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Abstract

We provide a complete answer to the problem which consists in finding an unpointed convex cone lying at minimal
bounded Pompeiu-Hausdorff distance from a pointed one. We give also a simple and useful characterization of
the radius of pointedness of a convex cone. A corresponding characterization for the radius of solidity of a convex
cone is then derived by using a duality argument.
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1. Introduction

How far is a pointed convex cone, say K, from an unpointed one ? How to construct an unpointed
convex cone that is at minimal distance from K ? These questions arise in the theory of convex cones and
have a large variety of applications.
To start with, we fix the notation and terminology. The Euclidean space Rn is equipped with the usual

inner product 〈u, v〉 = uT v and associated norm ‖ · ‖. The symbol Sn refers to the unit sphere in Rn. We
equip the set

C(Rn) = {K ⊂ Rn : K is a (nontrivial) closed convex cone}
with the bounded Pompeiu-Hausdorff distance (cf. [6])

δ(K,Q) = max

{

max
x∈K∩Sn

dist(x,Q), max
x∈Q∩Sn

dist(x,K)

}

.

That K is nontrivial simply means that K is different from {0} and different from Rn.
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Pointedness is an essential hypothesis in many theorems in which convex cones enter into the picture.
One says that K ∈ C(Rn) is pointed if K ∩ −K = {0}, that is to say, if K doesn’t contain a line. The
number

ρ(K) = min
Q∈C(Rn)
Q unpointed

δ(K,Q), (1)

is called the radius of pointedness of K and it has been suggested in [3] as tool for measuring the degree
of pointedness of K.
In general, the evaluation of (1) is a cumbersome task even for cones having a relatively simple structure.

Fortunately, the least-distance problem (1) is related to the angle-maximization problem

θmax(K) = max
u,v∈K∩Sn

arccos〈u, v〉, (2)

which, in principle, is easier to solve because the decision variables u, v live in a standard Euclidean space.
Following [1], we say that (u0, v0) ∈ Rn × Rn is an antipodal pair of K ∈ C(Rn) if

u0, v0 ∈ K ∩ Sn and arccos〈u0, v0〉 = θmax(K).

By compactness of K∩Sn, the nonconvex optimization problem (2) admits always a solution, so we don’t
have to worry about the existence of antipodal pairs.
From now on, the symbol 〈w〉 = {αw : α ∈ R} denotes the line generated by a nonzero vector w ∈ Rn

and 〈w〉⊥ refers to the hyperplane which is orthogonal to this line.

Theorem 1 (Main Result) For any K ∈ C(Rn) one has

min
Q∈C(Rn)
Q unpointed

δ(K,Q) = cos

[

θmax(K)

2

]

. (3)

Moreover, if K is not a half-line and admits (u0, v0) as antipodal pair, then the closed convex cone

Q0 = (K ∩ 〈u0 − v0〉⊥) + 〈u0 − v0〉 (4)

is unpointed and lies at minimal distance from K.

Formula (3) was known to hold, until now, only under the additional (and bothering) hypothesis that
θmax(K) ≤ 2π/3, see [4, Theorem 1]. The solution (4) to the least-distance problem (1) is given here for
the first time.

2. Proof of the Main Result

For the sake of readibility we split the proof of Theorem 1 in five clearly distinguished steps. Throughout
the proof we use the notation

w0 =
u0 − v0
‖u0 − v0‖

.

We assume that K is not a half-line, otherwise both sides of (3) are equal to 1 and we are done. If K is
unpointed, then both sides (3) are equal to 0 and Q0 coincides with K as expected. So, there is no loss
of generality in assuming that K is pointed.

Step 1. We start with some preliminary words on Q0. The set Q0 is clearly a convex cone in Rn. On

the other hand, Q0 is closed because it is expressible as sum of a line 〈w0〉 and a closed set contained in
〈w0〉⊥. Finally, Q0 is unpointed because Q0 ∩ −Q0 contains the nonzero vector w0.
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Step 2. We establish the inequality

dist(x,K) ≤
√

1 + 〈u0, v0〉
2

∀x ∈ Q0 ∩ Sn. (5)

Take any x ∈ Q0 ∩ Sn, so that x = z + αw0, with z ∈ K ∩ 〈w0〉⊥ and α ∈ R. Clearly α = 〈x,w0〉, and
therefore |α| ≤ 1 in view of Cauchy-Schwarz inequality. Consider the point y defined as

y =

{

z + α
√

(1− 〈u0, v0〉)/2 u0 if α ≥ 0,

z − α
√

(1− 〈u0, v0〉)/2 v0 if α ≤ 0.

Note that in both cases y belongs to K, because z, u0, v0 ∈ K. We proceed to estimate the distance
between x and y. Consider first the case of α ≥ 0. One has

‖x− y‖2 = α2

∥

∥

∥

∥

∥

w0 −
√

1− 〈u0, v0〉
2

u0

∥

∥

∥

∥

∥

2

= α2

[

1 +
1− 〈u0, v0〉

2
− 2

√

1− 〈u0, v0〉
2

〈u0, w0〉

]

.

A bit of elementary algebra yields

‖x− y‖2 = α2

[

1 +
1− 〈u0, v0〉

2
− 2

√

1− 〈u0, v0〉
2

1− 〈u0, v0〉
‖u0 − v0‖

]

= α2

[

1 +
1− 〈u0, v0〉

2
− 2

√

1− 〈u0, v0〉
2

1− 〈u0, v0〉
√

2(1− 〈u0, v0〉)

]

= α2
[

1 +
1− 〈u0, v0〉

2
− (1− 〈u0, v0〉)

]

= α2
[

1 + 〈u0, v0〉
2

]

.

Hence, dist(x,K) ≤ ‖x− y‖ ≤
√

(1 + 〈u0, v0〉)/2 . The case of α ≤ 0 is dealt in a similar way.

Step 3. We now prove the inequality

d(x,Q0) ≤
√

1 + 〈u0, v0〉
2

∀x ∈ K ∩ Sn. (6)

It is at this stage where antipodality enters into action for the first time. Take x ∈ K ∩ Sn and consider
the vector

y = x+
|〈x,w0〉|
‖u0 − v0‖

(u0 + v0). (7)

Note that y can be decomposed in the form

y = x− 〈x,w0〉w0 +
|〈x,w0〉|
‖u0 − v0‖

(u0 + v0)

︸ ︷︷ ︸

ỹ

+ 〈x,w0〉w0
︸ ︷︷ ︸


y

.

Clearly, ŷ belongs to 〈w0〉. We claim that ỹ ∈ K ∩ 〈w0〉⊥. For checking that ỹ ∈ 〈w0〉⊥, note that

〈ỹ, w0〉 = 〈x,w0〉 − 〈x,w0〉 ‖w0‖2 +
|〈x,w0〉|
‖u0 − v0‖2

〈u0 + v0, u0 − v0〉 =
|〈x,w0〉|
‖u0 − v0‖2

〈u0 + v0, u0 − v0〉 = 0,

using the fact that ‖w0‖ = ‖u0‖ = ‖v0‖ = 1. For checking that ỹ ∈ K, rewrite ỹ as

ỹ = x− 〈x,w0〉
‖u0 − v0‖

(u0 − v0) +
|〈x,w0〉|
‖u0 − v0‖

(u0 + v0)
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=

{

x+ 2 ‖u0 − v0‖−1 |〈x,w0〉| v0 if 〈x,w0〉 ≥ 0,

x+ 2 ‖u0 − v0‖−1 |〈x,w0〉|u0 if 〈x,w0〉 ≤ 0.

In both cases, ỹ ∈ K because x, u0 and v0 belong to K. We conclude that y = ỹ + ŷ belongs to Q0. We
estimate next the distance between x and y. Directly from (7) one gets

‖x− y‖ = |〈x, u0 − v0〉|
‖u0 − v0‖2

‖u0 + v0‖ =
|〈x, u0 − v0〉|
2(1− 〈u0, v0〉)

√

2(1 + 〈u0, v0〉).

In other words,

‖x− y‖ = η

√

1 + 〈u0, v0〉
2

with η =
|〈x, u0 − v0〉|
1− 〈u0, v0〉

≥ 0.

We claim that η ≤ 1, which is equivalent to

|〈x, u0 − v0〉| ≤ 1− 〈u0, v0〉. (8)

If 〈x, u0 − v0〉 ≥ 0, then (8) is equivalent to

〈x, u0〉+ 〈u0, v0〉 ≤ 1 + 〈x, v0〉,
which holds because 〈x, u0〉 ≤ 1, since both x and u0 belong to Sn, and also 〈u0, v0〉 ≤ 〈x, v0〉, because x
belongs to K ∩ Sn and (u0, v0) is an antipodal pair of K. If 〈x, u0 − v0〉 ≤ 0, then (8) is equivalent to

〈x, v0〉+ 〈u0, v0〉 ≤ 1 + 〈x, u0〉,
which holds by the same reasons. This confirm that η ≤ 1 as claimed. In this way we have shown that

dist(x,Q0) ≤ ‖x− y‖ ≤
√

(1 + 〈u0, v0〉)/2 .

Step 4. We prove the inequality

ρ(K) ≤ σ(K) := cos

[

θmax(K)

2

]

. (9)

Since (u0, v0) is an antipodal pair of K, one has

σ(K) =

√

1 + θmax(K)

2
=

√

1 + 〈u0, v0〉
2

.

So, the combination of (5) and (6) yields in fact δ(K,Q0) ≤ σ(K). It suffices then to observe that
ρ(K) ≤ δ(K,Q0) because Q0 ∈ C(Rn) is unpointed.

Step 5. We now prove the reverse inequality

σ(K) ≤ ρ(K). (10)

It has been shown in [2, Theorem 3.9] that σ(·) is a nonexpansive function over the metric space (C(Rn), δ),
that is,

|σ(K1)− σ(K2)| ≤ δ(K1,K2) ∀K1,K2 ∈ C(Rn).
In particular,

σ(K) ≤ σ(Q) + δ(K,Q) ∀Q ∈ C(Rn).
So, one arrives at (10) by taking in the above line the infimum with respect to all unpointed cones in
C(Rn).

The proof of Theorem 1 is complete. Not only we proved the validity of formula (3), but also the fact
that Q0 solves the least-distance problem (1).
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3. Conclusions

The proof of the formula (3) is certainly long and subtle, but we hope that the reader didn’t find it
excessively complicated. The merit of Theorem 1 is twofold : first of all, one obtains a nice and useful
characterization of ρ(K), regardless of whether or not the maximal angle of K falls beyond the critical
value 2π/3 that was bothering us so much in [4, Theorem 1]. And, secondly, one obtains an explicit
solution to the least-distance problem (1).
Some interesting by-products of Theorem 1 deserve to be properly recorded. By using the very defini-

tion of the function ρ : C(Rn)→ R, one can prove the following properties (cf.[3]) :

(A0) nonexpansiveness : |ρ(K1)− ρ(K2)| ≤ δ(K1,K2) ∀K1,K2 ∈ C(Rn).
(A1) minimal pointedness : ρ(K) = 0 if and only if K is unpointed.

(A2) maximal pointedness : ρ(K) = 1 if and only if K is a half-line.

(A3) invariance property : ρ(U(K)) = ρ(K) ∀K ∈ C(Rn), ∀U ∈ Rn×n orthonormal.

We challenge the reader to obtain a simple and rigorous proof of the property

(A4) downward monotonicity : K1 ⊂ K2 implies ρ(K1) ≥ ρ(K2).

The proof of this monotonicity condition eluded us for a long time ! Now we are getting it for free from
formula (3). It suffices to observe that cos : [0, π/2]→ [0, 1] is a decreasing function and θmax(K) doesn’t
decrease if we enlarge the cone K.
As a second by-product of Theorem 1 one obtains a simple characterization for the radius of solidity

µ(K) = min
R∈C(Rn)
R flat

δ(K,R),

of a given K ∈ C(Rn). That a cone R ∈ C(Rn) is flat simply means that its topological interior is empty,
that is to say, flatness is the concept which is opposite to solidity.
In the next corollary, the notation

K+ = {y ∈ Rn : 〈y, x〉 ≥ 0, ∀x ∈ K}

refers to the dual cone of K.

Corollary 2 For any K ∈ C(Rn) one has

min
R∈C(Rn)
Q flat

δ(K,R) = cos

[

θmax(K
+)

2

]

. (11)

Moreover, if K+ is not a half-line and admits (y0, z0) as antipodal pair, then the closed convex
cone

R0 =
[

(K+ ∩ 〈y0 − z0〉⊥) + 〈y0 − z0〉
]+

(12)

is flat and lies at minimal distance from K.

Proof. It is a matter of combining Theorem 1 and a certain duality relationship that exists between the
functions ρ and µ (cf. Theorems 4.1 and 4.5 in [3]). 2

Our last remark is addressed to the readers that are familiar with the theory of critical angles in convex
cones (cf. [1], [5]). As one can see, K+ plays a prominent role in the formulation of Corollary 2. Strictly
speaking, we could have stated everything in terms of the original cone K. The explanation is as follows.
We distinguish three disjoint cases :
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i) K is a half-space. Then, K+ is a half-line and both sides in (11) are equal to 1.

ii) K is flat and not a half-space. Then, both sides sides in (11) are equal to 0, and R0 = K as expected.

iii) K is solid and not a half-space. In this case one can write (11) in the equivalent form

min
R∈C(Rn)
Q flat

δ(K,R) = sin

[

θmin(K)

2

]

with θmin(K) standing for the smallest nonzero critical angle of K. On the other hand, one can take

y0 =
u0 − 〈u0, v0〉v0
√

1− 〈u0, v0〉2
, z0 =

v0 − 〈u0, v0〉u0
√

1− 〈u0, v0〉2
,

where (u0, v0) is a critical pair of K forming the angle θmin(K). Such (y0, z0) is necessarily an
antipodal pair of K+. Finally, (12) can be written in the more compact form

R0 = P〈y0−z0〉⊥(K)

with the symbol PL standing for the orthogonal projector onto a subspace L. The last characteri-
zation of R0 is obtained from (12) by applying standard calculus rules on dual cones. In general
the projection of a closed convex cone into a subspace may not be closed. In the present situation,
however, the closedness of P〈y0−z0〉⊥(K) is guaranteed by using special arguments.
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