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Abstract

Previous examples of non-type (D) maximal monotone operators were restricted to `1,
L1, and Banach spaces containing isometric copies of these spaces. This fact led to the
conjecture that non-type (D) operators were restricted to this class of Banach spaces. We
present a linear non-type (D) operator in c0.
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1 Introduction

Let U , V arbitrary sets. A point-to-set (or multivalued) operator T : U ⇒ V is a map T : U →
P(V ), where P(V ) is the power set of V . Given T : U ⇒ V , the graph of T is the set

Gr(T ) := {(u, v) ∈ U × V | v ∈ T (u)},

the domain and the range of T are, respectively,

dom(T ) := {u ∈ U | T (u) 6= ∅}, R(T ) := {v ∈ V | ∃u ∈ U, v ∈ T (u)}

and the inverse of T is the point-to-set operator T−1 : V ⇒ U ,

T−1(v) = {u ∈ U | v ∈ T (u)}.

A point-to-set operator T : U ⇒ V is called point-to-point if for every u ∈ dom(T ), T (u) has
only one element. Trivially, a point-to-point operator is injective if, and only if, its inverse is also
point-to-point.
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Let X be a real Banach space. We use the notation X∗ for the topological dual of X. From
now on X is identified with its canonical injection into X∗∗ = (X∗)∗ and the duality product in
X ×X∗ will be denoted by 〈·, ·〉,

〈x, x∗〉 = 〈x∗, x〉 = x∗(x), x ∈ X, x∗ ∈ X∗.

A point-to-set operator T : X ⇒ X∗ (respectively T : X∗∗ ⇒ X∗) is monotone, if

〈x− y, x∗ − y∗〉 ≥ 0, ∀(x, x∗), (y, y∗) ∈ Gr(T ),

(resp. 〈x∗ − y∗, x∗∗ − y∗∗〉 ≥ 0, ∀(x∗∗, x∗), (y∗∗, y∗) ∈ Gr(T )), and it is maximal monotone if it is
monotone and maximal in the family of monotone operators in X ×X∗ (resp. X∗∗ ×X∗) with
respect to the order of inclusion of the graphs.

We denote c0 as the space of real sequences converging to 0 and `∞ as the space of real
bounded sequences, both endowed with the sup-norm

‖(xk)k‖∞ = sup
k∈N
|xk|,

and `1 as the space of absolutely summable real sequences, endowed with the 1-norm,

‖(xk)k‖1 =
∞∑
k=1

|xk|.

The dual of c0 is identified with `1 in the following sense: for y ∈ `1

y(x) = 〈x, y〉 =
∞∑
i=1

xiyi, ∀x ∈ c0.

Likewise, the dual of `1 is identified with `∞. It is well known that c0 (as well as `1, `∞, etc.) is
a non-reflexive Banach space.

Let X be a non-reflexive real Banach space and T : X ⇒ X∗ be maximal monotone. Since
X ⊂ X∗∗, the point-to-set operator T can also be regarded as an operator from X∗∗ to X∗. We
denote T̂ : X∗∗ ⇒ X∗ as the operator such that

Gr(T̂ ) = Gr(T ).

If T : X ⇒ X∗ is maximal monotone then T̂ is (still) trivially monotone but, in general, not

maximal monotone. Direct use of the Zorn’s Lemma shows that T̂ has a maximal monotone
extension. So it is natural to ask if such maximal monotone extension to the bidual is unique.
Gossez [5, 6, 7, 8] gave a sufficient condition for uniqueness of such an extension.

Definition 1.1 ([5]). Gossez’s monotone closure (with respect to X∗∗×X∗) of a maximal mono-

tone operator T : X ⇒ X∗, is the point-to-set operator T̃ : X∗∗ ⇒ X∗ whose graph Gr
(
T̃
)

is

given by

Gr
(
T̃
)

= {(x∗∗, x∗) ∈ X∗∗ ×X∗ | 〈x∗ − y∗, x∗∗ − y〉 ≥ 0, ∀(y, y∗) ∈ T}.
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A maximal monotone operator T : X ⇒ X∗, is of Gossez type (D) if for any (x∗∗, x∗) ∈

Gr
(
T̃
)

, there exists a bounded net

(
(xi, x

∗
i )

)
i∈I

in Gr(T ) which converges to (x∗∗, x∗) in the

σ(X∗∗, X∗)×strong topology of X∗∗ ×X∗.

Gossez proved [8] that a maximal monotone operator T : X ⇒ X∗ of of type (D) has unique

maximal monotone extension to the bidual, namely, its Gossez’s monotone closure T̃ : X∗∗ ⇒ X∗.
Beside this fact, maximal monotone operators of type (D) share many properties with maximal
monotone operators defined in reflexive Banach spaces as, for example, convexity of the closure
of the domain and convexity of the closure of the range [5].

Gossez gave an example of a non-type (D) operator on `1 [6]. Later, Fitzpatrick and Phelps
gave an example of a non-type (D) on L1[0, 1] [4]. In [1], Profs. Borwein and Bauschke proved
that if a monotone continuous linear operator in a Banach space has a monotone conjugate, then
this operator is of type (D), and defined conjugate monotone spaces as those Banach spaces X
such that the conjugate of any continuous monotone linear operator form X to X∗ is monotone
as well. Still in [1] it is observed that c0, c (convergent real sequences) `∞ and L∞[0, 1] are
conjugate monotone spaces while `1, L1[0, 1], (`∞)∗ and (L∞[0, 1])∗ are not conjugate monotone
spaces. These facts led Professor J. M. Borwein to define Banach spaces of type (D) as those
Banach spaces where every maximal monotone operator is of type (D), and to formulate the
following most interesting conjecture [2, §4, question 3]:

• Are any non-reflexive spaces X of type (D)? That is, are there non reflexive spaces
on which all maximal monotones on X are type (D). I conjecture ‘weakly’ that if X
contains no copy of `1(N) then X is type (D) as would hold in X = c0.

In this work, we answer negatively such conjecture by giving an example of a non-type (D)
operator on c0 and proving that, for every space which contains a norm-isomorphic (in particular,
isometric) copy of c0, a non-type (D) operator can be defined.

2 A non-type (D) operator on c0

Gossez’s operator [6] G : `1 → `∞ is defined as

G(y) = x, xn =
∞∑

i=n+1

yi −
n−1∑
i=1

yi, (1)

which is linear, continuous, anti-symmetric and, therefore, maximal monotone. This operator
will be used to define a non-type (D) maximal monotone operator in c0, which was previously
defined in [11].

Lemma 2.1. The operator

T : c0 ⇒ `1, T (x) = {y ∈ `1 | −G(y) = x} (2)
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is point-to-point in its domain, is maximal monotone and its range is

R(T ) =

{
y ∈ `1

∣∣∣∣∣
∞∑
i=1

yi = 0

}
. (3)

Proof. Gossez’s operator is injective (see the proof of [3, Proposition 3.2]). Hence, by Defini-
tion (2), T is point-to-point in its domain. Moreover, direct use of (1) shows that G is linear
and 〈y,G(y)〉 = 0 for any y ∈ `1. In particular, T is monotone.

Note that using (1) we have for any y ∈ `1

lim
n→∞

(G(y))n =
∞∑
i=1

yi.

Hence x = G(y) ∈ c0 if and only if
∑
yi = 0 which, in view of definition (2), proves (3).

Suppose that x ∈ c0, y ∈ `1 and

〈x− x′, y − y′〉 ≥ 0, ∀(x′, y′) ∈ Gr(T ). (4)

Define, u1 = (−1, 1, 0, 0, . . . ), u2 = (0,−1, 1, 0, 0), . . . , that is

(um)i =


−1, i = m

1, i = m+ 1

0, otherwise

i = 1, 2, . . . (5)

and let

vm = G(um), (vm)i =

{
1, i = m or i = m+ 1

0, otherwise
i = 1, 2, . . . (6)

where the expression for (vm)i follows from (1) and (5).
Direct use of (5), (6) and (2) shows that T (−λvm) = λum for λ ∈ R and m = 1, 2, . . . .

Therefore, for any λ ∈ R, m = 1, 2, . . .

〈x+ λvm, y − λum〉 ≥ 0

which is equivalent to
〈x, y〉+ λ[〈vm, y〉 − 〈x, um〉] ≥ 0.

Since the above inequality holds for any λ,

〈x, um〉 = 〈vm, y〉, m = 1, 2, . . .

which, in view of (5), (6) is equivalent to

xm+1 − xm = ym+1 + ym, m = 1, 2, . . . (7)
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Adding the above equality for m = i, i+ 1, . . . , j we conclude that

xj+1 = xi + yi + 2

j∑
k=i+1

yk + yj+1, i < j.

Using the assumptions x ∈ c0, y ∈ `1 and taking the limit j → ∞ in the above equation, we
conclude that

xi = −

[
yi + 2

∞∑
k=i+1

yk

]
= −

[
G(y)i +

∞∑
k=1

yk

]
. (8)

From (4) with x′ = 0 and y′ = 0,
∑∞

i=1 xiyi ≥ 0. Substituting into this the expression for xi
obtained in (8), we obtain

−

[
∞∑
k=1

yk

]2
≥ 0. (9)

Combining (8) and (9) we conclude that x = −G(y). Hence (x, y) ∈ Gr(T ), which proves the
maximal monotonicity of T .

Proposition 2.2. The operator T : c0 ⇒ `1 defined in Lemma 2.1 has infinitely many maximal
monotone extensions to `∞ ⇒ `1. In particular, T is non-type (D).

Proof. Let
e = (1, 1, 1, . . . )

We claim that

〈−G(y) + αe− x′, y − y′〉 = α〈y, e〉, ∀(x′, y′) ∈ Gr(T ), y ∈ `1, α ∈ R. (10)

To prove this claim, first use (2) and (1) to conclude that x′ = −G(y′) and

〈−G(y)− x′, y − y′〉 = 〈G(y′ − y), y − y′〉 = 0

As y′ ∈ R(T ), using (3) we have 〈e, y′〉 = 0, which combined with the above equation yields (10).
Take ỹ ∈ `1 such that 〈ỹ, e〉 > 0 and define

xτ = −G(τ ỹ) +
1

τ
e, 0 < τ <∞.

In view of (10),

(xτ , τ ỹ ) ∈ Gr
(
T̃
)
, 0 < τ <∞.

Therefore, for each τ ∈ (0,∞) there exists a maximal monotone extension Tτ : `∞ ⇒ `1 of T
such that

(xτ , τ ỹ) ∈ G(Tτ ).

However, these extensions are distinct because if τ, τ ′ ∈ (0,∞) and τ 6= τ ′ then

〈xτ − xτ ′ , τ ỹ − τ ′ỹ〉 = (τ − τ ′)(1/τ − 1/τ ′)〈ỹ, e〉 < 0.
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3 Other spaces with non-type (D) operators

In this section we will prove that if a Banach spaces contains a closed subspace which is norm-
isomorphic to c0, then there exists non-type (D) maximal monotone operators in this space. We
begin with an auxiliary result.

Lemma 3.1. Let X, Ω be real Banach space, and suppose that A : X → Ω is a linear norm-
isomorphism from X onto a closed subspace of Ω. For T : X ⇒ X∗ define

TA : Ω ⇒ Ω∗, Gr(TA) = {(w,w∗) ∈ Ω×Ω∗ | ∃(x, x∗) ∈ Gr(T ), w = A(x), x∗ = A′(w∗)}, (11)

where A′ : Ω∗ → X∗ is the adjoint (or conjugate) of A, that is A′(w∗) = w∗ ◦ A. Then the
application

Gr(TA)→ Gr(T ), (w,w∗) 7→ (A−1(w), A′(w∗)) (12)

maps Gr(TA) onto Gr(T ) and, if T is maximal monotone, then TA is also maximal monotone.

Proof. We claim that for any x∗ ∈ X∗, there exists w∗ ∈ Ω∗ such that A′(w∗) = x∗, that is

(A′)−1({x∗}) 6= ∅ ∀x∗ ∈ X∗. (13)

For proving this claim, note that A−1 : R(A) → X is a continuous linear map. Therefore,
ξ∗ = x∗◦A−1 is a continuous linear functional defined in R(A). Using the Hahn-Banach Theorem
we conclude that there exists w∗ ∈ Ω∗ which extends ξ∗. To end the proof of the claim, note
that as w∗ and ξ∗ coincides in R(A), w∗ ◦ A = ξ∗ ◦ A = x∗ and so, A′(w∗) = x∗.

Direct use of (11) and (13) shows that the application defined in (12) maps Gr(TA) onto
Gr(T ).

Now assume that T is maximal monotone. To prove that TA is monotone, note that if
w∗1 ∈ TA(w1) and w∗2 ∈ TA(w2) then, by definition (11), there exist x1, x2 ∈ X and x∗1, x

∗
2 ∈ X∗

such that
wi = A(xi), A

′(w∗i ) = w∗i ◦ A = x∗i ∈ T (xi), i = 1, 2.

Therefore

〈w1 − w2, w
∗
1 − w∗2〉 = 〈A(x1)− A(x2), w

∗
1 − w∗2〉

= 〈A(x1 − x2), w∗1 − w∗2〉
= 〈x1 − x2, A′(w∗1 − w∗2)〉 = 〈x1 − x2, x∗1 − x∗2〉 ≥ 0,

where the last inequality follows from the monotonicity of T . Hence, TA is monotone.
To prove that TA is maximal monotone, suppose that (w0, w

∗
0) ∈ Ω × Ω∗ is in monotone

relation with any point in Gr(TA), that is,

〈w0 − w,w∗0 − w∗〉 ≥ 0, ∀(w,w∗) ∈ Gr(TA) (14)
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Suppose that w0 /∈ R(A). Take (w̄, w̄∗) ∈ Gr(TA) and let (x̄, x̄∗) = (A−1(w̄), A′(w̄∗)) ∈ Gr(T ).
Since w̄ ∈ R(A), w0 − w̄ /∈ R(A) and using the Hahn-Banach theorem (and the assumption of
R(A) being closed) we conclude that there exists ū∗ ∈ Ω∗ such that

〈w, ū∗〉 = 0, ∀w ∈ R(A),

〈w0 − w̄, ū∗〉 > 〈w0 − w̄, w∗0 − w̄∗〉.

Therefore, ū∗ ∈ ker(A′),
A′(w̄∗ + ū∗) = A′(w̄∗) = x̄∗ ∈ T (x̄),

so w̄∗ + ū∗ ∈ TA(A(x̄)) = TA(w̄), implying

〈w0 − w̄, w∗0 − (w̄∗ + ū∗)〉 < 0

in contradiction with (14). Therefore, w0 ∈ R(A). Now define

x0 = A−1(w0), x∗0 = A′(w∗0) = w∗0 ◦ A. (15)

If (x, x∗) ∈ Gr(T ), then there exists w∗ ∈ (A′)−1(x∗) and, by the definition of TA, (Ax,w∗) ∈
Gr(TA). Therefore, by (14)

0 ≤ 〈w0 − A(x), w∗0 − w∗〉
= 〈A(x0)− A(x), w∗0 − w∗〉
= 〈x0 − x,A′(w∗0)− A′(w∗)〉 = 〈x0 − x, x∗0 − x∗〉.

Hence, using the maximal monotonicity of T , we conclude that

(x0, A
′(w∗0)) = (x0, x

∗
0) ∈ Gr(T ),

which, in view of (15) and the definition of TA, shows that (w0, w
∗
0) ∈ Gr(TA). Altogether, we

proved that TA is maximal monotone.

Lemma 3.2. Let X, Ω be real Banach space, and suppose that A : X → Ω is a linear norm-
isomorphism from X onto a closed subspace of Ω. Let T : X ⇒ X∗ be a maximal monotone
operator and define TA : Ω ⇒ Ω∗ as in Lemma 3.1, that is,

Gr(TA) = {(w,w∗) ∈ Ω× Ω∗ | ∃(x, x∗) ∈ Gr(T ), w = A(x), x∗ = A′(w∗)}.

If TA is of type (D) on Ω× Ω∗ then T is of type (D) on X ×X∗.

Proof. Suppose that (x̂∗, x̂∗∗) ∈ X∗ × X∗∗. Using (13) we can find ŵ∗ ∈ (A′)−1(x̂∗). Using the
first part of Lemma 3.1 we have

inf
(x,x∗)∈Gr(T )

〈x̂∗ − x∗, x̂∗∗ − x〉 = inf
(w,w∗)∈Gr(TA)

〈x̂∗ − A′(w∗), x̂∗∗ − A−1(w)〉

= inf
(w,w∗)∈Gr(TA)

〈A′(ŵ∗)− A′(w∗), x̂∗∗ − A−1(w)〉

= inf
(w,w∗)∈Gr(TA)

〈ŵ∗ − w∗, A′′(x̂∗∗)− A(A−1(w))〉

= inf
(w,w∗)∈Gr(TA)

〈ŵ∗ − w∗, A′′(x̂∗∗)− w〉 ≤ 0
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where the last inequality follows from the assumption of TA being of type (D) and [9]. Since
(x̂∗, x̂∗∗) is a generic element of X∗×X∗∗, in view of the above result and [10, eq. (5) and Theorem
4.4, item 1] we conclude that T is also of type (D).

Using Lemmas 3.1 and 3.2, we obtain the following Theorem.

Theorem 3.3. Let X be a Banach space such that there exists a non-type (D) maximal monotone
operator T : X ⇒ X∗, and let Ω be another Banach space. If there exists a linear map A : X → Ω
such that A is a norm-isomorphism from X onto a closed subspace of Ω, then there exists a non-
type (D) maximal monotone operator S : Ω ⇒ Ω∗.

Proof. Define TA : Ω ⇒ Ω∗ as in lemmas 3.1, 3.2. Using Lemma 3.1 we conclude that TA
is maximal monotone. It TA is of type (D), then by Lemma 3.2 T is also of type (D), in
contradiction with the assumptions of the theorem. Therefore TA is a maximal monotone non-
type (D) operator.

Using Proposition 2.2 and Theorem 3.3, we have the following Corollary.

Corollary 3.4. Any real Banach space Ω which contains an norm-isomorphic copy of c0 has a
non-type (D) maximal monotone operator.
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