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Abstract

We propose a variant of Korpelevich’s method for solving variational inequality problems
with operators in Banach spaces. A full convergence analysis of the method is presented under
reasonable assumptions on the problem data.
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1 Introduction

Assume that B is a reflexive Banach space with norm ‖·‖, B∗ is the topological dual of B with
norm ‖·‖∗, and the symbol 〈·, ·〉 indicates the duality coupling in B∗ ×B, defined by 〈φ, x〉 = φ(x)
for all x ∈ B and all φ ∈ B∗. The underlying problem, called variational inequality problem and
denoted by VIP(T,C) from now on, consists of finding an x∗ ∈ C such that

〈T (x∗), x− x∗〉 ≥ 0 ∀x ∈ C,

where C is a nonempty closed convex subset of B and T : B → B∗ is an operator. The set of
solutions of VIP(T,C) will be denoted by S(T,C).

Variational inequality problems arise in a wide variety of application areas (see, e.g. [24],
[31]). They encompass as particular cases convex optimization problems, linear and monotone
complementarity problems, equilibrium problems, etc.
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In this paper, we will extend Korpelevich’s method to infinite dimensional Banach spaces, and
thus we start with an introduction to its well known finite dimensional formulation, i.e., we assume
that B = R

n. In this setting, there are several iterative methods for solving VIP(T,C). The
simplest one is the natural extension of the projected gradient method for optimization problems,
substituting the operator T for the gradient, so that we generate a sequence {xk} ⊂ R

n through:

xk+1 = PC(xk − αkT (xk)), (1)

where αk is some positive real number and PC , is the orthogonal projection onto C. This method
converges under quite strong hypotheses, which we discuss next. If T is Lipschitz continuous and
strongly monotone, i.e.

‖T (x) − T (y)‖ ≤ L ‖x− y‖ ∀ x, y ∈ R
n,

and
〈T (x) − T (y), x− y〉 ≥ σ ‖x− y‖2 ∀ x, y ∈ R

n,

where L > 0 and σ > 0 are the Lipschitz and strong monotonicity constants respectively, then the
sequence generated by (1) converges to a solution of VIP(T,C) (provided that the problem has
solutions) if the stepsizes αk are taken as αk = α ∈ (0, 2σ/L2) for all k (see e.g., [8], [14]). If we
relax the strong monotonicity assumption to plain monotonicity, i.,e.

〈T (x) − T (y), x− y〉 ≥ 0 ∀ x, y ∈ R
n,

then the situation becomes more complicated, and we may get a divergent sequence independently
of the choice of the stepsizes αk. The typical example consists of taking B = C = R

2 and T
a rotation with a π/2 angle, which is certainly monotone and Lipschitz continuous. The unique
solution of VIP(T,C) is the origin, but (1) gives rise to a sequence satisfying

∥

∥xk+1
∥

∥ >
∥

∥xk
∥

∥ for
all k. In order to deal with this situation, Korpelevich suggested in [28] an algorithm of the form:

yk = PC(xk − αkT (xk)), (2)

xk+1 = PC(xk − αkT (yk)). (3)

In order to clarify the geometric motivation behind this procedure, consider VIP(T,C) with a
monotone T . Let Hk = {x ∈ R

n : 〈T (yk), x − yk〉 = 0}, with yk as in (2). It is easy to check
that, as a consequence of the monotonicity of T , Hk separates xk from the solution set S(T,C).
Thus, if αk is small enough, the point xk+1 defined by (3) is obtained by moving first from xk in
the direction of its projection onto a hyperplane separating it from the solution set (achieving the
point xk − αkT (yk)), and then projecting the resulting point onto C, which contains S(T,C). It
follows that xk+1 is closer than xk to any point in S(T,C), i.e., to any solution. This property,
called Fejér monotonicity of {xk} with respect to the solution set of VIP(T,C), is the basis of
the convergence analysis. In fact, if T is Lipschitz continuous with constant L and VIP(T,C) has
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solutions, then the sequence generated by (2)–(3) converges to a solution of VIP(T,C) provided
that αk = α ∈ (0, 1/L) (see [28]).

In the absence of Lipschitz continuity of T , it is natural to emulate once again the projected
gradient method for optimization, and search for an appropriate stepsize in an inner loop. This is
achieved in the following procedure:

Take δ ∈ (0, 1), β̂, β̃ satisfying 0 < β̂ ≤ β̃, and a sequence {βk} ⊆ [β̂, β̃]. The method is
initialized with any x0 ∈ C and the iterative step is as follows:

Given xk define
zk := xk − βkT (xk). (4)

If xk = PC(zk) stop. Otherwise take

j(k) := min

{

j ≥ 0 :
〈

T (2−jPC(zk) + (1 − 2−j)xk), xk − PC(zk)
〉

≥
δ

βk

‖xk − PC(zk)‖2

}

, (5)

αk := 2−j(k), (6)

yk := αkPC(zk) + (1 − αk)x
k, (7)

Hk :=
{

z ∈ R
n : 〈z − yk, T (yk)〉 ≤ 0

}

, (8)

xk+1 := PC(PHk
(xk)). (9)

We remark that along the search for αk the right hand side of (5) is kept constant, and that,
though T is evaluated at several points in the segment between PC(zk) and xk, no orthogonal
projections onto C are required during the inner loop, and we have only two projections onto C
per iteration, namely in the computation of zk and xk+1, exactly as in the original method (2)–(3).

The above backtracking procedure for determining the right α is sometimes called an Armijo-
type search (see [1]). It has been analyzed for VIP(T,C) in [25] and [21]. Other variants of
Korpelevich’s method can be found in [15], [23], [30], and other methods for the problem appear
in [4], [7], [15], [16], [18], [33], [37] and [38] for the case in which T is point-to-point, as in this
paper. We mention that some of these methods are implicit ones, in the sense that each iteration
requires solution of a rather non-trivial subproblem (as is the case of proximal methods in general,
like e.g. the one in [33]), while our method, as Korpelevich’s, is fully explicit, up to an Armijo-
type search similar to (5) above. We also remark that our method, like most projection methods
(e.g., the method given by (4)–(9)), generates a sequence generically contained in the boundary
of C, because each iterate is a projection onto C, while some of the methods just mentioned are
interior point ones, i.e., they generate sequences contained in the interior of C, like the algorithm
introduced in [4]. Extensions of Korpelevich’s method to the point-to-set setting (in which case
Lipschitz continuity assumptions must be carefully reworked, see e.g. [34]), can be found in [6],
[20], [26] and [27]. All these references deal with finite dimensional spaces.

In this paper, we are interested in infinite dimensional Banach spaces, for which direct methods
for VIP(T,C) are much scarcer. A descent method was proposed in [42], and a projection method,
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which works in reflexive Banach spaces, is analyzed in [2], [17]. We proceed to describe the latter.
Let J : B → B∗ be the normalized duality mapping (i.e., the subdifferential of g(x) = 1

2 ‖x‖
2; see

[12]), which can also be defined as

J(x) = {x∗ ∈ B∗ : 〈x∗, x〉 = ‖x∗‖∗ ‖x‖ , ‖x
∗‖∗ = ‖x‖}.

Given xk ∈ B, xk+1 is calculated as the Bregman projection with respect to g of the point
J−1

(

J(xk) − λkT (xk)
)

onto C, where {λk} ⊂ R++ is an exogenous bounded sequence (see Defi-
nition 2.6 below for the formal definition of Bregman projection). Formally, the method has the
form

xk+1 = Πg
C

[

J−1
(

J(xk) − λkT (xk)
)]

, (10)

where Πg
C is the Bregman projection onto C with respect to g. The convergence result for this

method is as follows.

Theorem 1.1. Suppose that B is uniformly convex and uniformly smooth and that

i) T is uniformly monotone, that is, 〈T (x)− T (y), x− y〉 ≥ ψ(‖T (x) − T (y)‖∗), where ψ(t) is a
continuous strictly increasing function for all t ≥ 0 with ψ(0) = 0,

ii) T has φ-arbitrary growth, that is, ‖T (y)‖∗ ≤ φ(‖y − z‖) for all y ∈ C and {z} = S(T,C),
where φ is a continuous nondecreasing function with φ(0) ≥ 0,

iii) {λk} is a positive nonincreasing sequence that satisfies limk→∞ λk = 0 and
∑∞

k=0 λk = ∞.

Then the sequence {xk} generated by (10) converges strongly to a unique point z ∈ S(T,C).

Proof. See [2].

Another result for this method, establishing weak convergence, rather than strong, can be found
in [17]. It reads as follows:

Theorem 1.2. Let B be a uniformly smooth Banach space, also 2-uniformly convex with constant
1/γ, whose duality mapping J is weakly sequentially continuous. Assume that VIP(T,C) satisfies:

i) there exists a real positive number α such that for all x, y ∈ C, it holds that

〈T (x) − T (y), x− y〉 ≥ α ‖T (x) − T (y)‖2
∗ ,

ii) for all y ∈ C and all u ∈ S(T,C), it holds that

‖T (y)‖∗ ≤ ‖T (y) − T (u)‖∗ .
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If S(T,C) 6= ∅, {λk} ⊂ [β̂, β̃], with 0 < β̂ < β̃ < (γ2α)/2, and x0 belongs to C, then the se-
quence {xk} generated by (10) is weakly convergent to the point z ∈ S(T,C) characterized as
z = limk→+∞ ΠS(T,C)(x

k).

Proof. See Theorem 3.1 of [17].

Related convergence results for Cesaro averages of sequences related to {xk} can be found in
Theorem 4.2 of [3]. We will see later on that the convergence properties of our algorithm hold
under assumptions quite weaker than those demanded by Theorems 1.1 and 1.2 (see Theorem 4.8
below).

The outline of this paper is as follows. In Section 2 we present some theoretical tools needed in
the sequel. In Section 3 we state our algorithm formally. In Section 4 we establish the convergence
properties of the algorithm. In Section 5 we show that our theory can be used to solve some real
life problems.

2 Preliminaries

Definition 2.1. Consider an operator T : B → B∗.

i) T is said to be monotone if for all x, y ∈ B, it holds that

〈T (x) − T (y), x− y〉 ≥ 0.

ii) T is said to be pseudomonotone if for all x, y ∈ B, it holds that

〈T (y), x− y〉 ≥ 0 ⇒ 〈T (x), x− y〉 ≥ 0.

iii) T is said to be hemicontinuous on a subset C of B if for all x, y ∈ C, the mapping h : [0, 1] →
B∗ defined as h(t) = T (tx+ (1 − t)y) is continuous with respect to the weak∗ topology of B∗.

iv) T is said to be uniformly continuous on a subset E of B if for all ǫ > 0 there exists δ > 0
such that for all x, y ∈ E, it hold that

‖x− y‖ < δ ⇒ ‖T (x) − T (y)‖∗ < ǫ.

We will prove that the sequence generated by our algorithm is an asymptotically solving se-
quence (see Definition 4.4) for VIP(T,C) when T is uniformly continuous on bounded subsets of
C, S(T,C) 6= ∅, and VIP(T,C) satisfies property A, stated below.

A: For some x∗ ∈ S(T,C), it holds that

〈T (y), y − x∗〉 ≥ 0 ∀y ∈ C. (11)
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It is worthwhile mentioning that the problem of finding an x∗ ∈ C such that (11) is satisfied,
is known as Minty variational inequality problem. Some existence results for this problem have
been presented in [29]. We also mention that assumption A has been already used for solving
VIP(T,C) in finite dimensional spaces (see, e.g., [25], [32], [36], [37]). It is not difficult to prove
that pseudomonotonicity implies property A, while the converse is not true, as illustrated by the
following example.

Example 2.2. Consider T : R → R defined as T (x) = cos(x) with C = [0, π
2 ].

We have that S(T,C) = {0, π
2 }. VIP(T,C) satisfies the property A, because for x∗ = 0 the

statement in (11) holds. But if we take x = 0 and y = π
2 in Definition 2.1(ii), we conclude that T

is not pseudomonotone.
The next lemma, called sometimes Minty’s lemma, will be useful for proving that all weak

cluster points of the sequence generated by our algorithm solves S(T,C).

Lemma 2.3. Consider VIP(T,C). If T : C → B∗ is monotone and hemicontinuous on C, then

S(T,C) = {x ∈ C : 〈T (y), y − x〉 ≥ 0 ∀y ∈ C}.

Proof. See Lemma 7.1.7 of [39].

Next we state some properties of Bregman projections which will be used in the remainder of
this paper, taken from [10]. We consider an auxiliary function g : B → R, which is strictly convex,
lower semicontinuous, and Gâteaux differentiable. We will denote the family of such functions as
F . The Gâteaux derivative of g will be denoted by g′.

Definition 2.4. Let g : B → R be a convex and Gâteaux differentiable function.

i) The Bregman distance with respect to g is the function Dg : B×B → R defined as Dg(x, y) =
g(x) − g(y) − 〈g′(y), x− y〉.

ii) The modulus of total convexity of g is the function νg : B × [0,+∞) → [0,+∞) defined as
νg(x, t) = inf{Dg(y, x) : y ∈ B, ‖y − x‖ = t}.

iii) g is said to be a totally convex function at x ∈ B if νg(x, t) > 0 for all t > 0.

iv) g is said to be a totally convex function if νg(x, t) > 0 for all t > 0 and all x ∈ B.

v) g is said to be a uniformly totally convex function on E ⊂ B if infx∈Ẽ νg(x, t) > 0 for all

t > 0 and all bounded subsets Ẽ ⊂ E.

We will present next some additional conditions on g, which are needed in the convergence
analysis of our algorithm.

H1: The level sets of Dg(x, ·) are bounded for all x ∈ B.
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H2: infx∈C νg(x, t) > 0 for all bounded set C ⊂ B and all t > 0.

H3: g′ is uniformly continuous on bounded subsets of B.

H4: g′ is onto, i.e., for all y ∈ B∗, there exists x ∈ B such that g′(x) = y.

H5: (g′)−1 is uniformly continuous on bounded subsets of B∗.

H6: If {yk} and {zk} are sequences in C which converge weakly to y and z, respectively and y 6= z,
then

lim inf
k→∞

∣

∣

∣〈g′(yk) − g′(zk), y − z〉
∣

∣

∣ > 0.

These properties were identified in [19]. We make a few remarks on them. H2 is known to
hold when g is lower semicontinuous and uniformly convex on bounded sets (see [11]). It has been
proved in page 75 of [10], that sequential weak-to-weak∗ continuity of g′ ensures H6. Existence of
(g′)−1 will be a consequence of H4 for any g ∈ F . We mention that for the case of strictly convex
and smooth B and g(x) = ‖x‖r, we have an explicit formula for (g′)−1, in terms of φ′, where
φ(·) = 1

s
‖·‖s

∗ with 1
s

+ 1
r

= 1, namely (g′)−1 = r1−sφ′.
It is important to check that functions satisfying these properties are available in a wide class

of Banach spaces. The prototypical example is g(x) = 1
2 ‖x‖

2, in which case g′ is the duality
operator, and the identity operator in the case of Hilbert space. It is convenient to deal with a
general g rather than just the square of the norm because in Banach spaces this function lacks the
privileged status it enjoys in Hilbert spaces. In the spaces Lp and ℓp, for instance, the function
g(x) = 1

p
‖x‖p leads to simpler calculations than the square of the norm. It has been shown in

[19] that the function g(x) = r ‖x‖s, works satisfactorily in any reflexive, uniformly smooth and
uniformly convex Banach space, for any r > 0, s > 1. We have the following result.

Proposition 2.5.

i) If B is a uniformly smooth and uniformly convex Banach space, then g(x) = r ‖x‖s satisfies
H1–H5 for all r > 0 and all s > 1.

ii) If B is a Hilbert space, then g(x) = 1
2 ‖x‖

2 satisfies H6. The same holds for g(x) = 1
p
‖x‖p

when B = ℓp (1 < p <∞).

Proof. See Proposition 2 of [19] and the discussion after this proposition.

We remark that the only problematic property is H6, in the sense that the only example we have
of a nonhilbertian Banach space for which we know functions satisfying it is ℓp with 1 < p < ∞.
As we will see in Section 4, most of our convergence results demand only H1–H5.

Now we present some properties of Bregman projection in Banach spaces. A full discussion
about this issue can be found in [10].
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Definition 2.6. Assume that B is a Banach space. Let g ∈ F be a totally convex function on
B satisfying H1. The Bregman projection of x ∈ B onto C, denoted by Πg

C(x), is defined as the
unique solution of the following minimization problem, as long as this unique minimizer exists.

Πg
C(x) = argmin

y∈C
Dg(y, x).

It is worthwhile mentioning that Dg(x, y) = 1
2 ‖x− y‖2 whenever g(x) = 1

2 ‖x‖
2 and B is a

Hilbert space. The next proposition lists some properties of Bregman projections. We remind that
NC(x), the normal cone to C at x ∈ C, is defined as

NC(x) = {z ∈ B∗ : 〈x− y, z〉 ≥ 0 ∀y ∈ C}.

Proposition 2.7. Assume that B is a Banach space. Let g ∈ F be a totally convex function on B
satisfying H1. In this situation, the following two statements are true.

i) The operator Πg
C : B → C is well defined.

ii) x̄ = Πg
C(x) if and only if g′(x) − g′(x̄) ∈ NC(x̄), or equivalently, x̄ ∈ C and

〈g′(x) − g′(x̄), z − x̄〉 ≤ 0 ∀z ∈ C.

Proof. See page 70 of [10].

We will utilize the following properties in our convergence analysis.

Proposition 2.8. Assume that g : B → R is convex and Gâteaux differentiable. For any x, y, z ∈
B, it holds that

Dg(y, z) +Dg(z, x) −Dg(y, x) = 〈g′(z) − g′(x), z − y〉. (12)

Proof. See 1.3.9 of [10].

Proposition 2.9. Let g ∈ F be a totally convex function on B satisfying H1. Then for all 0 6= v ∈
B∗, ỹ ∈ B, x ∈ H+ and x̄ ∈ H−, it holds that Dg(x̄, x) ≥ Dg(x̄, z)+Dg(z, x) where z is the unique
minimizer of Dg(·, x) on H where H = {y ∈ B : 〈v, y − ỹ〉 = 0}, H+ = {y ∈ B : 〈v, y − ỹ〉 ≥ 0},
H− = {y ∈ B : 〈v, y − ỹ〉 ≤ 0}.

Proof. See Lemma 1 of [19].

Proposition 2.10. Assume that g ∈ F satisfies H2. Let {xk}, {yk} ⊂ B be two sequences such
that at least one of them is bounded. If limk→∞Dg(y

k, xk) = 0, then limk→∞

∥

∥xk − yk
∥

∥ = 0.

Proof. See Proposition 5 of [19].
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Proposition 2.11. Assume that B1 and B2 are two Banach spaces. Let U be a bounded subset of
B1. If T : B1 → B2 is uniformly continuous on bounded subsets of B1, then T (U) is bounded.

Proof. Elementary.

Proposition 2.12. Assume that C is a nonempty, closed and convex subset of B and that U is a
bounded subset of B. Let g : B → R be totally convex and Fréchet differentiable on B. If H1 and
H3 hold, then Πg

C(U) is bounded.

Proof. Fix v ∈ C and take an arbitrary u ∈ U . By Propositions 2.7(ii) and 2.8, we have that

Dg

(

v,Πg
C(u)

)

+Dg

(

Πg
C(u), u

)

−Dg(v, u) =
〈

g′(u) − g′
(

Πg
C(u)

)

, v − Πg
C(u)

〉

≤ 0

for all u ∈ U . Since Dg

(

Πg
C(u), u

)

≥ 0, we get from Definition 2.4(i),

Dg

(

v,Πg
C(u)

)

≤ Dg(v, u) = g(v) − g(u) − 〈g′(u), v − u〉 (13)

for all u ∈ U . Note that g′(U) is bounded by Proposition 2.11 and H3. On the other hand, since g
is convex and U is bounded, it holds that supu∈U −g(u) < +∞. Thus, the right hand side of (13)
is bounded on U , and hence the same holds for the left hand side of (13). The result follows from
H1.

3 Statement of the algorithm

Now we present the formal statement of the algorithm. It requires three exogenous parameters,
namely δ ∈ (0, 1), β̂ and β̃ with 0 < β̂ ≤ β̃, an exogenous sequence {βk} ⊂ [β̂, β̃], and an auxiliary
function g ∈ F .

Korpelevich’s method for VIP(T,C):

1. Initialization:

x0 ∈ C. (14)

2. Iterative step: Given xk, define

zk = (g′)−1[g′(xk) − βkT (xk)]. (15)

If xk = Πg
C(zk) stop. Otherwise, let

ℓ(k) = min{ℓ ∈ N : 〈T (yℓ), xk − Πg
C(zk)〉 ≥

δ

βk

Dg(Π
g
C(zk), xk)}, (16)
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where
yℓ = 2−ℓΠg

C(zk) + (1 − 2−ℓ)xk. (17)

We put
αk = 2−ℓ(k), (18)

yk = αkΠ
g
C(zk) + (1 − αk)x

k, (19)

wk = Πg
Hk

(xk), (20)

where
Hk = {y ∈ B : 〈T (yk), y − yk〉 = 0}.

xk+1 = Πg
C(wk). (21)

4 Convergence analysis

We start by establishing that Korpelevich’s method for VIP(T,C) is well defined, and proving some
elementary properties.

Proposition 4.1. Assume that g ∈ F is totally convex on B and satisfies H1 and H4. If Algorithm
(14)–(21) stops at the k-th iteration then the vector xk generated by the algorithm is a solution of
VIP(T,C).

Proof. By the stopping criterion, xk = Πg
C(zk). Using (15), we have g′(zk) = g′(xk) − βkT (xk).

Proposition 2.7(ii) entails that

〈g′(zk) − g′(xk), z − xk〉 = 〈g′(zk) − g′(Πg
C(zk)), z − Πg

C(zk)〉 ≤ 0 ∀z ∈ C,

which in turns implies
βk〈T (xk), z − xk〉 ≥ 0 ∀z ∈ C.

Since βk > 0, we conclude that xk ∈ S(T,C).

Proposition 4.2. Assume that g ∈ F is totally convex on B and satisfies H1 and H4, and also
that T is continuous on C. Then the following statements hold for Algorithm (14)–(21).

i) ℓ(k) is well defined, (i.e. the Armijo-type search for αk is finite), and consequently the same
holds for the sequence {xk}.

ii) xk ∈ C ∀k ≥ 0.

iii) If the Algorithm does not stop at iteration k, then 〈T (yk), xk − yk〉 > 0.
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Proof. i) We proceed inductively, i.e. we assume that xk is well defined, and proceed to establish
that the same holds for xk+1. Note that zk is well defined by H4. It suffices to check that ℓ(k) is
well defined. Assume by contradiction that

〈T (yℓ), xk − Πg
C(zk)〉 <

δ

βk

Dg(Π
g
C(zk), xk) ∀ℓ ≥ 0. (22)

Since T is continuous and yℓ → xk as ℓ→ ∞, we get, multiplying both sides of (22) by βk,

βk〈T (xk), xk − Πg
C(zk)〉 ≤ δDg(Π

g
C(zk), xk),

or equivalently,
〈g′(xk) − g′(zk), xk − Πg

C(zk)〉 ≤ δDg(Π
g
C(zk), xk), (23)

using H4 and (15). Applying (12) to the left side of (23), we obtain

Dg(Π
g
C(zk), xk) +Dg(x

k, zk) −Dg(Π
g
C(zk), zk) ≤ δDg(Π

g
C(zk), xk). (24)

Since g is strictly convex, Definition 2.4(i) and the stopping criterion imply that

Dg(Π
g
C(zk), xk) > 0.

Therefore, using (24) and the fact that δ ∈ (0, 1), we get

Dg(x
k, zk) < Dg(Π

g
C(zk), zk),

which contradicts Definition 2.6, because xk ∈ C.
ii) It follows from (14) and (21).
iii) Combining statements (16)–(19), we get

〈T (yk), xk − yk〉 = αk〈T (yk), xk − Πg
C(zk)〉 ≥

δαk

βk

Dg(Π
g
C(zk), xk) > 0,

in view of the stopping criterion.

The next proposition establishes the Fejér monotonicity property of the sequence {xk} generated
by the algorithm with respect to S(T,C).

Proposition 4.3. Assume that T is uniformly continuous on bounded subsets of C, that VIP(T,C)
satisfies property A, and that g satisfies H1–H5. Let {xk}, {yk}, {zk} be the sequences generated by
Algorithm (14)–(21). If the algorithm does not have finite termination, then

i) the sequence {Dg(x
∗, xk)} is nonincreasing (and henceforth convergent) for any x∗ ∈ S(T,C)

satisfying (11).
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ii) The sequence {xk} is bounded, therefore it has weak cluster points.

iii) limk→∞

∥

∥wk − xk
∥

∥ = 0.

iv) The sequence {zk} is bounded.

v) limk→∞〈T (yk), xk − yk〉 = 0.

Proof. i) For each k, defineH−
k = {x ∈ B : 〈T (yk), x−yk〉 ≤ 0}, Hk = {x ∈ B : 〈T (yk), x−yk〉 = 0},

and H+
k = {x ∈ B : 〈T (yk), x − yk〉 ≥ 0} where {yk} is the sequence generated by (19). Take

x∗ ∈ S(T,C) satisfying (11), so that x∗ ∈ H−
k for all k. On the other hand, by Proposition 4.2(iii),

xk ∈ H+
k and xk /∈ H−

k . Therefore, Proposition 2.9 implies that

Dg(x
∗, xk) ≥ Dg(x

∗, wk) +Dg(w
k, xk). (25)

By (12), Proposition 2.7(ii), and the fact that xk+1 = Πg
C(wk), we have that

Dg(x
∗, xk+1) +Dg(x

k+1, wk) −Dg(x
∗, wk) = 〈g′(xk+1) − g′(wk), xk+1 − x∗〉 ≤ 0,

which implies
Dg(x

∗, wk) ≥ Dg(x
∗, xk+1) +Dg(x

k+1, wk). (26)

By combining (25) and (26), we get

Dg(x
∗, xk) ≥ Dg(x

∗, xk+1) +Dg(x
k+1, wk) +Dg(w

k, xk). (27)

Since Dg(x
k+1, wk),Dg(w

k, xk) ≥ 0, we get the result from (27).
ii) Take any x∗ ∈ S(T,C) satisfying (11). Then the result follows from (i), H1 and the reflexivity

of B.
iii) Taking limits in (27) and using (i), we obtain limj→∞Dg(w

k, xk) = 0, which in turns implies,
using Proposition 2.10 and (ii), limj→∞

∥

∥wk − xk
∥

∥ = 0.
iv) Note that {xk} is bounded by (ii). So, Proposition 2.11, H3 and H5 imply that {zk} is

bounded, because {βk} is bounded.
v) We have that

0 = 〈T (yk), wk − yk〉 = 〈T (yk), wk − xk〉 + 〈T (yk), xk − yk〉 ∀k,

since wk = Πg
Hk

(xk) belongs to Hk, by (20) and the definition of Bregman projection. Hence,

∣

∣

∣
〈T (yk), xk − yk〉

∣

∣

∣
=

∣

∣

∣
〈T (yk), xk − wk〉

∣

∣

∣
≤

∥

∥

∥
T (yk)

∥

∥

∥

∗

∥

∥

∥
xk − wk

∥

∥

∥
∀k. (28)

We remind that assumption H3 implies Fréchet differentiability of g (see Proposition 4.8 of [41]). So
using Proposition 2.12, boundedness of the sequences {xk} and {zk} established in (ii) and (iv), and
the fact that {αk} ⊂ [0, 1], we conclude that {yk} is bounded, which in turn implies boundedness
of the sequence {

∥

∥T (yk)
∥

∥

∗
}. Now, taking limits in (28) and invoking (iii), we complete the proof

of (v).
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We need now the following concept.

Definition 4.4. We say that {xk} is an asymptotically solving sequence for VIP(T,C) if 0 ≤
lim infk→∞〈T (xk), z − xk〉 for each z ∈ C.

Proposition 4.5. Assume that T is uniformly continuous on bounded subsets of C, that VIP(T,C)
satisfies the property A and that g satisfies H1–H5. Let {xk} and {zk} be the sequences generated
by Algorithm (14)–(21). If {xik} is a subsequence of {xk} satisfying limk→∞Dg(Π

g
C(zik), xik) = 0,

then {xik} is an asymptotically solving sequence for VIP(T,C).

Proof. Note that {xk} is bounded by Proposition 4.3(ii), and H2 is satisfied by assumption. Thus,
Proposition 2.10 implies that

lim
k→∞

∥

∥xik − Πg
C(zik)

∥

∥ = 0. (29)

Now we apply Proposition 2.7(ii) to obtain

〈g′(zik) − g′(Πg
C(zik)), z − Πg

C(zik)〉 ≤ 0 ∀z ∈ C,

or equivalently, in view of (15),

1

βik

〈g′(xik) − g′(Πg
C(zik)), z − Πg

C(zik)〉 ≤ 〈T (xik), z − Πg
C(zik)〉 ∀z ∈ C,

which is equivalent to

1

βik

〈g′(xik)− g′(Πg
C(zik)), z−Πg

C(zik)〉+ 〈T (xik ),Πg
C(zik)−xik〉 ≤ 〈T (xik), z−xik〉 ∀z ∈ C. (30)

Now fix z ∈ C, and let k → ∞ in (30). Using H3, (29), the fact that {βk} ⊂ [β̂, β̃], and the bound-
edness of the sequences {T (xik)}, {Πg

C(zik)} (which follow from Propositions 2.11, 2.12, 4.3(ii) and
4.3(iv)), we obtain

0 ≤ lim inf
k→∞

〈T (xik), z − xik〉.

Proposition 4.6. Assume that T is uniformly continuous on bounded subsets of C, that VIP(T,C)
satisfies property A, and that g satisfies H1–H5. If a subsequence {αik} of the sequence {αk} defined
in (18) converges to 0 then {xik} is an asymptotically solving sequence for VIP(T,C).

Proof. To prove this assertion, we use Proposition 4.5. Thus, we must show that

lim
k→∞

Dg(Π
g
C(zik), xik) = 0.

13



By contradiction, and without loss of generality, let us assume that limk→∞Dg(Π
g
C(zik), xik) = η >

0 . Define
ȳk = 2αikΠg

C(zik) + (1 − 2αik)xik

or equivalently
ȳk − xik = 2αik [Πg

C(zik) − xik ]. (31)

Since {Πg
C(zik) − xik} is bounded and limk→∞ αik = 0, it follows from (31) that

lim
k→∞

∥

∥

∥
ȳk − xik

∥

∥

∥
= 0. (32)

¿From (16) and definition of ȳk we get

〈T (ȳk), xik − Πg
C(zik)〉 <

δ

βik

Dg(Π
g
C(zik), xik)

for all k. Since T is uniformly continuous on bounded subsets of C and δ ∈ (0, 1), using (32) we
can find N ∈ N such that

〈βikT (xik), xik − Πg
C(zik)〉 < Dg(Π

g
C(zik), xik) ∀ k ≥ N,

which implies, using (15),

〈g′(xik) − g′(zik), xik − Πg
C(zik)〉 < Dg(Π

g
C(zik), xik) ∀ k ≥ N.

Proposition 2.8 implies that

Dg(Π
g
C(zik), xik) +Dg(x

ik , zik) −Dg(Π
g
C(zik), zik) < Dg(Π

g
C(zik), xik) ∀ k ≥ N,

which is equivalent to Dg(x
ik , zik) < Dg(Π

g
C(zik), zik), contradicting Definition 2.6 and the fact

that xk ∈ C.

Corollary 4.7. Assume that T is uniformly continuous on bounded subsets of C, that VIP(T,C)
satisfies property A and that g satisfies H1–H5. Then the sequence {xk} generated by Algorithm
(14)–(21) is an asymptotically solving sequence for VIP(T,C).

Proof. First assume that there exists a subsequence {αik} of {αk} which converges to 0. In this
case, we obtain 0 ≤ lim infk→∞〈T (xik), z − xik〉 from Proposition 4.6. Now assume that {αik} is
any subsequence of {αk} bounded away from zero (say αik ≥ ᾱ > 0). It follows from (16) and (19)
that

〈T (yik), xik − yik〉 ≥
δαik

βik

Dg(Π
g
C(zik), xik). (33)

Taking limits in (33) as k → ∞, and taking into account Proposition 4.3(v), we get

lim
k→∞

Dg(Π
g
C(zik), xik) = 0,

which in turns implies 0 ≤ lim infk→∞〈T (xik), z − xik〉, using Proposition 4.5.

14



Now we can state and prove our main convergence result.

Theorem 4.8. Assume that T is monotone and uniformly continuous on bounded subsets of C
and that g satisfies H1–H5. Let {xk} be the sequence generated by (14)–(21).Then

i) lim infk→∞〈T (z), z − xk〉 ≥ 0 for all z ∈ C.

ii) {xk} has weak cluster points and all of them solve VIP(T,C).

iii) If VIP(T,C) has a unique solution or H6 is satisfied, then the whole sequence {xk} is weakly
convergent to some solution of VIP(T,C).

Proof. i) Note that monotonicity of T implies property A. Take an arbitrary z ∈ C. By mono-
tonicity of T we have that

〈T (z), z − xk〉 ≥ 〈T (xk), z − xk〉 ∀k. (34)

Taking lim inf on both sides of statement (34) as k → ∞, we get

lim inf
k→∞

〈T (z), z − xk〉 ≥ lim inf
k→∞

〈T (xk), z − xk〉 ≥ 0,

where the rightmost inequality follows from Definition 4.4 and Corollary 4.7.
(ii) Note that {xk} has at least one weak cluster point by reflexivity of B and Proposition 4.3(ii).

Thus, let x̄ be any cluster point of {xk} and {xik} a subsequence of {xk} such that limk→∞ xik = x̄.
In view of (i),

〈T (z), z − x̄〉 = lim
k→∞

〈T (z), z − xik〉 ≥ 0,

for each z ∈ C. On the other hand, norm-to-norm continuity of T on C gives norm-to-weak∗

continuity of T on C, and hence T is hemicontinuous on C. We conclude that (ii) holds using
Lemma 2.3.

(iii) If VIP(T,C) has a unique solution, then the result follows from (ii). Otherwise, assume
that x̂ ∈ C is another weak cluster point of {xk} solving VIP(T,C), and let {xℓk} be a subsequence
of {xk} such that limk→∞ xℓk = x̂. By (ii), both x̄ and x̂ solve VIP(T,C). By Proposition 4.3(i),
both Dg(x̄, x

k) and Dg(x̂, x
k) converge, say to η ≥ 0 and µ ≥ 0, respectively. Using the definition

of Dg, we have that

〈g′(xℓk) − g′(xik), x̄− x̂〉 = Dg(x̄, x
ik) −Dg(x̄, x

ℓk) +Dg(x̂, x
ℓk) −Dg(x̂, x

ik).

Therefore
∣

∣

∣〈g′(xℓk) − g′(xik), x̄− x̂〉
∣

∣

∣ ≤
∣

∣

∣Dg(x̄, x
ik) −Dg(x̄, x

ℓk)
∣

∣

∣ +
∣

∣

∣Dg(x̂, x
ℓk) −Dg(x̂, x

ik)
∣

∣

∣ . (35)

Taking limits in (35) with k → ∞, we get

lim inf
k→∞

∣

∣

∣
〈g′(xℓk) − g′(xik), x̄− x̂〉

∣

∣

∣
≤ |η − η| + |µ− µ| = 0,

which contradicts H6. As a result, x̃ = x̂.

15



5 Applications

In this section we show that our algorithm can be used to solve the Generalized Nash Equilib-
rium Problem (GNEP in the sequel) in Banach spaces, because GNEP’s can be reformulated as a
variational inequality problem satisfying the assumptions required for convergence of our method.
The relation between GNEP and variational inequality problems in finite dimensional spaces has
already been studied, e.g. in [13] and [43]. See [5] for interesting generalizations of equilibrium
problems. We comment next on GNEP.

The set of players is denoted by I = {1, 2, · · · ,N} and each player i ∈ I controls variables
xi ∈ Bi, where Bi is a Banach space. The point xi is called the strategy of the i-th player. Let
B = B1 ×· · ·×BN . We denote by x ∈ B the vector of strategies x = (x1, · · · , xN ). Let x−i be the
vector formed by all variables xj with j 6= i. The set Xi(x

−i) ⊂ Bi denotes the strategy set of the
player i when the remaining players choose strategies x−i (see e.g. [35]). Formally, given a subset
X of B (the feasible set), we define Xi as Xi(x

−i) = {xi ∈ Bi : (xi, x−i) ∈ X}. The aim of player
i, given the strategy x−i, is to choose a strategy xi such that xi solves the minimization problem

min θi(x
i, x−i) s.t. xi ∈ Xi(x

−i). (36)

For any given x−i, the solution set of (36) is denoted by Soli(x
−i). Using the above notation, we

state the formal definition of the GNEP as follows.

Definition 5.1. A GNEP is the problem of finding x̄ ∈ X such that x̄i ∈ Soli(x̄
−i) for every i ∈ I.

Theorem 5.2. Consider an instance of GNEP such that

a) X is closed and convex,

b) θi is continuously differentiable for every i ∈ I,

c) θi(·, x
−i) : Bi → R is convex for every i ∈ I and every x ∈ X.

Define F : B → B∗ as
F (x) = (∇x1θ1(x), . . . ,∇xN θN (x)) , (37)

where ∇xiθi denotes the gradient of θi with respect to its first argument. Then, every solution of
VIP(F,X) is a solution of GNEP.

Proof. The definition of solution of VIP(F,X) gives just the first order optimality condition for the
solution of problem (36) for each i, which is sufficient because this optimization problem is convex,
in view of assumptions (a) and (c).

Corollary 5.3. Assume that the hypotheses of Theorem 5.2 hold for a given GNEP. Additionally
assume that GNEP has solutions and that ∇xiθi(x) is uniformly continuous on bounded subsets of
X for every i ∈ I. Take some g : B → R satisfying H1–H5 (e.g. g(x) = ‖x‖p with any p > 1, if B
is uniformly convex and uniformly smooth). Let {xk} be the sequence generated by our algorithm.
If F is monotone, then
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i) {xk} has weak cluster points and all of them solve GNEP.

ii) If VIP(F,X) has a unique solution or H6 is satisfied, then the whole sequence {xk} is weakly
convergent to some solution of the GNEP.

Proof. Since F is monotone, the result follows from Theorems 4.8 and 5.2.

An important family of GNEP’s for which B is infinite dimensional consists of the so called
Differential Games (DG from now on). In particular, it has been shown in Section 3 of [40] that
every instance of linear quadratic DG reduces to an instance of GNEP. A large number of “real
life” problems that can be modeled as DG’s can be found in [22].

In the remainder of this paper, we describe a two-player differential game model proposed in
[9], for analyzing implementation of environmental projects, to which our algorithm is applicable.
Assume that ai, bi, di, ρi, γi (i = 1, 2) are real positive numbers and P0 is a real constant. Addition-
ally assume that P , Si, ei and Ii,j (i, j = 1, 2) are real-valued functions in L2[0, T ]. The model is
formulated as:

maxWi(ei, Iii, Iij) :=
∫ T

0

[

biei(t) −
1

2
e2i (t) − diP (t) −

ai

2
I2
ii(t) − ajIij(t)Ijj(t) −

aj

2
I2
ij(t)

]

dt− ρiP (T ) (38)

subject to











Ṡi(t) = ei(t) − γiIii(t) − γjIij(t), Si(0) = 0, Si(T ) ≤ Ei,

Ṗ (t) = e1(t) + e2(t) − γ1I11(t) − γ2I22(t) − γ1I21(t) − γ2I12(t), P (0) = P0,

0 ≤ ei ≤ bi, Iii ≥ 0 , Iij ≥ 0,

(39)

where Ṗ and Ṡi (i = 1, 2) denote respectively the derivatives of P and Si (i = 1, 2) with respect
to t, and E1, E2 are two constants. Let x = (x1, x2), with x1 = (e1, I11, I12) and x2 = (e2, I22, I21).
The problem given by (38)–(39) is equivalent to a GNEP defined as

min θi(x
i, x−i) =

∫ T

0

[

1

2
e2i (t) − biei(t) +

ai

2
I2
ii(t) + ajIij(t)Ijj(t) +

aj

2
I2
ij(t)

]

dt

+di

∫ T

0

∫ t

0
[e1(s) + e2(s) − γ1I11(s) − γ2I22(s) − γ1I21(s) − γ2I12(s)] dsdt+ diTP0 + ρiP (T ), (40)

subject to

xi ∈ Xi(x
−i) =

{

xi ∈
(

L2[0, T ]
)3

: (xi, x−i) ∈ X
}

, (41)

where X ⊂
(

L2[0, T ]
)6

is defined as

X =

{

x ∈
(

L2[0, T ]
)6

:
Ṡi(t) = ei(t) − γiIii(t) − γjIij(t), Si(0) = 0, Si(T ) ≤ Ei

0 ≤ ei ≤ bi, Iii ≥ 0 , Iij ≥ 0

}

.
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In order to rephrase problem (40)–(41) as a variational inequality problem, we must compute the

operator F . In view of (37), for evaluating F at a point x = (x1, x2) ∈
(

L2[0, T ]
)3

×
(

L2[0, T ]
)3

,
it suffices to compute the directional derivatives of θ1(·, x

2) and θ2(x
1, ·) along an arbitrary vector

(ψ1, ψ2, ψ3) ∈
(

L2[0, T ]
)3

. Using (40), it is just a matter of calculus to compute these derivatives
as

∇x1θ1(x) =

∫ T

0
[e1(t) − b1]ψ1(t)dt+ a1

∫ T

0
I11(t)ψ2(t)dt + a2

∫ T

0
[I22(t) + I12(t)]ψ3(t)dt

+d1

∫ T

0

∫ t

0
[ψ1(s) − γ1ψ2(s) − γ2ψ3(s)] dsdt = 〈e1 − b1 +R11, ψ1〉 + 〈a1I11 +R12, ψ2〉+

〈a2I22 + a2I12 +R13, ψ3〉,

where operators R1ℓ : L2[0, T ] → L2[0, T ] (ℓ = 1, 2, 3) at a point ψ = (ψ1, ψ2, ψ3) are given by

〈R11, ψ1〉(t) = d1

∫ t

0
ψ1(s)ds, 〈R12, ψ2〉(t) = −d1γ1

∫ t

0
ψ2(s)ds, 〈R13, ψ3〉(t) = −d1γ2

∫ t

0
ψ3(s)ds.

Along the same line, one obtains

∇x2θ2(x) = 〈e2 − b2 +R21, ψ1〉 + 〈a2I22 +R22, ψ2〉 + 〈a1I11 + a1I21 +R23, ψ3〉,

where operators R2ℓ : L2[0, T ] → L2[0, T ] (ℓ = 1, 2, 3) at a point ψ = (ψ1, ψ2, ψ3) are given by

〈R21, ψ1〉(t) = d2

∫ t

0
ψ1(s)ds, 〈R22, ψ2〉(t) = −d2γ2

∫ t

0
ψ2(s)ds, 〈R23, ψ3〉(t) = −d2γ1

∫ t

0
ψ3(s)ds.

As a result, taking x = (x1, x2) = (e1, I11, I12, e2, I22, I21) ∈
(

L2[0, T ]
)6

the operator F is given by
F (x) = Ax+B, where B = (R11 − b1, R12, R13, R21 − b2, R22, R23) and

A =

















1 0 0 0 0 0
0 a1 0 0 0 0
0 0 a2 0 a2 0
0 0 0 1 0 0
0 0 0 0 a2 0
0 a1 0 0 0 a1

















. (42)

It is clear that the matrix A given by (42) is positive definite and non-symmetric, so that F is
monotone and VIP(F,X) does not reduce to an optimization problem. Furthermore, it is easy to

check that F is uniformly continuous on the whole space
(

L2[0, T ]
)6

. Since this space is hilbertian,

we can take g(x) = ‖x‖2 in
(

L2[0, T ]
)6

, which satisfies H6, in which case all hypotheses of Corollary
5.3(ii) are satisfied. Consequently, if our method is used to solve VIP(F,X), it will generate a se-
quence which converges weakly to some solution of problem (38)–(39), under the unique assumption
of existence of solutions of this problem.

18



Acknowledgment

Research for this paper by the first author was partially supported by CNPq grant No 301280-86.
The second author acknowledges his scholarship for his doctoral studies, granted jointly by CNPq
and TWAS.

References

[1] Armijo, L. Minimization of functions having continuous partial derivatives. Pacific Journal of
Mathematics 16 (1966) 1–3.

[2] Alber, Y.I. Metric and generalized projection operators in Banach spaces: properties and
applications. Theory and applications of nonlinear operators of accretive and monotone type.
Lecture Notes in Pure and Applied Mathematics 178 (1996) 15–50.

[3] Alber, Y.I. On average convergence of the iterative projection methods. Taiwanese Journal of
Mathematics 6 (2002) 323–341.

[4] Auslender, A., Teboulle, M. Interior projection-like methods for monotone variational inequal-
ities. Mathematical Programming 104 (2005) 39-68.

[5] Balaj, M., O’Regan, D. A generalized quasi-equilibrium problem. In Nonlinear Analysis and
Variational Problems (P.M. Pardalos, T.M. Rassias and A.A. Kahn, editors). Springer, Berlin
(2010) 201-210.

[6] Bao, T.Q., Khanh, P.Q. A projection-type algorithm for pseudomonotone nonlipschitzian mul-
tivalued variational inequalities. Nonconvex Optimization and Its Applications 77 (2005) 113–
129.

[7] Bao, T.Q., Khanh, P.Q. Some algorithms for solving mixed variational inequalities. Acta Math-
ematica Vietnamica 31 (2006) 83–103.

[8] Bertsekas, D.P., Tsitsiklis, J.N. Parallel and Distributed Computation: Numerical Methods.
Prentice Hall, New Jersey (1989).

[9] Breton, M., Zaccour, G., Zahaf, M. A differential game of joint implementation of environ-
mental projects, Automatica 41 (2005) 1737–1749.

[10] Butnariu, D., Iusem, A.N. Totally convex functions for fixed points computation and infinite
dimensional optimization. Kluwer, Dordrecht (2000).

[11] Butnariu, D., Resmerita, E. Bregman distances, totally convex functions and a method for
solving operator equations in Banach spaces. Abstract and Applied Analysis (2006) Art. ID
84919.

19



[12] Cioranescu, I. Geometry of Banach spaces, duality mappings, and nonlinear problems. Kluwer,
Dordrecht (1990).

[13] Facchinei, F., Fischer, A., Piccialli, V. On generalized Nash games and variational inequalities.
Operations Research Letters 35 (2007) 159–164.

[14] Fang, S.-C. An iterative method for generalized complementarity problems. IEEE Transactions
on Automatic Control 25 (1980) 1225–1227.

[15] Golshtein, E.G., Tretyakov, N.V. Modified Lagrangians and Monotone Maps in Optimization.
John Wiley, New York (1996).

[16] He, B.S. A new method for a class of variational inequalities. Mathematical Programming 66
(1994) 137–144.

[17] Iiduka, H., Takahashi, W. Weak convergence of a projection algorithm for variational in-
equalities in a Banach space. Journal of Mathematical Analysis and Applications 339 (2008)
668–679.

[18] Iusem, A.N. An iterative algorithm for the variational inequality problem. Computational and
Applied Mathematics 13 (1994) 103–114.
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