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Abstract

We consider a stochastic pressure equation with lognormal coefficient
with infinite dimensional noise. Using a White Noise framework, we study
spatial and stochastic regularity of solutions of the stochastic pressure
equation. We first establish that a particular class of weighted Chaos
spaces can be characterized by Gaussian Sobolev type norms in the ran-
dom argument under the Gaussian measure. Then, we use these results
to prove that the solution of the stochastic pressure equation has the clas-
sical regularity in the spatial variable and a stochastic regularity on this
class of weighted Chaos spaces.

Keywords: Stochastic pressure equation, White Noise Analysis, Stochas-
tic Analysis, Weighted Chaos norms, Gaussian Sobolev norms. 60H15,
65N30,60H40,60H07, 60H30

1 Introduction

Uncertainty quantification techniques have gained the attention of researches in
the last years. The theoretical and numerical treatments of stochastic partial
differential equations are important for uncertainty quantification because the
behavior of many interested random quantities is described by partial differential
equations. In particular, we study elliptic partial differential equations which
are important for the better understanding of many physical and engineering
systems. In this paper we consider the equation{

−∇x · (κ(x, ω)∇xu(x, ω)) = f(x, ω), for all x ∈ D
u(x, ω) = 0, for all x ∈ ∂D,

(1)
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where log κ(x, ω) is a Gaussian field and f is a (possible random) forcing term;
see [26, 1, 3, 14, 12, 30, 2] among others. The presence of the log-normal coeffi-
cient κ(x, ·) induces lack of uniform ellipticity and boundedness, and therefore,
the analysis become very challenging. There are few works addressing this dif-
ficulty, we mention the work [13] where the White Noise framework analysis
is carried out in the framework of Hilbert spaces, [8, 15] where Banach space
frameworks are used for the analysis, [3, 28] where the Wick product formula-
tion is considered, and [31, 23, 30] where weighted Wiener Chaos expansions
and other modeling methodology are proposed.

Another level of difficulty is the infinite dimensional behavior of the Gaussian
fields. We note that the assumption of finite dimensional noise, compared to the
infinite dimensional noise case, in the coefficient κ and the forcing term f sim-
plify the analysis a great deal, however, it has serious practical limitations. The
dimension of the finite dimensional noise is often associated with truncated or
finite dimensional approximations of Karhunen-Loève (KL) expansions or Chaos
expansions. In some real-world applications the dimension of the noise may be
very large, for instance, in applications related to flow in heterogeneous porous
media. In this case, the coefficient κ represents the permeability of a porous
medium that contain uncertainties at the fine resolution. Since permeability
data are also collected at finest scales, such as core scales, detailed geological
models are constructed to contain such scales. At these scales, we have to deal
with large uncertainties associated with the fine grid information. Modeling this
detailed geological system may require large dimensional set to parametrize the
noise. Hence, robust error estimates and analysis for stochastic discretizations
that take into account these fine-scale uncertainties are needed. In this case, it
is more advantageous to work with infinite dimensional stochastic space due to
a large dimension of the stochastic space. The White Noise analysis is a suitable
framework to develop this infinite dimensional analysis. In this paper, the case
of infinite dimensional noise is considered.

Regularity results for Wick product pressure equations with log-normal co-
efficient have been considered for several authors. We emphasize that in (1)
we use the ordinary product κ(x, ω)∇xu(x, ω) rather then the Wick product,
κ(x, ω) ⋄ ∇xu(x, ω). For regularity results of stochastic pressure equations of
Wick type see [3] and references therein. We also mention [30] were new ways of
introducing the Wick calculus in the pressure equation are explored. In [3], the
authors find the Chaos expansion of the solution of the Wick product pressure
equation, and calculate its stochastic regularity in the distributional sense using
Kondratiev type norms, see [20, 18]. One of the main properties of the Wick
product is that it simplifies the computation of Chaos expansion of the Wick
product of two random functions when compared with the ordinary product.

In [13], it is considered the Problem (1) where κ(x, ω) := eWϕ(x,ω) = e⟨ω,ϕx⟩,
x ∈ D,ω ∈ S ′ and the exponent Wϕ(x, ω) is the smoothed White Noise process
defined on the White Noise probability space (S ′,B(S ′), µ) and well-posedness
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results were established in tensor product of Hilbert spaces. Here S ′ is an appro-
priately chosen space of distributions; see Section 2 below. The tensor product
space of the solution involves the usual H1

0 (D) space and the Hilbert space (L2)s
(a weighted L2 space in S ′ with a exponential type weight). The parameter s is
related to the stochastic exponential decay (or growth) of the functions on the
White Noise probability space. The (L2)s space has two fundamental aspects, it
circumvents the lack of uniform ellipticity and boundedness of the problem, and
due to its Hilbert space structure, its norm can be computed easily using or-
thogonality relations. Furthermore, in the resulting tensor product space we can
use orthogonal projections to analyze finite dimensional Galerkin type methods
and to obtain a priori error estimates. For the a priori error estimates, as usual,
some regularity of the solution is assumed. It is required that the solution of
(1) to belong to a more regular tensor product space (in x and ω). The regular
tensor space used in [13] involves the spaces H2(D), for the regularity in the x
variable, and a weighted Chaos space (see [13, 22, 18, 16, 17, 25, 25, 20, 6, 9, 3]
and references therein) for the regularity in the ω variable. The weighted Chaos
spaces norms depend on the choice of a sequence of weights. The corresponding
norm measures the decay of the coefficients in the Chaos expansion of a random
function. We recall that the Chaos expansion of a random function is its ex-
pansion in terms of Fourier-Hermite orthogonal polynomials. The a priori error
estimates in [13] are general and apply to any weighted Chaos space.

In this paper we study the joint spatial and stochastic regularity of solu-
tions of (1) assuming similar regularity for the right-hand side f(x, ω) and the
smoothed White Noise Wϕ(x, ω). A main issue is that the computation of the
weighted Chaos norms turn out to be difficult when the Chaos expansion of the
solution is not available. For solutions of (1), it is difficult to write a manageable
expression for the Chaos expansion of the solution, either in terms of Fourier-
Hermite polynomials or in terms of multiple Itô integrals, see [18, 16, 25]. On
the other hand, Gaussian Sobolev spaces have been also used in the literature,
[27, 10, 24]. The Gaussian Sobolev norms involve (L2)s norms of derivative of
random functions. In particular, Sobolev type norms turns out to be equivalent
to some particular weighted Chaos norms. This equivalence is useful to obtain
the regularity results required in the a priori error estimates provided in [13]. In
particular, we prove Theorem 32 where we obtain that the solution of (1) has
regularity H2 in the spatial variable x, see Lemma 29, and stochastic regularity
given by a particular weighted Chaos space, see Lemma 22. We first prove that
the weighted Chaos space to be used in Theorem 32 can be characterized using
Sobolev type norms in the ω variable for the Gaussian measure as in [10, 27, 24];
see Theorem 20. In particular, the weighted Chaos spaces used in Theorem 32
require norms of partial derivatives in the ω variable up to certain order to be
bounded.

In Section 2 we introduce the White Noise framework to be used in the
paper. In Section 3 we present some detail of the model problem formulation
in the White Noise framework and summarize results from [13]. In Section
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4 we define and characterize the tensor product spaces. Sections 5 and 6 are
dedicated to the use of partial derivatives in the ω variable to compute weighted
Chaos norms. In Section 7 we study the stochastic regularity of solutions and
in Section 8 we obtain also the spatial regularity results. Final remarks are
presented in Section 9.

2 Framework: White noise analysis

Let H be a real Hilbert space with inner product (·, ·)H and norm ∥ ·∥H , and let
A be an operator on H such that there exists an H-orthonormal basis {ηj}∞j=1

satisfying (see Examples 2 and 3 below):

1) Aηj = λjηj , j = 1, 2, . . . .

2) 1 < λ1 ≤ λ2 ≤ · · · .

3)
∑∞

j=1 λ
−2θ
j < ∞ for some constant θ > 0.

For p > 0 let Sp := {ξ ∈ H; ∥ξ∥p < ∞} where

∥ξ∥2p := ∥Apξ∥2H =

∞∑
j=0

λ2p
j (ξ, ηj)

2
H ,

and for p < 0 let Sp be defined as the dual space of S−p. It is easy to see that
for p < 0 we also have ∥ · ∥p = ∥Ap · ∥H and the duality pairing between Sp and
S−p is an extension of the H inner product. We also define

S = ∩p≥0Sp (with the projective limit topology)

and let S ′ be defined as the dual space of S, i.e., by considering the standard
countably Hilbert space constructed from (H,A); see [20, 25].

Let S ′ be the probability space with the sigma-field B(S ′) of Borel subsets
of S ′. The probability measure µ is given by the Bochner-Minlos theorem and
characterized by

Eµe
i⟨·,ξ⟩ :=

∫
S′

ei⟨ω,ξ⟩dµ(ω) = e−
1
2∥ξ∥

2
H , for all ξ ∈ S. (2)

Here, the pairing ⟨ω, ξ⟩ = ω(ξ) is the action of ω ∈ S ′ on ξ ∈ S, and Eµ denotes
the expectation with respect to the measure µ; see [25, 18, 16, 17, 20, 5] and
references therein. The measure µ is often called the (normalized) Gaussian
measure on S ′. We note that from (2) we have that for any function ξ ∈ H, the
random variable ω 7→ ⟨ω, ξ⟩ can be defined in the L2(µ) sense and it is normally
distributed with zero mean and variance ∥ξ∥2H ; see [18, 20, 25].

In what follows we use the notation (L2) for the space L2(µ). We always
interpret properties in the “almost everywhere” or “almost surely” or “almost
all” sense, therefore, we will sometimes omit this interpretation to make notation
and formula less cumbersome.
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Definition 1. The 1-dimensional smoothed White Noise associated to H and
A is the map w : S × S ′ −→ R given by w(ξ) = w(ξ, ω) = ⟨ω, ξ⟩ for ω ∈ S ′,
ξ ∈ S. Let D ⊂ Rd. Using the 1-dimensional smoothed White Noise w we
can construct a stochastic process, called the smoothed White Noise process
Wϕ(x, ω), as follows:

Wϕ(x, ω) := w(ϕx, ω) = ⟨ω, ϕx⟩, x ∈ D, ω ∈ S ′,

where ϕx ∈ H for all x ∈ D. For each x ∈ D, Wϕ(x, ·) is normally distributed
with zero mean and for x, x̂ ∈ D we can write

Wϕ(x, ω) =
∞∑
j=1

(ηj , ϕx)H⟨ω, ηj⟩

where the ⟨ω, ηj⟩ are independent and identically standard normal distributions
and it is easy to see that EµWϕ(x, ·)Wϕ(x̂, ·) = (ϕx, ϕx̂)H .

Example 2. Let D ⊂ Rd and take H = L2(D) and A = Q−1, where Q :
L2(D) → L2(D) is the integral operator on (D×D) with kernel given by a covari-

ance C(x, x̂). In this case, for x, x̂ ∈ D we define ϕx(x̂) =
∑∞

j=1 λj
−1/2ηj(x)ηj(x̂),

where λj and ηj are the eigenvalues and eigenfunctions of A. It is easy to see
that Eµ(Wϕ(x, ·)Wϕ(x̂, ·)) = C(x, x̂).

Example 3. We can take H = L2(Rd) and A = A1 ⊗ · · · ⊗ Ad where Ai =

− d2

dx2
i
+ x2

i + 1. The eigenfunctions of Ai are the ℓ-th Hermite function with

associated eigenvalue 2ℓ, for all ℓ ∈ N. The ηj and λj are obtained by tensor
product operations. Let ϕx(x̂) = ϕ(x̂−x), x ∈ D and x̂ ∈ Rd, where the window
ϕ can be chosen such that the diameter of the support of ϕ is the maximum
distance which Wϕ(x, ·) and Wϕ(x̂, ·) might be correlated; see [18].

The following particular case of Fernique’s Theorem will be used throughout
this paper; see [27, 6, 19, 10, 11].

Lemma 4. We have∫
S′

es∥ω∥2
−θdµ(ω) =


∏∞

j=1

(
1− 2s

λ2θ
j

)− 1
2

, s <
λ2θ
1

2

+∞, s ≥ λ2θ
1

2 .

We note that Lemma 4 implies that
∫
S′ ∥ω∥2−θdµ < ∞ which in turn implies

that µ(S−θ) = 1. To see this, note that S ′ \ S−θ = {ω : ∥ω∥2−θ = ∞} and then
µ(S ′ \S−θ) > 0 would imply that

∫
S′ ∥ω∥2−θdµ = ∞ which gives a contradiction.

Without further comments, we use that µ(S−θ) = 1 throughout this paper.

3 The problem and variational formulation

Given ϕx ∈ Sθ for all x ∈ D we consider the following problem: For all ω ∈ S ′,
find u(x, ω;ϕ) such that{

−∇x · (κ(x, ω;ϕ)∇xu(x, ω;ϕ)) = f(x, ω), for all x ∈ D
u(x, ·;ϕ) = 0, for all x ∈ ∂D,

(3)
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where
κ(x, ω;ϕ) := eWϕ(x,ω) = e⟨ω,ϕx⟩ (4)

and the exponent Wϕ(x, ω) is the 1-dimensional smoothed White Noise process
of Definition 1. Thus, κ is log-normal random process. Observe that for differ-
ent maps x 7→ ϕx ∈ Sθ there exists a different permeability function κ(·, ·, ϕ)
associated to it. We will omit, whenever there is no danger of confusion, the
dependence of κ on the map x 7→ ϕx just to make the notation less cumbersome.

Denote
Cθ = Cθ(ϕ) := sup

x∈D
∥ϕx∥θ. (5)

Then we have for all ϵ > 0 and almost sure all ω ∈ S ′

κmin(ω) := e−
C2
θ

2ϵ e−
ϵ
2∥ω∥2

−θ ≤ κ(x, ω) ≤ e
C2
θ

2ϵ e
ϵ
2∥ω∥2

−θ =: κmax(ω). (6)

Define Um
s as the space of functions u : D × S ′ → R such that∫

S′
∥u(·, ω)∥2Hm(D)e

s∥ω∥2
−θdµ(ω) < +∞ (7)

with norm

∥u∥2Um
s

:=

∫
S′

∥u(·, ω)∥2Hm(D)e
s∥ω∥2

−θdµ(ω)

and seminorm

|u|2Um
s

:=

∫
S′

|u(·, ω)|2Hm(D)e
s∥ω∥2

−θdµ(ω).

Note that U0
0 = L2(D)⊗ (L2) and in general Um

s = Hm(D)⊗ (L2)s where

(L2)s := L2(S ′, es∥ω∥2
−θdµ(ω)) (8)

with norm ∥v∥2(L2)s
:=
∫
S′ |v(ω)|2es∥ω∥2

−θdµ. We also define Û1
s = H1

0 (D) ⊗
(L2)s ⊂ U1

s , i.e., the functions in U1
s which vanish on ∂D almost sure in ω. By

using a Poincaré inequality, the seminorm | · |U1
s
is a norm equivalent to ∥ · ∥U1

s

in Û1
s . Since the space (L2)s is the dual of (L2)−s and the H−1(D) is the dual

of H1
0 (D), we can identify the dual space of Û1

−s with U−1
s .

We note that κ(x, ω) > 0 is neither bounded uniformly from above nor from
away zero, hence, the bilinear

a(u, v) =

∫
D×S′

κ(x, ω)∇u(x, ω)∇v(x, ω)dxdµ (9)

is neither continuous nor coercive on Û1
s × Û1

−s. According to [13], the coercive-
ness (the inf-sup condition) and boundedness of the bilinear form a(·, ·) can be

circumvent by enlarging the space of test functions for v from Û1
−s to Û1

−s−ϵ and

by reducing the solution space for u from Û1
s to D̂1

s where

D̂1
s := {u ∈ Û1

s : sup
v∈Û1

−s−ϵ\{0}

a(u, v)

|v|U1
−s−ϵ

< ∞}.
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The weak formulation of problem (3) is then introduced as follows:{
Given f ∈ Us+ϵ, find u ∈ D̂1

s such that

a(u, v) = ⟨f, v⟩ for all v ∈ Û1
−s−ϵ

(10)

where the bilinear form a is defined in (9) and the duality pairing between

f ∈ U1
s+ϵ and v ∈ Û−s−ϵ is given by

⟨f, v⟩ =
∫
D×S′

f(x, ω)v(x, ω)dxdµ.

Lemma 5 ([13] Existence and uniqueness of solutions). Let ϵ > 0 and assume
that Cθ = supx∈D ∥ϕx∥θ < ∞. Then for f ∈ U−1

s+ϵ, there exists a unique solution

u ∈ D̂1
s ⊂ Û1

s of Problem (10) and

∥u∥U1
s
≤ Ce

C2
θ

2ϵ ∥f∥U−1
s+ϵ

, (11)

where C =
√

1 + Cpoin and Cpoin is the Poincaré inequality constant which is
independent of ϵ and θ.

Remark 6. From Lemma 5, when f ∈ U−1
0 then for every s < 0 (take ϵ = −s)

the solution u ∈ Û1
s . In order to have u ∈ Û1

0 we need f ∈ U−1
ϵ for some

ϵ > 0. When the right-hand side f is deterministic or is given by a finite sum of
Fourier-Hermite polynomials, we have the solution u ∈ Û1

s for every s satisfying

s <
λ2θ
1

2 ; see Definition 7 and Theorem 8.

4 The Galerkin approximation

In the following we characterize the space (L2)s defined in (8), and note that
this is enough for characterizing the tensor product space Um

s = Hm(D)⊗(L2)s.

We need to consider multi-index of arbitrary length. To simplify the no-
tation, we regard multi-indices as elements of the space (NN

0 )c of all sequences
α = (α1, α2, . . .) with elements αj ∈ N0 = N ∪ {0} and with compact support,
i.e., with only finitely many αj ̸= 0. We write J = (NN

0 )c. Given α ∈ J define
the order and length of α, denoted by d(α) and |α| respectively, by

d(α) = max {j : αj ̸= 0} and |α| = α1 + α2 + . . .+ αd(α).

We also introduce the σ-Hermite polynomials, hσ2,n, where σ > 0 and n =
0, 1, 2, . . . . These polynomials can be defined by the generating function identity

etx−
1
2σ

2t2 =
∞∑

n=0

tn

n!
hσ2,n(x). (12)
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When σ2 = 1 we denote h1,n simply by hn. Note that hσ2,n(x) = σnhn(x/σ)
and h′

σ2,n(x) = nhσ2,n−1(x). The σ-Hermite polynomials are an orthogonal

basis for L2(R, e−
1

2σ2 x2

dx).

For s <
λ2θ
1

2 define σj = σj(s) =
(
1− 2s

λ2θ
j

)− 1
2

, j = 1, 2, . . . , and for α ∈ J
let

σα = σα(s) :=

d(α)∏
j=1

σ
αj

j (s)

and

σ∗ = σ∗(s) :=

∫
S′

es∥ω∥2
−θdµ(ω).

From Lemma 4, σ∗ =
∏∞

j=1 σj < ∞ when s <
λ2θ
1

2 . Now we define the σ(s)-
Fourier-Hermite polynomials.

Definition 7. Given s <
λ2θ
1

2 , α = (α1, α2, . . .) ∈ J and σ = σ(s) =
(σ1, σ2, . . .), define

Hσ2,α(ω) =
1

√
σ∗

d(α)∏
j=1

hσ2
j ,αj

(⟨ω, ηj⟩); ω ∈ S ′.

We now state the Wiener-Chaos expansion theorem; see [10, 16, 18, 17, 25].

Theorem 8. When s <
λ2θ
1

2 , the σ(s)-Fourier-Hermite polynomials are orthog-
onal in (L2)s. Moreover,

∥Hσ2(s),α∥2(L2)s
= α!σ(s)2α.

In addition, every polynomial in ω belongs to (L)s and every u ∈ (L2)s can be
represented as a Wiener-Chaos expansion

u =
∑
α∈J

uα,sHσ(s)2,α with ∥u∥2(L2)s
=
∑
α∈J

α!σ(s)2αu2
α,s.

Remark 9. The corresponding tensor product norm for u ∈ Um
s with s <

λ2θ
1

2
is given by

∥u∥2Um
s

=
∑
α∈J

α!σ(s)2α∥uα,s∥2Hm(D),

where u =
∑

α∈J uα,sHσ(s)2,α with uα,s ∈ Hm(D) for all α ∈ J .

Let N,K ∈ N0 and define

JN,K = {α ∈ J : d(α) ≤ K, and, |α| ≤ N}

and

PN,K := span
{
Hσ(s)2,α : α ∈ JN,K

}
= span


d(α)∏
j=1

⟨ω, ηj⟩αj : α ∈ JN,K

 ,
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i.e., PN,K consists of polynomials in ⟨ω, η1⟩, . . . , ⟨ω, ηK⟩ of total degree at most
N .

Note that when s <
λ2θ
1

2 , polynomials in ω belong to (L2)s. Let Xh
0 (D) ⊂

H1
0 (D) be the finite element space of piecewise linear and continuous functions

with respect to a quasi-uniform triangulation of D with mesh size h.
For N,K ∈ N0 and h > 0 define the following discrete spaces:

XN,K,h
s := Xh

0 (D)⊗ PN,K ⊂ Û1
s ⊂ U1

s

and

YN,K,h
s :=

{
v : v(x, ω) = ṽ(x, ω)e(s+

ϵ
2 )∥ΠKω∥2

−θ , ṽ ∈ XN,K,h
s

}
⊂ Û1

−(s+ϵ),

where ΠK is the (H-orthogonal) projection on the span{η1, . . . , ηK} is defined

by ΠKω :=
∑K

j=1⟨ω, ηj⟩ηj , for all ω ∈ S ′. The discrete version of problem (10)
is introduced as: {

Find uN,K,h
s ∈ XN,K,h

s such that
a(uN,K,h

s , v) = ⟨f, v⟩ for all v ∈ YN,K,h
s .

The corresponding discrete inf-sup condition, resulting linear system and one
spatial dimension numerical example are discussed in [13].

4.1 Weighted norms and a priori error estimates

In (L2)s with s <
λ2θ
1

2 we introduce the system of Hilbert norms

||u||2p;ρ,s :=
∑
α∈J

ρ(α, p)2α!σ(s)2αu2
α,s, (13)

where u =
∑

α∈J uα,sHσ(s)2,α. We assume that ρ(α, q) ≥ ρ(α, p) > 0 for all
q > p ≥ 0 and that ρ(α, 0) = 1 for all α ∈ J . Usually, the weights ρ(α, s) are
the eigenvalues of some nonnegative operator in (L2)s with the σ(s)-Fourier-
Hermite polynomials as eigenfunctions; see [18, 17, 25, 20, 6, 9, 3].

For p > 0 define the spaces Sp,ρ,s by

Sp;ρ,s = {v ∈ (L2)s : ∥v∥p;ρ,s < ∞}. (14)

For p < 0 define Sp,ρ,s as the dual space of S−p;ρ,s. We have S0;ρ,s = (L2)s and
the inclusion Sq;ρ,s ⊂ Sp;ρ,s holds for all q > p.

For examples of weights ρ(α, p) we refer to [10, 6, 16, 18, 20, 25, 24, 27].
We consider the following weight describe in the next example and to be used
through the paper; see [6, 10, 17, 24, 27]
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Example 10. Given a multi-index α we denote ⟨α,λ⟩ :=
∑d(α)

j=1 αjλj . Note
that ⟨α,λ⟩ ≥ 0. We introduce the weight ρ defined by,

ρ(α, p)2 = 1 + ⟨α,λ⟩2p, p > 0, and ρ(α, 0) = 1, α ∈ J . (15)

Norms ∥ · ∥p;ρ,s defined in (13) can also be extended to tensor products.
The corresponding norms, using Example 10, for the tensor product spaces
Um
p;ρ,s := Hm(D)⊗ Sp,ρ,s are defined by

||u||2
Um
p;ρ,s

=
∑
α∈J

(
1 + ⟨α,λ⟩2p

)
α!σ(s)2α∥uα,s∥2Hm(D), (16)

and we also introduce the seminorms,

|u|2
Um
p;ρ,s

:=
∑
α∈J

(
1 + ⟨α,λ⟩2p

)
α!σ(s)2α|uα,s|2Hm(D). (17)

We have the following a priori error estimates. See [13].

Lemma 11. Let s ∈ R and u ∈ Û1
s be the solution of (10) with ϵ > 0 and

f ∈ U−1
s+ϵ. Assume that s + ϵ̃ + ϵ <

λ2θ
1

2 and −s − ϵ <
λ2θ
K+1

2 for some ϵ̃ > 0.
Consider the weights ρ defined in (15). We have for all p > 0 and ℓ ≤ 2 that

|u− uN,K,h
s |U1

s
≤ C∗

{
max

{
1

1+(N+1)λ1
, 1
1+λK+1

}q

|u|U1
p;ρ,s+ϵ̃+ϵ

+ Ĉhℓ−1∥u∥Uℓ
s+ϵ̃+ϵ

}
,

where C∗ = C∗(s, ϵ, ϵ̃) = 1+e
C2
θ
ϵ e

C2
θ
ϵ̃

∏∞
j=K+1 σj(−s−ϵ) and Ĉ is is the Clement

finite element interpolation constant on the space Xh
0 (D).

5 Derivatives and Chaos weighted norms

The error estimates in Lemma 11 above is one the motivation for the regularity
studies carried out in this paper. It turns out that the weighted norms in (13)
are, in general, difficult to compute or estimate when the Chaos expansion is
not explicitly available. In Section 5.1 we recall that the weighted norms can
be written as a square integral, in the White Noise measure, using an operator
acting on functions in (L2)s. In Section 5.2 we review the computation of (L2)s
norms of derivatives. Later on in Section 6 we will establish that some Chaos
weighted norms can be computed using (L2)s norms of partial derivatives.

5.1 Chaos weighted norms and the operator Γ⊕(A)

We consider the weighted norm (13) with the particular weight in (15). We can
write

||u||2p;ρ,s =
∑
α∈J

(1 + ⟨α,λ⟩2p)α!σ(s)2αu2
α,s,

= ||u||2(L2)s
+ ||Γ⊕(A)pu||2(L2)s

=

∫
S′

(
|u(ω)|2 + |Γ⊕(A)

pu(ω)|2
)
es∥ω∥2

−θdµ(ω),

10



where Γ⊕(A) is the operator defined by

Γ⊕(A)Hσ2,α = ⟨α,λ⟩Hσ2,α. (18)

We point out that Γ⊕(A
p) ̸= Γ⊕(A)

p since Γ⊕(A)pHσ2,α = ⟨α,λ⟩pHσ2,α

and Γ⊕(A
p)Hσ2,α = ⟨α,λp⟩Hσ2,α. We observe that ||Γ⊕(A)

p · ||2(L2)s
is a norm

in the space of function in (L2)s with u0 = 0 in its σ(s)-Fourier-Hermite expan-
sion.

5.2 Derivatives and Gaussian Sobolev norms

Using partial derivative (as in the deterministic Sobolev spaces norms), we want
to be able to compute a norm equivalent to the norm (13) with the weights ρ
defined (15).

In this section we work with differential operators acting on (L2)s and define
Sobolev type norms for Gaussian measure; see [6, 10, 17, 20, 24, 27, 29, 32] and
references therein.

Denote by ∂ℓu as the directional derivative of u in the direction of the ℓ−th
basis function ηℓ ∈ S. Given u ∈ (L2)s we have

∂ℓu(ω) :=
d

dt
u(ω + tηℓ)

∣∣∣
t=0

.

For any Fourier-Hermite polynomial Hσ2,α with αℓ > 0 we have that

∂ℓHσ2,α(ω) = ∂ℓ

d(α)∏
j=1

hσ2
j ,αj

(⟨ω, ηj⟩) = αℓHσ2,α−ξℓ
(ω) (19)

where ξℓ is the multi-index with one in the ℓ−entry and zero in the other
positions so that α − ξℓ = (α1, . . . , αℓ−1, αℓ − 1, αℓ+1, . . .). Here we have used
that h′

σ2,n = nhσ2,n−1, see (12). For αℓ = 0 define ∂ℓHσ2,α(ω) = 0. Then for

u =
∑

α∈J uαHσ2,α such that ∂ju ∈ (L2)s we have

∂ℓu(ω) =
∑
α∈J

αℓuαHσ2,α−ξℓ
(ω) (20)

and
||∂ℓu||2(L2)s

=
∑
α∈J

α2
ℓu

2
ασ

2α(α− ξℓ)! =
∑
α∈J

αℓu
2
ασ

2αα!, (21)

where we have used that αℓ(α − ξℓ)! = α!; see [10]. Analogously, for any
Fourier-Hermite polynomial the γ partial derivative ∂γ can be computed as

∂γHσ2,α(ω) =

d(γ)∏
ℓ=1

∂γℓ

ℓ

d(α)∏
j=1

hσ2
j ,αj

(⟨ω, ηj⟩) (22)

=

d(α)∏
j=1

αj !

(αj − γj)!
hσ2

j ,αj−γj
(⟨ω, ηj⟩) =

α!

(α− γ)!
Hσ2,α−γ(23)

11



for every multi-indexes γ and α with γ ≤ α. Then for u =
∑

α∈J cαHσ2,α we
have

∂γu(ω) =
∑
α≥γ

α!

(α− γ)!
uαHσ2,α−γ(ω). (24)

This implies that the (L2)s norm of ∂γu is given by

∥∂γu∥2(L2)s
=

∑
α≥γ

α!2

(α− γ)!2
u2
ασ

2α(α− γ)!

=
∑
α≥γ

α!

(α− γ)!
u2
ασ

2αα!. (25)

Remark 12. Recall that when s = 0 we have ∥∂γu∥2(L2) =
∫
S′ |∂γu(ω)|2dµ(ω)

and we refer to norms defined in terms of (L2) norms of partial derivatives as
Gaussian Sobolev norms. We will use the same terminology for the case s ̸= 0.

6 Equivalence of norms

This section is dedicated to prove that, using partial derivative, we can compute
the norm ∥·∥ k

2 ;ρ,s
defined in Example 10 when k ∈ N. We will prove in Theorem

20 that for every k ∈ N we have

||u||2k
2 ;ρ,s

= ||u||2(L2)s
+

k∑
i=1

∑
R∈Pk,i

∑
ℓ1,ℓ2,...,ℓi

λ2R1

ℓ1
. . . λ2Ri

ℓi
∥∂ℓ1 . . . ∂ℓiu∥2(L2)s

(26)

where P k,i is a finite subset (of indexes) of Ri that will be described below.
Here and below we will use the iterated summation notation∑

ℓ1,ℓ2,...,ℓk

:=
∑
ℓ1∈N

∑
ℓ2∈N

. . .
∑
ℓk∈N

.

Similar result for the case k = 1 and k = 2 (with s = 0) can be found in
[10] and the corresponding spaces are denoted by W 1,2(H,µ) and W 2,2(H,µ)
respectively. Here, we generalize their results to any k ∈ N and s < λ2θ

1 /2, see
Theorem 20. Additionally, we introduce several intermediate results for general
norms of derivatives which can be used for defining fractional derivatives. We
note that Theorem 20 is a key tool for establishing the regularity theory in
Section 7.

We define the k−th derivative as follows. See [10, 27, 24] and references
therein.

Definition 13. For k ∈ N and p ∈ R define

Dku(ω) :=
∑

ℓ1,ℓ2,...,ℓk

∂ℓ1 . . . ∂ℓku(ω)ηℓ1 ⊗ . . .⊗ ηℓk ∈ (S ′)⊗k

12



and with Γ⊕(A) defined in (18) we set

Γ⊕(A)
p
2Dku(ω) :=

∑
ℓ1,ℓ2,...,ℓk

Γ⊕(A)
p
2 ∂ℓ1 . . . ∂ℓku(ω)ηℓ1 ⊗ . . .⊗ ηℓk ∈ (S ′)⊗k.

We also use the convention D0u = u.

We will compute (L2)s-norms of derivatives according to the next definition.

Definition 14. For k ∈ N and q = (q1, . . . , qk) ∈ Rk define

∥Dku∥2q = ∥Aq1 ⊗ . . .⊗AqkDku∥2
L2(S′,(L2)⊗k

s )

=
∑

ℓ1,ℓ2,...,ℓk

λ2q1
ℓ1

. . . λ2qk
ℓk

∥∂ℓ1 . . . ∂ℓku∥2(L2)s
.

We also set ||D0u||2 = ||u||2(L2)s
.

Now we prove some basic relations between derivatives in the ω variable and
the operator Γ⊕(A) defined in in (18). See [27] for related results.

Lemma 15. For all p, q ∈ R we have the following relations

(Γ⊕(A
q) + λq

ℓ)
p
2 ∂ℓu = ∂ℓΓ⊕(A

q)
p
2 u, (27)(

Γ⊕(A
q) + λq

ℓ1
+ . . .+ λq

ℓk

) p
2 ∂ℓ1∂ℓ2 · · · ∂ℓku = ∂ℓ1∂ℓ2 · · · ∂ℓkΓ⊕(A

q)
p
2 u, (28)

and
(Γ⊕(A

q) + ⟨β,λq⟩)
p
2 ∂βu = ∂βΓ⊕(A

q)
p
2 u. (29)

Proof. Since ∂ℓu =
∑

α∈J αℓuαHσ(s)2,α−ξℓ
, then

(Γ⊕(A
q) + λq

ℓ)
p
2 ∂ℓu =

∑
α∈J

(⟨α− ξℓ,λ
q⟩+ λq

ℓ)
p
2 αℓuαHσ2,α−ξℓ

=
∑
α∈J

(⟨α,λq⟩ − λq
ℓ + λq

ℓ)
p
2 αℓuαHσ2,α−ξℓ

=
∑
α∈J

⟨α,λq⟩
p
2αℓuαHσ2,α−ξℓ

= ∂ℓΓ⊕(A
q)

1
2u,

which prove (27). Note that (28) follows easily from (27) and (29) is consequence

of (28) and the notation ⟨β,λq⟩ =
∑d(α)

j=1 βjλ
q
j .

Lemma 16. For k ∈ N and q ∈ Rk we have∑
ℓk

λ2qk
ℓk

∥Dk−1∂ℓku∥2(q1,...,qk−1)
= ∥Dku∥2(q1,...,qk), (30)

∥DΓ⊕(A
2q2)

1
2u∥2q1 = ∥Γ⊕(A

2q2)
1
2Du∥2q1 + ∥Du∥2q1+q2 (31)

13



and for q = (q1, . . . , qk) ∈ Rk and t ∈ R we have

∥DkΓ⊕(A
2t)

1
2u∥2q = ∥Γ⊕(A

2t)
1
2Dku∥2q +

k∑
i=1

∥Dku∥2q+tξi
(32)

where q + tξi = (q1, . . . , qi + t, . . . , qk).

Proof. Equation (30) follows directly from Definition 14. We prove (31). Using
Definitions 13 and 14 together with Equation (27),

∥DΓ⊕(A
2q2)

1
2u∥2q1 =

∑
ℓ=1

λ2q1
ℓ ∥∂ℓΓ⊕(A

2q2)
1
2u∥2(L2)s

=
∑
ℓ=1

λ2q1
ℓ ∥

(
Γ⊕(A

2q2) + λ2q2
ℓ

) 1
2

∂ℓu∥2(L2)s

=
∑
ℓ=1

λ2q1
ℓ

(
∥Γ⊕(A

2q2)
1
2 ∂ℓu∥2(L2)s

+ λ2q2
ℓ ∥∂ℓu∥2(L2)s

)
= ∥Γ⊕(A

2q2)
1
2Du∥2q1 + ∥Du∥2q2+q1 .

To prove (32) observe that using (28) we get

∥DkΓ⊕(A
2t)

1
2u∥2q =

∑
ℓ1,...,ℓk

λ2q1
ℓ1

· · ·λ2qk
ℓk

∥∂ℓ1 · · · ∂ℓkΓ⊕(A
2t)

1
2u∥2(L2)s

=
∑

ℓ1,...,ℓk

λ2q1
ℓ1

· · ·λ2qk
ℓk

∥
(
Γ⊕(A

2t) + λ2t
ℓ1 + · · ·+ λ2t

ℓk

) 1
2 ∂ℓ1 · · · ∂ℓku∥2(L2)s

=
∑

ℓ1,...,ℓk

λ2q1
ℓ1

· · ·λ2qk
ℓk

∥Γ⊕(A
2t)

1
2 ∂ℓ1 · · · ∂ℓku∥2(L2)s

+
∑

ℓ1,...,ℓk

λ2q1
ℓ1

· · ·λ2qk
ℓk

(λ2t
ℓ1 + · · ·+ λ2t

ℓk
)∥∂ℓ1 · · · ∂ℓku∥2(L2)s

= ∥Γ⊕(A
2t)

1
2Dku∥2q +

k∑
i=1

∥Dku∥2q+tξi
.

The following result reveals the basic relation between norms of derivatives
and the norm ||u||2p;ρ,s defined in (10) with weights in (15) for the values p = 1/2
and p = 1. This result will be used as the initial induction step in the proof of
the equivalence of norms for any value of p half a positive integer; see Theorem
20.

Theorem 17. For any k ∈ N and q = (q1, . . . qk) ∈ Rk we have

∥Γ⊕(A
2q1)

1
2u∥2(L2)s

=
∞∑
ℓ=1

λ2q1
ℓ ||∂ℓu||2 = ∥Du∥2q1 , (33)
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∥Γ⊕(A
2qk)

1
2Dk−1u∥2(q1,...,qk−1)

= ∥Dku∥2(q1,q2,...,qk) (34)

and we have the identities

∥Γ⊕(A
2q1)

1
2Γ⊕(A

2q2)
1
2u∥2(L2)s

= ∥D2u||2(q1,q2) + ∥Γ⊕(A
2(q1+q2))

1
2u∥2(L2)s

= ∥D2u||2(q1,q2) + ∥Du∥2q1+q2 . (35)

and

∥Γ⊕(A
2q1)

1
2Γ⊕(A

2q2)
1
2Γ⊕(A

2q3)
1
2u∥2(L2)s

= ∥D3u||2(q1,q2,q3)
+∥D2u||2(q1+q3,q2)

+ ∥D2u||2(q1,q2+q3)
+ ∥D2u||2(q1+q2,q3)

+∥Du||2(q1+q2+q3)
(36)

Proof. From Equations (20) and (21) we have that

∥Du∥2q1 =

∞∑
ℓ=1

λ2q1
ℓ ∥∂ℓu∥2(L2)s

=
∞∑
ℓ=1

∑
αℓ≥1

αℓλ
2q1
ℓ u2

ασ
2αα!

=
∑
α∈J

d(α)∑
ℓ=1

αℓλ
2q1
ℓ

u2
ασ

2αα!

=
∑
α∈J

⟨α,λ2q1⟩u2
ασ

2αα! = ||Γ⊕(A
2q1)

1
2u||2(L2)s

,

and hence (33) holds. To prove (34) observe that from (33) and (30) we get

∥Γ⊕(A
2qk)

1
2Dk−1u∥2(q1,...,qk−1)

=
∑

ℓ1,...,ℓk−1

λ2q1
ℓ1

. . . λ
2qk−1

ℓk−1
∥Γ⊕(A

2qk)
1
2 ∂ℓ1 . . . ∂ℓk−1

u∥2(L2)s

=
∑

ℓ1,...,ℓk

λ2q1
ℓ1

. . . λ2qk
ℓk

∥∂ℓ1 . . . ∂ℓku∥2(L2)s = ∥Dku∥2(q1,...,qk).

To prove (35) observe that from (33), (31) and (34) we have

∥Γ⊕(A
2q1)

1
2Γ⊕(A

2q2)
1
2u∥2(L2)s

= ∥DΓ⊕(A
2q2)

1
2u||2q1

= ∥Γ⊕(A
2q2)

1
2Du∥2q1 + ∥Du∥2q1+q2

= ∥D2u||2(q1,q2) + ∥Γ⊕(A
2(q1+q2))

1
2u∥2(L2)s

.

For the proof of (36), see Theorem 20 where we prove the general case.

In order to write down the general version of formula (35) we shall introduce
some notation. Consider the set of indexes {1, 2, . . . , k} and its set of parti-
tions P k; see Charalambides [7]. Recall that, given i ∈ N, an i−partition of
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{1, 2, . . . , k} is a decomposition of this set into i nonempty and disjoint subsets.
We denote by P k,i the set of all i−partitions of {1, 2, . . . , k}. It is well known
that #(P k,i) = S(k, i), the Stirling number of the second kind (which is also the
number of distributions of k distinguishable balls into i indistinguishable urns).
Let each i-partition R = (R1, . . . , Ri) ∈ P k,i, be ordered in such a way that

minR1 < minR2 < . . . < minRi.

To each i-partition and q = (q1, . . . , qk) ∈ Rk we associate a multi-index R(q) =
(R1(q), . . . , Ri(q)) ∈ Ri defined by

Ri′(q) =
∑

i′′∈Ri′

qi′′ , i′ = 1, . . . , i.

Example 18. Let q = (q1, q2, q3) and consider the 2-partition R = {R1 =
{1}, R2 = {2, 3}}. Then R(q) = (q1, q2 + q3).

Example 19. Let q = (q, q, q, q) and consider the 3-partition R = {R1 =
{1}, R2 = {2, 3}, R3 = {4}}. Then R(q) = (q, 2q, q).

The following result gives a closed formula that allows us to compute the
norm || · ||2p;ρ,s using ω-partial derivatives . It shows the equivalence between the
weighted Chaos norms, using the weight (15), and the Gaussian Sobolev norms,
defined using (L2)s norms of derivatives.

Theorem 20. Let k ∈ N and q = (q1, q2, . . . , qk) ∈ Rk. We have

∥Γ⊕(A
2q1)

1
2 . . .Γ⊕(A

2qk)
1
2u∥2(L2)s

=
k∑

i=1

∑
R∈Pk,i

∥Diu||2R(q). (37)

In particular, if we take q = 1
21k where 1k := (1, . . . , 1) ∈ Nk

∥Γ⊕(A)
pu∥2(L2)s

=
k∑

i=1

∑
R∈Pk,i

∥Diu||2R( 1
21k)

and

||u||2k
2 ;ρ,s

= ||u||2(L2)s
+ ||Γ⊕(A)

pu||2(L2)s
= ||u||2(L2)s

+

k∑
i=1

∑
R∈Pk,i

∥Diu||2R( 1
21k)

.

Proof. We proceed by induction on k. For k = 1 and k = 2 we already proved
the result, see (33) and (35) of Theorem 17.

Assume that (37) is valid for the first k ∈ N. Then we have

∥Γ⊕(A
2q1)

1
2 . . .Γ⊕(A

2qk+1)
1
2u∥2(L2)s

=
k∑

i=1

∑
R∈P (i)

∥DiΓ⊕(A
2qk+1)

1
2u||2R(q)

=
k∑

i=1

∑
R∈P (i)

(
∥Γ⊕(A

2qk+1)
1
2Diu∥2R(q1,...,qk)

+
i∑

i′=1

∥Diu∥2R(q1,...,qk)+qk+1ξi′

)
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where we have used formula (32). Then, from (34) we get

∥Γ⊕(A
2q1)

1
2 . . .Γ⊕(A

2qk+1)
1
2u∥2(L2)s

=
k∑

i=1

∑
R∈Pk,i

(
∥Diu∥2(R(q1,...,qk),qk+1)

+
i∑

i′=1

∥Diu∥2R(q1,...,qk)+qk+1ξi′

)

=

k+1∑
i=1

∑
R∈Pk+1,i

∥Diu||2R(q1,...,qk+1)
.

To obtain the last equality we observe that the i-partitions P k+1,i of the set
{1, . . . , k+1} are of the form {R, {k+1}} where R ∈ P k,i−1 or R = (R1, . . . , Ri′∪
{k + 1}, . . . , Ri) for 1 ≤ i′ ≤ i and R ∈ P k,i.

Remark 21. Note that, given r = (rℓ)
i
ℓ=1 ∈ Ni, (see [7])

#({R ∈ P k,i :
1

2
r = R(

1

2
1k)} =

i−1∏
j=1

(∑i
ℓ=j rℓ − 1

rj − 1

)
.

6.1 A remark on Kondratiev type norms

In this section we study another classical weighted norm. We select different
weights in the general norm defined in (13). Given a multi-index α we denote

λα :=
∏d(α)

j=1 λ
αj

j . Take ν ∈ [0, 1) and

ρ(α, p)2 = (α!)νλ2pα, α ∈ J (38)

in (13). See [18, 20, 25]. Let us denote by |||u|||2p;ρ,s the resulting weighted
norm. Note that we can write

|||u|||2p;ρ,s = ||Γ⊗,ν(A)
pu||2(L2)s

=

∫
S′

|Γ⊗,ν(A)pu(ω)|2es∥ω∥2
−θdµ(ω),

where Γ⊗,ν(A) is the operator defined by Γ⊗,ν(A)Hσ2,α = (α!)νλαHσ2,α. Note
also that Γ⊗,0(A

p) = Γ⊗,0(A)
p. In the case of ν = 0 and s = 0, Γ⊗,0(A) is called

the Second Quantization of A; see [17].
For a priori error estimates for Lemma 11 using ||| · |||2p;ρ,s, we refer to [13].

Now we show how to compute the norm ∥| · ∥|p;ρ,s defined above for the case

ν = 0. We use the notation (λp − 1)γ =
∏d(γ)

j=1 (λ
p
j − 1)γj . Recall that 1 < λ1 ≤

λ2 ≤ . . . . We have

λ2pα =

d(α)∏
j=1

(λ2p
j − 1 + 1)αj =

d(α)∏
j=1

 ∑
γj≤αj

(
αj

γj

)
(λ2p

j − 1)γj


=

∑
γ≤α

(
α

γ

)
(λ2p − 1)γ .

17



Then∑
γ∈J

(λ2p − 1)γ

γ!
∥∂γu∥2(L2)s

=
∑
γ∈J

(λ2p − 1)γ

γ!

∑
α≥γ

α!

(α− γ)!
u2
ασ

2αα!

=
∑
α∈J

∑
γ≤α

α!

γ!(α− γ)!
(λ2p − 1)γ

u2
ασ

2αα!

=
∑
α∈J

λ2pαu2
ασ

2αα! = |||u|||2p;ρ,s.

Summarizing we have |||u|||2p;ρ,s =
∑

γ∈J
(λ2p−1)γ

γ! ∥∂γu∥2(L2)s
. We conclude

that the weighted norm with weight ρ defined in (38) requires all partial deriva-
tive of all orders being (L2)s functions, while the weighted norm ||u||2p;ρ,s defined
in (15) requires only a finite number of partial derivatives, see (26). Due to the
technical difficulties in dealing with this infinity weighted sum, in this paper we
consider only the norm ||u||2p;ρ,s to analyze and measure the stochastic regularity
of the solution of the stochastic pressure equation.

7 Stochastic regularity

We recall the definition of the tensor product space,

U1
p;ρ,s = H1(D)⊗ Sp;ρ,s.

For u(x, ω) =
∑

α∈J uα,s(x)Hσ(s)2,α(ω), (x, ω) ∈ D × S ′ we denote

||u||2Um
p;ρ,s

:=
∑
α∈J

α!ρ(α, p)2σ2α∥uα∥2Hm(D),

with ρ defined in (15). For k ∈ N and q ∈ Rk we also introduce (see Definition
13)

∥Dku∥2m,q;s =
∑

ℓ1,ℓ2,...,ℓk

λ2q1
ℓ1

. . . λ2qk
ℓk

∥∂ℓ1 . . . ∂ℓku∥2Hm(D)×(L2)s
.

From Theorem 20 and the definition of ∥ · ∥ k
2 ;ρ,s

in (13) with ρ defined in

(15) we have the equality

∥u∥2Um
k
2
;ρ,s

= ∥u∥2Um
s

+
k∑

i=1

∑
R∈Pk,i

∥Diu||2m,R( 1
21k);s

.

Now we study the behavior of the solution according to the regularity in the
ω variable of the right-hand side data f . In the following result we control the
norm of a ω-partial derivative of the solution in terms of the norm of the ω-
partial derivatives of the forcing term. Before estating the result, we introduce

18



needed notation. We defined the set I(k, i) by

Ik,i =

τ = (τ1, . . . , τk);
such that ∪k

i=1{τi} = {1, . . . , k} and for some
i, 0 ≤ i ≤ k, we have τ1 < . . . < τi, and
τi+1 < . . . < τk.

 .

(39)

Lemma 22. Let s ∈ R and ϵ > 0, and let u ∈ Û1
s be the solution of (10)

with right-hand side f ∈ U−1
s+2kϵ′+ϵ. Let us assume that for k ∈ N and q =

(q1, . . . qk) ∈ Rk and ϵ′ > 0

∥Dif∥2−1,(qτ1 ,...,qτi );s+2(k−i)ϵ′+ϵ < ∞ for all 0 ≤ i ≤ k

and ϕ satisfies
πq(ϕ) := max

1≤i≤k
max
x∈D

∥ϕx∥qi < ∞.

Then,

∥Dk∇u∥20,q;s ≤ C̃(ϵ, ϵ′, k, ϕ)

 k∑
i=0

∑
τ∈Ik,i

∥Dif∥2−1,(qτ1 ,...,qτi );s+2(k−i)ϵ′+ϵ

 (40)

where the constant C̃(ϵ, ϵ′, k, ϕ) is given by

C̃(ϵ, ϵ′, k, ϕ) = 2k(k+1)C2e
C2
θ
ϵ max{1, πq(ϕ)Ce

C2
θ

ϵ′ }2k, (41)

where C =
√
1 + Cpoin and Cpoin is the Poincaré inequality constant which

depends on D. The set Ik,i is defined in (39).

Proof. We first show the theorem holds for k = 1, then we proceed by induction
on the order of the derivatives k.

Assume that u is a solution of (10). For almost sure all ω we have for all
v ∈ H1

0 (D) ∫
D

e⟨ω,ϕx⟩∇u(x, ω)∇v(x)dx =

∫
D

fv. (42)

Note that ∂ℓe
⟨ω,ϕx⟩ = ⟨ϕx, ηℓ⟩e⟨ω,ϕx⟩. Taking partial derivative in (42) we

get∫
D

e⟨ω,ϕx⟩∇∂ℓu(x, ω)∇v(x)dxdµ =

∫
D

∂ℓf(x, ω)v(x)dxdµ (43)

−
∫
D

e⟨ω,ϕx⟩⟨ϕx, ηℓ⟩∇u(x, ω)∇v(x)dxdµ.

Define Φℓ(x, ω) = ⟨ϕx, ηℓ⟩∇u(x, ω) and by using similar arguments as in (47)
below, we have Φℓ ∈ U0

s+ϵ′+ϵ = (L2)s+ϵ′+ϵ. Integrating in S ′ we see that ∂ℓu is
the solution of the weak problem{

Find ∂ℓu ∈ Û1
s such that

a(∂ℓu, v) = G(v) for all v ∈ Û1
−s−ϵ

(44)
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where the right-hand side is defined by

G(v) =

∫
D×S′

∂ℓf(x, ω)v(x, ω)dxdµ−
∫
D

e⟨ω,ϕx⟩Φℓ(x, ω)∇v(x, ω)dxdµ.

To bound ∥∂ℓu∥U1
s
we need first to estimate ∥G∥U−1

s+ϵ
. Note that from (6) and

2⟨ω, ϕx⟩ ≤ ϵ′∥ω∥2−θ + C2
θ/ϵ

′ we obtain

∫
D

e⟨ω,ϕx⟩Φℓ(x, ω)∇v(x, ω)dxdµ ≤
(∫

D

e2⟨ω,ϕx⟩+(s+ϵ)∥ω∥2
−θΦℓ(x, ω)

2dxdµ

) 1
2

(∫
D

e(−s−ϵ)∥ω∥2
−θ∇v(x, ω)2dxdµ

) 1
2

≤ e
C2
θ

2ϵ′ ∥Φℓ∥s+ϵ′+ϵ∥v∥U1
−s−ϵ

and then

∥G∥U−1
s+ϵ

≤ ∥∂ℓf∥U−1
s+ϵ

+ e
C2
θ

2ϵ′ ∥Φℓ∥s+ϵ′+ϵ.

Using this bound and Lemma 5 applied to the weak problem (44) we have that

∥∂ℓu∥U1
s
≤ Ce

C2
θ

2ϵ

(
∥∂ℓf∥U−1

s+ϵ
+ e

C2
θ

2ϵ′ ∥Φℓ∥s+ϵ′+ϵ

)
. (45)

We can now estimate ||D1u||21,q1;s in Definition (13) as follows:

||D1u||21,q1;s =
∞∑
ℓ=1

λ2q1
ℓ ||∂ℓ∇u||2(L2)s

≤ 2C2e
C2
θ
ϵ

( ∞∑
ℓ=1

λ2q1
ℓ ∥∂ℓf∥2U−1

s+ϵ

+ e
C2
θ

ϵ′

∞∑
ℓ=1

λ2q1
ℓ ||Φℓ||2s+ϵ′+ϵ

)

= 2C2e
C2
θ
ϵ

(
∥D1f∥2−1,q1,s+ϵ + e

C2
θ

ϵ′

∞∑
ℓ=1

λ2q1
ℓ ||Φℓ||2s+ϵ′+ϵ

)
. (46)

To estimate the last term in (46) observe that

∞∑
ℓ=1

λ2q1
ℓ ||Φℓ||2s+ϵ′+ϵ =

∫
S′×D

∞∑
ℓ=1

λ2q1
ℓ ⟨ϕx, ηℓ⟩2|∇u(x, ω)|2e(s+ϵ′+ϵ)∥ω∥2

−θdxdµ(ω)

=

∫
S′×D

∥ϕx∥2q1 |∇u(x, ω)|2e(s+ϵ′+ϵ)|ω|2−θdxdµ(ω)

≤ max
x∈D

∥ϕx∥2q1

∫
S′×D

|∇u(x, ω)|2e(s+ϵ′+ϵ)|ω|2−θdxdµ(ω)

= π2
q1∥u∥

2
U1

s+ϵ′+ϵ

. (47)
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Here and below, in order to simplify notation we have written πq1 = πq1(ϕ). By
inserting Equation (47) in (46) we obtain

||D1u||21,q1;s ≤ 2C2e
C2
θ
ϵ

(
∥D1f∥2−1,q1;s+ϵ + π2

q1e
C2
θ

ϵ′ ∥u∥2U1
s+ϵ′+ϵ

)
.

Using the estimate ∥u∥2U1
s+ϵ′+ϵ

≤ C2eC
2
θ/ϵ

′∥f∥2U−1

s+2ϵ′+ϵ

, see Lemma 5, we obtain

||D1u||21,q1;s ≤ 2C2e
C2
θ
ϵ

(
∥D1f∥2−1,q1;s+ϵ + π2

q1C
2e

2C2
θ

ϵ′ ∥f∥2U−1

s+2ϵ′+ϵ

)
≤ 2C2e

C2
θ
ϵ max{1, πq1Ce

C2
θ

ϵ′ }2
(
∥D1f∥2−1,q1;s+ϵ + ∥f∥U−1

s+2ϵ′+ϵ

)
which finish the proof for the case k = 1.

Now assume that the result holds valid for every 0 ≤ i < k. The main
induction step argument is similar to the case k = 1. We will:

1. Deduce a weak problem whose solution is a partial derivative of order k
of u; see (48).

2. Apply Lemma 5 to estimate the norm of each partial derivative of order k
of u, and use Definition 13 to estimate the norm of Dku in term of lower
order derivatives of u; see (50).

3. Use the induction argument; see (51).

Step 1. Using the Leibniz rule we have

∂ℓ1 . . . ∂ℓk

(
e⟨ω,ϕx⟩∇u(x, ω)

)
=

e⟨ω,ϕx⟩
k∑

i=0

∑
τ∈Ik,i

(
∇∂ℓτ1 · · · ∂ℓτiu(x, ω)

)
aℓτi+1

· · · aℓτk

= e⟨ω,ϕx⟩
(
∂ℓ1 . . . ∂ℓk∇u(x, ω) +

k−1∑
i=0

∑
τ∈Ik,i

Φ
(i),τ
ℓτ1 ···ℓτk

(x, ω)
)

where aℓ(x) = ⟨ϕx, ηℓ⟩ and the set Ik,i is defined in (39). We also have defined

Φ
(i),τ
ℓτ1 ···ℓτk

(x, ω) :=
(
∇∂ℓτ1 · · · ∂ℓτiu(x, ω)

)
aℓτi+1

· · · aℓτk .

From (42) we get∫
D

e⟨ω,ϕx⟩∂ℓ1 . . . ∂ℓk∇u(x, ω)∇v(x)dxdµ =

∫
D

∂ℓ1 . . . ∂ℓkf(x, ω)v(x)dxdµ

−
∫
D

e⟨ω,ϕx⟩
k−1∑
i=0

∑
τ∈Ik,i

Φ
(i),τ
ℓτ1 ...ℓτk

(x, ω)∇v(x)dxdµ
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As above we have that ∂ℓ1 . . . ∂ℓku is the solution of of the weak problem{
Find ∂ℓ1 . . . ∂ℓku ∈ Ûs such that

a(∂ℓ1 . . . ∂ℓku, v) = G(v) for all v ∈ Û1
−s−ϵ

(48)

with a new right-hand side

G(v) =

∫
S′×D

∂ℓ1 . . . ∂ℓkf(x, ω)∇v(x, ω)dxdµ−

k−1∑
i=0

∑
τ∈Ik,i

∫
S′×D

e⟨ω,ϕx⟩Φ
(i),τ
ℓτ1 ...ℓτk

(x, ω)∇v(x, ω)dxdµ. (49)

Step 2. In order to estimate ||G||s+ϵ we estimate each term in (49) above.
For each i and τ ∈ Ik,i we have∫
S′×D

e⟨ω,ϕx⟩Φ
(i),τ
ℓτ1 ...ℓτk

(x, ω)∇v(x, ω)dxdµ ≤ e
C2
θ

2ϵ′ ∥Φ(i),τ
ℓτ1 ···ℓτk

∥s+ϵ′+ϵ∥v∥U1
−s−ϵ

.

Then from Lemma 5 applied to problem (48) with the right-hand side G in (49)
we get

∥∂ℓ1 . . . ∂ℓku∥U1
s

≤ Ce
C2
θ

2ϵ

∥∂ℓ1 . . . ∂ℓkf∥U−1
s+ϵ

+ e
C2
θ

2ϵ′

k−1∑
i=0

∑
τ∈Ik,i

∥Φ(i),τ
ℓτ1 ...ℓτk

∥s+ϵ′+ϵ


and using

∑k−1
i=0

∑
τ∈Ik,i 1 =

∑k−1
i=0

(
k
i

)
= 2k − 1, we obtain

||Dk∇u||20,q;s =
∑

ℓ1,···,ℓk

λ2q1
ℓ1

· · ·λ2qk
ℓk

||∂ℓ1 . . . ∂ℓku||2U1
s

≤ 2kC2e
C2
θ
ϵ

( ∑
ℓ1,···,ℓk

λ2q1
ℓ1

· · ·λ2qk
ℓk

∥∂ℓ1 . . . ∂ℓkf∥2U−1
s+ϵ

+

e
C2
θ

ϵ′
∑

ℓ1,···,ℓk

λ2q1
ℓ1

· · ·λ2qk
ℓk

k−1∑
i=0

∑
τ∈Ik,i

∥Φ(i),τ
ℓτ1 ...ℓτk

∥2s+ϵ′+ϵ

)
≤ 2kC2e

C2
θ
ϵ

(
∥Dkf∥2−1,q;s+ϵ +

e
C2
θ

ϵ′

k−1∑
i=0

∑
τ∈Ik,i

∑
ℓ1,···,ℓk

λ2q1
ℓ1

· · ·λ2qk
ℓk

∥Φ(i),τ
ℓτ1 ...ℓτk

∥2s+ϵ′+ϵ

)
.

Finally note that

λ2q1
ℓ1

· · ·λ2qk
ℓk

∥Φ(i),τ
ℓτ1 ···ℓτk

∥2(s+ϵ′+ϵ) = λ
2qτ1
ℓτ1

· · ·λ2qτk
ℓτk

∥Φ(i),τ
ℓτ1 ···ℓτk

∥2(s+ϵ′+ϵ)

=

∫
S′×D

(
λ
2qτ1
ℓτ1

· · ·λ2qτi
ℓτi

|∂ℓτ1 · · · ∂ℓτi∇u(x, ω)|2
)
·
(
λ
2qτi+1

ℓτi+1
· · ·

λ
2qτi+1

ℓτi+1
a2ℓτi+1

(x) · · · a2ℓτk (x)
)
e(s+ϵ′+ϵ)∥ω∥2

−θdµdx
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implies ∑
ℓ1,···,ℓk

λ2q1
ℓ1

· · ·λ2qk
ℓk

∥Φ(i),τ
ℓτ1 ···ℓτk

∥2s+ϵ′+ϵ

= max
x∈D

∥ϕx∥2qτi+1
. . . ∥ϕx∥2qτk ∥D

i∇u∥20,(qτ1 ,...,qτi ),s+ϵ′+ϵ

≤ π2(k−i)
q ∥Di∇u∥20,(qτ1 ,...,qτi );s+ϵ′+ϵ.

Here and below, in order to simplify the notation we have written πq = πq(ϕ).
Summarizing

||Dk∇u||2q;s ≤ 2kC2e
C2
θ
ϵ

(
∥Dkf∥2−1,q;s+ϵ +

e
C2
θ

ϵ′

k−1∑
i=0

π2(k−i)
q

∑
τ∈Ik,i

∥Di∇u∥20,(qτ1 ,...,qτi );s+ϵ′+ϵ

)
.

(50)

Step 3. We have from the induction argument, i.e., (40) holds with k
replaced i, s replaced by s+ ϵ′ + ϵ and ϵ replaced by ϵ′,

e
C2
θ

ϵ′

k−1∑
i=0

π2(k−i)
q

∑
τ∈Ik,i

∥Di∇u∥20,(qτ1 ,...,qτi );s+ϵ′+ϵ

≤ e
C2
θ

ϵ′

k−1∑
i=0

π2(k−i)
q 2i(i+1)C2e

C2
θ

ϵ′ max{1, πqCe
C2
θ

ϵ′ }2i
(

∑
τ∈Ik,i

i∑
j=0

∑
τ ′∈Ii,j

∥Djf∥2−1,(qτ
τ′
1
,...,qτ

τ′
j

);(s+ϵ′+ϵ)+(2(i−j)ϵ′+ϵ′)

)
(51)

Now we use the fact that the total number of terms in the sum
∑k−1

i=0

∑
τ∈Ik,i

is 2k − 1 to get

k−1∑
i=0

∑
τ∈Ik,i

i∑
j=0

∑
τ ′∈Ii,j

∥Djf∥2−1,(qτ
τ′
1

,...,qτ
τ′
j

),s+2(i−j)ϵ′+ϵ ≤

k−1∑
i=0

∑
τ∈Ik,i

i∑
j=0

∑
τ ′∈Ii,j

∥Djf∥2−1,(qτ
τ′
1

,...,qτ
τ′
j

),s+2(k−j)ϵ′+ϵ ≤

k−1∑
i=0

(2k − 1)
∑

τ∈Ik,j

∥Djf∥2−1,(qτ1 ,...,qτj ),s+2(k−j)ϵ′+ϵ.

(52)

Using that Ce
C2
θ

ϵ′ > 1, hence Ce
C2
θ

ϵ′ ≤ (Ce
C2
θ

ϵ′ )2(k−i) for 0 ≤ i ≤ k − 1, and
together with (51) yields

e
C2
θ

ϵ′

k−1∑
i=0

π2(k−i)
q

∑
τ∈Ik,i

∥Di∇u∥20,(qτ1 ,...,qτi );s+ϵ′+ϵ
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≤ (2k − 1)max{1, πqCe
C2
θ

ϵ′ }2k
(

k−1∑
i=0

2i(i+1)
∑

τ∈Ik,i

∥Dif∥2−1,(qτ1 ,...,qτi ),s+2(k−i)ϵ′+ϵ

)
≤ 2(k−1)k(2k − 1)max{1, πqCe

C2
θ

ϵ′ }2k
(

∑
τ∈Ik,ℓ

∥Dif∥2−1,(qτ1 ,...,qτi ),s+2(k−i)ϵ′+ϵ

)
. (53)

Inserting (53) in (50) we get

||Dk∇u||2q;s ≤ 2k(1 + 2(k−1)k(2k − 1))C2e
C2
θ
ϵ max{1, πqCe

C2
θ

ϵ′ }2k
(

k∑
i=0

∑
τ∈Ik,i

∥Dif∥2−1,(qτ1 ,...,qτi );s+2(k−i)ϵ′+ϵ

)
(54)

and (40) follows by using 2k(1 + 2(k−1)k(2k − 1)) ≤ 2k(k+1).

Corollary 23. Let s ∈ R and ϵ > 0, and let u ∈ Û1
s be the solution of (10)

with right-hand side f ∈ U−1
s+2kϵ′+ϵ. Let us assume that for k ∈ N and q =

(q1, . . . qk) ∈ Rk we have ∥ϕx∥qi < ∞ for 1 ≤ i ≤ k and ∥f∥U−1
|q|;ρ,t

< ∞ where

|q| =
∑k

i=1 qi, ρ is defined by (15), ϵ′ > 0 and t = s+ 2kϵ′ + ϵ. Then

∥Dk∇u∥20,q;s < C̃(ϵ, ϵ′, k, ϕ)∥f∥2U−1
|q|;ρ,t

(55)

where the constant C̃ is defined in (41).

Proof. From Lemma 22 and Lemma 5 we have

∥Dk∇u∥20,q;s ≤ C̃(ϵ, ϵ′, k, ϕ)

 k∑
i=0

∑
τ∈Ik,ℓ

∥Dif∥2−1,(qτ1 ,...,qτi );t


< C̃(ϵ, ϵ′, k, ϕ)

 k∑
i=0

∑
R∈Pk,i

∥Dif∥2−1,R(q);t


≤ C̃(ϵ, ϵ′, k, ϕ)∥f∥2U−1

|q|;ρ,t

The following result summarizes our stochastic regularity result.

Theorem 24. Let s ∈ R and ϵ > 0, and let u ∈ Û1
s be the solution of (10) with

right-hand side f ∈ U−1
s+ϵ. Let us assume that for k ∈ N we have ∥ϕx∥ k

2
< ∞

where ρ is defined by (15), ϵ′ > 0 and t = s+ 2kϵ′ + ϵ. Then u ∈ Û1
k
2 ;ρ,s

and

|u|U1
k
2
;ρ,s

≤ C̃(ϵ, ϵ′, k, ϕ)B(k)∥f∥2U−1
k
2
;ρ,t
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where (the Bell number) B(k) is the total number of partitions of the set {1, 2, . . . , k}.

Proof. According to Corollary 23 we see that

∥∇u∥2U0
k
2
;ρ,s

=
k∑

i=1

∑
R∈Pk,i

∥Di∇u||20,R( 1
21k);ρ,s

<

p∑
i=1

∑
R∈Pk,i

C̃(ϵ′, i, ϕ,D)∥f∥2U−1

|R( 1
2
1k)|;ρ,t

≤ C̃(ϵ′, k, ϕ,D)B(k)∥f∥2U−1
k
2
;ρ,t

,

where we have used that |R( 121k)| = k
2 for all R partition of the set {1, 2, . . . , k}.

Remark 25. Bounds for the Bell numbers B(k) are know. It is know that

B(k) = 1
e

∑∞
i=1

ik

i! < ( 0.792k
ln(k+1) )

k. See [4] and references therein.

Remark 26. In the special case of f being a polynomial in ω, i.e., a finite sum
of Fourier-Hermite polynomials with coefficients in H−1(D) we can easily verify

that f ∈ U−1
p;ρ,s for all p and all s <

λ2θ
1

2 .

Next we present a result that can be directly applied to bound the first term
in the a priori error estimate in Lemma 11.

Corollary 27. Let the conditions of Theorem 24 hold with k = 2p and ϵ′ = ϵ̃
2p .

Then

|u|U1
p;ρ,s+ϵ̃+ϵ

≤ C̃(ϵ,
ϵ̃

2p
, 2p, ϕ)B(2p)∥f∥2U−1

p;ρ,s+ϵ̃+ϵ

,

where the constant C̃ is defined in (41).

8 Spatial regularity

In this section we will study the spatial regularity of the solution of (10).
Fix ω and take partial derivatives with respect to spatial coordinates xi. In

particular ∂⟨ω,ϕx⟩
∂xi

= ⟨ω, (∂ϕx

∂xi
)⟩, hence,

|∂⟨ω, ϕx⟩
∂xi

| ≤ max
x∈D

∥∂ϕx

∂xi
∥θ ∥ω∥−θ = ˜̃Cθ(ϕ) ∥ω∥−θ

where we have denoted

˜̃Cθ(ϕ) = max
1≤i≤d

max
x∈D

∥∂ϕx

∂xi
∥θ. (56)

Since ∂κ(x,ω)
∂xi

= ⟨ω, (∂ϕx

∂xi
)⟩e⟨ω,ϕx⟩, we obtain

| ∂κ
∂xi

(x, ω)| ≤ ˜̃Cθ(ϕ)∥ω∥−θ e
C2
θ

2ϵ e
ϵ
2∥ω∥2

−θ . (57)
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Remark 28. In general we have

∥∂ϕx

∂xi
∥2θ =

∞∑
j=1

λ2θ
j (

∂ϕx

∂xi
, ηj)

2
H .

For the particular case of Example 3 we have ϕx(·) = ϕ(· − x), hence, if we
consider for simplicity the uni-dimensional case H = L2(R), we have

(
∂ϕx

∂x
, ηj)H =

∫
R

∂ϕ

∂x
(x̂− x)ηj(x̂)dx̂ = −

∫
R

∂ϕ

∂x̂
(x̂− x)ηj(x̂)dx̂ =∫

R
ϕ(x̂− x)

∂

∂x̂
ηj(x̂)dx̂ =

√
j

2
(
∂ϕx

∂x
, ηj−1)H −

√
j + 1

2
(
∂ϕx

∂x
, ηj+1)H ,

where we have used a recursive relation of derivative of Hermite functions. Using

that λj = 2j, we obtain ˜̃Cθ(ϕ) ≤ ČCθ+ 1
2
. For the case of Example 2, we have

neither the recursive relation nor ηj vanishes on ∂D; see [12] for issues on the
regularity of the ηj and the decaying of the 1/λj.

The following result is a particular case of Theorem 9.1, page 184 of La-
dyzhenskaya and Ural′tseva [21].

Lemma 29. Consider the following elliptic problem{
−∇ · (µ(x)∇u(x)) = f(x), for x ∈ D

u(x) = 0, on ∂D.
(58)

Suppose that:

1. There is constants such that

0 < µmin ≤ µ(x) ≤ µmax for all x ∈ D and that ∂D

and

∥ ∂µ

∂xj
∥Lq(D) ≤ µmax with q > d

2. ∂D is piecewise smooth with curvature bounded below by a number K (See
[21] page 174 and 175).

3. The domain D is of class W 2
q or that D can be topologically mapped into

a parallelepiped by a function in W 2
q (Rd) with nonzero Jacobian.

Then the problem has unique solution in H2(D) ∩H1
0 (D) if f ∈ L2(D).

Corollary 30. Under the assumption of Lemma 29 for the Domain D we have
that for almost all ω ∈ Ω the weak solution u(·, ω) of Problem (3) is an element
of H2(D) if f(·, ω) ∈ L2(D)
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Now we only need to bound the H2 norm of u(·, ω) in terms of ω. We next
apply the second fundamental inequality, Lemma 8.1 in page 175 of [21] applied
to the class of coefficients we consider in this paper. In order to simplify the
presentation we assume that D is a nondegenerate d− 1 dimension polyhedron.

Lemma 31. Assume that D is a nondegenerate d− 1 dimensional polyhedron.
For every function v ∈ H2 ∩ H1

0 we have that for every ϵ̂ > 0 and almost all
ω ∈ S ′

|v|2H2(D) ≤ 2e
C2
θ
ϵ̂ eϵ̂∥ω∥2

−θ

∫
D

(∇ · κ∇v)2 +
8d

ϵ̂
˜̃Cθ(ϕ) e

4C2
θ

ϵ̂ e5ϵ̂∥ω∥2
−θ

∫
D

|∇v|2 (59)

where Cθ is defined in (5) and ˜̃Cθ in (56).

Proof. Note that it is enough prove the result for smooth functions v. Assume
v ∈ C2(D) and v = 0 on ∂D. We have

(∇ · κ∇v)2 = (∇κ · ∇v)2 + 2κ(∇κ · ∇v)(∆v) + κ2(∆v)2. (60)

Using two integration by parts and v = 0 on ∂D we have∫
D

(∆v)2 = |v|2H2(D) +

∫
∂D

∆v∇v · η −
d∑

i=1

∂iv∇(∂iv) · η = |v|2H2(D). (61)

To see the boundary integral vanish it is enough to compute this integral in
each face of D. Let F be a face of D. We can assume F ⊂ Rd−1 × {0}. Then
η = (0, . . . , 1) ∈ Rd. Then∫

F

∆v∇v · η −
d∑

i=1

∂iv∇(∂iv) · η =

∫
F

∆v∂dv −
d∑

i=1

∂iv∂
2
div (62)

Since v = 0 on F we have that ∂iv = 0 and ∂ijv = 0, on F , i = 1, . . . , d − 1.
Then ∫

F

∆v∇v · η −
d∑

i=1

∂iv∇(∂iv) · η =

∫
F

∂ddv∂dv − ∂dv∂
2
ddv = 0. (63)

Now, observe that∫
D

(∇κ · ∇v)2 ≤ d max
1≤i≤d

∥∂iκ∥2∞
∫
D

|∇v|2 (64)

and with δ =
κ2
min

2κmax
> 0 we have

2

∫
D

κ(∇κ · ∇v)(∆v) ≤ κmax

(
δ

∫
D

(∆v)2 +
1

δ

∫
D

(∇κ · ∇v)2
)

≤ δκmax|v|2H2(D) + d max
1≤i≤d

∥∂iκ∥2∞
κmax

δ

∫
D

|∇v|2

≤ κ2
min

2
|v|2H2(D) + 2d max

1≤i≤d
∥∂iκ∥2∞

κ2
max

κ2
min

∫
D

|∇v|2(65)
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By combining (61), (64) and (65) we get

|v|2H2(D) ≤ 1

κ2
min

∫
D

(∇ · κ∇v)2 +

+
1

2
|v|2H2(D) + 2d max

1≤i≤d
∥∂iκ∥2∞(

1

κ2
min

+
κ2
max

κ4
min

)

∫
D

|∇v|2

and then

|v|2H2(D) ≤
2

κ2
min

∫
D

(∇ · κ∇v)2 + 4d max
1≤i≤d

∥∂iκ∥2∞(
1

κmin
+

κ2
max

κ2
min

)

∫
D

|∇v|2.

Finally, using (6), we see that

|v|2H2(D) ≤ 2e
C2
θ
ϵ̂ eϵ̂∥ω∥2

−θ

∫
D

(∇ · κ∇v)2 +

4d max
1≤i≤d

∥∂iκ∥2∞(1 + e
3C2

θ
ϵ̂ e3ϵ̂∥ω∥2

−θ )

∫
D

|∇v|2

and using (57) we get

|v|2H2(D) ≤ 2e
C2
θ
ϵ̂ eϵ̂∥ω∥2

−θ

∫
D

(∇ · κ∇v)2 +

4d ˜̃Cθ(ϕ)∥ω∥2−θe
C2
θ
ϵ̂ eϵ̂∥ω∥2

−θ (1 + e
3C2

θ
ϵ̂ e3ϵ̂∥ω∥2

−θ )

∫
D

|∇v|2

and using that ϵ̂∥ω∥2−θ < eϵ̂|ω∥2
−θ , (59) follows.

We establish a bound for the second term in the a priori error estimate 11.

Theorem 32. Let s ∈ R and ϵ > 0, and let u ∈ Û1
s be the solution of (10) with

right-hand side f ∈ U−1
s+ϵ. Assume that D is a nondegenerate d− 1 dimensional

polyhedron, f ∈ U0
s+ϵ̃+ϵ+ϵ̂ and f ∈ U−1

s+ϵ̃+2ϵ+5ϵ̂ for ϵ̃, ϵ, ϵ̂ positive. Then, u ∈
U2
s+ ˜ϵ+ϵ̂

and

|u|2U2
s+ϵ̃+ϵ+ϵ̂

≤ 2e
C2
θ
ϵ̂ eϵ̂∥ω∥2

−θ ||f ||2U0
s+ϵ̃+ϵ+ϵ̂

+

8d

ϵ̂
C2 ˜̃Cθ(ϕ) e

C2
θ (

4
ϵ̂+

1
ϵ )e(4ϵ̂+ϵ)∥ω∥2

−θ∥f∥2U−1
s+ϵ̃+2ϵ+5ϵ̂

.

where C =
√
1 + Cpoin and Cpoin is the Poincaré inequality constant which

depends on D, Cθ is defined in (5) and ˜̃Cθ in (56).

Proof. Corollary 30 and f ∈ U0
s+ϵ̃+ϵ+ϵ̂ imply that for almost all ω ∈ S ′, u(·, ω) ∈

H2(D). The bound (66) follows by first replacing v by u in (59), then multiply

(59) by e(s+ϵ̃+ϵ)∥ω∥2
−θ and integrate in S ′, then use ∇ · κ∇u = f to obtain the

first term of the right-hand side of (66), and use Lemma 5 to obtain the second
term.
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9 Final remarks

We presented regularity results for stochastic elliptic equations with lognormal
coefficient κ. We obtained joint spatial and stochastic regularity of solutions
of the ordinary product pressure equation assuming similar regularity for the
right-hand side f(x, ω) and stochastic process log(κ(x, ω)). Standard assump-
tions on the spatial domain D are also used. The main results in Theorem 24
and Theorem 32 which state that the solution of the pressure equation with
regular data has classical H1+r regularity in the spatial variable x and stochas-
tic regularity given by a particular weighted Chaos space. To compute regular
norms of function in the stochastic variable we use the White Noise framework
and directional derivatives. This resulting norm require norms of partial deriva-
tives in the ω variable up to certain order to be bounded. The fact this norm is
equivalent to a weighted Chaos space norm is proved in Theorem 20.
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