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Abstract. We establish the global existence of L∞ solutions for a model of
polytropic gas flow with varying temperature governed by a Fourier equation in

the Lagrangian coordinates. The result is obtained by showing the convergence

of a class of finite difference schemes, which includes the Lax–Friedrichs and
Godunov schemes. Such convergence is achieved by proving the estimates

required for the application of the compensated compactness theory.

1. Introduction

We consider the following system modeling a gas flow with a pressure-density-
temperature equation of state of the form

p(ρ, ϑ) = κϑργ ,

where p denotes the pressure, ρ is the density, ϑ the temperature, γ > 1 and
κ = 1

4γ (γ − 1)2. In the nomenclature of [7], this means that the thermal pressure

pth(ρ, ϑ) and the elastic pressure pe(ρ) satisfy pth(ρ, ϑ) = p(ρ, ϑ), pe(ρ) = 0. In
particular, by Maxwell’s relationship we get e = Q(ϑ), where e is the internal
energy, that is, e is a function only of the temperature.

The model assumes that ϑ is governed by a Fourier equation in Lagrangian
coordinates and, in Eulerian coordinates, reads

ρt +mx = 0,(1.1)

mt + (
m2

ρ
+ p(ρ, ϑ))x = 0,(1.2)

T#

(
(ρϑ)t + (mϑ− 1

ρ
ϑx)x

)
= 0,(1.3)

wherem is the momentum defined asm = ρu, where u is the gas velocity. We denote
by T the Lagrangian transformation determined modulo constants by T (x, t) =
(y(x, t), t), with y satisfying

(1.4)
∂y

∂x
= ρ,

∂y

∂t
= −m,

and T# denotes the corresponding push-forward operator1 from the distributions
on R2

+ := R×(0,∞) in the (x, t) coordinates to the distributions on R2
+ in the (y, t)
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1The push-forward of a distribution of the form divF , where F ∈ L∞(Ω;Rn), with Ω ⊆ Rn,

by a Lipschitz continuous mapping f : Ω → Ω̃ ⊆ RN , is the distribution f#(divF ) in Ω̃ defined

as 〈f#(divF ), ψ〉 = −〈F,∇(ψ ◦ f)〉 for all ψ ∈ C∞
0 (Ω̃).
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coordinates. We observe that, when vacuum occurs, T is not invertible and so we
cannot get rid of the push-forward operation in (1.3).

The system (1.1)–(1.3) is a mathematical model intended to approximate the
more physical model where equation (1.3) is replaced by the thermal energy equa-
tion (see, e.g., (1.36) in [7]), which reduces to (1.3) if the terms involving the velocity
are neglected, and this motivates our mathematical model.

Initial data are given by

ρ(x, 0) = ρ0(x), m(x, 0) = m0(x),(1.5)

ϑ(x, 0) = ϑ0(x) = σ(y0(x)), y0(x) =

∫ x

0

ρ0(z) dz.(1.6)

Assume that

(1.7) ρ0,m0,
m0

ρ0
∈ L∞(R), ρ0 ≥ 0, 0 < δ0 ≤ σ ∈W 3,2

loc (R).

In particular, the initial data (and the solution) allows for the occurrence of vacuum.
In addition, we also assume that σ is periodic with period, say, 2π, that is,

(1.8) σ(y + 2π) = σ(y), y ∈ R.
We remark that assumption (1.7), imposed on σ, implies that the solution of the

heat equation with initial data σ,

(1.9) σ̃(y, t) :=
1

(4πt)1/2

∫
R
e−(y−z)2/4tσ(z) dz,

satisfies

(1.10) |σ̃(y, t)− σ̄|, |σ̃y(y, t)|, |σ̃yy(y, t)| ≤ C0e
−t, with σ̄ :=

1

2π

∫ 2π

0

σ(z) dz,

for some absolute constant C0 > 0. Indeed, (1.7) and (1.8) imply the absolute con-
vergence of the Fourier series of σ, σ′ and σ′′. On the other hand, a straightforward
calculation shows that

1

(4πt)1/2

∫
R
e−(y−z)2/4teikz dz =

e(−y2+(y+2ikt)2)/4t

(4πt)1/2

∫
R
e
−(z−(y+2ikt))2

4t dz

= eiky−k
2t,

for any k ∈ R, which then gives the asserted asymptotic behavior, by plugging the
Fourier series for σ, σ′ and σ′′ in (1.9) and the corresponding equations for σ̃y and
σ̃yy, obtained from (1.9) by replacing σ by σ′ and σ′′, respectively.

We have the following definition of weak solution.

Definition 1.1. We say that a function (ρ,m, ϑ) ∈ L∞(R2
+) is a weak solution to

(1.1)–(1.6) if:

(i) m/ρ ∈ L∞(R2
+);

(ii) ϑ ∈W 1,∞(R2
+), ϑx/ρ ∈ L∞(R2

+);
(iii) for all φ, ψ ∈ C∞0 (R2),∫

R2
+

(ρ,m)(x, t)φt + (m,
m2

ρ
+ p(ϑ, ρ))(x, t)φx dx dt

+

∫
R

(ρ0,m0)(x)φ(x, 0) dx = 0,(1.11) ∫
R2

+

ρϑ
∂

∂t
ψ(y(x, t), t) + (mϑ− 1

ρ
ϑx)

∂

∂x
ψ(y(x, t), t) dx dt

+

∫
R
ρ0ϑ0ψ(y0(x), x) dx = 0.(1.12)
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We observe that, in Definition 1.1, we ask that ρ,m, ϑ, ϑx/ρ ∈ L∞(R2
+) and

so we have (ρϑ,mϑ − ϑx
ρ ) ∈ L∞(R2

+). Therefore, the push-forward operation

T#
(
ρϑ,mϑ− ϑx

ρ

)
is well-defined by

(1.13)〈
T#

(
(ρϑ)t + (mϑ− ϑx

ρ
)x

)
, ψ

〉
:= −

〈(
ρϑ,mϑ− ϑx

ρ

)
, (
∂

∂t
ψ ◦ T, ∂

∂x
ψ ◦ T )

〉
,

for all ψ ∈ C∞0 (R2
+), where on the left-hand side 〈·, ·〉 denotes the pairing 〈W−1,∞,

W 1,1〉, while on the right-hand side it is the pairing 〈(L∞)2, (L1)2〉. Item (iii) of
Definition 1.1 is the natural extension of (1.13) in order to take into account the
initial data.

Our main result reads as follows.

Theorem 1.1. There exists a constant r(γ) > 0 such that if ‖(ρ0,m0)‖∞ < r(γ),
then there exists a global weak solution to the Cauchy problem (1.1)–(1.6) satisfying
an entropy inequality of the form

(1.14) η∗(ρ,m, ϑ)t + q∗(ρ,m, ϑ)x ≤ Ce−t,

in the sense of distributions, for some C > 0 depending on L∞ bounds for ρ,m, ϑ,
where

(1.15) η∗(ρ,m, ϑ) =
1

2
ρu2 +

κ

γ − 1
ϑργ , q∗(ρ,m, ϑ) = uη∗(ρ,m, ϑ) + pu.

Moreover, r(γ)→∞ as γ → 1+. Further, if ρ0,m0 are periodic with period L such
that y0(L) = 2π, we have the following decay

(1.16) lim
t→∞

∫ L

0

| (ρ(x, t),m(x, t), ϑ(x, t))− (ρ̄, m̄, ϑ̄)| dx = 0,

where ρ̄, m̄, ϑ̄ are the mean values of ρ0,m0, ϑ0, respectively.

The following sections of this paper are dedicated to the proof of Theorem 1.1.
We will construct approximate solutions using an adaptation of Godunov’s finite
difference scheme which roughly runs as follows. We start with the approximate
solution (ρh,mh, ϑh) defined at t = 0 as a piecewise constant function with jumps
located at the space grid points x = (i + 1/2)∆x, i ∈ Z, setting ρh,mh, ϑh on
the space interval ((i − 1/2)∆x, (i + 1/2)∆x)) constant equal to the mean values
of ρ0,m0, ϑ0 on that interval. Then, inductively, we assume that ρh,mh, ϑh have
been for t = jh, for some j ∈ N, and are piecewise constant with jumps located at
x = (i + 1/2)∆x, i ∈ Z. Here h is the time-step, ∆t. We assume that ∆x and ∆t
satisfy a CFL-condition, which, in order to be justified, depends on a crucial L∞ a
priori bound for the approximate solution, which is a central point in our proof. We
then define ρh,mh, ϑh on the time-interval [jh, (j + 1)h) by solving the Riemann
problems for the 3 × 3 system (2.15), (2.16),(2.17), centered at the discontinuities
on the points ((i+ 1/2)∆x, jh), i ∈ Z. Since vacuum may occur in the solutions of
the Riemann problems, we need also to define ϑh on the vacuum zones, whenever
this is the case for a certain Riemann problem solution. So, if vacuum occurs on
a Riemann solution defined on the rectangle [i∆x, (i + 1)∆x] × [jh, (j + 1)h), for
some i ∈ Z, it takes place on a wedge

c1(t− jh) ≤ (x− (i+
1

2
)∆x)) ≤ c2(t− jh), jh ≤ t < (j + 1)h,

for certain −2∆t/∆x < c1 < c2 < 2∆t/∆x. We then define ϑh on this wedge
as
(
ϑh(i∆x, jh) + ϑh((i+ 1)∆x, jh)

)
/2. Having defined (ρh,mh, ϑh) on [jh, (j +

1)h)×R as just indicated, we may define yh(x, t) on R×[0, (j+1)h) by (3.1) and the
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auxiliary function σh(x, t) by (3.2). We thus define ρh,mh, ϑh on R×{t = (j+1)h}
by (3.3), (3.4) and (3.5).

As we mentioned, the crucial point in our proof is the obtainment of L∞ a
priori bounds for ρh,mh, ϑh. These bounds allow us to apply the compensated
compactness method following the ideas developed in [4], [5], [1], [10] and [9]. Using
this framework we succeed to prove the convergence a.e. of ρh,mh to certain ρ,m,
which implies the uniform convergence of yh(x, t) to a certain Lipschitz continuous
function y(x, t) satisfying (1.4), as well as the uniform convergence of the auxiliary
functions σh(x, t), and hence that of ϑh(x, t), to σ̃(y(x, t), t) where σ̃(y, t) is the
solution of the heat equation

σ̃t = σ̃yy,

satisfying σ̃(y, 0) = σ(y). Therefore, we verify (1.11) and, using the Lagragian
transformation T (x, t) = (y(x, t), t), in a standard way, we easily verify (1.12). The
entropy inequality (1.15)is also easily verified and based on it we can apply the
proof of the main result in [2] to verify (1.16). The details of these procedures are
given in the following sections.

Before passing to the proof of Theorem 1.1, we remark that in Lagrangian coor-
dinates the model (1.1)–(1.3) reads

(1.17)

vt − uy = 0,

ut + p(v, ϑ)y = 0,

ϑt − ϑyy = 0,

where v = 1/ρ is the specific volume. We observe that, despite the fact that system
(1.17) has a form much simpler than (1.1),(1.2),(1.3), the possibility of occurrence of
vacuum turns the direct analysis of the Cauchy problem for (1.17) a very difficult
task and so, as in the isentropic case, a better strategy is to proceed with the
analysis of the corresponding problem in Eulerian coordinates, that is, (1.1)–(1.6).

We now briefly describe the contents of the remaining sections. The main pur-
pose of Section 2 is to describe the solution of the Riemann problem (2.15)–(2.18).
In Section 3 we describe the construction of the approximate solutions to (1.1)–
(1.6). In Section 4 we prove the L∞ a priori bound for the approximate solutions,
which is a central point in this paper. Section 5 is devoted to the proof of the con-
vergence of the approximate solutions by means of the compensated compactness
method. Finally, in Section 6, we conclude the proof of Theorem 1.1 by outlining
the proof of the decay property (1.16).

2. Background results. The auxiliary Riemann problem.

Let us first recall results for the p-system for a polytropic gas in Eulerian coor-
dinates. More precisely, we consider the system

ρt +mx = 0,(2.1)

mt +
(m2

ρ
+ p(ρ)

)
x

= 0,(2.2)

where the pressure is given by p(ρ) = κϑργ . For later use we observe that we can
rewrite the conserved quantities in terms of the other variables, viz.,

(2.3) ρ = ρ(p, ϑ) =
( p

κϑ

)1/γ

, m = m(u, p, ϑ) = ρu = u
( p

κϑ

)1/γ

.

Here we consider the isothermal case where the temperature ϑ is considered a
constant. Recall that the functions

w = u+
1

θ

(
pρ
)1/2

= u+ ϑ1/2ρθ = u+
( p
κ

)θ/γ
ϑ

1
2γ ,(2.4)
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Figure 1. The wave curves for the p-system for a given left state.

z = u− 1

θ

(
pρ
)1/2

= u− ϑ1/2ρθ = u−
( p
κ

)θ/γ
ϑ

1
2γ ,(2.5)

with θ = 1
2 (γ − 1), form a pair of Riemann invariants for system (2.1)–(2.2) in the

isothermal case where ϑ is constant. A standard calculation (see, e.g., [8, 3]) yields
that the rarefaction curves are given by

m =
ml

ρl
ρ± γ1/2ϑ1/2ρ(ρθ − ρθl ),

while the Hugoniot locus reads

m =
ml

ρl
ρ± θϑ1/2ρ

( 1

ρρl
(ργ − ργl )(ρ− ρl)

)1/2

,

from a given left state (ρl,ml). When we involve the entropy condition we find that
the wave curves equal

W1(ρl,ml) : m =
ml

ρl
ρ−

γ
1/2ϑ1/2ρ(ρθ − ρθl ) for ρ ≤ ρl,

θϑ1/2ρ
(

1
ρρl

(ργ − ργl )(ρ− ρl)
)1/2

for ρ ≥ ρl,
(2.6)

W2(ρl,ml) : m =
ml

ρl
ρ+

θϑ1/2ρ
(

1
ρρl

(ργ − ργl )(ρ− ρl)
)1/2

for ρ ≤ ρl,
γ1/2ϑ1/2ρ(ρθ − ρθl ) for ρ ≥ ρl.

(2.7)

In the variables (ρ, u) we find

W1(ρl, ul) : u = ul −

γ
1/2ϑ1/2(ρθ − ρθl ) for ρ ≤ ρl,

θϑ1/2
(

1
ρρl

(ργ − ργl )(ρ− ρl)
)1/2

for ρ ≥ ρl,
(2.8)

W2(ρl, ul) : u = ul +

θϑ1/2
(

1
ρρl

(ργ − ργl )(ρ− ρl)
)1/2

for ρ ≤ ρl,
γ1/2ϑ1/2(ρθ − ρθl ) for ρ ≥ ρl.

(2.9)

An important property of the p-system is that the Riemann invariants provide
invariant regions. More specifically, (see, e.g., [3, Lemma 5]) if (ρ0(x),m0(x)) ∈
Ω = {(ρ,m) | w ≤ w0, z ≥ z0, w − z ≥ 0} for all x ∈ R, then also the solution
(ρ(x, t),m(x, t)) will remain in Ω, that is, (ρ(x, t),m(x, t)) ∈ Ω for (x, t) ∈ R×[0,∞).

An entropy-entropy flux pair (η, q) for the p-system satisfies for smooth solutions

η(ρ,m)t + q(ρ,m)x = 0.

Consistency with the system (2.1)–(2.2) requires

(2.10) ∇q(ρ,m) = ∇η(ρ,m)∇F (ρ,m),
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Figure 3. The solution of the Riemann problem using the Rie-
mann invariants as coordinates. Through the right state backward
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where F = (m, m
2

ρ + p(ρ)) is the flux function of the p-system. A particular choice

of entropy-entropy flux pair (η∗, q∗) reads

η∗ =
m2

2ρ
+

p

γ − 1
=

1

2
ρu2 +

κ

γ − 1
ϑργ ,(2.11)

q∗ = uη∗ + pu = uη∗ + uκϑργ .(2.12)

More generally, the weak entropy-entropy flux pairs (η, q) constitute a class of
entropy-entropy flux pairs of particular interest in isentropic gas dynamics, as first
pointed out in [5], and they are characterized by the following conditions at the
vacuum line:

η(ρ, u)|ρ=0 = 0, ηρ(ρ, u)|ρ=0 = g(u),

for some continuous function g. Let us denote

χ(ρ, u;ϑ) = (
p

ρ
− u2)λ+,
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where (a)+ = max{0, a} and λ = 3−γ
2(γ−1) . As observed in [10], weak entropy-entropy

flux pairs can be given by the integral formulas

η(ρ, u) =

∫
R
g(ξ)χ(ρ, ξ − u) dξ,(2.13)

q(ρ, u) =

∫
R
g(ξ)

(
θξ + (1− θ)u

)
χ(ρ, ξ − u) dξ.(2.14)

Remark 2.1. Observe that the entropy pair (η∗, q∗), defined in (1.15), is a weak
convex entropy pair. Moreover, for any weak entropy pair (η, q) there exists a
constant Cη > 0 such that η + Cηη∗ is convex.

Let us now turn to the full system

ρt +mx = 0,(2.15)

mt + (
m2

ρ
+ p(ρ, ϑ))x = 0,(2.16)

(ρϑ)t + (mϑ)x = 0,(2.17)

where the pressure p is given as above. The Riemann problem is the initial value
problem for the system (2.15)–(2.17) with special initial data consisting of a single
jump between two constant states, viz.

(2.18)

 ρ
m
ϑ

∣∣∣∣∣
t=0

(x) =



 ρl

ml

ϑl

 for x < 0,

 ρr

mr

ϑr

 for x > 0.

The system (2.15)–(2.17) possesses three eigenfields associated with the eigenvalues

λ1 = u−√pρ, λ2 = u, λ3 = u+
√
pρ.

The solution to a Riemann problem for system (2.15)–(2.17) may be described using
the coordinates w, z, ϑ, that is, the Riemann invariants for the p-system and the
temperature, in the following way. Consider first the case when the solution does
not contain vacuum. The solution of the Riemann problem, starting from the left
state (ρl,ml, ϑl), consists of a slow wave in which the entropy ϑ remains constant
(i.e., in the (w, z)-plane determined by ϑ = ϑl), followed by a contact discontinuity
in which the velocity u and the pressure p remain unchanged, and finally a fast
wave with constant temperature ϑ (i.e., in the (w, z)-plane determined by ϑ = ϑr)
connected with the given right state (ρr,mr, ϑr). Along the slow wave we can write
the Riemann invariants as2

(2.19)
w = u1(ρ; ρl, ul, ϑl) + ϑ

1/2
l ρθ,

z = u1(ρ; ρl, ul, ϑl)− ϑ1/2
l ρθ,

where u = u1(ρ; ρl, ul, ϑl) is the slow wave given by (2.6). For the fast wave we
consider the backward wave (i.e., consisting of the states that can be connected to
a given right state from the left), and the Riemann invariants read

(2.20)
w = ũ2(ρ; ρr, ur, ϑr) + ϑ1/2

r ρθ,

z = ũ2(ρ; ρr, ur, ϑr)− ϑ1/2
r ρθ,

2It turns out to be easier to describe the solution using the speed u rather than the momentum
m as a variable.
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where u = ũ2(ρ; ρr, ur, ϑr) is the fast backward wave corresponding to (2.7). The
contact discontinuity, with pressure p∗ and velocity u∗, jumps from a left density
ρ∗l to a right density ρ∗r determined by

(2.21)
p∗ = κϑl(ρ

∗
l )
γ = κϑr(ρ

∗
r)
γ ,

u∗ = u1(ρ∗l ; ρl, ul, ϑl) = ũ2(ρ∗r ; ρr, ur, ϑr),

which yields

(2.22)
ρ∗l
ρ∗r

=

(
ϑr
ϑl

)1/γ

,

to be inserted in the second equation for the velocity, u1 = ũ2, to determine ρ∗l
and ρ∗r . In terms of the Riemann invariants we find that w jumps from u∗ +

(p∗/κ)θ/γϑ
1
2γ

l to u∗ + (p∗/κ)θ/γϑ
1
2γ
r , and similarly z jumps from u∗ − (p∗/κ)θ/γϑ

1
2γ

l

to u∗ − (p∗/κ)θ/γϑ
1
2γ
r . An alternative way to describe the contact discontinuity is

the following. Consider a point on the backward fast wave curve with Riemann

invariants (w, z) given by (2.20), which we can write as w = ũ2 + (p/κ)
θ/γ

ϑ
1
2γ
r

and z = ũ2 − (p/κ)
θ/γ

ϑ
1
2γ
r . Construct now another curve (w̄, z̄), given as a Rie-

mann invariant with the same velocity ũ2 and pressure p as (w, z), but with the
temperature ϑr replaced by ϑl, that is,

w̄ = ũ2 +
( p
κ

) θ
γ

ϑ
1
2γ

l , z̄ = ũ2 −
( p
κ

) θ
γ

ϑ
1
2γ

l .

We find

w + z = 2ũ2 = w̄ + z̄,

w − z = 2
( p
κ

) θ
γ

ϑ
1
2γ
r = (w̄ − z̄)

(
ϑr
ϑl

) 1
2γ

,

which yields

w̄ =
w

2

(
1 +

(
ϑl
ϑr

) 1
2γ

)
+
z

2

(
1−

(
ϑl
ϑr

) 1
2γ

)
,

z̄ =
w

2

(
1−

(
ϑl
ϑr

) 1
2γ

)
+
z

2

(
1 +

(
ϑl
ϑr

) 1
2γ

)
.

The intersection between the slow wave curve in the Riemann invariants plane and
the curve (w̄, z̄) determines the values of the variables to the left of the contact
discontinuity, whose speed, in the physical space of the (x, t)-coordinates, is then
cϑ := (w̄ + z̄)/2. Through this intersection we draw the line where w + z = 2cϑ,
and the intersection between this line and the backward fast wave gives the values
of the variables to the right of the contact discontinuity, cf. Figures 4 and 5.

The solution involves vacuum when the slow wave is a rarefaction wave that
connects to a state on the vacuum line w = z; the velocity is then given by u∗ =

ul + γ1/2ϑ
1/2
l ρθl and w = z = u∗. Similarly, the given right state connects via a

rarefaction from a vacuum state with velocity ũ∗ = ur−γ1/2ϑ
1/2
r ρθr and w = z = ũ∗.

This is possible only if ũ∗ > u∗. On the physical space of the (x, t)-coordinates the
vacuum region is the wedge V := {(x, t) : u∗t ≤ x ≤ ũ∗t}; for definiteness, we then
set u := (u∗ + ũ∗)/2, and ϑ := (ϑl + ϑr)/2 on V. In this way, we define completely
the Riemann solutions that will be used in the next section in the construction of
the approximate solutions to (1.1)–(1.6).
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3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0
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1.4

1.5

z

L

R

Figure 4. The slow Riemann invariant through the left state (blue
curve), and the backward fast Riemann invariant through the right
state (red curve). In addition the yellow curve (w̄, z̄), whose in-
tersection with the slow Riemann invariant determines the contact
discontinuity.

3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0
w0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

z

L

R

3.80 3.85 3.90 3.95 4.00
w0.80

0.85

0.90

0.95

1.00
z

Figure 5. The same data is in Figure 4. Curves for the invari-
ant region for the corresponding p-system are added (black). In
addition, the dashed line is given by w − z equals a constant de-
termined by the intersection between the yellow and blue curves.
The interaction of this straight line with the red curve gives the
value on the right of the contact discontinuity. The right figure is
a close-up near the intersection.
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3. Construction of approximate solutions.

Here we provide the full proof of Theorem 1.1. We construct approximate so-
lutions for (1.1)–(1.3) by using a Godunov-type finite difference scheme based on
solving Riemann problems at each time step, updating the approximate ϑ using
the Lagrange transformation, and averaging at the end of each time step.

Before we begin the proof, let us describe the fundamentals of the construction
of the approximate solution. We discretize both in space and time. Let h = ∆t,
and ∆x = ch with c > 0 to be chosen by the CFL condition

c > sup
(x,t)∈R×[0,∞)

∣∣∣∣mh(x, t)

ρh(x, t)
±
√
pρ(ρh(x, t), ϑh(x, t))

∣∣∣∣ ,
which is possible as long as we can obtain an L∞ a priori bound for

mh(x, t)

ρh(x, t)
±
√
pρ(ρh(x, t), ϑh(x, t)).

The initial data ρ0,m0, ϑ0 is approximated by step functions with jumps at
xi−1/2 := (i − 1/2)∆x for i ∈ Z. The multiple Riemann problems are solved for
t ∈ [0, h). At t = h a new step function is created with jumps at xi−1/2 (details
given below), and new Riemann problems are solved. More precisely, suppose the
approximate solution Uh = (ρh,mh, ϑh) has been defined for t ≤ jh and that
Uh(x, jh) is constant for x ∈ Ii where

Ii = (xi−1/2, xi+1/2), i ∈ Z.

For t ∈ [jh, (j + 1)h), setting xi = i∆x, i ∈ Z, we define Uh(x, t) by glueing
together the solutions of the Riemann problems for the system (2.15)–(2.17) de-
fined at [xi, xi+1] × [jh, (j + 1)h), determined by the discontinuities at the points
(xi+1/2, jh), i ∈ Z. Inductively this yields a function Uh defined on R× [0,∞), as
long as we are able to obtain the necessary a priori bound mentioned above.

We describe the construction of the approximate solution as follows. Assume
that we have constructed the approximate solution Uh for x ∈ R and t < jh, and
have defined it at time t = jh as a piecewise constant function with jumps at xi+1/2

for i ∈ Z. For (x, t) ∈ [xi, xi+1]× [jh, (j + 1)h), i ∈ Z, let Uh(x, t) be the solution
of the Riemann problem (2.15)–(2.17) as described in the previous section. Set

yh(x, t) =

∫ x

0

ρh(z, t) dz −
∫ t

0

mh(0, s) ds, x ∈ R, t ∈ [jh, (j + 1)h),

(3.1)

and

σh(x, t) =
1√
4πt

∫
R
e−

(yh(x,t)−z)2
4t σ(z) dz = σ̃(yh(x, t), t), (x, t) ∈ R× [jh, (j + 1)h).

(3.2)

We then define3

ρh(x, (j + 1)h) =
1

∆x

∫
Ii

ρh(x̃, (j + 1)h− 0) dx̃,(3.3)

mh(x, (j + 1)h) =
1

∆x

∫
Ii

mh(x̃, (j + 1)h− 0) dx̃,(3.4)

ϑh(x, (j + 1)h) =
1

∆x

∫
Ii

σh(x̃, (j + 1)h− 0) dx̃,(3.5)

for x ∈ Ii.

3We use the standard notation f(x± 0) = limε↓0 f(x± ε).
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w

z

r

-r

R

-R

w=z

Figure 6. Assuming that the initial data are in the shaded region,
we show the existence of an R such that the solution remains in
the larger triangle. The vacuum line is w = z.

4. L∞ a priori estimate.

We now investigate the problem of obtaining an a priori L∞ bound for the
approximate solution Uh. Let us denote

wh(x, t) = w(Uh(x, t)), zh(x, t) = z(Uh(x, t)).

Let r > 0 be such that

wh(x, 0) ≤ r, zh(x, 0) ≥ −r, x ∈ R.

We assume for the moment that wh, zh satisfies an a priori bound of the form

(4.1) wh(x, t) ≤ R, zh(x, t) ≥ −R, (x, t) ∈ R× [0,∞),

for some constants R > r, and we will find a condition relating r and R under
which (4.1) can be justified.

We first observe that if (4.1) holds, then, for any (x1, t1), (x2, t2) ∈ R× [0,∞),

(4.2) |yh(x1, t1)− yh(x2, t2)| ≤ C(R)(|x1 − x2|+ |t1 − t2|+ h),

for some constant C(R) > 0 depending only on R. In what follows, C(R) will always
represent a positive constant depending on R that may differ from one occurrence
to the next one.
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x

t

Hi-1�2L Dx Hi+1�2L DxHi-3�2L Dx

jh

H j+1L h

Figure 7. Schematic figure of the solution of the Riemann prob-
lem. Contact discontinuities are indicated by thick lines. We see
that the vertical line x equals a constant first intersects a slow or
a fast wave before it crosses the contact discontinuity.

We also observe that

(4.3)

|σh(x1, t1)− σh(x2, t2)|

= |σ̃(yh(x1, t1), t1)− σ̃(yh(x2, t2), t2)|

≤ |σ̃(yh(x1, t1), t1)− σ̃(yh(x2, t2), t1)|

+ |σ̃(yh(x2, t2), t1)− σ̃(yh(x2, t2), t2)|

≤ |yh(x1, t1)− yh(x2, t2)|
∫ 1

0

|σ̃y(τyh2 + (1− τ)yh1 , t1)| dτ

+ |t1 − t2|
∫ 1

0

|σ̃t(yh2 , θt2 + (1− θ)t1)| dθ

≤ C(R)
(

(|x1 − x2|+ |t1 − t2|+ h)e−t1 + |t1 − t2|e−min(t1,t2)
)

≤ C(R)(|x1 − x2|+ |t1 − t2|+ h)e−min(t1,t2),

where we have used (1.10) and denoted yhi = yh(xi, ti), i = 1, 2.
Assume inductively that

wh(x, t) ≤ rj , zh(x, t) ≥ −rj , (x, t) ∈ R× [0, jh],

for some constant rj . For t ∈ [jh, (j + 1)h) the approximate solution is defined by
solving the Riemann problems given by the discontinuities at the points (xi+1/2, jh),
i ∈ Z. Since the p-system enjoys an invariant region given in terms of w and z, the
only possible increase in w beyond rj , and, similarly, the only possible decrease in z
beyond −rj , may occur across the contact discontinuity. Here both the velocity and
the pressure remain unchanged, and the sole change is in the entropy. Observe first
that since the slow Riemann invariant is increasing in w, there can be no increase
in the value of w. Fix x and let t ∈ [jh, (j + 1)h). We see from Figure 7 that
the vertical line x equals a constant crosses slow or fast waves before it crosses the
contact discontinuity. Let jh < t̃ < t̄ < (j + 1)h denote two times such that t̃ is
after the fast or slow wave, but prior to the contact discontinuity, while t̄ is after
the contact discontinuity. Then we find

zh(x, t̄) = zh(x, t̃) + (zh(x, t̄)− zh(x, t̃))

≥ zh(x, t̃)−
∣∣zh(x, t̄)− zh(x, t̃)

∣∣
≥ −rj −

∣∣zh(x, t̄)− zh(x, t̃)
∣∣ ,

since the solution of the p-system remains within the invariant region. Furthermore,
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(4.4)

∣∣zh(x, t̄)− zh(x, t̃)
∣∣

≤

∣∣∣∣∣
(
ph

κ

) θ
γ (
ϑh
) 1

2γ (x, t̄)−
(
ph

κ

) θ
γ (
ϑh
) 1

2γ (x, t̃)

∣∣∣∣∣
≤
(
ph

κ

) θ
γ (
ϑh
) 1

2γ (x, t̄)
(
ϑh
)− 1

2γ (x, t̄)

×
∣∣∣(ϑh) 1

2γ (x, t̃)−
(
ϑh
) 1

2γ (x, t̄)
∣∣∣

≤ 1

2
(wh − zh)(x, t̄)

(
ϑh
)−1

2γ (x, t̄)

×
∣∣∣(ϑh) 1

2γ (x, t̃)−
(
ϑh
) 1

2γ (x, t̄)
∣∣∣

≤ rjC(R)(γ − 1)
∣∣[[ϑh(t̄)]]

∣∣
= rjC(R)(γ − 1)

∣∣[[ϑh(jh)]]
∣∣ ,

where we have used the mean value theorem and estimated the resulting factor

multiplying the jump in ϑh times
(
ϑh
)− 1

2γ (x, t̄) by a constant C(R). Next we
estimate the jump in the temperature. Let x1 and x2 be two points on the left and
right side of a jump, respectively, thus x1 < xi−1/2 < x2, with x2 − x1 < ∆x. We
obtain

(4.5)

∣∣[[ϑh(jh)]]
∣∣ =

∣∣ϑh(x2, jh)− ϑh(x1, jh)
∣∣

≤ 1

∆x

∫
Ii

|σh(x̃+ ∆x, jh)− σh(x̃, jh)| dx̃

≤ C(R)h e−jh,

by (4.3), where, for the last inequality, we have used (1.10).
This yields

(4.6) zh(x, t̄) ≥ −rj(1 + C(R)(γ − 1)h e−jh),

and we conclude that

(4.7) zh(x, t) ≥ −rj(1 + C(R)(γ − 1)h e−jh), t ∈ [jh, (j + 1)h).

A similar calculation leads to

(4.8) wh(x, t) ≤ rj(1 + C(R)(γ − 1)h e−jh), t ∈ [jh, (j + 1)h).

At t = (j + 1)h we average the approximate solution as described in (3.3)–
(3.5). Here we argue as follows. We first observe that the averaging of the values of

(ρh(x, (j+1)h−0),mh(x, (j+1)h−0)) in the intervals Ij+1
i := Ii×{t = (j+1)h−0},

i ∈ Z, in order to obtain the values of (ρh(x, (j + 1)h),mh(x, (j + 1)h)) in these
intervals, does not affect the bounds (4.7) and (4.8). More precisely, at each such
interval, ϑh(x, (j+1)h−0) assumes at most 3 values, due to the possibility that two
contact discontinuities, departing from (xi−1/2, jh) and (xi+1/2, jh), respectively,

end inside Ij+1
i . This means that the values of (ρh,mh) in each interval Ij+1

i belong
to the union of at most 3 regions of the form

Rα := {(ρ,m) : −Cρ+ ϑα
1/2ρθ+1 ≤ m ≤ Cρ− ϑα1/2ρθ+1}, α = 1, 2, 3,

for some constant C > 0 common to all regions Rα, α = 1, 2, 3. But, one easily
check that ϑ1 < ϑ2 implies R1 ⊃ R2, that is, the regions Rα, α = 1, 2, 3, are
contained in that one corresponding to ϑ∗ = min{ϑ1, ϑ2, ϑ3}. In particular, if we
define

ϑh∗(x, (j + 1)h) := min{ϑh(ξ, (j + 1)h− 0) : ξ ∈ Ii}, in Ij+1
i , i ∈ Z,
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then, from the convexity of the regions Rα, we have

(4.9) z(ρh, uh, ϑh∗)(x, (j + 1)h) ≥ −rj(1 + C(R)(γ − 1)h e−jh),

and also

(4.10) w(ρh, uh, ϑh∗)(x, (j + 1)h) ≤ rj(1 + C(R)(γ − 1)h e−jh),

where

uh(x, (j + 1)h) :=

{
mh(x,(j+1)h)
ρh(x,(j+1)h)

, if ρh(x, (j + 1)h) > 0

uh(x, (j + 1)h− 0), otherwise

and we agree that the value of uh(x, (j+ 1)h− 0) at a vacuum interval is the mean
value between its values at the extremes of the interval, which determines precisely
the values of uh(x, (j + 1)h− 0) for all x ∈ R. Observe also that the case in which

Ij+1
i is contained in a vacuum interval is trivial since ρh = mh = 0 in such an

interval, and so the values of ρh and mh do not change through averaging on Ij+1
i .

Now, we need to check how the bounds (4.9) and (4.10) change when we replace
ϑh∗(x, (j + 1)h) by the values of ϑh(x, (j + 1)h) given by (3.5). For this, we first
estimate the change in ϑh from ϑh(x, (j+1)h−0), to ϑh(x, (j+1)h), given by (3.5).
As already mentioned, ϑh(x, (j+1)h−0) can be one of three values; either the value
ϑh(x, jh), or the values of ϑ in the neighboring intervals, that is, ϑh(x ±∆x, jh).
In any of the three cases, the entropy is given by a formula similar to (3.5), but
with (j + 1)h replaced by jh. We consider the most representative case where the
value is in a neighboring interval. Thus

(4.11)

∣∣ϑh(x, (j + 1)h)− ϑh(x−∆x, jh)
∣∣

≤ 1

∆x

∫
Ii

∣∣σh(x̃, (j + 1)h)− σh(x̃−∆x, jh)
∣∣ dx̃

≤ C(R)h e−jh,

again by (4.3). Since,

zh(x, (j + 1)h) = z(ρh, uh, ϑh)(x, (j + 1)h),

wh(x, (j + 1)h) = z(ρh, uh, ϑh)(x, (j + 1)h),

we conclude as above that

(4.12)

zh(x, t) ≥ z(ρh, uh, ϑh∗)(x, (j + 1)h)

− |z(ρh, uh, ϑh∗)(x, (j + 1)h)− z(ρh, uh, ϑh)(x, (j + 1)h)|

≥ −rj(1 + C(R)(γ − 1)h e−jh)2 =: −rj+1,

wh(x, t) ≤ w(ρh, uh, ϑh∗)(x, (j + 1)h)

+ |w(ρh, uh, ϑh∗)(x, (j + 1)h)− w(ρh, uh, ϑh)(x, (j + 1)h)|

≤ rj(1 + C(R)(γ − 1)h e−jh)2 = rj+1.
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It remains to estimate the rj . From the inductive formula (4.12) for the rj , we
find

(4.13)

rj = r

j∏
k=1

(1 + C(R)(γ − 1)h e−kh)2

≤ r exp
(
2C(R)(γ − 1)

j∑
k=1

e−khh)
)

≤ r exp
(
2C(R)(γ − 1)

∫ ∞
0

e−sds
)

≤ re2C(R)(γ−1).

Therefore, we see from (4.13) that the condition relating r and R under which
the a priori bound (4.1) holds is

(4.14) Re−2(γ−1)C(R) ≥ r.
We may easily check that C(R) may be defined as a continuous increasing function
of R ∈ [0,∞) such that C(0) = 0 and C(R)→∞ as R→∞. Hence, the left-hand
side of (4.14) attains a maximum value for some R∗ ∈ (0,∞) and by (4.14) the
initial bound r can take the largest possible value given by the left-hand side of
(4.14) for R = R∗. In particular, (4.14) may be viewed as a restriction on the initial
bound r which amounts to a restriction on ‖ρ0‖∞ and ‖m0‖∞, assuming given ϑ0.
We also verify that the initial bound can be taken as large as we wish provided that
γ − 1 is sufficiently small.

5. Convergence of the approximate solutions.

Now we proceed to prove the compactness of the sequence of approximate solu-
tions Uh. The proof is based on the general analysis carried out by DiPerna in [4]
and we are going to apply the compactness result in [5] and its extensions in [1],
[10] and [9], which together cover the whole range γ > 1.

Now, let V h = (ρh,mh) and Fh = (mh, ρh(uh)2 + p(ρh, ϑh)). For any φ ∈
C∞0 (R2) we have
(5.1)∫∫

R×[0,∞)

V hφt + Fhφx dx dt =

∞∑
j=0

∫ (j+1)h

jh

∫
R
V hφt + Fhφx dx dt

=

∞∑
j=0

∫
R

[[V h(jh)]]φ(x, jh) dx

=

∞∑
j=1

∫
R

[[V h(jh)]]φ(x, jh) dx−
∫
R
V h(x, 0)φ(x, 0) dx,

where

[[V h(jh)]] = V h(x, jh− 0)− V h(x, jh+ 0).

Further, if (η, q) is an arbitrary entropy pair for (1.1)–(1.2), with ϑ constant, we
have
(5.2)∫∫

R×[0,∞)

ηhφt + qhφx dx dt =

∞∑
j=0

∫ (j+1)h

jh

∫
R
ηhφt + qhφx dx dt

= −
∫
R
ηh(x, 0)φ(x, 0) dx+

∞∑
j=1

∫
R

[[ηh(jh)]]φ(x, jh) dx+

∫ ∞
0

S(φ) dt+

∫ ∞
0

C(φ) dt,
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where, for reasons of brevity, we write ηh = η(V h, ϑh) and qh = q(V h, ϑh). Here

[[ηh(jh)]] = ηh(x, jh− 0)− ηh(x, jh+ 0),

and S(φ) is defined as

S(φ) =
∑

shocks

(
s[[ηh]]− [[qh]]

)
φ(x(t), t),

[[ηh]] = ηh(x(t)− 0, t)− ηh(x(t) + 0, t),

where the sum is over all shock discontinuities (x(t), t) at time t, s = x′(t) denoting
the shock speed, while C(φ) is defined as

C(φ) =
∑

contact
discontinuities

(
uh[[ηh]]− [[qh]]

)
φ(x(t), t),

with sum running over all contact discontinuities (x(t), t) at time t, where uh is
the velocity. The latter is defined over a vacuum interval as the arithmetic mean
between the velocity at the end of the 1-rarefaction wave bounding the vacuum
interval on the left-hand side and the velocity at the beginning of the 2-rarefaction
wave bounding the vacuum interval on the right-hand side.

We recall that if (η, q) is a convex entropy pair for the isentropic system (1.1)–
(1.2) where ϑ is constant, then

(5.3) s[[ηh]]− [[qh]] ≥ 0,

across each shock wave. Since ϑh is constant across waves of the first and third
family, inequality (5.3) also holds here. Therefore, for any weak entropy pair (η, q),
we find that the functional ∫ ∞

0

S(φ) dt

is a (signed) measure with locally finite total variation, as a consequence of Re-
mark 2.1.

Concerning the functional ∫ ∞
0

C(φ) dt,

if (η, q) is a smooth entropy pair, we have, in view of previous calculations,

|uh[[ηh(jh)]]− [[qh(jh)]]| ≤ Cηe−jhh,

and so ∣∣∣∣∫ ∞
0

C(φ) dt

∣∣∣∣ ≤ Cη diam(K)‖φ‖∞,

whereK is any compact containing the support of φ, which gives that this functional
is also a measure with locally finite total variation.

Observe that the weak entropies may be also written as

η(ρ, u) = ρ

∫ 1

−1

g

(
m

ρ
+ zϑ1/2ρ(γ−1)/2

)
(1− z2)λ+ dz,

while a similar formula holds for q. In particular, η, q are Lipschitz up to vacuum
if g is smooth.
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We also observe that for the special entropy pair (η∗, q∗) we have
∫∞

0
C(φ) dt = 0.

Also, for this entropy pair, for nonnegative φ ∈ C∞0 (R2) we have

(5.4)

∞∑
j=1

∫
R

[[ηh∗ (jh)]]φ(x, jh) dx

=

∞∑
j=1

∑
i∈Z

∫
Ii

(
η∗(V

h(x, jh− 0)), ϑh(x, jh+ 0))

− η∗(V h(x, jh+ 0), ϑh(x, jh+ 0))
)
φ(x, jh) dx

−
∞∑
j=1

∑
i∈Z

∫
Ii

(
η∗(V

h(x, jh− 0)), ϑh(x, jh+ 0))

− η∗(V h(x, jh− 0), ϑh(x, jh− 0))
)
φ(x, jh) dx.

The first sum in the right-hand side of equation (5.4) is nonnegative for nonnegative
φ, since V h(x, jh+ 0) is the average of V h(x, jh− 0), in each interval Ii, and η∗ is
convex. Therefore, we get

(5.5)

∞∑
j=1

∫
R

[[ηh∗ (jh)]]φ(x, jh) dx

≥ −
∞∑
j=1

∑
i∈Z

∫
Ii

ηh∗ϑ(· · · )(ϑh(x, jh+ 0)− ϑh(x, jh− 0))φ(x, jh) dx

≥ −
∞∑
j=1

Ce−jhh

∫
R
φ(x, jh) dx,

where ηh∗ϑ(· · · ) =
∫ 1

0
ηh∗ϑ(V h(x, jh − 0), A(θ)) dθ is the coefficient of the linear re-

maining term in the trivial Taylor expansion of zero order in the variable ϑ and
A(θ) = (1−θ)ϑh(x, jh−0)+θϑh(x, jh+0). In particular, both the left-hand side as
well as the second term of the right-hand side of (5.4) are measures of locally finite
total variation. As a consequence, we may apply equality (5.4) with φ replaced
by the characteristic function of any suitably chosen rectangle |x| ≤ L = M∆x,
0 ≤ t ≤ T = Nh, to find that

(5.6)
∑
jh≤N

∑
|i∆x|≤M

∫
Ii

D2
V η

h
∗ (· · · )(V h(x, jh− 0))− V h(x, jh+ 0))2 dx ≤ const.,

for any M,N > 0, the constant depending on M,N , where D2
V η

h
∗ (· · · ) =

∫ 1

0
(1 −

θ)D2
V η∗(B(θ), ϑh(x, jh+ 0)) dθ is the coefficient of the quadratic remaining term in

the Taylor expansion of first order and B(θ) = (1−θ)V h(x, jh+0)+θV h(x, jh−0).
Since for all weak entropy η we have |D2

V η| ≤ CηD
2
V η∗, for some Cη > 0, it

follows from (5.6) that

(5.7)

∣∣∣∣∣∣
∑
jh≤N

∑
|i∆x|≤M

∫
Ii

|D2
V η|(V h(x, jh− 0))− V h(x, jh+ 0))2 dx

∣∣∣∣∣∣ ≤ const.,

for any M,N > 0, the constant depending on M,N .
We can then use DiPerna’s method in [4] to prove the W−1,2

loc compactness of the

distributions ηht + qhx by decomposing the functional

L(φ) =

∞∑
j=1

∫
R

[[ηh(jh)]]φ(x, jh) dx
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as

(5.8)

L(φ) =

∞∑
j=1

∑
i∈Z

∫
Ii

[[ηh(jh)]]φ(x, jh) dx

=

∞∑
j=1

∑
i∈Z

(
φ(xi, jh)

∫
Ii

[[ηh(jh)]] dx

+

∫
Ii

[[ηh(jh)]]
(
φ(x, jh)− φ(xi, jh)

)
dx
)

= L1(φ) + L2(φ).

We consider the two terms separately. We have

L1(φ) =

∞∑
j=1

∑
i∈Z

φ(xi, jh)

∫
Ii

[[ηh(jh)]]V + [[ηh(jh)]]ϑ dx =: L11(φ) + L12(φ),

where, if [[η(V, ϑ)]] = η(V−, ϑ−)− η(V+, ϑ+), we denote

[[η(V, ϑ)]]V = η(V−, ϑ−)− η(V+, ϑ−), [[η(V, ϑ)]]ϑ = η(V+, ϑ−)− η(V+, ϑ+).

Since |[[ηh(jh)]]ϑ| ≤ Ce−jhh, we clearly have

|L12(φ)| ≤ C‖φ‖∞.

Concerning L11(φ), we have, cf. (5.7),
(5.9)

|L11(φ)| ≤

∣∣∣∣∣∣
∞∑
j=1

∑
i∈Z

φ(i, jh)

∫
Ii

[[ηh(jh)]]V dx

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∞∑
j=1

∑
i∈Z

φ(i, jh)

∫
Ii

D2
V η

h(· · · )(V h(x, jh− 0)− V h(x, jh+ 0))2 dx

∣∣∣∣∣∣
≤ C ‖φ‖∞ .

Hence, we have

|L1(φ)| ≤ C1‖φ‖∞.
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Next, exactly as in [4], we find, assuming that the test function φ satisfies
suppφ ⊆ [−N,N ]× [−J, J ] and keeping θ > 0 sufficiently small,
(5.10)

|L2(φ)| ≤
∑
|j|≤J

∑
|i|≤N

∫
Ii

∣∣[[ηh(jh)]]
∣∣ |φ(x, jh)− φ(i, jh)| dx

≤ ‖φ‖Cα
∑
|j|≤J
|i|≤N

∫
Ii

∣∣[[ηh(jh)]]
∣∣∆xα dx

≤ ‖φ‖Cα
∑
|j|≤J
|i|≤N

∫
Ii

(∆x2α

∆xθ
+ ∆xθ

∣∣[[ηh(jh)]]
∣∣2 )dx

≤ ‖φ‖Cα
∑
|j|≤J

∑
|i|≤N

(∆x2α+1

∆xθ
+ ∆xθ

∫
Ii

∣∣[[ηh(jh)]]
∣∣2 dx)

≤ ‖φ‖Cα
(∆x2α+1

∆xθ
(2J + 1)(2N + 1) + ∆xθ

∑
|j|≤J

∫
R

∣∣[[ηh(jh)]]
∣∣2 dx)

≤ ‖φ‖Cα
(∆x2α+1

∆xθ
O
( 1

∆x∆t

)
+ ∆xθ

∑
|j|≤J

∫
R

∣∣[[ηh(jh)]]
∣∣2 dx)

≤ C2 ‖φ‖Cα
(∆x2α+1

∆xθ+2
+ ∆xθ

)
≤ C2 ‖φ‖Cα ∆xα−1/2

where Cα denotes the Hölder space with seminorm

‖φ‖Cα = sup
x,y∈R

|φ(x)− φ(y)| / |x− y|α , α > 1/2,

and where C2 depends on the support of φ. Thus

|L1(φ)| ≤ C1‖φ‖∞, and |L2(φ)| ≤ C2(∆x)β‖φ‖Cα
for appropriate α, β ∈ (0, 1), for some positive constants C1, C2 depending on
suppφ, but independent of φ, and through the Sobolev imbedding theorem

L2(φ) ≤ C2(∆x)β‖φ‖W 1,q ,

for an appropriate q ∈ (1, 2) and constant depending on the support of φ.
In this way we obtain by the usual interpolation argument that for any weak

entropy pair (η, q) for (1.1)–(1.2) we have

(5.11) η(V h, ϑh)t + q(V h, ϑh)x ∈ { compact of W−1,2
loc (R× [0,∞)) }.

By (4.2), (4.3), (3.5), (3.2), it easily follows the uniform convergence of yh(x, t) and
ϑh(x, t), by passing to subsequences if necessary, to Lipschitz continuous functions
y(x, t) and ϑ(x, t) with ϑ(x, t) = σ̃(y(x, t), t), where

σ̃(y, t) =
1√
4πt

∫
R
e−

(y−z)2
4t σ(z) dy,

is the solution of the heat equation

σ̃t = σ̃yy,

with initial data
σ̃(y, 0) = σ(y).

By (5.11) and the uniform convergence of ϑh(x, t) to ϑ(x, t), we can then use the
compactness results in [5, 1, 10, 9] to deduce that we may extract a subsequence of
(ρh,mh, ϑh) converging in L1

loc(R×[0,∞)) to a weak solution (ρ(x, t),m(x, t), ϑ(x, t))
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to (1.1)–(1.6). Indeed, (5.1) implies (1.11) by a calculation similar to the estimate
for L2(φ) above. Moreover, we have

0 =

∫ ∞
0

∫
R
σ̃(y, t)ψt(y, t)− σ̃y(y, t)ψy(y, t) dy dt+

∫
R
σ(y)ψ(y, 0) dy

=

∫ ∞
0

∫
R

(σ̃(y(x, t), t)ψt(y(x, t), t)− σ̃y(y(x, t), t)ψy(y(x, t), t)) ρ(x, t) dx dt

+

∫
R
σ(y0(x))ψ(y0(x), 0)ρ0(x) dx

=

∫ ∞
0

∫
ρ(x,t)>0

(
ρ(x, t)σ̃(y(x, t), t)ψt(y(x, t), t)− ρ(x, t)m(x, t)σ̃(y(x, t), t)ψy(y(x, t), t)

+ ρ(x, t)m(x, t)σ̃(y(x, t), t)ψy(y(x, t), t)

− 1

ρ(x, t)
ρ(x, t)σ̃y(y(x, t), t)ρ(x, t)ψy(y(x, t), t)

)
dx dt

+

∫
R
σ(y0(x))ψ(y0(x), 0)ρ0(x) dx

=

∫
R×(0,∞)

ρϑ
∂

∂t
ψ(y(x, t), t) + (mϑ− 1

ρ
ϑx)

∂

∂x
ψ(y(x, t), t) dx dt

+

∫
R
ρ0ϑ0ψ(y0(x), x) dx,

where we have used the coarea formula (see, e.g., [6]) and (1.4), thus proving (1.12).
Also, (5.5) implies the entropy inequality (1.15),

6. Conclusion of the proof of Theorem 1.1.

To conclude the proof of Theorem 1.1 it remains to verify (1.16), which we do
as follows. First, from the above discussion, we deduce that for any weak entropy
pair we have

|〈η(ρ,m, ϑ)t + q(ρ,m, ϑ)x, φ〉| ≤ C1‖φ‖∞,
with C1 depending only on suppφ and bounds for (ρ,m, ϑ). Hence, if UT =
(ρT ,mT , ϑT ) is the self-scaling sequence UT (x, t) = U(Tx, T t), we see that for
any entropy pair

|〈η(ρT ,mT , ϑT )t + q(ρT ,mT , ϑT )x, φ〉| ≤ C1‖φ‖∞,
while from (1.15) we have, for 0 ≤ t ≤ T ,∫

[0,L]

η∗(ρ,m, ϑ)(x, t) dx ≥
∫

[0,L]

η∗(ρ,m, ϑ)(x, T ) dx− C
∫ T

t

∫
[0,L]

e−s dx ds

≥
∫

[0,L]

η∗(ρ,m, ϑ)(x, T ) dx− CLe−t.

Hence, we can apply the decay result in [2] to deduce (1.16), which then concludes
the proof.
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