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Abstract

We study the holonomy group of a holomorphic foliation in a sur-
face along a compact leaf. It is shown that linearization of a neigh-
borhood of the curve implies strong restrictions in those groups.

We deal in this paper with suspensions along holomorphic curves of pseu-
dogroups of local diffeomorphisms of C which fix 0 € C.

Let C' be a holomorphic, compact, smooth curve embedded in some holo-
morphic smooth surface S (we will be interested in small neighborhoods of
C'in ). Assume that S admits two regular holomorphic foliations F and G
such that C' is a leaf of F (so that the self intersection number C - C' van-
ishes) and G is transverse to C; let H be the holonomy group of F along C'
(computed at some transverse section to C'). Conversely, we may take the
suspension of H along C, obtaining a new surface S’ which is isomorphic to
S; S’ of course comes with two foliations F' and G’ which are also isomorphic
to F and G.

The question that appears in a natural way in the first context is: if .S is
equivalent to the normal bundle of C' (at least to a certain order), what can
be said about H? The corresponding question in the context of suspensions
is: which properties the pseudogroup has to satisfy so that the surface defined
by its suspension along C' is equivalent to the normal bundle of C' (again, up
to a certain order)?



Let us present a simple example that somehow illustrates the situation.
Take in C' x C a foliation defined by

dt = (i wk(z)tk) dz

where z € C' C C, the universal covering space of C' and any for each wy, is a
holomorphic 1-form of C'. Let us assume that m1(C, p), the fundamental group
of C' with p as base point, is generated by the curves aq,...,aq, b1,..., b,
which form a sympletic basis of H;(C,Z). One sees easily that the linear
holonomy group of the foliation has generators {t — A;t}7_; (associated to
the a-curves a, . .., a,) and {t — p;t}7_; (associated to the b-curves by, .. ., by)
satisfy:

2 fbj w1 .

Aj = e2mf“f “' and =€
Since the b-periods of a holomorphic 1-form are determined after the a-
periods, we conclude that the b-generators of the linear holonomy group
are also determined by the a-generators.

We may reformulate the example as: let us consider the suspension along
C of a pseudogroup generated by

t—Nt+... and t— pit+. ..

to a foliation of a surface S; in order to get C' x C as the normal bundle of C'
in S (that is, S is C'x C up to order 1), we have a precise choise of j1, ..., g
once we prescribe the values A1,..., A,

We proceed now to the statement of our Theorem. Consider again the
surface S, a curve C' C S with normal bundle N¢ and a foliation G transverse
to C. We are interested in the foliations of S which have C' as a leaf. Given
such a foliation F, we compute its holonomy group along C' using a transverse
section ¥ to C' (contained, for example, in a leaf of G); let us parametrize it

o0 .
by a coordinate wy € C, and write the generators as hq,(wo) = > Aéj )wg,
: =

hy,(wo) = Béj)wé for j = 1,...,9. These maps depend on the foliation;
=1
we may write hy, (F) and hy, (F), as well as AJ(F) and B/ (F). We assume

that AJ(F) = \; and Bi(F) = p; are fixed (because they define N¢, as we
have already seen).



Suppose that for a given N > 2, .S has a system of coordinates of N-type.
This concept was introduced in [3], pg. 587, and essentialy means that S is
equivalent to N¢ up to order N (see Section 1).

Theorem. Assume S is equivalent to No up to order N > 2.
(1) if Ay=---=AN =0 then By =--- = By =0.

(2) in general, the coefficients Bs, ..., By are uniquely determined by the
coefficients As, ..., An. In other words, if F1 and Fo are holomorphic
foliations which have C as a leaf and if A;(F1) = A;j(Fz) then B;(F1) =
Bj(F,), 2<j<N.

What seems to be behind this Theorem is the existence, for each 2 <
v < N, of a holomorphic differencial 1-form in the curve C' whose periods
are the coefficients of the terms of order v of the generators of the holonomy
group. We are not able to fully develop this idea, that is, write down the
corresponding 1-forms, except in the proof of part (1) of the Theorem and in
the cases N =2 and N = 3, when N is the trivial line bundle. But anyway
in the proof of part (2) it is used the principle of determination of b-periods
once a-periods are known.

Using this Theorem we can obtain for each integer N > 2 examples of
surfaces (obtained as suspensions of pseudogroups of diffeomorphisms) which
have not coordinate systems of N-type.

We are grateful to M. Brunella for his conceptual proof concerning periods
of holomorphic differential 1-forms taking values in line bundles over a curve.

1 Linearizing Coordinates

We consider the situation described in the Introduction: a compact, smooth,
holomorphic curve C' is embedded in some holomorphic surface S carrying a
holomorphic fibration G transverse to C' (we are in fact interested in small
neighborhoods of C' in S). Along C' we use a coordinate z € C, where C  C
is the universal covering space of C; this coordinate can be extended to S
making it constant along fibers of G.

Given N > 2, a system of coordinates for S of type N is the following
data:



(i) a covering {U/} of a neighborhood of C' by open sets,

(i) for each U/ there is a coordinate w; such that U; = C' N U/ is defined as
w; = 0 and whenever U; N Uy # ) one has

(1) Wy, = AW + hik(z)(w;)]\/+1 + ...

This Definition appears in [3]; the coordinates (w}), together with the
coordinate z, provide a linearization of S up to order N. Remark that the
1-cocycle {\y;} defines the normal bundle N¢ of C' in S, which is a flat line
bundle (see [1], pg. 134)

We will assume that the open sets U; are small discs, hence distinguished
neighborhoods for the covering map C' — C.

For any different system of coordinates {w;} in {U/}

(2) w; =w; + P;(z, w;)

(Pi(z,w;) = > fi(j)(z)wf is a holomorphic function for each i) we have of
j=2

course a commutative diagram

w; — Wk

! !

/ /
w; — wy

whenever U; N Uy, # 0.

In the presence of a foliation F which has C' as a leaf, we may choose
{w;} in (2) in order to have U; given by w; = 0 and F |y, defined by dw; = 0.
It follows that whenever U; N U, # (), the change of coordinates from w; to
wy, is given by

(3) Wy = A\giw; + Pri(w;)

where Py;(w;) = > f,g)wg is a holomorphic function ( f,g) € C).
j=2
Simultaneous existence of these two coordinate systems {w;} and {w}}
originates relations between the generators of the holonomy group of the
foliation.
We may assume, without loss of generality, that Py(0,wy) = 0 (we fix Uy

as the open set which contains z = 0).
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We proceed now to make a modification in these coordinate systems aim-
ing to prove our Theorem. Consider a simply connected open set U C C,
with Uy C U. The coordinate wy can be extended as W, to a neighborhood
U’ of U; we start with Wy|» = wp ands extend it constant way along each
leaf of F|yr. We seek to extend also wj, to U, but in fact only up to order N.
Let Uy C U, UyNU; # (. In the intersection Uj N U, (after (1), (2) and (3)
above):

wl, = wo + Eféj)(z)wé, z el
w) =wy + Zfl(j)(z)w{ zel
w1 = AjoWp + Zfl%)wg

w) = Mowly + ho(2) (W) + .. ..

This implies

w4 S () w! = Mo(wo + SfY (2)wl)  mod wlt

or
Zflo +Zf1 )\10w0+2flg)w€j—)\102féj)( 2)w) mod w1t
§>2 j>2 0>2 Jj=2

We fix 2 < v < N and compare the coefficients of wg in both sides, what
leads to (z € Uy N Uy)

Mofs(2) = N () + A V) o AV RO (2) + £

where Al(,V_)l, o ,Ag/) are algebraic functions of f1((2))a c fg_l)(the precise
expressions are not needed here).

Therefore f{*(z) can be extended to U as
o A7 E) AR @) e+ AT AP ]+ N Y

N .
so we may define W = Wy + > féj)(z)Wg, zeUyNU;

j=2

Claim: The diagram
Wo — wy

! !

/ /
Wy, — w
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commutes over U; up to order N.

This is quite obvious, because the diagram is commutative over UyNU; C
U.

We repeat the reasoning for UsNU; # ), Uy C U. From the commutativity
of the above diagram and also of the diagram

wp — W2

! !

/ /

in Uy N Uy (up to order N), we see that

W0—>'LU2

! !

Wy —  wy
is commutative over U; N Uy (up to order N).

We go on until U is covered. We have proved then

Lemma 1. Suppose U, NU # (0. Then

Wo—>wk

! !

Wi — wy,

is commutative (up to order N ).

We remark that we have also proved:
Proposition 1. The functions fé2), e ,féN) have holomorphic extensions
F@ . FWN) to C, the universal covering space of C.

We can be more precise:
Proposition 2. Let Hol(F,C) be computed in the section of coordinates
(0, Wy) as

he(Wo) = MW+ Y COWY, 7 em(C,p).

Jj=22

Therefore

(4) FO(r(2) = X FW(2) 4+ DY) PO (2)+- -+ DY) F@ () + A7 CY)
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for z € C; the coefficients Ds’/lzfl, c Di”z) are algebraic expressions in \;,
o, orY.

Proof: Let us fix for example 7 = 7,, and apply Lemma 1 taking P or 7,, (P)

as U; P is a fundamental polygon of sides ay,b1,a7,b1,...,a4,bg,a,,b; .

We link P and 7,,(P) by a small neighborhood Uy, of some point of a; .
The coordinate Wy of Lemma 1 can be used for neighborhoods (P U Uy)" of
P U U and 7,,(P) of 7,,(P); a leaf which is {Wy = a} in P U Uy, arrives at
(14, (P)) as Wy = hg,(a). Let us use, for the sake of clarity, the notations
W and W(l) for coordinates of points in 7(P)’.

The Proposition follows after applying the same computations we did in
the proof of Lemma 1: we pass from U}, to 7o, (P)" (Wo and W, play the
role of w; and w}) and the change of coordinates from wy, to Wy, is given by

ha, . O

2 Two Particular Cases

We assume that NN, is the trivial line bundle. The cases v = 2 and v = 3 are
easy to deal with directly. Start with v = 2. Proposition 1 gives

FO(r(2)) = FP(2) + C?.

Each C) is the T-period of the holomorphic 1-form of C'
d
[EF@)(Z’)} dz.

Since a-periods determine b-periods, the numbers C’ff), .. .,Céi) deter-
mine Célz), e ,Céj).



Let us go to the next case v = 3. Then:
F(r(2) = FO(2) + DA (2) + O,

It can easily be seen that DS’Q) = 2C’£3), which implies:

d d d
Bl nlC)) 1) — & p(3) ©B) % (@)
ZFO(r()7 () = T FO(z) + DY FO(2)
and
iF(3)(T(z)) 4 p(3) (2) 4 (3) (2)
dz _ dz (2) _ dz (2) (2)
= +207 = &E——L= 4 2(FY(7(2)) — F'9(2)).
2FO(r(2) | AFO(2) 170(2)
Finally:
mally diF(3)(T(Z)) (2)( ) diF(3)(Z) (2)( )
&g ——— = =2F"(1(2)) = E——F= - 2F"(2
EFO(7(2)) HFO(2)
We see that A
LG (2) d
dz o (2) = (2)
—d%F(?)(z) 2F9(2) [sz (z)} dz

is a holomorphic 1-form of C’, so the same is true for

or d o @ )
ZIFO(z) - (FO (2)))dz.

The 7-period is F®)(r(0)) — [F@(7(0))]2 = ¢ — ()2, Once more we
conclude that C’L(ff), ceey C’éi) determine C’,f’), ey CIS?’).

We are not able to exhibit appropriate holom(g)rphic 1-forms for v > 4
allowing comparision between periods. We prove our Theorem by a less
explicit method.

3 Proof of the Theorem

Let us take regular foliations F; and JF5 in the surface .S which have a smooth,
holomorphic curve C' C S as a leaf. We assume that S is equivalent to N¢
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up to order N, N > 2. We wish to prove that Hol(F;,C) and Hol(F;, C)
are the same up to order N, under the hypothesis that the a-generators of
both groups are the same op to order N (as before, the holonomy groups are
computed for the transversal in Uywith coordinates (0, wy)).

By Proposition 2 we have functions Fl(2), cee Fl(N) and F2(2), o ,F2(N) in
C associated to F; and F satisfying relations as in (4); we may assume
FM(0) = F”(0)V 2 < v < N. We will prove that F”) = F{) V2 <y < N
by induction. If v = 2, we observe that

d
—[F(2) - B(:)]dz € H(C, Q% © Ne).

We have to show that this 1-form is zero. Next, if assumed that Fl(l') =
F2(V)f0r2§V§N—1:

d e
TV (2) - BV (2))dz € H(C, 06 ® Ne™ )
and this will be proven to be zero.
The hypothesis in the statement of the Theorem implies that the a-periods
of these 1-forms vanish.
What we need then is

Lemma 2. Let w € H°(C,Qf ® L), where L is some flat line bundle over
C. If w has vanishing a-periods, then w = 0.

The case of a trivial line bundle is well-known (see [2],pg.142); we will
adapt the proof. In that situation, periods appear as obstructions to exact-
ness of holomorphic 1-forms.

In general, let L be defined by a cocycle {);;} associated to a covering by
open sets {V;} of a compact curve C’, which may have boundary components.
A differential w € H°(C",Qf ® L) has local expressions {w;} related as
w; = Ajwj; we try to find {f;} € H°(C',L) in order to have w; = df;.
Fix p € Vo and fy € Oy, such that wy = dfp; we will take the analytic
“continuation” of fy to C’. Given g € C’ and a path joining p to ¢, we cover
it by VoU---UVp and select fi,..., f; satisfying w; = df; and fi11 = Nip1ifi
The problem arises when we try to do this for a different path from p to gq.
Or, equivalently, if we take a closed path + passing through p and apply the
same construction, we may arrive to a relation (became V; NV, # 0) of the



kind

fo=Xofe+a

for some a € C (this is the y-period of w; it is independent of the choice
of v in its homotopy class). Therefore, if all periods vanish, we may find
f S HO<O/, L) such that w = df (that iS, w; = dfl and fz = )\z]fz)

Proof of Lemma 2:

1)

Since L is flat, we may assume |A;;| = 1V ¢, (see [3], pg. 584). We take
as C" the curve obtained after cutting C’ along the a-curves ay, ..., ag;
C" is a compact Riemann surface with boundary ay” Uaj U---Ua} Uag;
its fundamental group m(C’,p) is generated by these curves (more
precisely, we have to join the base point p to them). It follows that
wler = df, where f € H(C',L') and L' = L|c/; we are using here that
the a-periods of w vanish.

The 2-form w A @ is well defined in C" (remember that |\;;| = 1); we
wish to prove that

//C/w/\w://ldedff:O.

Since df Adf = d(f Adf) (again: |\; | = 1V i, implies that 8 = fAdf
is a well defined 1-form in C”). By Stokes’ Theorem,

ffono= L.

Let us compare this 1-form 3 along the components of each pair (a7, a;).
Cover ay by open sets Vi,..., Vi with VinV, # 0, Vi1 NV, # 0,
Vi N V1 # () (any other intersection between those set are supposed to
be empty). In C the curve a; has two sides; we decompose V1, ..., Vj
according to each side. In this way a} is covered by V;" U---UV," and
a; by Vi U---UV, . We denote by f;" and f; the values of f in V,"
and V,~, respectively. They are obtained from the continuation of f;
we start joining p to V;© and V~ we get

fif =XM1 +ec

for some |A| =1 and some ¢ € C
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We proceed along a and a;. Let us use the transition cocycle of L along
a; (in fact along a} and aj); then

=2 = M i = Ay
Jo =Xafi, o fe = Merafimn ST =Sy
fr=M7+ 29, where X9 =X, .. Ay
We see that the 2-form fAd f along ay is given by the collection {f;" Adf;'} =
{fi Ndfi + C)‘(i)dfi_}-
When we compute fam(f (3, because of the opposite orientations induced
J J o _ _
by C"inaj and aj, [+ fiF Adf;" and [ f7 Adf; cancel each other. We are
_ J 7
left with {A\(®df,"}, which in fact is the differential of a well defined function

along a:

AV = daify =dadafy = f7 in Vi NV,
)\(i+1)ﬁ—+1 = )\2‘172‘ . )\Qﬁjrl = /\(i)/\i-i—l,i;\i-ﬁ-l,i.fi_ = )‘(Z)fz_ in ‘/P_H N ‘/i_

It follows that [ cADdf =0 and Jiia- =0 O
J J J

4 Final Remarks

Let us start by observing that the Theorem of Riemann-Roch allows us to
compute dimcH°(C,Q} ® L), L a line bundle. When L is trivial, this di-
mension is g, the genus of C'. Otherwise, the dimension is g — 1.

Another observation is that the total space [L] of a flat L carries a natural
foliation £ which has C as a leaf and whose holonomy group along C' is
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linear. To see this, we notice that L is defined by coordinates {w;} related as
w; = A\jjw; for A\;; € C. The foliation £ is given as dw; = 0. We may wonder
whether [L] carries a different foliation having C' as a leaf.

When g =1 and L is no torsion (that is, L®" is not trivial for all n € N)

d d
the answer is negative. In fact, d—F(z) € H°(C, Q) implies d—F(Q) =0, so
z z
that F® = 0. Assuming F® = 0 for 2 < i < m, we see from Proposition 2
d
that d—F(m“) € H°(C,QL ® L®™), so again Fm+D) = .

Finally, let us explain how to use the Theorem to construct surfaces
containing a curve C' such that C' - C' = 0 which are not linearizable. We
consider the horizontal foliation in C' x C; the holonomy group relatively
to C' x {0} is the Identity.. We consider then a nonlinear pseudogroup of
diffeomorphisms which is the image of a representation of the fundamental
group of C: we keep the a-generators and the b-generators as the Identity
maps except for one of the b-generators which has a nonlinear 2-jet. It follows

that the surface obtained by the suspension along C' of this pseudogroup is
not linearizable in order 2, so a fortiori not linearizable.
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