instance of EP(f, K) for which f satisfies P1, P2, P3, P4* and P4°. Let 6 be the undermonotonicity
constant of f. Take a sequence of regularization parameters {v;} C (6, 7], for some 4 > 6. Choose
2% € K and construct the sequence {z*} C K as follows:

Given z*, z*¥*! is the unique solution of the problem EP(fi,K) where f; : K x K — R is
defined as

fulzy) = f(z,y) +mlz — ¥,y — z). (14)

We mention that if f(z,y) = sup,er(s)(u,y — z), for a maximal monotone point-to-set operator
T : H — P(H), then the sequence defined by (14) is precisely the one generated by the proximal
point method for finding solutions of the variational inequality problem VIP(T, K), studied e.g. in
[27].

We present next the convergence result for PPEP. We need first a notion of asymptotic solu-
tions for EP(f, K). We say that {z¥} C K is an asymptotically solving sequence for EP(f, K) if
liminfy_, oo f(2¥,7) > 0 for all y € K.

Theorem 1. Consider EP(f,K), where f satisfies P1, P2, P38, P4* and Pj*. If EP(f,K) has
solutions, then, for all z° € K,

i) the sequence {z*} generated by PPEP is bounded and limy_,q ||xk+1 - mk” =0.
ii) {z*} is an asymptotically solving sequence for EP(f, K).

i) If f(-,y) is weakly upper semicontinuous for all y € K, then {z¥} is weakly convergent to
some solution & of EP(f, K).

Proof. 1) Since fi, as defined by (14), is a regularization of f, we obtain, invoking recursively
Proposition 3 with v = 7% > 6, Z = z¥ and & = z**!, that the sequence {z*} is well defined (note
that for having a well defined sequence we need P4°® but not P4*). Take any z* € S(f, K). Since
f also satisfies P4*, we invoke Proposition 4 for concluding that

2

HJ’JH—l —_z*

2 2
i Hmk _wk+1H < ka .

(15)

It follows that the sequence {||x’c — x*”} is nonnegative and nonincreasing, hence convergent, say
to o > 0. By (15),

2 2

2
0< Hwk - wkHH < H:L‘k —z* x (16)

. ka-i—l X




Since the rightmost expression in (16) converges to 0 — o = 0 as k — oo, we get that

lim (2% — zF1) = 0. (17)
k—o0
It is also a consequence of (15) that ||z¥ —z*|| < ||2° — #*||, so that {z*} C B(z*, ||z° — z*||), ie.,
{z*} is bounded.
ii) Fix any y € K. Since z**! solves EP(fx, K) we have, in view of (14),

0 < f(xk—i—lay) + 7k<xk+1 - xkay - xk—i—l) <

F@ ) + 7 Hxlﬁ-l _ gUkH Hy _ wk+1” . (18)

using Cauchy-Schwartz inequality. We take limits as £ — oo in (18). Note that {~} is bounded
by ¥, ||y - xk“” is bounded by (i), and limy_, Ha:kle - mk” =0, also by (i), so that

0 < liminfy o0 f (¥, y) Vy € K, (19)

and hence {z*} is an asymptotically solving sequence for EP(f, K), establishing (ii).

iii) In view of (i), {*} has weak cluster points, all of which belong to K, which, being closed
and convex, is weakly closed. Let Z be one of them. Let {z/*} be a subsequence of {z*} weakly
convergent to £. Under weak upper semicontinuity of f(-,y), we have, in view of (19), f(Z,y) >
limy_, o0 f(x7%,y) > 0 for all y € K, so that & € S(f, K).

It remains to be proved that there exists only one weak cluster point of {z*}. Let & and % be
two weak cluster points of {z*}, so that there exist subsequences {z7*} and {z%*} of {z*} whose
weak limit points are £ and Z respectively. We have already proved that £ and Z are solutions of
EP(f,K). It follows from (15) that {||# — 2*||} and {||Z — #*||} both converge, say to o > 0 and
v > 0 respectively. Thus

2zt — ot 5 - 3) = (|5 = o] = |7 = 2] - [[|& - || = |3, 2%|"] (20)
Taking limits as k goes to oo in both sides of (20) we get that
2|2 - #|* = (v —v)+ (0 —0) =0,
and hence i = #, establishing the uniqueness of the weak accumulation points of {z*}. O

At this point, two remarks are in order. Firstly, we comment that the inequality (15) entails
the so called Fejér convergence of {z*} to the solution set, meaning that the distance from z* to
any solution decreases with k. This property is a consequence of Proposition 4, which is one of the
two points in the analysis where assumption P4* is used in an essential way (the other occurs in
Proposition 2, where P4* is used for ensuring existence of solutions of the regularized problem).

Also, it deserves to be mentioned that the result of Proposition 2 was proved in [14] under two
alternative hypotheses, in addition to P4*, which are called P4 and P4” in this reference. To avoid
confusion with the notation of this paper, we will now introduce them as Q4 and Q4’.



Q4: For all z1,...,2, € K and all A1,..., A\, > 0 such that >°7" ; A\; = 1 it holds that

n

min z; E Xizi | <O0.

lgignf za- . YEZ/ I S
]:

Q4’: For all z1,...,2, € K and Aq,...,Ap, > 0 such that Y1 ; A\; = 1, it holds that
n n
Z )\zf i,y Z /\j.%‘j S 0.
i=1 j=1

It has been shown in [14] that Q4 in implied by either P4* or Q4’, but no additional implication
among these three properties hold. It is not hard to prove that Q4 (and henceforth also Q4’), imply
that f(y,z*) <0 for all y € K and all solution z* of EP(f, K), so that the result of Proposition 4
holds also under Q4 or Q4’. Since, as we have already mentioned, both are also sufficient for that
validity of Proposition 2, it happens to be the case that our convergence analysis, and in particular
Theorem 1, is still valid if P4* is replaced by either Q4 or Q4’.

Weak upper semicontinuity of f(-,), as requested in Theorem 1(iii), is quite restrictive, but it
holds at least in two significant cases, dealt with in the following corollary.

Corollary 1. Under the assumptions of Theorem 1,

i) if H is finite dimensional, then the sequence {z*} generated by PPEP converges to a solution
of EP(f,K);

i) if for all y € K f(-,y) is concave and can be extended, preserving concavity, to an open set
W D K, then the sequence {z*} generated by PPEP is weakly convergent to a solution of
EP(f,K).

Proof. Both results follow from Theorem 1(iii): in the finite dimensional case, weak upper semicon-
tinuity of f(-,y) is just upper continuity, which holds by P2; for (ii), note than concave functions
are weakly upper semicontinuous in the relative interior of their effective domain, which turns out
to contain K, under the hypothesis of this item. O

In the following section, we will manage to remove the weak upper-semicontinuity assumption,
replacing it with a rather weak technical assumption, but only for the monotone (rather than
undermonotone) case.



4 A reformulation of the Equilibrium Problem

First we recall our notation for the marginal functions of f given in (5), namely g, : K — R defined,
for each z € K, as g,(y) = f(z, ).

Throughout this section we assume that dg,(y) # 0 for all z,y € K. This is the case, for
instance, if f can be extended, preserving P3, to some open subset V of H x H, containing K x K.
We associate to f the operator T/ : H — P(H) defined as

T/ (z) = 8g5(z) + N (z), (21)

where N is the normal operator of K, i.e. the subdifferential of the indicator function Ix, which
vanishes at points of K, and takes the value +o0o outside K. The fact that dg,(z) is defined only
for € K is irrelevant, because Nx(z) = ) when z ¢ K, and hence the same holds for 7"/ (one can
also think that g, has been extended to the whole H, taking the value +o0 outside K).

We have the following relation between EP(f, K) and T.

Proposition 5. i) S(f,K) is the set of zeroes of TY.

ii) Starting from the same x°, the sequence generated by PPEP, using fy as defined by (14),
and the sequence generated by the prozimal point method for finding zeroes of TY, coincide
(the latter being the sequence {x*}, where z*t1 is the unique zero of T,{, defined as Tlf(ac) =
T! (z) + i (x — zF)).

Proof. 1) z* € S(f,K) iff gp+(2*) = f(z*,2*) =0 < f(z*,y) = g~ (y) forally € K, i.e. iff z* solves
the problem of minimizing g,-(y) subject to y € K. The first order condition for this problem,
necessary and sufficient for optimality, in view of the convexity of g, and K, is the existence of
v* € 0gy~(z*) such that (v*,y —z*) > 0 for all y € K. In view of the definition of Nk, this is
precisely equivalent to saying that 0 € dg,(x*) + Nk (z*), i.e., looking at (21), that z* is a zero of
T/

ii) Let {z*} be the sequence generated by the proximal point method for finding zeroes of T7.
Assume inductively that z* is equal to the k-th iterate of PPEP applied to EP(f, K). We must
prove that ¥ is the next iterate of the PPEP sequence. We know that

0 € TH(a" ) + (e — 2¥) = Oggrsr (zFT1) + yp(zFF! — 2%) + N (2FH1). (22)
For z € K, define g* : K — R as

9E() = ga(y) + Wlz — 2*,y — ).

It is immediate that 8¢5 (y) = dgz(y) + ve(z — 2*) Define U/ (y) = dgk(y). It follows from (22)

that 5! is a zero of U + Nk, which implies, using now the convexity of g’?j and of K, that zF+!

minimizes g’;k 41 over K, meaning that, for all y € K,

k

k
Y —



f(wk+17y) + 7k<xk+1 - wkay - I]H—l) = fk(xk+17y)'

Since 0 < fi(zFt1,y) for all y € K, 2*¥*! solves EP(fx, K), and hence it is the k + 1-th iterate of
the PPEP sequence for problem EP(f, K), completing the inductive step. O

The result of Proposition 5 can be seen as a converse of our comment at the beginning of Section
2, where we saw that variational inequality problems are particular cases of equilibrium problems:
here we have shown that, generally speaking, each equilibrium problem can be reformulated as
a variational inequality problem, and, furthermore, that the proximal point method for the equi-
librium problem coincides with the classical proximal point method applied to its reformulation
as a variational inequality problem. This fact could convey the impression that this whole paper
(with the exception, perhaps, of Proposition 5), is rather superfluous, because the proximal point
method for variational inequalities, or equivalently for finding zeroes of point-to-set operators, has
been extensively analyzed. We argue, however, that such an impression is misleading.

Firstly, convergence results for the classical proximal point method, as presented e.g. in [27],
demand monotonicity of the operator, in this case of T. Since Ng is always maximal monotone,
monotonicity of T/ will occur when the operator U/ (z) = g, (z) is itself monotone. At this point,
it is essential to note that U/ is not the subdifferential of a convex function; rather, at each point
z it is the subdifferential of a certain convex function, namely g, but this function changes with
the argument of the operator. Thus, the monotonicity of U is not granted a “priori”, but we have
the following elementary result.

Proposition 6. i) If f is @-undermonotone (i.e. it satisfies P4*) then UT + 0I is monotone.
i) If f is monotone (i.e. it satisfies P4) then Uf is monotone.

Proof. i) Take z,y € K,v € (U +0I)(z),w € (U! +0I)(y), so that v — Oz € U/ (z), w — 0y €
U7 (y). Then, using the definition of dg,, (12), P1 and P4°,

—((v = 0z) = (w = 0y),x —y) = (v = Oz,y —2) + (w - Oy, z — y) <

92 (Yy) — 9z(z) + gy(z) — 9y(y) = f(z,9) — f(z,2) + f(y,2) — f(y,9) =

f(@,y) + [y, ) <Ole -yl (23)
It follows easily from (23) that (v — w,z — y) > 0, establishing the monotonicity of Uf + 61I.

ii) Follows from (i) with # = 0, noting that 0-undermonotonocity is just monotonocity.
]

At this point we emphasize that our convergence analysis in Section 3 holds for instances in
which f is not monotone, e.g. the function given in Example 1, and thus the reformulated problem
does not fall within the range of the classical proximal point method. We reckon that there are

10



convergence results for the proximal point method applied to non-monotone operators (see e.g. [18]),
but still they do not encompass our results here. The closest results seem to be those dealing with
hypomonotone operators (e.g. [25], [15], [12]). An operator T is p-hypomonotone when T~! + pI
is monotone (I being the identity operator). Now, our assumption of #-undermonotonicity of f
(namely P4°), implies that U/ + 6T is monotone, but this is different from #-hypomonotonicity,
which means monotonicity of (Uf)~! + @I. Parenthetically, this could look suspicious, because it is
known that monotonicity of 7'+ 01 is not sufficient for getting convergence of the proximal point
method for finding zeroes of T', with the regularization parameters -y, chosen as v, > 6, because
in general there will be no Fejér convergence of {z*} to the solution set, and (15) will fail. For
example, consider EP(f, K) with f as in Example 1, i.e., f(z,y) = z(z —y), but taking now K =R
instead of K = [1/2,1]. Since f(z,vy) + f(y,z) = (x —y)?, we have that f is 1-undermonotone also
for this choice of K. The only solution of EP(f, K) is now z* = 0, but it is easy to check that if
we choose v, = v > 6 = 1, the generated sequence {z*} C R is given by

ok = (ﬁ)kxo (24)

which diverges for any x° # 0. The point here is that for this choice of K the function f does not
satisfy P4*, which ensures the Fejér convergence of {z*} to the solution set.
In the algorithm considered in [15], [25] for finding zeroes of a p-hypomonotone operator T,

1
vk is required to satisfy 0 < v, < 2" For f as in Example 1, one has Uf(z) = —z, which is
0

1-hypomonotone, but the analysis in [15], [25] guarantees Fejér convergence of {z*} to {0} when
Yk € (0,1/2), which is inconsistent with the choice prescribed in our algorithm, namely v, > 6 =1
(note that {z*} as given by (24) indeed converges to 0 with y € (0,1/2)).

On the other hand, if we take K = [1/2,1] and 7y, = v > 1, i.e. satisfying the prescription of
the algorithm analyzed in this paper, the divergence effect noted above does not occur, because the
sequence is forced to remain in [1/2,1]. Indeed, in this case, due to the presence of the constraint
zF € [1/2,1], the iteration formula is not the one given by (24), but rather we have z¢*! =
min{1, [y/(y — 1)]z*}, and it is easy to check that {z¥} converges to the unique solution z* = 1
after a finite number of iterations, for any z° € K = [1/2,1]. The fact that the sequence {z*} does
converge to the solution of the problem is consistent with our convergence analysis, since f satisfies
P4* for this choice of K.

We mention that we have chosen a one dimensional problem (namely Example 1) for a de-
tailed analysis of the breadth of our results viz a viz others, only because it is posible to get
closed iteration formulae, allowing an easy visualization of the sequence behavior. On the other
hand, one-dimensional variational inequalities always represent first order conditions of optimiza-
tion problems. Indeed, Example 1 is equivalent to the first order conditions for the nonconvex
problem of minimizing f(z) = —z? subject to 1/2 < z < 1. Convergence results for the proximal
point method for nonconvex optimization, appearing in [18], apply to this problem. We give next a

11



two-dimensional example of a pseudomonotone and #-undermonotone equilibrium problem which
is not monotone, and does not represent the first order conditions of an optimization problem.
Example 2. Consider EP(f, K) with f : R2 x R? — R defined as

flz,y) = 222 — 21)(y1 — 21),

and K = {z € R% : max{z1,1/2} < 25}, so that K is the quadrangle whose vertices are
(0,1/2),(0,1), (1,1) and (1/2,1/2). Note that f is 2-undermonotone, because

fla,y) + fly,2) = (21— y1)* — 2(z1 — y1) (w2 — 2) <

(@1 —91)* + [(21 —91)* + (@2 — 12)°] <2z —y|”.
Also, EP(f, K) is pseudomonotone, because if f(z,y) > 0, i.e., (222 — z1)(y1 — z1) > 0, then

y1—z1 >0, (25)

because for all z € K one has zo > x1 > 0, which gives 229 — 21 > 0. In such a case, since
2ys —y1 > 0 for all y € K, by the same argument as above, and 1 — y1 < 0 by (25), one gets
fly,z) = (2y2 — y1)(z1 — y1) < 0, establishing pseudomonotocity. The choice z = (1,1), y = (0,1),
gives f(x,y) + f(y,z) = 1 with z,y € K, so that the problem is not monotone. Finally, it does not
fall within the optimization case, because its associated operator U7 is given by U/ (z) = Az with

-1 2
=l al
which is not symmetric. In such a case, the variational inequality problem VIP(U/, K), equivalent
to the problem of finding zeroes of T/ = U/ 4+ N, cannot represent the first order optimality
conditions of any optimization problem.

In summary, our analysis works for v, > 6, where 0 is the undermonotonicity constant, because
P4* comes to the rescue: it allows us to prove Proposition 4, for which P4°® is not enough. To our
knowledge, the convergence of the proximal point method for a pseudo-monotone operator 1" which
is also f-undermonotone (in the sense that 7'+ 601 is maximal monotone) with v, > 6, has not been
studied up to now. In fact, such a convergence analysis follows, up to certain technicalities, from
the results in this paper, but we will not pursue this issue further. We just mention that a one-
dimensional example of a pseudo-monotone and #-undermonotone operator which is not monotone
is given by T': R — P(R) defined as T'(x) = —0z+ N, )(7) with 0 < a < 8, and a two-dimensional
one, with § = 2, is given by the operator T/ associated to Example 2. The end of the story is
that the current literature on the proximal point method does not cover a case like the one given
in Example 2.

We give also at this point a reason for denoting as §-undermonotone, and not #-hypomonotone, a
function f satisfying P4°: this property translates into monotonicity of the operator Uf +6I, which,
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as explained above, does not coincide with #-hypomonotocity of U/, as defined above, following
e.g., [25].

In addition, not only monotonicity of the operator (or some variant thereof) is needed in the
analysis of the proximal point method, but also maximality. Even in the case in which f is
monotone and defined on the whole space H, it is not at all obvious that the operator U/ will
be maximal monotone. We remind that while monotonicity of the subdifferential of a convex
function is immediate, its maximality is rather nontrivial (see [26]). We will prove below that the
needed maximality indeed holds when f is monotone, but it happens that the proof requires the
EP techniques: it uses in an essential way the existence result in Proposition 2. Since we cannot
avoid the Equilibrium Problem approach even when dealing directly with the reformulation, we
considered it advisable to present a clean analysis of the PPEP, just in terms of the Equilibrium
Problem, as done in Section 3, going as far as possible without introducing the more complicated
machinery of the reformulation.

However, we proceed now to explore the reformulation in order to remove the weak upper-
semicontinuity hypothesis.

We present next a result on maximality of monotone operators, of some interest on its own. A
similar result, in reflexive Banach spaces but with A = 1, was established in Remark 10.8 of [28].
We present here a simplified version of the proof of Theorem 4.5.7 in [6], which also deals with
Banach spaces.

Proposition 7. Let T : H — P(H) be a monotone operator. If T + A is onto for some X\ > 0,
then T is mazimal monotone.

Proof. Take a monotone operator T such that T C T, and a pair (v,z) such that v € T(z). We
must prove that v € T'(z). Define b = v + Az. Since T + A is onto, there exists z € H such that

beT(z)+ Az C T(z) + . (26)

On the other hand, since v € T(z), we have that b = v + Az € T(z) + Az. Since T + A is strictly
monotone, we conclude that z = z, and thus, making x = z in the first inclusion of (26), we have
v+ Az € T(z) + Az, which implies that v € T(z). It follows that T C T, i.e. T = T, and hence T
is maximal. O

Now we use Propositions 2 and 7 to establish maximal monotonicity of 7/ under adequate
assumptions on f.

Proposition 8. If f satisfies P1-P/4, then T7, as defined by (21), is mazimal monotone.

Proof. We intend to apply Proposition 7, for which we need to show that 7/ is monotone and
that T/ + X is onto for some A > 0. Note that U/, defined as U/(y) = 895 (y), is monotone by
Proposition 6(i) with # = 0 (recall that 0-undermonotonicity is just monotonicity). Since Nk is
certainly monotone, it follows that 77 = U/ + Ng is monotone. Now we address the surjectivity
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issue. Take any A > 0 and b € H. We want to show that there exists z € K such that b € (TS +\I)z.
Consider f as in (2), with Z = A~!b, vy = X\. By Proposition 3, EP(f, K) has a solution, say z.
Define

Note that, since z solves EP(f, K),

Gu(T) = f(.’L‘,x) =0< f(w,y) = Gz(y)

for all y € K. Thus, £ minimizes g, over K, which is the same as saying that x is an unrestricted
minimizer of g, + Ik, where Ik is the indicator function of K. By assumption, we have that dg,(z),
and henceforth 9g,(z), are nonempty for all z € K. In view of (27) and the fact that 8Ix = Nk,
we have

0 € 9(§s + Ix)(x) = 0gz(z) + Mz — A71b) + Nk (z) = 9g,(x) + Az — b+ N (x). (28)
Rewriting (28) as
b€ gy (z) + Ng(z) + Az = (U + Ng)(z) + Az = (T7 + M) (),

we complete the proof of surjectivity of 7/ + A\I. We can use now Proposition 7 to conclude that
T/ is maximal monotone. O

We remark that in the case of K = H, and f(z,y) = h(y) — h(z), where h : H - RU{+00} is a
convex function, we get dg; = Oh and N (z) = 0 for all z € H, so that T/ = U/ = Oh. Since this
f satisfies P1-P4, Proposition 8 provides an alternative (and rather short) proof of the maximality
of the subdifferential of a convex function (cf. [26]). Noting that the proof of Proposition 7 is also
quite short, we conclude that the “heavy artillery” behind this approach is hidden in the proof of
Proposition 2, given in [14].

We remind now a well known property of maximal monotone operators, namely demi-closedness.

Definition 1. Given T : H — P(H), the graph of T is said to be demi-closed, when the following
property holds: if {z¥} C H is weakly convergent to x* € H, {v*} C H is strongly convergent to
v* € H, and v* € T(z*) for all k, then v* € T(z*).

Proposition 9. If T': H — P(H) is mazimal monotone, then its graph is demi-closed.
Proof. See, e.g., [24], p. 105. O

Now we can get rid of the weak upper semi-continuity assumption in Theorem 1(iii).

Theorem 2. If f satisfies P1-P4, EP(f,K) has solutions, and f(z,-) can be extended, for all
z € K, to an open set W D K, while preserving its convezity, then the sequence {z*} generated by
PPEP is weakly convergent to a solution of EP(f,K) for all z° € K.
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Proof. Note that we are within the assumptions of items (i) and (ii) of Theorem 1, recalling that
P4 implies P4*. Define g% (y) = fx(z,v), with fx as in (14). As we have already seen several times,
zF*1 is a solution of the problem min g’;k +1(y) subject to y € K, and thus it satisfies the first order
optimality condition, namely

0 € 0y (2571) + Nic(211) = By (2571) + 9o (* T = 2) + Nic(ah),
which can be rewritten as
pRtl .= ’Yk(~77k _ xk—l—l) = 8g$k+1 (xk—l—l) + NK(.Tk+1) — Tf(xk+1). (29)

Note that 7' is maximal monotone by Proposition 8, so that its graph is demiclosed by Proposition
9. Also, {z*} is bounded by Theorem 1(i). Observe also that {v*} is strongly convergent to 0 by
Theorem 1(i) and boundedness of {y;}. Let & be a weak cluster point of {z*}. Taking limits
along the corresponding subsequence in (29), we are exactly in the situation of Definition 1, so that
Proposition 9 entails that 0 € T (#). By Proposition 5(i), & solves EP(f, K). Uniqueness of the
cluster points of {z*}, and consequently weak convergence of {z*} to a point in S(f, K), follow
with the argument used at the end of the proof of Theorem 1(iii). O

We remark that the difference between Theorems 1 and 2, besides the fact that the proof of the
latter requires the reformulation of the equilibrium problem as a variational inequality one, lies in
the assumptions on f (monotonicity and extension of f(z,-) to an open set containing K), which
replace weak upper semicontinuity of f(-,y), as the tool for establishing optimality of the weak
cluster points of the generated sequence.

At this point it would be reasonable to discuss the convergence of the method under inexact
solution of the subproblems, which is the standard situation in actual implementations. Different
error criteria which preserve the convergence result for the proximal point method for finding zeroes
of maximal monotone operators have been proposed since Rockefellar’s 1976 paper ([27]). Recently,
less stringent error criteria, allowing for constant relative errors along the iterations, were proposed
by Solodov and Svaiter in [29], [30] for monotone operators, and extended to hypomonotone oper-
ators in [15] (in the case of Hilbert spaces) and [12] (in the case of Banach spaces). Through the
reformulation of equilibrium problems as variational inequality problems, proposed in this section,
all these convergence results hold for equilibrium problems, assuming, of course, that the mono-
tonicity properties of f are such that the associated operator T satisfies the assumptions required
for the convergence of each of these inexact procedures. Nevertheless, it is possible to introduce
some error criteria which are specific of equilibrium problems. These criteria will be the subject of
a forthcoming paper.
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