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Abstract

A nonempty set F is called Motzkin decomposable when it can be expressed as
the Minkowski sum of a compact convex set C with a closed convex cone D: In
that case, the sets C and D are called compact and conic components of F: This
paper provides new characterizations of the Motzkin decomposable sets involving
truncations of F (i.e., intersections of F with closed halfspaces), when F contains
no lines, and truncations of the intersection bF of F with the orthogonal complement
of the lineality of F; otherwise. In particular, it is shown that a nonempty closed
convex set F is Motzkin decomposable if and only if there exists a hyperplane H
parallel to the lineality of F such that one of the truncations of bF induced by H
is compact whereas the other one is a union of closed hal�ines emanating from H:
Thus, any Motzkin decomposable set F can be expressed as F = C +D; where the
compact component C is a truncation of bF : These Motzkin decompositions are said
to be of type T when F contains no lines, i.e., when C is a truncation of F: The
minimality of this type of decompositions is also discussed.

1 Corresponding author.
E-mail address: mgoberna@ua.es (M.A. Goberna).

Preprint submitted to Elsevier Science 23 March 2011



Key words: Motzkin decomposition, closed convex sets, convex functions

2



1 Introduction

A nonempty set F � Rn is called Motzkin decomposable (M-decomposable in
short) if there exist a compact convex set C and a closed convex cone D such
that F = C+D: Then we say that the pair (C;D) is a Motzkin decomposition
of F with compact and conic components C and D; respectively. This paper is
mainly focussed on those Motzkin decompositions of F such that the compact
component is a truncation of F (i.e., the intersection of F with some closed
halfspace), which are called of type T (MT-decomposition in short).

The classical Motzkin Theorem [7] asserts that any polyhedral convex set is
M-decomposable. For this reason, Bair ([1], [2]) called these sets generalized
convex polyhedral (unfortunately, the same name has been given by other au-
thors to those sets whose non-empty intersection with polytopes are polytopes,
which are also called quasipolyhedral or boundedly polyhedral). In the same
vein, a function f : Rn �! R is calledMotzkin decomposable (M-decomposable
in short) when its epigraph is M-decomposable. If f is M-decomposable, it is
convex and lower semicontinuous (lsc in short) and so any local minimum of
f is a global minimum of f: The main property of the M-decomposable func-
tions in the optimization framework is that they achieve their minima when
they are bounded from below on Rn:

Any M-decomposable set F has a unique conic component D = 0+F (the
recession cone of F ) but multiple compact components when F is unbounded.
Five di¤erent characterizations of the M-decomposable sets have been given
in [3] and two more in [4], where calculus rules for M-decomposable sets and
functions have been developed. The most relevant of these characterizations
involve the intersection bF of F with the orthogonal complement of the lineality
of F; with bF = F whenever F contains no lines. In the latter case, there
exists a unique compact component of F; say C1; such that C1 � C for any
compact component C of F ; such a set C1 is called the minimal (or the
smallest) compact component of F (the M-minimal component in short). The
M-minimal component of an M-decomposable set F without lines has been
characterized in di¤erent ways in [3] and [4].

We associate with any hyperplane H such that F \ H 6= ;; which is called
the slice of F induced by H; the truncations of F induced by H; F \ H+

and F \H�; where H+ and H� denote the closed halfspaces whose common
boundary is H: If F = C + 0+F; with C being a compact truncation of F; we
say that (C; 0+F ) is a Motzkin decomposition of F of type T. When a compact
component of F; say C2; is a truncation of F and C2 � C for any compact
component C of F of the same type, then C2 is called the minimal compact
component of F of type T (MT-minimal component in short). Two questions
arise in connection with the MT-minimal components:
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i) Does any Motzkin decomposable set without lines admit a minimal Motzkin
decomposition of type T?

ii) If F admits a minimal Motzkin decomposition of type T, does the MT-
minimal component of F coincide with the M-minimal component of F?

In this paper we provide a negative answer for the �rst question and a posi-
tive one for the second one. If F is a compact convex set, then any supporting
hyperplane to F provides, by truncation, the unique (type T) Motzkin decom-
position of F; (F; f0ng), so that F is the MT-minimal component of F: Thus,
we analyze in this paper the M-decomposability of unbounded closed convex
sets. The paper is organized as follows. Section 2 recalls the basic characteri-
zation of the M-decomposability of F in terms of the boundedness of the set
of extreme points of bF ([3, Theorem 11]), which provides alternative proofs
of classical results due to Bair [2] and new results on M-decomposible sets
and functions. Section 3 characterizes the compact truncations and slices of
closed convex sets whereas Section 4 provides new geometric characterizations
of the M-decomposable sets in terms of the existence of a hyperplane H whose
associated truncations for bF satisfy certain conditions, e.g., that one of them
is compact whereas the other one is the union of hal�ines emanating from H
(or, equivalently, its extreme points are contained in H). Finally, Section 5
characterizes those M-decomposable sets without lines that have a minimal
Motzkin decomposition of type T.

Throughout the paper we use the following notation. For any X � Rn; we de-
note by intX; clX; bdX; rintX; spanX; convX; and coneX = R+ convX;
the interior, the closure, the boundary, the relative interior, the linear sub-
space spanned by X; the convex hull of X; and the convex conical hull of X,
respectively. If X is a nonempty convex set, dimX denotes the dimension of
X:

The scalar product of x; y 2 Rn is denoted by x0y; the Euclidean norm of
x by kxk ; the zero vector by 0n; the closed unit ball by Bn; and the unit
sphere by Sn�1: The orthogonal complement of a linear subspace X is X? :=
fy 2 Rn : x0y = 0 8x 2 Xg : Given a convex cone X; its dual cone is X� :=
fy 2 Rn : x0y � 0 8x 2 Xg : If X is a convex set, extrX; 0+X and linX :=
(0+X)\ (�0+X) denote the set of extreme points, the recession cone and the
lineality space of X; respectively.

Given f : Rn �! R = R[f�1g ; we denote by epi f and dom f its epi-
graph and its domain, respectively. Given � 2 R; max ff; �g is said to be the
truncation of f by � (observe that epimax ff; �g is a truncation of epi f).
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Any set X � Rn is represented in a unique way by its indicator function

�X (x) :=

8><>: 0; if x 2 X;

+1; otherwise.

The indicator function �X is M-decomposable if and only ifX is M-decomposable.

2 Motzkin sets and functions revisited

Given a closed convex set F such that ; 6= F � Rn; we denote Q (F ) :=
cl conv extr

�
F \ (linF )?

�
: So, if F contains no lines, Q (F ) = cl conv extrF:

The next result characterizes the Motzkin decomposability of F in terms of
the boundedness of Q (F ) : We illustrate the importance of this characteriza-
tion for the analysis of Motzkin decomposable sets and functions with several
immediate applications.

Theorem 1 ([4, Theorem 11]) Let F be a closed convex set, ; 6= F � Rn:
Then the following statements hold:
(i) F is Motzkin decomposable if and only if extr

�
F \ (linF )?

�
is bounded.

In that case, Q (F ) is a compact component of F:
(ii) If F is a Motzkin decomposable set without lines, then Q (F ) is the M-
minimal component of F:

An immediate consequence of Theorem 1 in the Motzkin decomposition frame-
work is that the intersection of an arbitrary family of compact components of
F is a compact component too, whereas the counterpart of this intersection
property for the subfamily of compact components of F which are truncations
of F fails (see Example 18, where F is a convex polyhedral set). Nevertheless,
we get the following characterization of the hyperplanes inducing a Motzkin
decomposition of type T.

Corollary 2 A hyperplane H induces a Motzkin decomposition of type T of
a set F if and only if F \H+ is compact and extrF � H+; where H+ denotes
one of the closed halfspaces determined by H:

Proof: For the �only if� part, take H such that F \ H+ is compact and
F = F \H+ + 0+F: Then it is easy to see that extrF � F \H+ � H+: For
the �if�part, note that extrF � H+ entails extrF � F \H+; so that extrF
is bounded. Invoking Theorem 1, we have

F = Q(F ) + 0+F � F \H+ + 0+F � F;
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implying that F = F \H+ + 0+F , and this a Motzkin decomposition of F of
type T. �

Corollary 3 ([2, 2.4]) Any face of a Motzkin decomposable set is Motzkin
decomposable too.

Proof: Let G be a face of an M-decomposable set F: Obviously, linG � linF:
We prove now that linF � linG: Let u 2 linF and take an arbitrary x 2 G:
Given � � 0; we have x = 1

2
[(x+ �u) + (x� �u)] ; with x � �u 2 F: Thus

x� �u 2 G for all � � 0; i.e., u 2 linG: Denote L := linF = linG:

Since G \ L? is a face of F \ L?; extr
�
G \ L?

�
� extr

�
F \ L?

�
and the

conclusion follows from Theorem 1. �

The truncations and slices of an M-decomposable set are not necessarily
M-decomposable: if F is the �ice-cream cone� with axis (0; 0; 1), i.e. F =�
x 2 R3 :

q
x21 + x

2
2 � x3

�
; and H+ is one of the closed halfspaces determined

by a vertical hyperplane H � R3; then extr (F \H+) = extr (F \H) = f03g
when 03 2 H; whereas extr (F \H) � extr (F \H+) ; both sets being un-
bounded because extr (F \H) is a hyperbola, otherwise. Nevertheless, if H
is a hyperplane supporting an M-decomposable set F; the corresponding slice
is M-decomposable by Corollary 3. Concerning functions, although Example
20 in [4] shows that the sublevel sets of the M-decomposable functions are
not necessarily M-decomposable, Corollary 3 will allow us to show that the
optimal set of any unconstrained optimization problem with M-decomposable
objective function inherits this desirable property.

Corollary 4 If f : Rn �! R is Motzkin decomposable and bounded from
below, then the set of global minima of f is Motzkin decomposable.

Proof:The set of global minima of f is f�1 (�) ; where � := inf ff (x) : x 2 Rng :
Since epi f is closed and convex, f is lsc and convex, so that f�1 (�) =
fx 2 Rn : f (x) � �g is a nonempty closed convex set. The hyperplane H :=
f(x1; :::; xn+1) 2 Rn+1 : xn+1 = �g supports epi f at any point (x; �) such that
x 2 f�1 (�) : Then, by Corollary 3, epi f\H = f�1 (�)�f�g is M-decomposable.
Hence f�1 (�) is M-decomposable too. �

In general, the restriction of an M-decomposable function to a hyperplane is
not M-decomposable. For instance, if f (x) = kxk and H is a hyperplane in
R2; then

(f jH) (x) :=

8><>: kxk ; x 2 H;+1; otherwise,
is M-decomposable if and only if 02 2 H: From Corollary 3, if F is M-
decomposable and G is a face of F; then �G is M-decomposable because epi �G
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is a face of epi �F : This observation suggests the next result.

Corollary 5 If f : Rn �! R is Motzkin decomposable and H is a supporting
hyperplane to dom f; then f jH is Motzkin decomposable.

Proof: Since H � R is a supporting hyperplane to the M-decomposable set
epi f; epi (f jH) = epi f \ (H � R) is M-decomposable too. The conclusion
follows from Corollary 3. �

Proposition 6 Let A be a convex set and let B and A + B be Motzkin de-
composable sets such that 0+B � linA: Then A is Motzkin decomposable.

Proof: Let A be a convex set and let B and F := A+B be M-decomposable
sets. We have B = C1+D1 and F = C2+D2 for some compact convex sets C1
and C2 and some closed convex cones D1 and D2: Denote L := linA: Let a be
an exposed point of A\L? and p 2 Rn be such that a is the unique minimizer
of x 7! p0x on A \ L?: We can assume w.l.o.g. that p 2 L?: Then the set of
minimizers of x 7! p0x on A is fag+L: We also have p 2 L? � (0+B)� = D�

1;
so that the in�mum of x 7! p0x on B is achieved at some point b 2 C1: Clearly,
a+ b is a minimizer of x 7! p0x on�

A \ L?
�
+ L+B = A+B = C2 +D2:

It follows that p belongs to the positive polar D�
2 of D2:We have a+ b = c+d

for some c 2 C2 and d 2 D2: Since p 2 D�
2;

p0 (a+ b) = p0c+ p0d � p0c � p0 (a+ b) ;

hence p0d = 0: As a consequence, for every � � 0 the point c + �d is a
minimizer of x 7! p0x on C2 +D2: This implies that d 2 L; because the set of
minimizers is contained in fag+L+B: Hence a = c� b+d 2 C2�C1+L:We
have thus proved that the set of exposed points of A \ L? is contained in the
compact set (C2 � C1 + L)\L?: By Straszewicz�s Theorem [8, Theorem 18.6],
extr

�
A \ L?

�
� (C2 � C1 + L) \ L?: According to Theorem 1, we conclude

that A is M-decomposable. �

The assumption 0+B � linA in Proposition 6 is not super�uous: consider
A = fx 2 R2 : x2 � x21g and B = fx 2 R2 : x2 � 0g :

Corollary 7 ([1, Proposition 1]) Let A and B be convex sets such that B is
bounded and A+B is M-decomposable. Then A is M-decomposable too.

Proof: Let A and B be convex sets such that B is bounded and F := A+B is
M-decomposable. Then A is closed by [1, Proposition 1]. Moreover, A+clB =
F because F is closed and, so,

F � A+ clB � clF = F:
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Thus, we can assume w.l.o.g. that A is a closed convex set and B is a compact
convex set. The conclusion follows from Proposition 6. �

3 Compact truncations

We associate with a 2 Rnn f0ng and � 2 R the hyperplaneHa;� := fx 2 Rn : a0x = �g
and the corresponding closed halfspacesH+

a;� := fx 2 Rn : a0x � �g andH�
a;� :=

fx 2 Rn : a0x � �g : In this section we consider as given a closed convex set F
such that F \Ha;� 6= ; and analyze the boundedness of the truncations and
the slice induced by Ha;�; F \H�

a;�; F \H+
a;�; and F \Ha;�:

Observe that the truncations of F that are not slices have the the same di-
mension as F; i.e.,

dim
�
F \H+

a;�

�
< dimF ) F \H+

a;� = F \Ha;�: (1)

For proving it, assume the contrary, that is, the existence of x 2 F \ H+
a;�

such that a0x > �: Since F = cl rintF; there exists bx 2 Rn and " > 0
such that (bx+ "Bn) \ a� F � F and a0x > � for all x 2 bx + "Bn: Then
(bx+ "Bn) \ a� F � F \H+

a;�; so that dim
�
F \H+

a;�

�
= dimF:

On the other hand, the truncations of F that are slices are exposed faces of
F: Indeed, we will prove that if F \ H+

a;� coincides with the slice F \ Hb;�,
then Hb;� is a supporting hyperplane of F: Suppose it is not. Then the sets F \
intH+

b;� and F\intH�
b;� are nonempty, which implies that conv

��
F \ intH+

b;�

�
[
�
F \ intH�

b;�

��
intersects F \Hb;� = F \H+

a;�; but this is absurd because

conv
��
F \ intH+

b;�

�
[
�
F \ intH�

b;�

��
=conv (F n (F \Hb;�))

= conv
�
F n

�
F \H+

a;�

��
=F \ intH�

a;�:

Lemma 8 Let ; 6= C � Rn be a closed convex cone and d 2 Rnn f0ng : Then
d 2 intC� if and only if for every c 2 Cn f0ng it holds d0c > 0: Thus, C is
pointed if and only if intC� 6= ;:

Proof: Assume that d 2 intC� and there exists c 2 Cn f0ng such that d0c = 0:
We have d � c

k
2 C� for k su¢ ciently large. Then

�
d� c

k

�0
c = 0 � kck2

k
< 0,

which is a contradiction.

Assume that d0c > 0 for every c 2 Cn f0ng and suppose that d =2 intC�; i.e.,
d 2 bdC�: There exists a sequence fdkgk�1 such that dk ! d and dk =2 C�;
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k = 1; 2; ::: : Then we can �nd ck 2 C such that kckk = 1 and d0kck < 0;
k = 1; 2; :::W.l.o.g. we may assume that ck ! c 2 C; with kck = 1: Therefore,
after taking the limit we get the contradiction d0c � 0:

Now we assume that C is pointed. Since (spanC�)? � C�� = C; (spanC�)? =
f0ng ; that is, spanC� = Rn; which is equivalent to intC� 6= ;: Conversely,
if intC� 6= ;; we can take d 2 intC�; if �c 2 Cn f0ng ; we have �d0c > 0
(contradiction). Hence C is pointed. �

Lemma 9 Let ; 6= C � Rn be a closed, convex, pointed cone and a 6= 0n:
Then C \Ha;0 = f0ng if and only if a 2 intC� [ � intC�:

Proof: Let us suppose that a 2 intC� [� intC� and there exists d 6= 0n such
that d 2 C \Ha;0: Then a0d = 0; which is a contradiction by Lemma 8.

Now, let C \Ha;0 = f0ng and suppose that a =2 intC� [ � intC�: Then there
exists d+; d� 2 C di¤erent from 0n such that a0d+ � 0 and a0d� � 0: The
assumption implies that a0d+ < 0 and a0d� > 0: Let � > 0 be such that
a0d+ + �a0d� = a0 (d+ + �d�) = 0: The vector d+ + �d� 2 C and is di¤erent
from 0n because C is a pointed cone. This is a contradiction. �

Theorem 10 Let F � Rn be an unbounded, closed, convex set, a 2 Rnn f0ng
and � 2 R such that F \Ha;� 6= ;: The following statements are true:
(i) F \H�

a;� is compact if and only if a 2 int (0+F )
�
:

(ii) F \H+
a;� is compact if and only if a 2 � int (0+F )

�
:

(iii) a 2 int (0+F )
� [ � int (0+F )� if and only if F \ Ha;� is compact and

F contains no lines.

Proof: By the Convex Separation Theorem we can write F =
\
t2T
H+
at;�t ; for

two sets fat; t 2 Tg � Rn and f�t; t 2 Tg � R: Obviously,

(0+F )
�
= fx 2 Rn : a0tx � 0; t 2 Tg

�

= (cone fat; t 2 Tg)��

= cl cone fat; t 2 Tg :

(2)

(i) By [5, Corollary 9.3.1] and (2), F \ H�
a;� is bounded if and only if the

sublevel sets of the linear semi-in�nite programming problem

min fa0x s.t. a0tx � bt; t 2 Tg

are bounded if and only if a 2 int cone fat; t 2 Tg = int (0+F )� :

(ii) By (i), F \H+
a;� = F \H�

�a;�� is bounded if and only if �a 2 int (0+F )
�
:
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(iii) If a 2 int (0+F )� [ � int (0+F )� then, by (i) and (ii), at least one of the
two truncations of F induced by Ha;� is bounded. Thus F \Ha;� is bounded.
Moreover, int (0+F )� 6= ; means that 0+F is pointed (by Lemma 8), i.e., that
F contains no lines.

Now we assume that Ha;� \ F is a compact set and F contains no lines,
in which case int (0+F )� 6= ;: If there exists d 2 (Ha;0 \ 0+F ) n f0ng ; then
�d 2 Ha;0 \ 0+F for every � > 0: Take an arbitrary x 2 Ha;� \ F: Then
x + �d 2 Ha;� \ F for every � > 0; which is a contradiction: Therefore
Ha;0\0+F = f0ng and, from Lemma 9, we get a 2 int (0+F )�[� int (0+F )� :�

From the argument for proving statement (i), if a 2 int (0+F )� ; then F \H�
a;�

is compact for any � 2 R; but the converse does not hold when F\H�
a;� = ;: In

fact, we may have int (0+F )� = ; (e.g., take F = fx 2 R2 : x2 � 1g ; a = (0; 1)
and � = �1).

Example 11 Consider the closed convex set

F =
n
(x; y) :

p
x+

p
y � 1; x � 0; y � 0

o
=
n
(x; y) :

p
x+

p
y = 1; x � 0; y � 0

o
+ R2+:

Here 0+F = R2+ = (0+F )
� is pointed and full dimensional. Moreover, given

a 2 R2n f02g and � 2 R; F \ Ha;� 6= ; if and only if a =2 R2+ [ �R2+ or
a 2 R2+ with a1a2

a1+a2
� �; or a 2 �R2+ with a1a2

a1+a2
� �: Moreover, assuming

that F \Ha;� 6= ;; F \H�
a;� is compact if and only if a = (a1; a2) 2 R2++ and

F \ H+
a;� is compact if and only if a = (a1; a2) 2 �R2++: Observe that F is

M-decomposable with M-minimal (MT-minimal) component

Q (F ) = conv
n
(x; y) :

p
x+

p
y = 1; x � 0; y � 0

o
= F \H�

(1;1);1:

Corollary 12 Let F be an unbounded, closed convex set without lines and H
be a hyperplane such that F \H 6= ;: Then, F \H is compact if and only if
at least one of the two truncations of F induced by H is bounded.

Proof: It is a straightforward consequence of statement (iii) in Theorem 10.�

Corollary 13 Let F be an unbounded, closed, convex set. Then F contains
no lines if and only if there exists a compact truncation of F: In that case, if
F \H� is a compact truncation of F induced by a hyperplane H; then F \H�

1

is a compact truncation of F for any hyperplane H1 parallel to H such that
F \H1 6= ;:

Proof: The �rst part is consequence of statements (i)-(ii) in Theorem 10,
recalling that int (0+F )� 6= ; i¤ F contains no lines, and the second part
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comes from (i), which shows that the compactness of a truncation F \H�
a;� is

independent of � provided F \Ha;� 6= ;: �

From Corollary 13, if an unbounded, closed, convex set F admits an M-
decomposition of type T, F cannot contain lines.

Corollary 14 Let f : Rn �! R be a convex, lsc, proper function. Then f is
inf-compact if and only if (0n; 1) 2 int (0+ epi f)� :

Proof: Let F := epi f � Rn+1 and a := (0n; 1) ; and let � 2 R be such that
fx 2 Rn : f (x) � �g 6= ;: Then, by Theorem 10, f(x; y) 2 epi f : y � �g is
bounded i¤(0n; 1) 2 int (0+ epi f)� : So, it remains to be shown that f(x; y) 2 epi f : y � �g
is bounded i¤ fx 2 Rn : f (x) � �g is bounded. The direct statement is con-
sequence of the continuity of the orthogonal projection of Rn+1 on H :=
fx 2 Rn+1 : xn+1 = 0g ; which projects f(x; y) 2 epi f : y � �g onto fx 2 Rn : f (x) � �g�
f0g : For proving the converse statement, assume that fx 2 Rn : f (x) � �g is
bounded. Then � := min ff (x) : f (x) � �g 2 R because the lsc function f
attains its minimum on the compact set fx 2 Rn : f (x) � �g ; and that min-
imum cannot be �1 as f is proper. So, the set

f(x; y) 2 epi f : y � �g � fx 2 Rn : f (x) � �g � [�; �]

is bounded too. �

Example 15 Consider f : R �! R such that

f (x) =

8>>>>><>>>>>:
+1; x < 0;

(1�
p
x)
2
; 0 � x � 1;

0; x > 1:

Taking into account that epi f is the set F in Example 11, we can write

epi f = conv
n
(x; y) :

p
x+

p
y = 1; x � 0; y � 0

o
+ R2+;

so that f is M-decomposable and bounded from below, but its sublevel sets are
unbounded because (0; 1) =2 int (0+ epi f)� = R2++:

Proposition 16 Let F be an unbounded, closed convex set. Then the following
statements hold:
(i) If F contains no lines, there exist compact slices of F . The converse holds
when int 0+F 6= ;:
(ii) If F contains lines, then there exist compact slices of F if and only if F
is a Motzkin decomposable set whose conic component is a line.

Proof: (i) The direct statement follows from (iii) in Theorem 10 and Lemma
8. For the converse, we shall prove that if F contains lines and int 0+F 6= ;;
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then F \Ha;� is unbounded. Take d 2 0+F \ (�0+F ) n f0ng : If a0d = 0 then
one clearly has d;�d 2 0+ (F \Ha;�) ; so, in this case, F \Ha;� is unbounded.
Assume now that a0d 6= 0; and take d0 2 int 0+F: Then d0 + td 2 int 0+F for
every t 2 R and, by a0d 6= 0; we have a0 (d0 + t0d) = 0 for some t0 2 R. If
d0+t0d = 0 then F = Rn and hence F \Ha;� = Ha;�:We can thus assume that
d0 + t0d 6= 0; in which case, since d0 + t0d 2 0+ (F \Ha;�) ; the set F \Ha;�
is unbounded.

(ii) Denote L := linF: Assume that F = C +L; where C is a compact convex
set and dimL = 1: Then L? is a hyperplane such that 0+

�
F \ L?

�
= L\L? =

f0ng ; so that the slice F \ L? is compact.

Now we assume that Ha;� is a hyperplane such that Ha;� \ F is compact.
Assume that dimL > 1: Then,

dim (Ha;0 \ L) = dimHa;0 + dimL� dim (Ha;0 + L)

� n� 1 + dimL� n = dimL� 1 > 0:

Thus, f0ng $ Ha;0 \ L � Ha;0 \ 0+F = 0+ (Ha;� \ F ) ; which contradicts the
compactness of Ha;� \ F: Hence dimL = 1: Let u 2 Ln f0ng : If a0u = 0; then
u 2 Ha;0 \ L � 0+ (Ha;� \ F ) (contradiction). Hence a0u 6= 0:

According to [8, Theorem 18.3], we can write

F = Q (F ) + 0+
�
F \ L?

�
+ L: (3)

Given d 2 0+
�
F \ L?

�
� L?; take v := d � a0d

a0uu 2 0
+F + L = 0+F: Then,

a0v = 0; so that v 2 Ha;0 \ 0+F = 0+ (Ha;� \ F ) : Therefore, v = 0n and
d = a0d

a0uu 2 L \ L
? = f0ng : Thus, 0+

�
F \ L?

�
= f0ng : Thus (3) reduces to

F = Q (F ) + span fug :

The preceding argument actually shows that 0+F = 0+
�
F \ L?

�
+L = f0ng+

L = L: Hence, since ; 6= Q (F ) = cl conv extr
�
F \ L?

�
� F \ L?; we have

0+ (Q (F )) � 0+
�
F \ L?

�
= 0+F \ L? = L \ L? = f0ng ; so that Q (F )

is bounded and therefore F is the sum of the compact convex set Q (F ) =
cl conv extr

�
F \ L?

�
with the line span fug : �

Example 17 The cylinder F = fx 2 R3 : x21 + x22 � 1g is M-decomposable,
with conic component span f(0; 0; 1)g and in�nitely many compact compo-
nents, e.g., the slices induced by hyperplanes which are not parallel to the
vertical axis. Thus the condition int 0+F 6= ; in statement (i) of Proposition
16 is not super�uous. Observe also that the truncations of F induced by ver-
tical hyperplanes are unbounded, so that the "only if" statement in Corollary
12 is not true when F contains lines.
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If F is an unboundedM-decomposable set containing lines, fQ(F ) + l : l 2 linFg
is a family of pairwise disjoint compact components of F; so that the intersec-
tion of all the compact components of F is empty. Otherwise, according to The-
orem 1, the intersection of all the compact components of F is its M-minimal
component Q(F ): A natural question arises when F an M-decomposable set
without lines: does the intersection of all the compact components of F which
are truncations of F coincide with Q(F )? The next example shows that the
answer is negative, even for polyhedral convex sets.

Example 18 Consider the polyhedral convex set F = C +D; with

C = conv f(0; 0; 0) ; (1; 0; 1) ; (�1; 0; 1)g = Q(F )

and
D = cone f(0; 1; 1) ; (0;�1; 1)g = 0+F:

Obviously, �
0+F

��
=
n
x 2 R3 : x2 + x3 � 0;�x2 + x3 � 0

o
:

Let us consider an arbitrary halfspace H�
a;� such that F \Ha;� 6= ;; F \H�

a;�

is a compact set, and Q(F ) � H�
a;�: As (0; 0; 1) 2 Q(F ) � F \ H�

a;�; we
get a3 = a0 (0; 0; 1) � �: Moreover, a 2 int (0+F )� by Theorem 10, so that
a2 + a3 > 0 and �a2 + a3 > 0; i.e., a3 > 0 and ja2j < a3 � �: As�

0;�1
2
;
1

2

�
= (0; 0; 0) +

1

2
(0;�1; 1) 2 C +D = F;

a0
�
0;�1

2
;
1

2

�
=
1

2
(a3 � a2) �

1

2
(a3 + ja2j) < �;

and
�
0;�1

2
; 1
2

�
=2 Q(F ); we get

�
0;�1

2
;
1

2

�
2
�
F \H�

a;�

�
�Q(F ):

Since H�
a;� was chosen arbitrarily among those hyperplanes inducing compact

components of F which are truncations, we have shown that the intersection
of this family of truncations of an M-decomposable set without lines F may
contain strictly its M-minimal component Q(F ):

4 Characterizing Motzkin decomposable sets via truncations

In this section we characterize in two di¤erent ways the M-decomposable sets
in terms of the existence of certain truncations. Each characterization is �rst

13



obtained for closed convex sets without lines and then for arbitrary closed
convex sets.

We observe that the unbounded truncation arising in an M-decomposition of
type T is M-decomposable. Indeed, if F = F \ H+ + 0+F and F \ H+ is
compact, then 0+F � 0+H� and hence one can easily prove that F \H� =
F \H +0+F:We thus have F \H� = F \H�\H++0+F; which shows that
an unbounded truncation F \H� admits a decomposition by truncation with
the same hyperplane H that generated it.

Lemma 19 Let F � Rn be an unbounded closed convex set without lines.
Then the following statements are equivalent:
(i) F is Motzkin decomposable.
(ii) For every a 2 (0+F )� n f0ng there exists � 2 R such that

F \H+
a;� = F \Ha;� + 0+F: (4)

(iii) There exist a 2 int (0+F )� and � 2 R such that (4) holds.

Proof: (i) =) (ii) Let F = C + 0+F; where C � Rn is a compact convex
set and a 2 (0+F )

� n f0ng : Take � := maxx2C a
0x: Given z 2 F \ H+

a;�;
we can write z = x + d; with x 2 C � H�

a;� and d 2 0+F: If x 2 Ha;� then
z 2 F\Ha;� � F\Ha;�+0+F: If x =2 Ha;�; take y 2 ]x; z]\Ha;�:Obviously, z =
y+�d; where 0 � � < 1; which proves the inclusion F \H+

a;� � F \Ha;�+0+F:
The reverse inclusion is a consequence of a 2 (0+F )� :

(ii) =) (iii) int (0+F )� 6= ; because 0+F is pointed by assumption. Thus a is
any element of int (0+F )� :

(iii) =) (i) Let a 2 int (0+F )� and � 2 R satisfying (4). First we show that
the corresponding slice is nonempty. Take x 2 F and d 2 (0+F ) n f0ng : By
Lemma 8, a0d > 0; so that x + �d 2 F \ H+

a;� for a su¢ ciently large �:
Thus F \ H+

a;� 6= ;; and the nonemptiness of F \ Ha;� follows from (4). So,
; 6= F \ Ha;� � F \ H�

a;�; the latter set being compact by statement (i) in
Theorem 10. Denote C := F \H�

a;�: Then, by (4),

F =
�
F \H�

a;�

�
[
�
F \H+

a;�

�
= C [ (F \Ha;� + 0+F )

� C [ (C + 0+F ) = C + 0+F � F;

so that F = C + 0+F; where C is a compact convex set. �

In Example 11, a 2 (0+F )� n f0ng satis�es condition (4) if and only if � �
max fa1; a2g : In that case, F \Ha;� is compact i¤ a 2 int (0+F )� :

14



Corollary 20 If F � Rn is an unbounded Motzkin decomposable set without
lines, then for every a 2 int (0+F )� there exists � 2 R such that F \ H+

a;� is
Motzkin decomposable with compact component F \Ha;�:

Proof: Let a 2 int (0+F )� : By Lemma 19, there exists � 2 R such that (4)
holds, with F \Ha;� compact and nonempty (recall the proof of (iii) =) (i)
in Lemma 19). �

Corollary 21 Let f : Rn �! R be a convex, lsc, proper function such that
dom f is bounded. Then, f is Motzkin decomposable if and only if it is bounded
on dom f .

Proof: Let F := epi f: By the assumptions on f; the set F contains no lines
and 0+F = R+ (0n; 1) : According to Lemma 19, f is M-decomposable i¤
there exists � 2 R such that epi f \H+

(0n;1);�
= epi f \H(0n;1);�+R+ (0n; 1) or,

equivalently,

epimax ff; �g = f(x; y) : f (x) � � � yg : (5)

If f is bounded on dom f then (5) holds with � = sup ff (x) : x 2 dom fg ;
since in such a case epimax ff; �g = dom f � [�;+1[ : Conversely, assume
that (5) holds and let x 2 dom f: Then, taking y � max ff (x) ; �g ; we clearly
have (x; y) 2 epimax ff; �g ; which, by (5), implies that f (x) � �: We have
thus proved that f is bounded above by � on dom f . �

So, according to Corollary 21, the su¢ cient condition for Motzkin decompos-
ability established by statement (iii) in [4, Theorem 13] is also necessary.

Lemma 22 Let C � Rn be a nonempty, closed, convex cone. Then

spanC� = (linC)? :

Proof: Since linC � C; we have C� � (linC)� = (linC)? ; hence spanC� �
(linC)? :On the other hand, from (spanC�)? � C we deduce that (spanC�)? �
linC; therefore (linC)? � (spanC�)?? = spanC�: �

Lemma 23 Let F � Rn be a nonempty closed, convex set. Then�
0+(F \ (linF )?)

��
=
�
0+F

��
+ linF:

Proof: Denote L := linF: From 0+(F \ L?) = 0+F \ 0+(L?) = 0+F \
L? it follows that

�
0+(F \ L?)

��
=
�
0+F \ L?

��
= cl

�
(0+F )

�
+
�
L?

���
=

cl
�
(0+F )

�
+ L

�
= (0+F )

�
+ L: �
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Corollary 24 Let F � Rn be a nonempty, closed, convex set. Then

int
�
0+(F \ (linF )?)

��
= rint

�
0+F

��
+ linF: (6)

Proof: Let L := linF; A :=
�
0+(F \ L?)

��
; and B := (0+F )

�
: We have

rint (B + L) = rintB + L because L is a linear subspace such that B �
L?: Since F \ L? contains no lines, 0+(F \ L?) is pointed and, so, intA =
int

�
0+(F \ L?)

��
6= ;: Then, by Lemma 23, we get

intA = rintA = rint (B + L) = rintB + L:

Therefore, (6) holds. �

Theorem 25 Let F � Rn be an unbounded, closed, convex set. Then the
following statements are equivalent:
(i) F is Motzkin decomposable.
(ii) For every a 2

�
(0+F )

�
+ linF

�
n f0ng there exists � 2 R such that

F \H+
a;� = F \Ha;� + 0+F: (7)

(iii) There exist a 2 rint (0+F )� + linF and � 2 R such that (7) holds.

Proof: Let L := linF: Recall that F is M-decomposable if and only if F\L? is
M-decomposable ([4, Theorem 6]), and use Lemma 19 with F replaced by this
latter set. Concerning statements (ii) and (iii), see Lemma 23 and Corollary
24, respectively. �

From now on, for x 2 Rn and d 2 Rnn f0ng ; we denote by rx;d := fx+ �d : � � 0g
the closed hal�ine emanating from x in the direction of d:

Proposition 26 Let F � Rn be an unbounded, closed, convex set without
lines and F\H+ be a truncation induced by the hyperplane H: Then, F\H+ is
a union of closed hal�ines emanating fromH if and only if extr (F \H+) � H:

Proof: Let F \ H+ be a union of closed hal�ines emanating from H: Let
z 2 F \ H+nH and x 2 H; d 2 Rnn f0ng be such that z 2 rx;d: Then
we can write z = x + �d for some � > 0 (� 6= 0 because z 6= x). Since
z 2

h
x+ �

2
d; x+ 2�d

i
; with x+ �

2
d 6= x+ 2�d elements of rx;d � F \H+; we

have z =2 extr (F \H+) :

Now we assume that extr (F \H+) � H: By [8, Theorem 18.3],

F \H+ = cl conv extr (F \H+) + 0+ (F \H+)

� F \H + 0+ (F \H+) :
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Then, any z 2 F \H+nH can be written as z = x + d; with x 2 F \H and
d 2 0+ (F \H+) n f0ng ; so that z 2 rx;d � F \H+: Therefore,

F \H+nH �
[

x2F\H
d20+(F\H+)nf0ng

rx;d:

Since any x 2 F\H+\H = F\H belongs to rx;d for all d 2 0+ (F \H+) n f0ng ;
we get

F \H+ =
[

x2F\H
d20+(F\H+)nf0ng

rx;d:

�

In Example 11, given a 2 R2++ and � � max fa1; a2g ;

F \H+
a;� = conv

��
�

a1
; 0
�
;
�
0;
�

a2

��
is a truncation of F satisfying

extr
�
F \H+

a;�

�
=
��
�

a1
; 0
�
;
�
0;
�

a2

��
� Ha;�;

and so it is a union of hal�ines emanating fromHa;�. In general, extr (F \H+) �
H does not imply that F \ H+ is the truncation of some translated closed
convex cone (take as F a truncated cylinder).

Lemma 27 Let F � Rn be an unbounded, closed, convex set without lines.
Then F is Motzkin decomposable if and only if there exists a hyperplane H
such that one of the truncations induced by H is compact and the other one
is a union of closed hal�ines emanating from H:

Proof: Assume �rst that F is M-decomposable: By Lemma 19 there exists a
hyperplane H such that F \H+ = F \H+0+F: Then extr (F \H+) � F \H
and hence, by Proposition 26, F \H+

a;� is a union of closed hal�ines emanating
from H:

For proving the converse, assume the existence of H as in the statement and
let K be the compact set obtained by taking the intersection of F with H+

one of the closed halfspaces determined by H:We will see that F = K+0+F ;
since K is convex, this will show that F is M-decomposable. We only have to
prove the inclusion �; as the opposite one follows immediately from K � F:
Let x 2 F: If x 2 K; then x = x + 0n 2 K + 0+F: If, on the contrary, x =2 K
then, by the assumption, x 2 rh;d � F\H� for some h 2 H and d 2 Rnn f0ng ;
H� being the other closed halfspace determined by H: Since h 2 rh;d � F and
d 2 0+F; we have h 2 H \ F � K; and therefore from x 2 rh;d we conclude
that x 2 K + 0+F; which ends the proof. �
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In Example 11, the hyperplane H := fx 2 R2 : x1 + x2 = 1g satis�es the con-
ditions of Lemma 27.

Corollary 28 Let f : Rn �! R be a convex, lsc, proper function such that
dom f contains no lines. Then f is Motzkin decomposable if it is inf-compact
and there exists a sublevel set L� (f) := f�1 (�1; �], with � 2 R, such that
that dom f nL� (f) is a union of hal�ines on each of which f is a¢ ne. In this
case, the truncation of f by �; max ff; �g ; is Motzkin decomposable.

Proof: Let � be as in the statement. The hyperplaneH := f(x; xn+1) : xn+1 = �g
induces in epi f two truncations:

f(x; xn+1) 2 epi f : xn+1 � �g = f(x; xn+1) : f (x) � xn+1 � �g ;

which is compact by the inf-compactness of f , and

f(x; xn+1) 2 epi f : xn+1 � �g = f(x; xn+1) : max ff (x) ; �g � xn+1g

= epimax ff; �g :

We will prove that the latter set is a union of closed hal�ines emanating
from H. Let (x; xn+1) 2 epimax ff; �g : Then xn+1 � � and f (x) � xn+1: If
f (x) � � then (x; xn+1) belongs to the vertical line emanating from (x; �) 2
H: Suppose now that f (x) > �: Then x 2 dom f n L� (f) ; and hence
x 2 ry;x�y for some y 2 f�1 (�) such that y � x 2 0+ dom f and f is a¢ ne
on ry;x�y. We will next show that r(y;�);(x�y;xn+1��) � epimax ff; �g ; which,
as (x; xn+1) 2 r(y;�);(x�y;xn+1��) and (y; �) 2 H; will �nish the proof. Con-
sider a point (y; �) + � (x� y; xn+1 � �) = (y + � (x� y) ; �+ � (xn+1 � �)) ;
with � � 0: Since f is a¢ ne on ry;x�y, we have f (y + � (x� y)) = f (y) +
� (f (x)� f (y)) = � + � (f (x)� �) � � + � (xn+1 � �); on the other hand,
from xn+1 � � and � � 0 it follows that � � � + � (xn+1 � �) : This proves
that (y; �)+� (x� y; xn+1 � �) 2 epimax ff; �g. From 27 we conclude that f
is M-decomposable. Since, as we already observed at the beginning of this sec-
tion, truncations of an M-decomposable set are themselves M-decomposable,
we conclude that max ff; �g is M-decomposable too. �

The function f in Example 15 is M-decomposable but not inf-compact, so that
the converse of Corollary 28 does not hold.

Theorem 29 Let F � Rn be an unbounded, closed, convex set. Then F is
Motzkin decomposable if and only if there exists a hyperplane H parallel to
linF such that H induces truncations of F \(linF )? and F which are compact
and union of closed hal�ines emanating from H; respectively.

Proof: Denote L = linF: If L = f0ng ; the statement reduces to that of
Lemma 27; we will thus assume w.l.o.g. that L 6= f0ng :
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It is known that F is M-decomposable i¤ F \ L? is M-decomposable i¤ (by
Lemma 27) there exists a hyperplane fH in L? such that the intersection K
of F \ L? with one of the closed halfspaces gH+ in L? determined by fH is
compact and its intersection with the other closed halfspace gH� determined
by fH is a union of closed hal�ines emanating from fH:
If F is M-decomposable, take fH as above and denote H = fH +L: Clearly, H
is a hyperplane parallel to L; H+ = gH+ + L is one of the closed halfspaces
determined byH; and the intersection ofH+ with F\L? is compact:H+\F\
L? = gH+ \F \L? = K: Let H� be the other closed halfspace determined by
H; one clearly has H� = gH�+L: Let x 2 F \H� and consider the projectionex of x on L?: We have ex 2 F \ L? \ H� = F \ L? \ gH� and therefore
there exists rh;d � F \ L? \ gH� � F \H�; with h 2 F \ L? \ fH � H and
d 2 0+

�
F \ L? \H�

�
; such that ex 2 rh;d: Having this in mind and the fact

that H is parallel to L; we get that x 2 rh;x�h � F \ H� in the case when
x 6= h. If, on the contrary, x = h; taking any l in the nonempty set Ln f0ng
we have x 2 rh;l � F \H�:

If there exists a hyperplane H as in the statement, de�ne fH = H \L?: Since
H is parallel to L; fH is a hyperplane in L?: Let H+ be the closed halfspace
determined byH such thatH+\F \L? is compact, H� be the opposite closed
halfspace and denote fHi = Hi\L? (i = 1; 2). Then gH+ and gH� are the closed
halfspaces in L? determined by fH:We have that gH+\F \L? = H+\F \L?
is compact and gH� \ F \ L? = H� \ F \ L? is a union of closed hal�ines
emanating from H \ L? = fH: The proof is complete. �

From now on we will deal only with closed and convex sets without lines, or
equivalently, possessing extreme points.

Corollary 30 Let F � Rn be a Motzkin decomposable set. Then F admits a
Motzkin decomposition of type T if and only if it contains no lines.

Proof: The "only if" statement is an immediate consequence of Corollary
13. For proving the converse, let H be a hyperplane as in Theorem 29, i.e.
such that F \ H+ is compact and F \ H� is a union of hal�ines emanating
from F \ H, where H+; H� are the halfspaces determined by H. Clearly
F \H+ + 0+F � F: For the opposite inclusion, use Proposition 26 to deduce
that H � extr (F \H�) � (extrF )\H�; from where it follows that extrF �
F \H+, and hence Q(F )+ 0+F � F \H++0+F . Since F = Q(F )+ 0+F by
statement (i) in Theorem 1, we have established that F = F \H+ + 0+F: �
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5 Minimal Motzkin decompositions of type T

The main result in this section shows that the MT-minimal component of a
closed and convex set without lines F is Q(F ):

Theorem 31 Let F be an unbounded, closed, convex set without lines. The
MT-minimal component of F; when it exists, coincides with the M-minimal
component of F:

Proof: We must prove that, if H is a hyperplane which induces the minimal
Motzkin decomposition of type T of F; then F \ H� = Q(F ), where H� is
one of the closed halfspaces determined by H:

Since F = F \H�+0+F and F \H� is compact, we conclude from Theorem 1
thatQ(F ) � F\H�. Thus, it su¢ ces to prove that F\H� � Q(F ). We sketch
next the proof of this fact. We will assume for the sake of contradiction that
this inclusion does not hold, i.e. that there exists a point z 2 (F \H�)nQ(F ),
from which we construct a point u 2 (F \H)nQ(F ). We consider a hyperplane
which separates u fromQ(F ), and a positive combination of the normal vectors
to this hyperplane and to H turns out to be normal to a hyperplane H1
which also induces a Motzkin decomposition of F of type T, but such that
u =2 F \ H�

1 , contradicting the minimality of the Motzkin decomposition of
type T induced by H. We proceed now to formalize this proo�ine.

Take a 2 Rnn f0ng and � 2 R such that H = Ha;� and H� = H�
a;�: As

F \H�
a;� is compact by assumption, a 2 int (0+F )

� (recall Theorem 10). Let
" > 0 be such that a+ "v 2 (0+F )� for all v 2 Sn�1: Given y 2 (0+F ) nf0ng;
� y
kyk 2 S

n�1; so that a0y � " kyk > 0: Therefore

a0y > 0 8y 2
�
0+F

�
nf0ng: (8)

Now we assume that the inclusion F \ H�
a;� � Q(F ) fails, and hence there

exists a point z 2
�
F \H�

a;�

�
nQ(F ). Since F = Q(F ) + 0+F by Theorem 1,

z = w + d for some w 2 Q(F ); d 2 0+F: Clearly, d 6= 0n (otherwise, z belongs
to Q(F )). We claim now that

a0w < �: (9)

Otherwise, since w 2 Q(F ) � F \ H�
a;�, we have a

0w = �, and hence, using
(8),

a0z = a0w + a0d = �+ a0d > �;

contradicting the fact that z 2 H�
a;�. Hence z 2 intH�

a;�. Observe now that
the hal�ine rw;d must cut H, because otherwise the whole hal�ine would be
contained in H�

a;�, and since it is contained in F because w 2 Q(F ); d 2 0+F ,
we would be contradicting the compactness of F \H�

a;�. Since w, the vertex of
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rw;d, belongs to intH�
a;� by (9), rw;d cutsHa;� at one point, say u = w+td. Note

that t � 1, because w = w + 0d 2 intH�
a;�, w + d = z 2 H�

a;�, so that points
of the form w + sd 2 intH+

a;� for all s > t: Thus, z is in the segment between
w and u. Taking into account that w 2 Q(F ), z =2 Q(F ), we conclude from
the convexity of Q(F ) that u =2 Q(F ). We invoke now the Convex Separation
Theorem to �nd b 2 Rn, with kbk = 1, and � 2 R such that

b0u > �; (10)

b0x < � 8x 2 Q(F ): (11)

De�ne
� = min

n
a0y : y 2 Sn�1 \ 0+F

o
: (12)

Note that � > 0 by (8) and the compactness of Sn�1 \ 0+F: Take �� 2 ]0; �[
such that c := a+��b 6= 0n and de�ne 
 := �+���:We claim that Hc;
 induces
a Motzkin decomposition of F of type T, and in view of Corollary 2, the claim
will be established if we prove that:

i) Q(F ) � F \H�
c;
:

ii) F \H�
c;
 is compact.

For checking (i), take any x 2 Q(F ), and note that

c0x = a0x+ ��b0x < �+ ��� = 
;

using the fact that x 2 Q(F ) � H�
a;� and (11) in the inequality.

Now we look at (ii). Let �� 2 ]0; �[ be such that c := a+��b 2 int (0+F )� : Then
c 6= 0n (because F contains no lines) and F \H�

c;
 is compact by Theorem 10.
This proves that Hc;
 induces a Motzkin decomposition of type T.

Now, the minimality of the decomposition induced by Ha;� among Motzkin
decompositions of type T implies that F \H�

a;� � F \H�
c;
. Since u belongs

to F \Ha;� � F \H�
a;�; we get that u 2 F \H�

c;
; i.e., that

c0u � 
: (13)

On the other hand

c0u = a0u+ ��b0u = �+ ��b0u > � + ��� = 
; (14)

using the de�nition of c in the �rst equality, the fact that u 2 Ha;� in the
second one, and (10) in the inequality. The contradiction between (13) and
(14) entails that F \H�

a;� = Q(F ), completing the proof. �

Corollary 32 A closed and convex set F , without lines, has an MT-minimal
component if and only if Q(F ) is a truncation of F:
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Proof: The �only if�part follows directly from Theorem 31; the �if�part is
a consequence of Corollary 2 and Theorem 1. �

Corollary 32 will help us in the construction of sets in more than two dimen-
sions with and without MT-minimal component (the MT-minimal component
of any unbounded M-decomposable set in R2 containing no lines is one of the
truncations induced by a line containing the vertices of its unbounded edges,
see Example 11). Any application of Corollary 32 relies on the identi�cation
of Q(F ):

Example 33 De�ne F � R3 as F = C+D, whereD =
�
x 2 R3 :

q
x21 + x

2
2 � x3

�
and C is the unit bidimensional disk C = f(x1; 0; x3) 2 R3 : x21 + x23 � 1g.
Clearly, extrF � extrC = f(x1; 0; x3) 2 R3 : x21 + x23 = 1g. In order to
precisely determine extrF , we must exclude from extrC those points which
belong to a hal�ine with direction in D starting at another point in extrC.
After some elementary algebra, it can be seen that the points to be excluded
are those with x3 > �

p
2
2
, so that

extrF =
n
(x1; 0; x3) 2 R3 : x21 + x23 = 1; x3 � �

p
2
2

o
;

and hence

Q(F ) =
n
(x1; 0; x3) 2 R3 : x21 + x23 � 1; x3 � �

p
2
2

o
;

which is not a face of F although dimQ(F ) < dimF: Indeed, for c = (0; 0;�1) 2
C; d1 =

�
0; 1�

p
2
2
; 1�

p
2
2

�
2 D and d2 =

�
0;

p
2
2
� 1; 1�

p
2
2

�
2 D one has

c + d1; c + d2 2 F nQ(F ) and 1
2
(c+ d1 + c+ d2) 2 Q(F ): Thus, Q(F ) is not

a truncation of F (see the discussion at the beginning of Section 3). In view
of Corollary 32, we conclude that F has no MT-minimal component.

Example 34 We take now F = clB3+D, with D as in Example 33, i.e. the
vertical �ice-cream cone�in R3: A computation similar to that of Example 33
shows that

Q(F ) =

(
x 2 R3 : kxk � 1; x3 � �

p
2

2

)
:

Observing that Q(F ) = F \H�
a;� for a = (0; 0; 1) and � = �

p
2
2
; by Corollary

32 we conclude that Q(F ) is the MT-minimal component of F .

Observe that, in general, the intersection of all the compact components of F
which are truncations does not coincide with its M-minimal component (recall
Example 18), so that it is not necessarily the MT-minimal component either.
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