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Abstract. We consider global convergence properties of the augmented Lagrangian methods
on problems with degenerate constraints, with a special emphasis on mathematical programs with
complementarity constraints (MPCC). In the general case, we show convergence to stationary points
of the problem under an error bound condition for the feasible set (which is weaker than constraint
qualifications), assuming that the iterates have some modest features of approximate local minimizers
of the augmented Lagrangian. For MPCC, we first argue that even weak forms of general constraint
qualifications that are suitable for convergence of the augmented Lagrangian methods, such as the
recently proposed relaxed positive linear dependence condition, should not be expected to hold and
thus special analysis is needed. We next obtain a rather complete picture, showing that under
the usual in this context MPCC-linear independence constraint qualification feasible accumulation
points of the iterates are guaranteed to be C-stationary for MPCC (better than weakly stationary),
but in general need not be M-stationary (hence, neither strongly stationary). However, strong
stationarity is guaranteed if the generated dual sequence is bounded, which we show to be the
typical numerical behaviour even though the multiplier set itself is unbounded. Experiments with the
ALGENCAN augmented Lagrangian solver on the MacMPEC and DEGEN collections are reported,
with comparisons to the SNOPT and filterSQP implementations of the SQP method, to the MINOS
implementation of the linearly constrained Lagrangian method, and to the interior-point solvers
IPOPT and KNITRO. We show that ALGENCAN is a very good option if one is primarily interested
in robustness and quality of computed solutions.
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1. Introduction. Consider the mathematical programming problem

minimize f(x)
subject to h(x) = 0, g(x) ≤ 0,

(1.1)

where the objective function f : IRn → IR and the constraints mappings h : IRn → IRl

and g : IRn → IRm are smooth. The goal of this paper is to clarify the behavior of the
augmented Lagrangian methods in the cases of degenerate constraints. To the best of
our knowledge, this question had not been studied in the literature, neither for general
degenerate problems nor for the specific case of complementarity constraints (at least
when it comes to direct applications of established augmented Lagrangian solvers to
the latter; more on this in the sequel). Generally, by degeneracy we mean violation
of (more-or-less) standard constraint qualifications at some (or all) feasible points of
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(1.1). In such cases the set of Lagrange multipliers associated with a stationary point
of (1.1) need not be a singleton, and can even be unbounded.

An important instance of intrinsically degenerate problems is the class of the
so-called mathematical programs with complementarity constraints (MPCC) [42, 46]:

minimize f(x)
subject to G(x) ≥ 0, H(x) ≥ 0, 〈G(x), H(x)〉 ≤ 0,

(1.2)

where f : IRn → IR is a smooth function and G, H : IRn → IRs are smooth mappings.
As is well known, the fundamental Mangasarian–Fromovitz constraint qualification is
violated at every feasible point of (1.2), which means that the multiplier set is always
unbounded (assuming it is nonempty). There can be additional “usual” constraints
in (1.2), which we omit here since all the essential difficulties are associated with the
complementarity constraints. That said, we did check that all the results presented
below have evident valid counterparts in the presence of additional constraints. Also,
various equivalent forms of the last constraint in (1.2) are possible (see (4.1)–(4.4)
below). It was observed in [22] that the form in (1.2) seems to have some numerical
advantages. In our computational experiments we tried other options too, but even-
tually also found (1.2) preferable overall. For this reason, we consider (1.2) from the
beginning and later focus our analysis on this form as well.

Augmented Lagrangian methods, also known as methods of multipliers, date back
to [30] and [47]; some other key references are [11, 16, 2]. The augmented Lagrangian
approach belongs to optimization classic and is the basis for a number of successful
solvers, such as LANCELOT [38] and ALGENCAN [1]. At the same time, some
improvements in its global [6, 12, 4] and local [19] convergence analysis are very
recent. Moreover, these improvements appear quite relevant for problems with de-
generate constraints, which in part motivated this paper. For example, in [4] global
convergence to stationary points is shown under the so-called relaxed positive linear
dependence condition, which is a rather weak constraint qualification allowing various
forms of degeneracy and unbounded multiplier sets. Another feature of the augmented
Lagrangian methods that looks appealing from the point of view of both global and
local convergence in the degenerate setting is that subproblems are unconstrained.
This removes at least one difficulty that often shows up in the degenerate cases for
methods that linearize constraints, such as SQP [28] and the linearly constrained
Lagrangian methods [44] – linearized constraints can be inconsistent.

Moreover, it was recently established in [19] that no constraint qualifications
of any kind are needed for local primal-dual linear/superlinear convergence rate of
the augmented Lagrangian methods, as long as the second-order sufficient optimality
condition (SOSC) holds. Our expectation for good global behaviour of these methods
on degenerated problems actually comes in part from this local convergence result,
as it demonstrates that methods of this class possess an intrinsic dual stabilization
property: even when the multiplier set is unbounded, dual sequences tend to converge
(at least if SOSC holds). In particular, dual sequences usually remain bounded, which
is confirmed by our numerical results in Section 4.

It should be mentioned here that a number of special methods for degenerate
problems were developed and analyzed in the last 15 years or so [56, 29, 55, 21, 54,
34, 53, 20, 36], with stabilized SQP being perhaps the most prominent. According
to the analysis in [20], stabilized SQP has the same local convergence properties as
the augmented Lagrangian methods, and in particular, it possesses local superlinear
convergence under the sole SOSC. Moreover, the augmented Lagrangian methods and
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the stabilized SQP appear to be intrinsically related (see [10, 55] and [11, p. 210]).
They also may potentially suffer from similar deficiencies: their subproblems become
ill-conditioned if the penalty parameter tends to +∞ for the former, and as the
stabilization parameter tends to 0 for the latter. However, all the special methods
mentioned above (including stabilized SQP) are essentially local, as at this time no
natural globalizations are known (although various hybrid-type strategies are possible
that couple these local methods with globally convergent schemes). At the same time,
the augmented Lagrangian methods have attractive established global convergence
properties. All those considerations motivated us to take a closer look at the behavior
of the augmented Lagrangian methods in the degenerate cases. The main goal of
this paper is to figure out whether these methods can be a good global strategy in
the context of potential degeneracy. Therefore, we concentrate on theoretical global
convergence properties, robustness, and quality of the outcome of the augmented
Lagrangian methods when applied to degenerate problems and to MPCCs, leaving
special modifications intended for increasing efficiency (probably employing the special
structure in the case of MPCC) for future research.

In Section 2, we briefly recall the global convergence theory for the ALGENCAN
version of the augmented Lagrangian method when applied to general optimization
problems, and we discuss some peculiarities of this theory related specifically to the
degeneracy issues. To complement the picture we also prove a new global convergence
result, assuming that an error bound holds for the feasible set (this is weaker than con-
straint qualifications, including the relaxed positive linear dependence condition) and
assuming that the iterates have some modest features of approximate local minimizers
(rather than being merely stationary points of the augmented Lagrangian).

Section 3 is devoted to global convergence analysis in the special case of MPCC.
We first put in evidence that special analysis is required indeed. This is because the
relaxed positive linear dependence condition, that does the job for general problems
[4], should not be expected to hold for MPCC. Under the MPCC-linear independence
constraint qualification (standard in this setting), we then show that accumulation
points of the augmented Lagrangian iterates are guaranteed to be C-stationary, and
they are strongly stationary if the generated dual sequence is bounded. In Section 4,
we observe that this is in fact the typical numerical behaviour. Of course, it would
have been desirable to obtain strong stationarity of accumulation points without ad-
ditional assumptions. Some comments are in order. In the case of the specific method
in consideration, this is not possible: by examples, we show that accumulation points
may not be M-stationary, and thus neither strongly stationary (and also that the
MPCC-linear independence constraint qualification cannot be relaxed). That said,
to the best of our knowledge there currently exist no established practical methods
for MPCC with provable global convergence to points possessing stronger properties
than C-stationarity under the sole MPCC-linear independence constraint qualifica-
tion, and without some additional assumptions regarding the accumulation points
and the generated iterates (like solving subproblems to second-order optimality); see,
e.g., [50, 49, 7, 8]. The only exceptions are some active-set or decomposition methods
[25, 26, 15, 27] for the special case of linear complementarity constraints, which main-
tain (approximate) feasibility of the iterates. Thus our global convergence theory is
competitive with any other established practical alternative, or is stronger. The only
two algorithms with better global convergence properties for general MPCCs appear
to be those proposed in [41, 39], but iterations of these methods have some combi-
natorial features and there is currently no numerical evidence showing that they are
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competitive, say on MacMPEC [43]. The method in [9] is also combinatorial, not fully
general because of some convexity assumptions, and is known to be not very practical
anyway.

We further mention that some type of augmented Lagrangian methods for MPCC
have been considered in [57, 31]. However, we are interested in behavior of the estab-
lished solvers (e.g., ALGENCAN [1]) when applied to MPCC (1.2), and the references
above are not relevant for this analysis for the following reasons. In [57] the con-
straints of (1.2) are first reformulated into a nonsmooth system of equations and then
the augmented Lagrangian methodology is applied. Solvers such as LANCELOT or
ALGENCAN do not handle nonsmooth functions or constraints. In [31], only the last
constraint of (1.2), written as an equality, is penalized in the augmented Lagrangian,
while the first two constraints are maintained as constraints of the subproblem. Again,
the solvers in consideration pass to subproblems only simple bounds or linear con-
straints, and not general nonlinear constraints like the first two in (1.2). Another
somewhat related analysis is [5], where an application of a generic optimization algo-
rithm to MPCC is considered. The assumed convergence properties of this algorithm
for general problems are similar to those that hold for augmented Lagrangians. How-
ever, the analysis for MPCC in [5] uses rather strong assumptions, like convexity of
constraint functions (when it comes to feasibility of accumulation points of the iter-
ates) and lower-level strict complementarity (when it comes to stationarity of feasible
accumulation points).

In Section 4, we present numerical results comparing ALGENCAN [1] with the
SNOPT [28] and filterSQP [23] implementations of SQP, the MINOS [44] implemen-
tation of the linearly constrained Lagrangian method and with two interior-point
solvers, IPOPT [32, 52] and KNITRO [37, 14], on two test collections. The first is
MacMPEC [43], a well-established test collection of MPCCs. The second is DEGEN
[17], which contains various small degenerate optimization problems. We note that a
number of optimization solvers were tested on MacMPEC in [22], and SQP was found
to work quite well in practice. But augmented Lagrangian and linearly constrained
Lagrangian methods had not been tested before, as far as we are aware, at least not
on the full MacMPEC. KNITRO and IPOPT-C [48] are two solvers that exploit the
special structure of complementarity constraints. Our experiments show that AL-
GENCAN is at least as robust as the other solvers, or is better. Only IPOPT-C has
slightly fewer failures, but ALGENCAN generally terminates with better objective
function values than all the other solvers including IPOPT-C, which is important in
the sense of “global” optimization. It should also be mentioned that IPOPT-C [48]
apparently is not supported by any global convergence theory. ALGENCAN definitely
outperforms its competitors in terms of major iterations count, which is the sign of
higher convergence rate, in agreement with the local rate of convergence results in
[19] that allow any kind of degeneracy. On the other hand, the cost of (especially
late) iterations of ALGENCAN is rather high, and so its convergence rate does not
translate into saved CPU time. As a result, ALGENCAN may lose in terms of com-
putational costs (e.g., functions evaluations). The ultimate acceleration procedure
currently used in ALGENCAN [13] does not seem to help here. Therefore, further
development will be needed to increase the efficiency of the method on degenerate
problems such as MPCC. However, if robustness and guarantees of convergence to
good solutions are of the main concern as opposed to speed (this is certainly the case
in some applications) then ALGENCAN is a very good option.

We now describe our main notation. By ‖ · ‖ we denote the Euclidean norm,
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where the space is always clear from the context. When other norms are used, they are
specified explicitly, e.g., ‖·‖∞. Given a vector y ∈ IRp and an index set I ⊂ {1, . . . , p},
by yI ∈ IR|I| we mean a vector comprised by the components of y indexed by I, where
|I| is the cardinality of I. For a matrix A of any dimensions, kerA stands for its null
space, and for a linear subspace M of any linear space, M⊥ stands for its orthogonal
complement.

2. General global convergence theory. In this section we consider the gen-
eral mathematical programming problem (1.1). Let L : IRn × IRl × IRm → IR be the
usual Lagrangian of problem (1.1), i.e.,

L(x, λ, µ) = f(x) + 〈λ, h(x)〉 + 〈µ, g(x)〉. (2.1)

Then stationary points and associated Lagrange multipliers of problem (1.1) are char-
acterized by the Karush–Kuhn-Tucker optimality system

∂L

∂x
(x, λ, µ) = 0, h(x) = 0, µ ≥ 0, g(x) ≤ 0, 〈µ, g(x)〉 = 0, (2.2)

with respect to x ∈ IRn and (λ, µ) ∈ IRl × IRm.
Given a penalty parameter c > 0, the augmented Lagrangian Lc : IRn × IRl ×

IRm → IR for this problem is defined by

Lc(x, λ, µ) = f(x) +
1

2c
(‖λ+ ch(x)‖2 + ‖max{0, µ+ cg(x)}‖2), (2.3)

where the max operation is applied componentwise. If among the constraints of (1.1)
there are simple bounds (or more generally, linear constraints), in practice these are
often left out of the augmented Lagrangian and are treated directly, i.e., at each it-
eration of the algorithm the current augmented Lagrangian is minimized subject to
those constraints (see, e.g., [16, 2]). We shall not deal with this generalization, for the
sake of keeping the presentation technically simpler. For the same reasons, we shall
not talk much about the practically important feature of solving the subproblems ap-
proximately, and shall not consider the option of using different penalty parameters
for different constraints or nonmonotone choice of penalty parameters. None of this
has any specific significance when talking about degeneracy of constraints. We next
state the algorithm that will be used for our theoretical analysis. With the simplifi-
cations mentioned above, it mimics the one behind the ALGENCAN solver [1] (see
[2, Algorithm 3.1], and some very recent modifications/improvements described in
[4, 12]).

Algorithm 2.1. Choose the following scalar parameters: λ̄min and λ̄max such
that λ̄min ≤ λ̄max, µ̄max ≥ 0, c0 > 0, θ ∈ [0, 1), and ρ > 1. Set k = 0.

1. Choose (λ̄k, µ̄k) ∈ IRl × IRm such that λ̄min ≤ λ̄k
j ≤ λ̄max ∀ j = 1, . . . , l,

0 ≤ µ̄k
i ≤ µ̄max ∀ i = 1, . . . , m. (For k > 0, the typical option is to take

(λ̄k, µ̄k) as the Euclidian projection of (λk, µk), defined in step 2, onto the

box
⊗l

j=1[λ̄min, λ̄max]×
⊗m

i=1[0, µ̄max].)

Compute xk+1 ∈ IRn as a stationary point of the unconstrained optimization
problem

minimize Lck(x, λ̄
k, µ̄k)

subject to x ∈ IRn.
(2.4)
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2. Set

λk+1 = λ̄k + ckh(x
k+1), µk+1 = max{0, µ̄k + ckg(x

k+1)}, (2.5)

τk+1 = min{µk+1, −g(xk+1)}. (2.6)

3. If k = 0 or

max{‖h(xk+1)‖∞, ‖τk+1‖∞} ≤ θmax{‖h(xk)‖∞, ‖τk‖∞},

select any ck+1 ≥ ck. Otherwise select ck+1 ≥ ρck. Adjust k by 1, and go to
step 1.

Global convergence analysis of Algorithm 2.1 considers separately the cases of
feasible and infeasible accumulations points. As is well understood, convergence of the
augmented Lagrangian methods to infeasible points cannot be ruled out, in general.
However, this has nothing to do with possible degeneracy of constraints at solutions
or feasible points, which is the main issue in this work. The possibility of convergence
to infeasible points is a general weakness of augmented Lagrangian algorithms. One
may look for more special conditions giving feasibility of accumulation points when
the constraints have some structure; e.g., [5]. We next consider the case of feasible
accumulation points.

The following discussion essentially corresponds to [2, Theorems 4.1, 4.2], taking
into account some very recent improvements in [4]. The key ingredients are the
following.

From (2.1), (2.3) and (2.5) one can immediately see that for each k = 1, 2, . . .,
the iterates generated by Algorithm 2.1 satisfy the conditions

∂L

∂x
(xk, λk, µk) =

∂Lck−1

∂x
(xk, λ̄k−1, µ̄k−1) = 0, µk ≥ 0. (2.7)

Consider the case when the sequence {xk} has a feasible accumulation point. From
(2.5) and (2.6), from the boundedness of {µ̄k}, and from the rule for updating the
penalty parameter in step 3 of Algorithm 2.1, it follows that if for someK ⊂ {0, 1, . . .}
the subsequence {xk | k ∈ K} converges to a feasible x̄ then

{µk
{1, ...,m}\A(x̄) | k ∈ K} → 0 as k → ∞. (2.8)

Therefore, if the sequence {(λk, µk) | k ∈ K} has an accumulation point (λ̄, µ̄)
(in particular, when this sequence is bounded) then passing onto the limit in (2.7)
along the appropriate subsequence, and using (2.8), one immediately derives that x̄ is
a stationary point of problem (1.1), while (λ̄, µ̄) is an associated Lagrange multiplier.

Observe also that since {(λ̄k, µ̄k)} is bounded, according to (2.5) the entire se-
quence {(λk, µk)} is bounded whenever the sequence of penalty parameters {ck} is
bounded. Therefore, any possible difficulties in convergence analysis are concerned
with the case when ck → +∞ and {(λk, µk)} is unbounded. And this is the point
where CQs come into play.

Let A(x̄) = {i = 1, . . . , m | gi(x̄) = 0} be the index set of active inequality
constraints. The Mangasarian–Fromovitz constraint qualification (MFCQ) holds at a
feasible point x̄ of problem (1.1) if the system

(h′(x̄))Tη + (g′A(x̄)(x̄))
Tζ̃ = 0, ζ̃ ≥ 0,
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in the variables (η, ζ̃) ∈ IRl × IR|A(x̄)| has only the zero solution. (This is the dual
form of MFCQ; from it one can easily see that the nonempty set of multipliers is
bounded if and only if MFCQ holds.)

The consequence for Algorithm 2.1 is that MFCQ immediately excludes the case
of unbounded {(λk, µk) | k ∈ K} (dividing the equality in (2.7) by ‖(λk, µk)‖, passing
onto the limit and taking into account (2.8), gives a contradiction with MFCQ).

A more involved argument in [4] shows that the following (weaker) CQ can be
used in the analysis of Algorithm 2.1.

For a feasible point x̄ of problem (1.1), let J ⊂ {1, . . . , l} be such that {h′
j(x̄) |

j ∈ J} is a basis in the linear subspace spanned by {h′
j(x̄) | j = 1, . . . , l}. We say that

the relaxed constant positive linear dependence constraint qualification (RCPLD) [4]
holds at a feasible point x̄ of problem (1.1) if there exists a neighborhood U of x̄ such
that:

1. It holds that rankh′(x) is constant for all x ∈ U .

2. For every I ⊂ A(x̄), if there exist η̃ ∈ IR|J| and ζ̃ ∈ IR|I|, not all equal to zero
and such that

(h′
J (x̄))

Tη̃ + (g′I(x̄))
Tζ̃ = 0, ζ̃ ≥ 0, (2.9)

then

rank

(

h′
J(x)
g′I(x)

)

< |J |+ |I| ∀x ∈ U. (2.10)

This condition is indeed a relaxed version of the constant positive linear dependence
constraint qualification (CPLD) at a feasible point x̄ of problem (1.1), which consists
of saying that there exists a neighborhood U of x̄ such that for any J ⊂ {1, . . . , l}
and I ⊂ A(x̄), if there exist η̃ ∈ IR|J| and ζ̃ ∈ IR|I| not all equal to zero and such that
(2.9) holds, then (2.10) holds as well. It is easy to see that MFCQ implies CPLD and,
hence, RCPLD. (As an aside, we note that CPLD is also implied by the well-known
constant rank constraint qualification.)

The next statement summarizes convergence properties of Algorithm 2.1 when it
comes to feasible accumulation points [2, 4].

Theorem 2.1. Let f : IRn → IR, h : IRn → IRl and g : IRn → IRm be continuously
differentiable on IRn. Let {xk} ⊂ IRn be a sequence generated by Algorithm 2.1, and
let x̄ ∈ IRn be an accumulation point of this sequence.

If the point x̄ is feasible in problem (1.1) and RCPLD holds at x̄, then x̄ is a
stationary point of problem (1.1).

Moreover, if MFCQ holds at x̄ then for any infinite set K ⊂ {0, 1, . . .} such
that the subsequence {xk | k ∈ K} converges to x̄, the corresponding subsequence
{(λk, µk) | k ∈ K} is bounded and each of its accumulation points is a Lagrange
multiplier associated to x̄.

In the absence of RCPLD the assertion of this theorem is not valid, which can be
seen from very simple examples.

Example 2.1. Let n = l = 1, m = 0, f(x) = x, h(x) = x2. Problem (1.1) with
this data has the unique feasible point (hence, the unique solution) x̄ = 0, which is
nonstationary and violates RCPLD. We have

Lc(x, λ) = x+
1

2c
λ2 + λx2 +

c

2
x4,

∂Lc

∂x
(x, λ) = 1 + 2λx+ 2cx3.
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Taking, e.g., λ̄k = 0 and any ck > 0, we obtain that the point xk+1 = −1/(2ck)
1/3

is the unique stationary point and the global solution of the subproblem (2.4). If
ck → +∞, the sequence {xk} tends to x̄.

In principle, the convergence results outlined above are fully relevant in the pres-
ence of degenerate solutions: the theory allows for such solutions to be accumulation
points of the iterates generated by the augmented Lagrangian methods, and this is
good news. The problems arise when there exist multiple feasible points which are
degenerate in the sense of violating even weak conditions like RCPLD, and which are
not optimal/stationary. The situation becomes even worse when all feasible points are
expected to be degenerate. Theorem 2.1 allows for convergence to any of such feasible
points, which of course is not satisfactory. In the case of MPCC, each feasible point
violates MFCQ. It turns out that (R)CPLD can be satisfied. However, in Section 3
we shall show that RCPLD is an extremely atypical property in the context of MPCC
and should not be expected to hold. Thus, independent analysis would be presented
for MPCC, based on the special structure of this problem.

To complete the picture concerning feasible accumulation points, we next prove
a new result, which provides some further insight. We make two assumptions, which
are not standard in this context but are very reasonable and should hold in many
cases of interest. One assumption is the Lipschitzian error bound (see (2.12) below)
on the distance to the feasible set of problem (1.1) in terms of constraints violations.
Note that this is weaker than assuming a constraint qualification at x̄: RCPLD (and
hence, MFCQ) implies the error bound (2.12) [4], while the error bound does not
imply RCPLD [4, Counter-example 3]. Our second assumption is that the iterates
computed by the algorithm are not merely stationary points of subproblems (2.4) but
have at least some modest features of minimizers, even if approximate minimizers, in
the sense of (2.11) below. This requirement seems not stringent at all computation-
ally, considering that xk is generated minimizing Lck−1

(·, λ̄k−1, µ̄k−1). It is satisfied
automatically if xk is a solution of the subproblem, which is global in some neigh-
bourhood of the accumulation point x̄. The latter, in turn, holds automatically under
any of a number of conditions ensuring local convexity of the augmented Lagrangian
on some fixed (independent of k) ball around the accumulation point in question.

Theorem 2.2. Let D stand for the feasible set of problem (1.1). Under the
assumptions of Theorem 2.1, suppose that there exists an infinite set K ⊂ {1, 2, . . .}
such that {xk | k ∈ K} converges to x̄ ∈ D, and for each k ∈ K, some β > 0,
θ ∈ (0, 1/2), and some projection x̄k of xk onto D, it holds that

Lck−1
(xk, λ̄k−1, µ̄k−1) ≤ Lck−1

(x̄k, λ̄k−1, µ̄k−1)

+ β(‖h(xk)‖+ ‖max{0, g(xk)}‖) + θ‖(λk, µk)‖2
ck−1

.(2.11)

Assume further that the error bound

dist(xk, D) = O(‖h(xk)‖+ ‖max{0, g(xk)}‖). (2.12)

holds for k ∈ K.
Then the sequence {(λk, µk) | k ∈ K} is bounded, x̄ is a stationary point of

problem (1.1), and every accumulation point of {(λk, µk) | k ∈ K} is a Lagrange
multiplier associated with x̄.

(Since the feasible set D need not be convex, projection of xk onto D, i.e., a point
in D closest to xk in the norm used to define dist in (2.12), is not necessarily unique.
In the statement above, any projection x̄k is appropriate.)
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Proof. Employing (2.3) and (2.5) we obtain that

Lck−1
(xk, λ̄k−1, µ̄k−1) = f(xk) +

1

2ck−1
(‖λ̄k−1 + ck−1h(x

k)‖2

+‖max{0, µ̄k−1 + ck−1g(x
k)}‖2)

= f(xk) +
‖(λk, µk)‖2

2ck−1
.

On the other hand, since x̄k is feasible in (1.1), it holds that h(x̄k) = 0 and also
max{0, µ̄k−1 + ck−1g(x̄

k)} ≤ µ̄k−1, so that

Lck−1
(x̄k, λ̄k−1, µ̄k−1) = f(x̄k) +

1

2ck−1
(‖λ̄k−1 + ck−1h(x̄

k)‖2

+‖max{0, µ̄k−1 + ck−1g(x̄
k)}‖2)

≤ f(x̄k) +
‖(λ̄k−1, µ̄k−1)‖2

2ck−1
.

Combining the last two relations with (2.11), we obtain that

‖(λk, µk)‖2
2ck−1

≤ f(x̄k)− f(xk) +
‖(λ̄k−1, µ̄k−1)‖2

2ck−1

+β(‖h(xk)‖+ ‖max{0, g(xk)}‖) + θ‖(λk, µk)‖2
ck−1

. (2.13)

Employing local Lipschitz-continuity of a continuously differentiable function f
(with some constant ℓ > 0), the multiplier update rule (2.5), the error bound (2.12)
and inequality (2.13), as well as boundedness of {(λ̄k, µ̄k)} and inequality µ̄k ≥ 0 for
all k, we derive that there exists a constant M > 0 such that

(1− 2θ)‖(λk, µk)‖2 ≤ 2ℓck−1‖x̄k − xk‖+ ‖(λ̄k−1, µ̄k−1)‖2
+2βck−1(‖h(xk)‖ + ‖max{0, g(xk)}‖)

≤ M(‖ck−1h(x
k)‖ + ‖max{0, ck−1g(x

k)}‖+ 1)

≤ M(‖λk − λ̄k−1‖+ ‖µk‖+ 1)

≤ M(‖λk‖+ ‖µk‖+ ‖λ̄k−1‖+ 1).

This chain of relations would result in a contradiction if {(λk, µk)} were to be un-
bounded. We therefore conclude that {(λk, µk)} is bounded. The assertion now fol-
lows immediately, by passing onto the limits along convergent subsequences in (2.7),
and taking into account (2.8).

In particular, under the assumption (2.11), any condition implying the Lips-
chitzian error bound (2.12) (e.g., RCPLD [4]) ensures boundedness of {(λk, µk) | k ∈
K} and stationarity of the accumulation point x̄.

Remark 2.1. In view of (2.7), the test in step 3 of Algorithm 2.1 to decide on
the increase of the penalty parameter is nothing more than a linear decrease test from
one iteration to the next for the natural residual measuring the violation of the KKT
conditions (2.2) for problem (1.1). This test was introduced in this context in [12].
Previous versions of ALGENCAN (e.g., [2]) were using instead of τk+1 given by (2.6)
the following:

τk+1 = max

{

g(xk+1), − µ̄k

ck

}

.



10 A. F. IZMAILOV, M. V. SOLODOV AND E. I. USKOV

It can be seen that all the statements and comments above, as well as in the next
section on MPCC, also hold for this version of the method. In fact, the analysis
simplifies somewhat, as property (2.8) would be replaced by the stronger

µk
{1, ...,m}\A(x̄) = 0

for all k ∈ K large enough.

3. Global convergence for MPCC. In this section we consider MPCC (1.2).
Of course, the “usual” equality and inequality constraints can also appear in MPCC
setting. As already mentioned, we drop them for brevity; all the statements do extend
to the more general case in an obvious manner.

The first issue to settle is whether Theorem 2.1 can already be expected to provide
an adequate answer for MPCC (then no further analysis is needed). Recall that in
the case of MPCC each feasible point violates MFCQ. But what about the weaker
RCPLD? It can be seen that it is possible to construct examples where RCPLD and
even CPLD hold. At the same time, the considerations that follow make it clear that
such examples are completely artificial and RCPLD cannot be expected to hold with
any frequency in cases of interest.

To show that CPLD may hold in principle, consider MPCC (1.2) with the map-
pings G, H : IRn → IRs being identically zero. Then each point x̄ ∈ IRn is feasible
and satisfies CPLD: for any x ∈ IRn, the Jacobian of constraints is identically zero,
and thus any subset of its rows is linearly dependent.

However, the latter example is of course extremely pathological. We next argue
that for practical MPCCs (R)CPLD cannot be expected to hold. Since the constraints
in (1.2) imply that s equalities

Gi(x)Hi(x) = 0, i = 1, . . . , s, (3.1)

hold at any feasible point, in practical problems s typically should be no greater than
n−1. Otherwise, there remains no “degrees of freedom” for optimization, and MPCC
becomes essentially a feasibility problem (similar to the nonlinear complementarity
problem). For s ≥ n (R)CPLD can hold in a stable way, but in the context of MPCC
the relevant case is s ≤ n − 1. Considering the constraints in (1.2) as a particular
case of usual inequality constraints, as in (1.1), observe that the Jacobian of these
constraints at any x ∈ IRn has the form





−G′(x)
−H ′(x)

(G′(x))TH(x) + (H ′(x))TG(x)



 . (3.2)

According to (3.1), for a given feasible point x̄ ∈ IRn of MPCC (1.2) we can assume
without loss of generality that H(x̄) = 0 (this can always be achieved moving the
positive components of H to G, and the corresponding zero components of G to H).
Then the last row of the Jacobian (3.2) at x̄ has the form

∑s
i=1 Gi(x̄)H

′
i(x̄) with

nonnegative coefficients Gi(x̄), i = 1, . . . , s. Hence, the rows −H ′
i(x̄), i = 1, . . . , s, of

this Jacobian combined with this last row are positively linearly dependent. Therefore,
for (R)CPLD to hold at x̄, the vectors −H ′

i(x), i = 1, . . . , s, and
∑s

i=1(Gi(x)H
′
i(x)+

Hi(x)G
′
i(x)) must be linearly dependent for all x ∈ IRn close enough to x̄. If s ≤ n−1,

this system contains no more than n rows. The property of no more than n vectors
dependent on x ∈ IRn to be linearly dependent in IRn for all small perturbations of
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x̄ is extremely atypical (generically, in the situation at hand small perturbations of a
linearly dependent system give a linearly independent one).

The conclusion is that RCPLD cannot be expected to hold for MPCC in cases of
interest, and Theorem 2.1 is not relevant for MPCC. Thus, an independent analysis
of MPCC is needed, that takes into account the problem structure. To this end, we
need to introduce some terminology, all standard in the MPCC literature.

We define the usual Lagrangian L : IRn × (IRs × IRs × IR) → IR of problem (1.2)
by

L(x, µ) = f(x)− 〈µG, G(x)〉 − 〈µH , H(x)〉 + µ0〈G(x), H(x)〉 (3.3)

(which fully agrees with (2.3)), and the family of the augmented Lagrangians Lc :
IRn × (IRs × IRs × IR) → IR by

Lc(x, µ) = f(x) +
1

2c
(‖max{0, µG − cG(x)}‖2 + ‖max{0, µH − cH(x)}‖2

+ (max{0, µ0 + c〈G(x), H(x)〉})2)

(which fully agrees with (2.3)), where µ = (µG, µH , µ0). We also define the so-called
MPCC-Lagrangian L : IRn × (IRs × IRs) → IR by

L(x, λ) = f(x)− 〈λG, G(x)〉 − 〈λH , H(x)〉,

where λ = (λG, λH).
For a point x̄ ∈ IRn feasible in problem (1.2), define the index sets

IG(x̄) = {i = 1, . . . , s | Gi(x̄) = 0}, IH(x̄) = {i = 1, . . . , s | Hi(x̄) = 0},
I0(x̄) = IG(x̄) ∩ IH(x̄).

Observe that by necessity IG(x̄) ∪ IH(x̄) = {1, . . . , s}. Recall that the MPCC-linear
independence constraint qualification (MPCC-LICQ) consists of saying that

G′
i(x̄), i ∈ IG(x̄), H ′

i(x̄), i ∈ IH(x̄) are linearly independent.

A feasible point x̄ of problem (1.2) is referred to as weakly stationary if there exists
λ̄ = (λ̄G, λ̄H) ∈ IRs × IRs satisfying

∂L
∂x

(x̄, λ̄) = 0, (λ̄G)IH (x̄)\IG(x̄) = 0, (λ̄H)IG(x̄)\IH (x̄) = 0.

If, in addition,

(λ̄G)i(λ̄H)i ≥ 0 ∀ i ∈ I0(x̄),

then x̄ is a C-stationary point. If

∀ i ∈ I0(x̄) either (λ̄G)i(λ̄H)i = 0 or (λ̄G)i > 0, (λ̄H)i > 0,

then x̄ is an M-stationary point. And if

(λ̄G)I0(x̄) ≥ 0, (λ̄H)I0(x̄) ≥ 0,

then x̄ is a strongly stationary point. Evidently, all these stationarity concepts are
the same in the case of lower-level strict complementarity, i.e., when I0(x̄) = ∅.
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In the case of MPCC (1.2), the counterpart of (2.5) is the following:

µk+1
G = max{0, µ̄k

G − ckG(xk+1)}, µk+1
H = max{0, µ̄k

H − ckH(xk+1)}, (3.4)

µk+1
0 = max{0, µ̄k

0 + ck〈G(xk+1), H(xk+1)〉}. (3.5)

The key relations (2.7) and (2.8) take the following form:

∂L

∂x
(xk, µk) = 0, µk = (µk

G, µ
k
H , µk

0) ≥ 0 (3.6)

for all k = 1, 2, . . ., and if for some K ⊂ {0, 1, . . .} the subsequence {xk | k ∈ K}
converges to a feasible x̄ then

{(µk
G)IH (x̄)\IG(x̄) | k ∈ K} → 0, {(µk

H)IG(x̄)\IH (x̄) | k ∈ K} → 0 (3.7)

for k ∈ K as k → ∞.
We start the analysis of Algorithm 2.1 with a technical lemma, to be used in the

sequel.
Lemma 3.1. Let f : IRn → IR and h : IRn → IRl be differentiable in some

neighborhood of x̄ ∈ IRn, with their derivatives being continuous at x̄. Assume that
rankh′(x̄) = l. Let {xk} ⊂ IRn be a sequence which converges to x̄. Suppose that the
equality

αkf
′(xk)− (h′(xk))Tλk = ωk (3.8)

holds for some αk ∈ IR, λk ∈ IRl and ωk ∈ IRn for all k.
If αk → ᾱ and {ωk} → 0 as k → ∞ then there exists the unique λ̄ ∈ IRs such

that {λk} → λ̄ as k → ∞ and

ᾱf ′(x̄)− (h′(x̄))Tλ̄ = 0. (3.9)

In particular, if ᾱ = 0 then {λk} → 0.
Proof. Assume first that the sequence {λk} is unbounded. Then there exists

an infinite set K ⊂ {0, 1, . . .} such that {‖λk‖ | k ∈ K} → +∞. Hence, dividing
(3.8) by ‖λk‖ and considering any convergent subsequence of the bounded sequence
{λk/‖λk‖ | k ∈ K}, we obtain a contradiction with the condition rankh′(x̄) = l.

Therefore {λk} is bounded. Then, passing onto the limit along any convergent
subsequence, we obtain the equality (3.9) for some λ̄ ∈ IRl. The uniqueness of λ̄
follows from the assumption that rankh′(x̄) = l.

The following theorem establishes that feasible accumulation points of Algo-
rithm 2.1 applied to MPCC are guaranteed to be C-stationary (better than weakly
stationary) provided MPCC-LICQ holds, and they are strongly stationary if a certain
dual sequence is bounded. Together with examples below that show that in general
M-stationarity (and thus also strong stationarity) may not hold, this gives a complete
picture of global convergence properties of the augmented Lagrangian method when
applied to MPCC. While these properties are not ideal, as discussed in the Introduc-
tion, they are currently fully competitive with any other practical algorithm applied
to MPCC. Also, Section 4 shows that strong stationarity is in fact usually achieved
in practice.

Theorem 3.2. Let f : IRn → IR and G, H : IRn → IRs be continuously differ-
entiable on IRn. Let {xk} ⊂ IRn be a sequence generated by Algorithm 2.1 applied to
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problem (1.2), and let x̄ ∈ IRn be an accumulation point of this sequence. Suppose
that the point x̄ is feasible in problem (1.2), and that MPCC-LICQ holds at x̄.

If the sequence {µk
0} generated by Algorithm 2.1 has a bounded subsequence such

that the corresponding subsequence of {xk} converges to x̄ (in particular, if the se-
quence {ck} is bounded) then x̄ is a strongly stationary point of problem (1.2). Oth-
erwise x̄ is at least a C-stationary point of problem (1.2).

Proof. We assume without loss of generality that G(x̄) = 0 (as already commented
above, this can always be achieved by moving the positive components of G to H and
the corresponding zero components of H to G). We next define the index sets

I0 = { i = 1, . . . , s | Hi(x̄) = 0 }, I+ = { i = 1, . . . , s | Hi(x̄) > 0 }. (3.10)

It is clear that in the assumed case of G(x̄) = 0, we have that I0 = I0(x̄) and
I+ = IG(x̄) \ IH(x̄), where I0(x̄), IG(x̄) and IH(x̄) were defined above. In this case
MPCC-LICQ at x̄ takes the form

rank

(

G′(x̄)
H ′

I0
(x̄)

)

= s+ |I0|.

From (3.3) and (3.6) we have that

0 = f ′(xk)− (G′(xk))T
(

µk
G − µk

0H(xk)
)

− (H ′(xk))T
(

µk
H − µk

0G(xk)
)

= f ′(xk)−
(

G′
I0 (x

k)
)T

(λk
G)I0 −

(

G′
I+(x

k)
)T

(λk
G)I+

−
(

H ′
I0(x

k)
)T

(λk
H)I0 −

(

H ′
I+(x

k)
)T

(λk
H)I+ , (3.11)

where

λk
G = µk

G − µk
0H(xk), λk

H = µk
H − µk

0G(xk). (3.12)

Let K ⊂ {0, 1, . . .} be an infinite index set such that the sequence {xk | k ∈ K}
converges to x̄. As discussed above, if {ck} is bounded then x̄ is a stationary point
in the usual KKT sense. For MPCC this is equivalent to strong stationarity of x̄.
Therefore, from now on we consider the case ck → +∞. In this case from (3.4) and
(3.10) we obtain that

(µk
H)I+ = 0 (3.13)

for all k large enough.
From the second condition in (3.12) and from (3.13) it follows that if {µk

0 | k ∈ K0}
is bounded for some infinite set K0 ⊂ K then the sequence {(λk

H)I+ | k ∈ K0} tends
to zero. Applying Lemma 3.1 to (3.11) with αk = 1, we obtain that {λk

G | k ∈ K0}
and {(λk

H)I0 | k ∈ K0} converge to some λ̄G and (λ̄H)I0 , respectively, and

f ′(x̄)− (G′(x̄))Tλ̄G − (H ′
I0(x̄))

T(λ̄H)I0 = 0. (3.14)

Passing onto the limit in (3.12) alongK0, we conclude that (λ̄G)I0 ≥ 0 and (λ̄H)I0 ≥ 0
and therefore x̄ is a strongly stationary point. Note that the above argument is also
applicable if I0 = ∅ or I+ = ∅.

It remains to consider the case when {µk
0 | k ∈ K} → +∞. We first prove that in

this case I0 is nonempty and

ck−1

µk
0

〈GI0 (x
k), HI0(x

k)〉 → M > 0 (3.15)
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for k ∈ K tending to infinity.
Since {µk

0 | k ∈ K} → +∞, it follows from (3.5) that

µk
0 = µ̄k−1

0 + ck−1〈G(xk), H(xk)〉.

Therefore,

〈G(xk), H(xk)〉 > 0 (3.16)

for all k ∈ K large enough, and

ck−1

µk
0

〈G(xk), H(xk)〉 = 1− µ̄k−1
0

µk
0

→ 1 (3.17)

as k → ∞. It is also evident that in this case

µk
0

ck−1
= 〈G(xk), H(xk)〉+ µ̄k−1

0

ck−1
,

and therefore

µk
0

ck−1
→ 0. (3.18)

It is clear that if I+ = ∅ (and, evidently, I0 6= ∅) then (3.15) immediately follows
from (3.17).

Suppose that I+ 6= ∅. From the second equality in (3.12) and from (3.13) we
obtain that

(λk
H)I+
µk
0

= −GI+(x
k) (3.19)

for all k ∈ K large enough. Hence, {(λk
H)I+/µ

k
0 | k ∈ K} → 0 as k → ∞. Dividing

(3.11) by µk
0 and applying Lemma 3.1 with αk = 1/µk

0 , we get

{

λk
G

µk
0

∣

∣

∣ k ∈ K

}

→ 0,

{

(λk
H)I0
µk
0

∣

∣

∣ k ∈ K

}

→ 0. (3.20)

From (3.12) we have

(λk
G)I+
µk
0

=
(µk

G)I+
µk
0

−HI+(x
k),

and sinceHI+(x̄) > 0, the first condition in (3.20) implies that {(µk
G)i | k ∈ K} → +∞

for all i ∈ I+. Then it follows from (3.4) that GI+(x
k) < 0 for all k ∈ K large enough.

Thus, from the first equality in (3.12), we obtain that for such k,

(λk
G)I+ = max{0, (µ̄k−1

G )I+ − ck−1GI+(x
k)} − µk

0HI+(x
k)

= (µ̄k−1
G )I+ − ck−1GI+(x

k)− µk
0HI+(x

k).

Therefore

ck−1

µk
0

GI+(x
k) +HI+(x

k) =
(µ̄k−1

G )I+
µk
0

− (λk
G)I+
µk
0

.
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Then from the first relation in (3.20) we obtain

{

ck−1

µk
0

GI+(x
k) +HI+(x

k)
∣

∣

∣ k ∈ K

}

→ 0.

It follows from this relation that
{

−ck−1

µk
0

GI+(x
k)

∣

∣

∣ k ∈ K

}

→ HI+(x̄), (3.21)

and therefore

ck−1

µk
0

〈GI+(x
k), HI+(x

k)〉 → −‖HI+(x̄)‖2 (3.22)

for k ∈ K as k → ∞.
Now from (3.16) and (3.22) we obtain that since I+ 6= ∅, the index set I0 must

be nonempty as well. Combining (3.22) with (3.17), we obtain that

ck−1

µk
0

〈GI0(x
k), HI0(x

k)〉 → 1 + ‖HI+(x̄)‖2 (3.23)

which is (3.15) with M = 1 + ‖HI+(x̄)‖2. From (3.19) and (3.21) we also get the
following:

{

ck−1

(µk
0)

2
(λk

H)I+

∣

∣

∣
k ∈ K

}

→ HI+(x̄). (3.24)

Next, we prove that there exist an infinite index set K0 ⊂ K and λ̄G, λ̄H ∈ IRs

such that

{λk
G | k ∈ K0} → λ̄G, {λk

H | k ∈ K0} → λ̄H , (3.25)

(λ̄H)I+ = 0, and the condition (3.14) is fulfilled. Note that this implies, in particular,
weak stationarity of x̄.

From (3.12) we have

(λk
G)I0 = max{0, (µ̄k−1

G )I0 − ck−1GI0(x
k)} − µk

0HI0(x
k),

(λk
H)I0 = max{0, (µ̄k−1

H )I0 − ck−1HI0(x
k)} − µk

0GI0(x
k).

Suppose that for some i ∈ I0 there exists an infinite index set Ki ⊂ K such that the
condition

(µ̄k−1
G )i − ck−1Gi(x

k) ≥ 0 (3.26)

is satisfied for all k ∈ Ki. In this case it holds that

(λk
G)i = (µ̄k−1

G )i − ck−1Gi(x
k)− µk

0Hi(x
k),

which implies

ck−1

µk
0

Gi(x
k) =

(µ̄k−1
G )i

µk
0

− (λk
G)i

µk
0

−Hi(x
k) → 0,
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and therefore

ck−1

µk
0

Gi(x
k)Hi(x

k) → 0 (3.27)

for k ∈ Ki. It is evident that (3.27) is also true if the condition

(µ̄k−1
H )i − ck−1Hi(x

k) ≥ 0 (3.28)

holds for some infinite index set Ki ⊂ K.
Now we construct the index set J0 in the following way. First we set J0 = ∅ and

K1 = K. Then if for some i ∈ I0 \ J0 there exists an infinite index set K2 ⊂ K1 for
which (3.26) or (3.28) are fulfilled for all k ∈ K1 then we add i to J0 and repeat the
above process with the index set K2 instead of K1. We repeat this process until we
get J0 and Kq such that for all i ∈ I0 \ J0 the inequalities (3.26), (3.28) hold only for
a finite number of points xk, k ∈ Kq.

Let J+ stand for the set I0 \ J0. It is evident that the condition (3.27) is fulfilled
for all i ∈ J0 for k ∈ Kq. Combining the latter with (3.15), we obtain that J+ 6= ∅
and the condition

ck−1

µk
0

〈GJ+
(xk), HJ+

(xk)〉 → M (3.29)

holds for k ∈ Kq as k → ∞. Since for i ∈ J+ the inequalities (3.26), (3.28) are
satisfied only for a finite number of elements of the sequence {xk | k ∈ Kq}, it follows
from (3.4) and (3.12) that

(λk
G)J+

= −µk
0HJ+

(xk), (λk
H)J+

= −µk
0GJ+

(xk)

for all k ∈ Kq large enough. The latter condition and (3.29) imply that

ck−1

(µk
0)

3
〈(λk

G)J+
, (λk

H)J+
〉 → M (3.30)

for k ∈ Kq as k → ∞.
We now show that either I+ = ∅ or

{(λk
H)I+ | k ∈ Kq} → 0. (3.31)

Indeed, suppose that I+ 6= ∅ and for some ε > 0 and some infinite set K0
q ⊂ Kq the

condition

‖(λk
H)I+‖ ≥ ε (3.32)

is fulfilled for all k ∈ K0
q . Then, recalling (3.24) which implies

c2k−1

(µk
0)

4
‖(λk

H)I+‖2 → ‖HI+(x̄)‖2,

for k ∈ K, and combining the latter with (3.30), we get the condition

µk
0

ck−1

〈(λk
G)J+

, (λk
H)J+

〉
‖(λk

H)I+‖2
→ M

‖HI+(x̄)‖2
> 0
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for k ∈ Kq as k → ∞. Therefore it follows from (3.18) that

〈(λk
G)J+

, (λk
H)J+

〉
‖(λk

H)I+‖2
→ +∞

for k ∈ K0
q as k → ∞. Then the chain of inequalities

〈(λk
G)J+

, (λk
H)J+

〉 ≤ ‖(λk
G)J+

‖ ‖(λk
H)J+

‖ ≤ ‖(λk
G, (λ

k
H)I0)‖2

implies

‖(λk
G, (λ

k
H)I0)‖

‖(λk
H)I+‖

→ ∞

for k ∈ K0
q . Combined with (3.32), it follows that {‖(λk

G, (λ
k
H)I0)‖ | k ∈ K0

q } → ∞.

Dividing (3.11) by ‖(λk
G, (λ

k
H)I0)‖ and applying Lemma 3.1 for k ∈ K0

q with

αk =
1

‖(λk
G, (λ

k
H)I0)‖

, ωk =
(λk

H)I+
‖(λk

G, (λ
k
H)I0)‖

,

(evidently, {αk | k ∈ K0
q } → 0 and {ωk | k ∈ K0

q } → 0) we obtain that

{

(λk
G, (λ

k
H)I0)

‖(λk
G, (λ

k
H)I0)‖

∣

∣

∣ k ∈ K0
q

}

→ 0,

which is evidently impossible.
Therefore, (3.31) holds (it becomes trivial if I+ = ∅). Applying Lemma 3.1 with

αk = 1 to (3.11) for k ∈ Kq, we conclude that

{λk
G | k ∈ Kq} → λ̄G, {(λk

H)I0 | k ∈ Kq} → (λ̄H)I0

for some λ̄G and (λ̄H)I0 , and the condition (3.14) is fulfilled. In view of (3.31), to
obtain (3.25) it remains to take (λ̄H)I+ = 0 and K0 = Kq.

Finally, we prove that x̄ is C-stationary. Since the conditions (3.14), (3.25) hold
for some K0 ⊂ K and some λ̄G, λ̄H ∈ IRs with (λ̄H)I+ = 0, it remains to show that
(λ̄G)i(λ̄H)i ≥ 0 for all i ∈ I0.

We construct the index sets J0 and J+ and the set Kq the same way as above,
but taking K0 instead of K. It is clear that the condition (3.30) is also true for new
J0, J+ and Kq. Since the sequence {(λk

G, λ
k
H) | k ∈ K0} is bounded and hence

{ 〈(λk
G)J+

, (λk
H)J+

〉
µk
0

∣

∣

∣ k ∈ K0

}

→ 0,

the condition (3.30) implies

ck−1

(µk
0)

2
→ +∞ (3.33)

for k ∈ Kq as k → ∞.
Since I0 = J0 ∪ J+, we need to show that (λ̄G)i(λ̄H)i ≥ 0 for i ∈ J0 and for

i ∈ J+. It follows from the definition of J0 that for all i ∈ J0 either (3.26) is satisfied
for all k ∈ Kq or (3.28) is satisfied for all k ∈ Kq. It is clear that for any i ∈ J0 there
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are two possible cases: either there exists an infinite set K1
q ⊂ Kq such that both

(3.26) and (3.28) hold for all k ∈ K1
q or there exists an infinite set K2

q ⊂ Kq such that
only one of these conditions is fulfilled for all k ∈ K2

q , while the other is violated for
all k ∈ K2

q .
First we consider the case when for some i ∈ J0 and an infinite set K1

q ⊂ Kq both
(3.26) and (3.28) hold for all k ∈ K1

q . In this case from (3.4) and (3.12) we have

(λk
G)i = (µ̄k−1

G )i − ck−1Gi(x
k)− µk

0Hi(x
k), (3.34)

(λk
H)i = (µ̄k−1

H )i − ck−1Hi(x
k)− µk

0Gi(x
k), (3.35)

for k ∈ K1
q . Evaluating Gi(x

k) from the second equation and putting it into the first,
we obtain

(λk
G)i = (µ̄k−1

G )i − µk
0Hi(x

k)− ck−1

µk
0

(

(µ̄k−1
H )i − ck−1Hi(x

k)− (λk
H)i

)

,

and therefore

Hi(x
k) =

µk
0((λ

k
G)i − (µ̄k−1

G )i)− ck−1((λ
k
H)i − (µ̄k−1

H )i)

c2k−1 − (µk
0)

2
,

ck−1Hi(x
k) =

c2k−1

c2k−1 − (µk
0)

2

(

µk
0

ck−1

(

(λk
G)i − (µ̄k−1

G )i
)

−
(

(λk
H)i − (µ̄k−1

H )i
)

)

.

From (3.18) and (3.25) it follows that for k ∈ K1
q the first term of the product in the

right-hand side of the last equation tends to one while the second term of this product
is bounded. Therefore the sequence {ck−1Hi(x

k) | k ∈ K1
q} is bounded. Repeating

the same arguments for Gi(x
k), we obtain boundedness of {ck−1Gi(x

k) | k ∈ K1
q}.

In view of (3.18), the last two conditions imply that µk
0Gi(x

k) and µk
0Hi(x

k) tend to
zero for k ∈ K1

q . Combined with (3.26) and (3.28) and applied to (3.34), (3.35), this

results in (λ̄G)i ≥ 0 and (λ̄H)i ≥ 0.
Now we consider the second case when for some i ∈ J0 and an infinite setK2

q ⊂ Kq

one of the two conditions (3.26), (3.28) holds for all k ∈ K2
q while the other does not

hold for all k ∈ K2
q . We assume that the first condition is fulfilled. In this case it

follows from (3.4) and (3.12) that for all k ∈ K2
q , the condition (3.34) holds and,

instead of (3.35), the condition

(λk
H)i = −µk

0Gi(x
k) (3.36)

holds. If (λ̄H)i = 0 then the equality (λ̄G)i(λ̄H)i = 0 holds automatically. Suppose
that (λ̄H)i 6= 0. From (3.34) and (3.36) we obtain

(λk
G)i = (µ̄k−1

G )i +
ck−1

µk
0

(λk
H)i − µk

0Hi(x
k),

ck−1

(µk
0)

2
(λk

H)i = Hi(x
k)− (λk

G)i − (µ̄k−1
G )i

µk
0

,

and hence,

ck−1

(µk
0)

2
(λk

H)i → 0

as k → ∞. Since (λ̄H)i 6= 0, the last condition contradicts (3.33).
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It remains to show that (λ̄G)i(λ̄H)i ≥ 0 for all i ∈ J+. The definition of J+
implies the existence of an infinite index set K3

q ⊂ Kq such that the conditions (3.26),
(3.28) are violated for all k ∈ K3

q . Therefore from (3.4) and (3.12) we obtain that for
all i ∈ J+ and k ∈ K3

q

(λk
G)i = −µk

0Hi(x
k), (λk

H)i = −µk
0Gi(x

k). (3.37)

If (λ̄G)i = 0 or (λ̄H)i = 0 for some i then the condition (λ̄G)i(λ̄H)i ≥ 0 is satisfied.
Suppose that (λ̄G)i 6= 0 and (λ̄H)i 6= 0. In this case from (3.18) and (3.37) we obtain
that |ck−1Gi(x

k)| and |ck−1Hi(x
k)| tend to infinity for k ∈ K3

q . Then the equalities

(3.4) and violation of (3.26) and (3.28) imply Gi(x
k) > 0 and Hi(x

k) > 0 for all k
large enough. Applied to (3.37), these conditions result in (λ̄G)i < 0 and (λ̄H)i < 0
(since these are nonzero). Therefore (λ̄G)i(λ̄H)i > 0.

The next two examples demonstrate that under the assumptions of Theorem 3.2
accumulation points of the iterates generated by Algorithm 2.1 need not be strongly
stationary or even M-stationary. In the first example all the indices belong to I0,
while in the second both I0 and its complement are nonempty.

Example 3.1. This is problem scholtes3 from MacMPEC [43]; similar effects
are also observed for scale4 and scale5 from the same test collection. Let n = 2,
s = 1, f(x) = ((x1 − 1)2 + (x2 − 1)2/2, G(x) = x1, H(x) = x2. Problem (1.2) with
this data has two solutions (1, 0) and (0, 1), both strongly stationary, and also one
nonoptimal C-stationary (but not M-stationary) point x̄ = (0, 0) satisfying MPCC-
LICQ.

When started from default initial points (x0 ∈ IR2 close to 0 and µ0 = (0, 0, 0)),
ALGENCAN solver (with disabled acceleration step and tools for solving subproblems
“to second-order optimality”, i.e., the pure Algorithm 2.1 above) converges to the
specified non-strongly stationary x̄, with µk

G = 0 and µk
H = 0 for all k, and with

ck → +∞. What happens is that the unconstrained minimization method used
to solve subproblems of the form (2.4) in Algorithm 2.1 picks up the saddle point

xk+1 = (tk, tk) of Lck(·, µ̄k), where tk ≈ 1/c
1/3
k is defined by the equation

t− 1 + (µ̄k
0 + ckt

2)t = 0.

(Of course, this may happen only for very special starting points used by the the
unconstrained minimization method, in this case points on the straight line given by

x1 = x2.) Note that according to (3.5), µk+1
0 = µ̄k

0 + ckt
2
k ≈ µ̄k

0 + c
1/3
k → +∞.

Observe again that ALGENCAN is treating nonnegativity constraints as bounds,
not including them in the augmented Lagrangian. However, since µk

G = 0 and µk
H =

0, this partial augmented Lagrangian coincides with the full augmented Lagrangian
on IR2

+, and therefore, the above gives an adequate understanding of ALGENCAN
behavior: the algorithm involving the full augmented Lagrangian behaves similarly
on this problem.

Similar observations as in the example above were reported in [3, Example 2]
for the problem with the same constraints, but with f(x) = −x1 − x2. For this
problem ALGENCAN converges to the C-stationary point x̄ = 0 which is in fact
a global maximizer rather than minimizer. However, it is important to emphasize
that small perturbations of the starting point give convergence to strong stationarity,
which means that the undesirable phenomenon is actually not typical.

Example 3.2. Consider the problem (1.2) with the following data: n = 4, s = 2,
f(x) = −

√
2(x1 + x3)− x2 + (x4 − 1)2/2, G(x) = (x1, x2), H(x) = (x3, x4). Consider
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the feasible point x̄ = (0, 0, 0, 1) which is nonoptimal and satisfies MPCC-LICQ. It is
easy to see that this point is C-stationary but not M-stationary.

For this problem, equality in (3.6) for each k is equivalent to the following system:

−
√
2− (µk

G)1 + µk
0x

k
3 = 0, −1− (µk

G)2 + µk
0x

k
4 = 0,

−
√
2− (µk

H)1 + µk
0x

k
1 = 0, xk

4 − 1− (µk
H)2 + µk

0x
k
2 = 0,

where µk
G, µk

H and µk
0 are defined according to (3.4), (3.5). Suppose that for all

k = 1, 2, . . . we take µ̄k−1
G = µ̄k−1

H = 0 and µ̄k−1
0 = 1. Then xk

1 = xk
3 =

√
2/tk,

xk
2 = −1/t2k, x

k
4 = 1 + 1/tk, and µk

0 = tk, µ
k
G = (0, tk), µ

k
H = 0, where tk = c

1/3
k−1,

satisfy all the needed relations. It is clear that if ck → +∞ then the sequence {xk}
converges to x̄.

Remark 3.1. It can be shown that the first part of the assertion of Theorem 3.2
(that is, strong stationarity of the point x̄ in the case when the sequence {µk

0} has a
bounded subsequence such that the corresponding subsequence of {xk} converges to
x̄) remains valid if MPCC-LICQ at x̄ is replaced by MFCQ for the so-called relaxed
nonlinear programming problem (RNLP) associated to MPCC (1.2):

minimize f(x)
subject to GIG(x̄)\IH (x̄)(x) = 0, HIH (x̄)\IG(x̄)(x) = 0,

GI0(x̄)(x) ≥ 0, HI0(x̄)(x) ≥ 0.

MFCQ for RNLP is evidently weaker than MPCC-LICQ.
However, MPCC-LICQ is essential for the second part of the assertion of The-

orem 3.2. The following example demonstrates that if {µk
0} tends to infinity then

MFCQ for RNLP may not imply even weak stationarity of the accumulation point.
Example 3.3. Consider the problem (1.2) with the following data: n = 6, s = 3,

f(x) = −3x1/2 + x3(−1 − x2
4 + x2

5) − x6, G(x) = (|x1|3/2 + x2, −|x1|3/2 + x2, x3),
H(x) = (x4, x5, x6). It can be easily seen that the feasible point x̄ = 0 satisfies
MFCQ for RNLP, though it is nonoptimal and not weakly stationary.

Assuming that x1 ≥ 0, the first equality in (3.6) for each k is equivalent to the
following system:

−1− x
1/2
1 ((µk

G)1 − (µk
G)2 − µk

0(x4 − x5)) = 0, −(µk
G)1 − (µk

G)2 + µk
0(x4 + x5) = 0,

−1− x2
4 + x2

5 − (µk
G)3 + µk

0x6 = 0, −2x3x4 − (µk
H)1 + µk

0(x
3/2
1 + x2) = 0,

2x3x5 − (µk
H)2 + µk

0(−x
3/2
1 + x2) = 0, −1− (µk

H)3 + µk
0x3 = 0,

where µk
G, µ

k
H and µk

0 are defined according to (3.4), (3.5).
Suppose that for all k = 1, 2, . . . we take µ̄k−1

G = µ̄k−1
H = 0 and µ̄k−1

0 = 0. Then
xk = (t6k, 0, t

4
k, tk/2, tk/2, t

4
k) and µk

0 = 1/t4k, µk
G = (0, 1/t3k, 0), µk

H = 0, where

tk = 1/c
1/12
k−1 , satisfy all the needed relations. It is clear that if ck → +∞ then the

sequence {xk} converges to x̄.
We complete this section by mentioning the example provided in [24, Section 7.2],

showing that SQP applied to MPCC may converge to an arbitrary feasible point, not
even weakly stationary, even if it satisfies MPCC-LICQ. As demonstrated above, such
arbitrary accumulation points are ruled out for Algorithm 2.1.

4. Numerical results. In this section, we report on the performance of the
ALGENCAN [1] implementation of the augmented Lagrangian method, compared
with two well-established implementations of SQP, namely, SNOPT [28] and filterSQP
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[23]; with the linearly constrained Lagrangian method implemented in MINOS [44];
and also with two interior-point solvers IPOPT [32, 52] and KNITRO [37, 14]. For
MPCCs, we used IPOPT-C [48] which is a modification of IPOPT making use of
the special structure of complementarity constraints. KNITRO also has some special
features for treating MPCCs [40]. We invoke SQP methods because it is known [22]
that they are quite robust and effective when applied to MPCC. The use of the linearly
constrained (augmented) Lagrangian algorithm implemented in MINOS is motivated
by the fact that (in a certain sense) it is related to both, augmented Lagrangian
methods and SQP; see [33, 35].

We used ALGENCAN 2.3.7 with AMPL interface, compiled with the use of MA57
library [51]. The latter provides effective software for solving sparse symmetric lin-
ear systems, making ALGENCAN much faster on large-scale problems. The newer
versions of ALGENCAN have an ultimate acceleration option [13], which consists
of identifying the active constraints and switching to a Newton-type method for the
resulting system of equations. In our experiments we first tried skipping the ALGEN-
CAN’s acceleration steps. The reason for this is that our experiments are concerned
with degenerate problems, and standard Newton-like steps could be harmful in degen-
erate cases, at least potentially. However, for our type of problems we did not observe
any serious advantage in skipping the acceleration steps, while in some cases they
were still helpful. Below we report results with the acceleration steps being active.

Regarding the other solvers, we used SNOPT 7.2-8 and MINOS 5.51 coming with
AMPL, and IPOPT 3.8.0. Solvers KNITRO 8.0.0 and filterSQP 20020316 were run
on the NEOS server [45]. For MPCCs we used the latest available version 2.2.1e
of IPOPT-C. For all the solvers, including ALGENCAN, we used the default values
of all the parameters with one exception: we increased the maximum number of
major iterations for MINOS from 50 to 1000 because this significantly improved its
robustness when applied to degenerate problems.

As discussed above, our main concern in this paper is robustness and quality
of the outcome (the value of the objective function when terminated at a feasible
point). This is one reason why we do not systematically study the relative efficiency
of the solvers, in particular the CPU times. The other (obvious) reason is that some
solvers were run on the NEOS server, and so comparing CPU times is simply not
meaningful. Nevertheless, for some additional information we compare the solvers by
the evaluations of the objective function and of the constraints, as this partial indicator
of efficiency is available for all the solvers (except constraints evaluations of KNITRO,
which are not reported by the solver). Concerning function evaluations, one subtle
point is that in MINOS and SNOPT linear functions do not affect the evaluation
counts reported by the solvers, while all the other solvers report on the numbers of all
evaluations, linear and nonlinear. To make the comparison more-or-less consistent, in
those cases when the objective function or all constraints are linear, we simply put the
corresponding number of evaluations equal to 1 for all solvers. Note that MacMPEC
problems always have at least one nonlinear constraint (corresponding to the last
constraint in (1.2)); therefore, there is no need for such manipulations of constraints
evaluations counts for this collection.

Finally, we examine some properties of the solvers from the viewpoint of the qual-
ity of the outcome. To this end, apart from failures (that is, the cases when the solver
terminates with any exit flag other than “Optimal solution found” or equivalent), we
also report on the cases of convergence to nonoptimal objective values, and we provide
the analysis of boundedness of dual sequences generated by ALGENCAN. Recall that
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according to Theorem 3.2, boundedness of the dual sequence of ALGENCAN implies
strong stationarity of primal accumulation points.

4.1. Numerical results for MacMPEC. This section contains the results
of experiments on MacMPEC [43], which is an established AMPL collection of 180
MPCCs. We used 161 of these problems (13 were excluded because they involve mixed
complementarity constraints, 1 because it has a binary variable, and 5 because they
are infeasible; according to [43]).

It should be mentioned that MacMPEC problems are written using the AMPL
operator complements for complementarity conditions. This required special treat-
ment in our experiments. First, KNITRO and IPOPT-C are the only solvers in our set
whose AMPL interfaces understand this operator. Interfaces of all the other solvers
simply ignore the constraints involving complements; for these solvers complemen-
tarity constraints had to be stated as the usual equality and inequality constraints.
Second, even KNITRO cannot deal with many of MacMPEC models directly, since
it requires complementarity constraints to be stated via slack variables. We there-
fore had to introduce slacks in the MacMPEC problems formulations submitted to
KNITRO and IPOPT-C.

For all the solvers except KNITRO and IPOPT-C (that use complements) we
tried four (equivalent) formulations, with the last constraint in (1.2) given by either
of

〈G(x), H(x)〉 ≤ 0; (4.1)

〈G(x), H(x)〉 = 0; (4.2)

Gi(x)Hi(x) ≤ 0, i = 1, . . . , s; (4.3)

Gi(x)Hi(x) = 0, i = 1, . . . , s. (4.4)

Moreover, each of the forms (4.1)–(4.4) has a counterpart employing slack variables,
and this leads to eight different formulations of complementarity constraints. Accord-
ing to our numerical experience, for ALGENCAN the form (4.1) is slightly preferable,
though the differences are not significant. But for both MINOS and SNOPT, the
forms (4.1) and (4.2) turn out to be seriously preferable. Furthermore, introducing
slacks slightly improves the performance of all the solvers, which agrees with previous
numerical experience in [22, 24]. For this reason, for ALGENCAN, SNOPT, filter-
SQP and MINOS we report the results for the formulation of MPCC corresponding
to (4.1) (i.e., that in (1.2)), re-stated using slack variables when appropriate. Observe
that filterSQP applied to this reformulation is supposed to be equivalent to the solver
filtermpec [22] applied to the original MacMPEC models.

For each of MacMPEC problems, we performed a single run from the default
starting point specified in the collection. The diagram in Figure 4.1 reports on the
numbers of failures and of the cases of successful convergence but to nonoptimal values.
The objective function value at termination is regarded nonoptimal if its difference
with the best known value exceeds 1e-1. The optimal values were taken from [43],
except for some cases where better feasible solutions were found in the course of our
experiments. The diagram shows that ALGENCAN has fewer cases of convergence
to nonoptimal points than any of its competitors, while only IPOPT-C has (slightly)
fewer failures than ALGENCAN. Note, however, that IPOPT-C does not have any
theoretical global convergence guarantees to support it [48].

Other comparisons are presented in the form of performance profiles [18]. For
each solver the value of the plotted function at τ ∈ [1, ∞) is the portion of test
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Fig. 4.1. Failures and cases of convergence to nonoptimal values on MacMPEC.
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Fig. 4.2. Nonlinear evaluations on MacMPEC.

problems for which the result of this solver was no more than τ times worse than the
best result over all solvers. Failure is regarded as infinitely many times worse than
any other result.

Figures 4.2(a) and 4.2(b) report on evaluations of the objective function and of
the constraints, respectively. According to these figures, ALGENCAN, SNOPT, filter-
SQP and IPOPT-C demonstrated similarly high robustness (about 97% of problems
solved), while MINOS and KNITRO are less robust on MacMPEC (about 85% and
75% of problems solved, respectively).

It should be mentioned that in terms of major iterations ALGENCAN outper-
forms all the other solvers: it has the best result for about 60% of problems while
filterSQP wins in less than 40% of the cases, and for the other solvers this percentage
is less than 15%. Figure 4.2 shows that in terms of objective function and constraints
evaluations, ALGENCAN is comparable with MINOS, but both are outperformed by
all the other solvers.

Finally, Table 4.1 summarizes all MacMPEC problems on which some kind of
“anomalies” were observed for ALGENCAN: failures (columns “F”), cases of conver-
gence to nonoptimal values (columns “NO”), and cases of unbounded dual trajectory
(“UB”). The dual trajectory is regarded unbounded if the infinity norm of the dual
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Table 4.1

MacMPEC problems with “anomalies” for ALGENCAN

Problem F NO UB Problem F NO UB
bilevel1 • qpec-200-4 •
bilevel3 • qpec2 •
bilin • ralphmod • •
design-cent-2 • • scale4 •
design-cent-4 • scholtes4 •
ex9.2.2 • siouxfls1 • •
hakonsen • • water-FL • •
pack-comp2p-8 • water-net •

iterate at termination is greater than 1e+4. As can be seen from Table 4.1, in some
of the cases unboundedness actually was not a problem, as convergence to optimal
values still occurred, and some cases of unboundedness are actually also failures of
some other nature. More importantly, it can be concluded that boundedness of dual
sequences is clearly a typical scenario for ALGENCAN even when the multiplier set is
unbounded, and thus strong stationarity for MPCC is guaranteed (assuming MPCC-
LICQ). And even in cases when the dual sequence is unbounded, it is not necessarily
a problem for convergence to optimal values.

Overall, the conclusion is that if the main requirement for a given application is
robustness and guarantees of convergence to good solutions, then ALGENCAN is a
good choice. If speed is important, then some acceleration is needed, which would be
a subject of our future research.

4.2. Numerical results for DEGEN. In this section we present the results of
the experiments on DEGEN [17], which is an AMPL collection of 109 test problems
with degenerate constraints. Most problems are very small, but many are in some
ways difficult. We used all DEGEN problems except for the following 9 instances:
problems 20205, 20223, 30204 and 40207 are unbounded (though they have degen-
erate stationary points); problems 2DD01-500h and 2DD01-500v are too large with
respect to the other problems in the collection; problems 20201, 40210 and 40211

actually have only bound constraints, and this is identified by ALGENCAN which
does not perform any major iterations at all on these problems.

DEGEN AMPL models include the mechanism for choosing random primal and
dual starting points in the domain of a specified size. We used the default size equal
to 100, and for each test problem we performed 100 runs from random starting points.

The results below are presented in the form of performance profiles which is a
slightly modified version of the original proposal in [18]. For each solver the plotted
function π : [1, ∞) → [0, 1] is defined as follows. For a given characteristic (e.g., the
iteration count), let kp stand for the average result of a given solver per one successful
run for problem p. Let sp denote the portion of successful runs on this problem. Let
rp be equal to the best (minimum) value of kp over all solvers. Then

π(τ) =
1

P

∑

p∈R(τ)

sp,

where P is the number of problems in the test set (100 in our case) and R(τ) is the



GLOBAL CONVERGENCE OF AUGMENTED LAGRANGIAN METHODS 25

ALGENCAN SNOPT filterSQP MINOS KNITRO IPOPT
0

5

10

15

20

 

 
Failures
Convergence to nonoptimal values

Fig. 4.3. Failures and cases of convergence to nonoptimal values on DEGEN.
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Fig. 4.4. Nonlinear evaluations on DEGEN.

set of problems for which kp is no more than τ times worse (larger) than the best
result rp:

R(τ) = {p = 1, . . . , P | kp ≤ τrp}, τ ∈ [1, ∞).

In particular, the value π(1) corresponds to the portion of runs for which the given
solver demonstrated the best result. The values of π(τ) for large τ characterize ro-
bustness, that is, the portion of successful runs.

In order to single out the cases of convergence to nonoptimal values, we used the
threshold 1e-2 for the distance to the optimal values reported within DEGEN models.
The diagram in Figure 4.3 reports on the numbers of failures and of convergence to
nonoptimal values. For ALGENCAN, the percentage of the cases of convergence to
optimal value over successful runs is about 95%, while for all the other solvers it is no
greater than 90%. Moreover, the percentage of convergence to optimal value over all
runs (including those which ended in failures) is also the highest for ALGENCAN.

In almost all cases of failure, the output flag of ALGENCAN was “The penalty
parameter is too large”. This usually happens in the cases of convergence to an
infeasible point, and rarely because of slow convergence.

Comparisons by evaluations of the objective function and the constraints are
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presented in Figures 4.4(a) and 4.4(b), respectively. According to these figures, all
the solvers demonstrate similar robustness on DEGEN collection, with about 94% of
successful runs.

In terms of major iterations, ALGENCAN is again significantly better than all
the other solvers: it has the best result for almost all the problems. Moreover, the
result of all the other solvers is more than 4 times worse for about 50% of problems.

Regarding objective function and constraints evaluation counts (see Figure 4.4),
the picture is similar to that for MacMPEC: ALGENCAN is again somewhat more
effective than MINOS and less effective than the other solvers. However, the difference
is less significant than on MacMPEC.

Finally, the cases of unbounded dual sequence were detected for 9.1% of runs.
Moreover, there were only 12 problems for which these sequences were unbounded
for at least 20% of runs. Therefore, we can conclude again that despite the fact
that most of DEGEN problems have unbounded multiplier sets, dual trajectories of
ALGENCAN usually remain bounded.

Overall, the conclusions are similar to those for MacMPEC test problems. AL-
GENCAN is a good choice when computing good solutions (rather than speed) is the
primary concern.

Acknowledgments. We thank Ernesto Birgin for his prompt and patient assis-
tance with compiling and tuning the ALGENCAN solver.
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