Curves of zero self-intersection and Foliations

Paulo Sad

June 17, 2011

Abstract

We study the holonomy group of a holomorphic foliation in a surface along a compact leaf. It is shown that linearization of a neighborhood of the curve implies strong restrictions in those groups.

We deal in this paper with suspensions along holomorphic curves of pseudogroups of local diffeomorphisms of \mathbb{C} which fix $0 \in \mathbb{C}$.

Let C be a holomorphic, compact, smooth curve embedded in some holomorphic smooth surface S (we will be interested in small neighborhoods of C in S). Assume that S admits two regular holomorphic foliations \mathcal{F} and \mathcal{G} such that C is a leaf of \mathcal{F} (so that the self intersection number $C \cdot C$ vanishes) and \mathcal{G} is transverse to C; let H be the holonomy group of \mathcal{F} along C (computed at some transverse section to C). Conversely, we may take the suspension of H along C, obtaining a new surface S^{\prime} which is isomorphic to $S ; S^{\prime}$ of course comes with two foliations \mathcal{F}^{\prime} and \mathcal{G}^{\prime} which are also isomorphic to \mathcal{F} and \mathcal{G}.

The question that appears in a natural way in the first context is: if S is equivalent to the normal bundle of C (at least to a certain order), what can be said about H ? The corresponding question in the context of suspensions is: which properties the pseudogroup has to satisfy so that the surface defined by its suspension along C is equivalent to the normal bundle of C (again, up to a certain order)?

Let us present a simple example that somehow illustrates the situation. Take in $C \times \mathbb{C}$ a foliation defined by

$$
d t=\left(\sum_{k=1}^{\infty} \omega_{k}(z) t^{k}\right) d z
$$

where $z \in \widetilde{C} \subset \mathbb{C}$, the universal covering space of C and any for each ω_{k} is a holomorphic 1-form of C. Let us assume that $\pi_{1}(C, p)$, the fundamental group of C with p as base point, is generated by the curves $a_{1}, \ldots, a_{g}, b_{1}, \ldots, b_{g}$ which form a sympletic basis of $H_{1}(C, \mathbb{Z})$. One sees easily that the linear holonomy group of the foliation has generators $\left\{t \mapsto \lambda_{j} t\right\}_{j=1}^{n}$ (associated to the a-curves a, \ldots, a_{g}) and $\left\{t \mapsto \mu_{j} t\right\}_{j=1}^{n}$ (associated to the b-curves b_{1}, \ldots, b_{g}) satisfy:

$$
\lambda_{j}=e^{2 i \pi \int_{a_{j}} \omega_{1}} \quad \text { and } \quad \mu_{j}=e^{2 i \pi \int_{b_{j}} \omega_{1}}
$$

Since the b-periods of a holomorphic 1 -form are determined after the a periods, we conclude that the b-generators of the linear holonomy group are also determined by the a-generators.

We may reformulate the example as: let us consider the suspension along C of a pseudogroup generated by

$$
t \mapsto \lambda_{j} t+\ldots \quad \text { and } \quad t \mapsto \mu_{j} t+\ldots
$$

to a foliation of a surface S; in order to get $C \times \mathbb{C}$ as the normal bundle of C in S (that is, S is $C \times \mathbb{C}$ up to order 1), we have a precise choise of μ_{1}, \ldots, μ_{g} once we prescribe the values $\lambda_{1}, \ldots, \lambda_{g}$.

We proceed now to the statement of our Theorem. Consider again the surface S, a curve $C \subset S$ with normal bundle N_{C} and a foliation \mathcal{G} transverse to C. We are interested in the foliations of S which have C as a leaf. Given such a foliation \mathcal{F}, we compute its holonomy group along C using a transverse section Σ to C (contained, for example, in a leaf of \mathcal{G}); let us parametrize it by a coordinate $w_{0} \in \mathbb{C}$, and write the generators as $h_{a_{j}}\left(w_{0}\right)=\sum_{j=1}^{\infty} A_{\ell}^{(j)} w_{0}^{\ell}$, $h_{b_{j}}\left(w_{0}\right)=\sum_{j=1}^{\infty} B_{\ell}^{(j)} w_{0}^{\ell}$ for $j=1, \ldots, g$. These maps depend on the foliation; we may write $h_{a_{j}}(\mathcal{F})$ and $h_{b_{j}}(\mathcal{F})$, as well as $A_{l}^{j}(\mathcal{F})$ and $B_{l}^{j}(\mathcal{F})$. We assume that $A_{1}^{j}(\mathcal{F})=\lambda_{j}$ and $B_{1}^{j}(\mathcal{F})=\mu_{j}$ are fixed (because they define N_{C}, as we have already seen).

Suppose that for a given $N \geq 2, S$ has a system of coordinates of N-type. This concept was introduced in [3], pg. 587, and essentialy means that S is equivalent to N_{C} up to order N (see Section 1).

Theorem. Assume S is equivalent to N_{C} up to order $N \geq 2$.
(1) if $A_{2}=\cdots=A_{N}=0$ then $B_{1}=\cdots=B_{N}=0$.
(2) in general, the coefficients B_{2}, \ldots, B_{N} are uniquely determined by the coefficients A_{2}, \ldots, A_{N}. In other words, if \mathcal{F}_{1} and \mathcal{F}_{2} are holomorphic foliations which have C as a leaf and if $A_{j}\left(\mathcal{F}_{1}\right)=A_{j}\left(\mathcal{F}_{2}\right)$ then $B_{j}\left(\mathcal{F}_{1}\right)=$ $B_{j}\left(\mathcal{F}_{2}\right), \quad 2 \leq j \leq N$.

What seems to be behind this Theorem is the existence, for each $2 \leq$ $\nu \leq N$, of a holomorphic differencial 1-form in the curve C whose periods are the coefficients of the terms of order ν of the generators of the holonomy group. We are not able to fully develop this idea, that is, write down the corresponding 1 -forms, except in the proof of part (1) of the Theorem and in the cases $N=2$ and $N=3$, when N_{C} is the trivial line bundle. But anyway in the proof of part (2) it is used the principle of determination of b-periods once a-periods are known.

Using this Theorem we can obtain for each integer $N \geq 2$ examples of surfaces (obtained as suspensions of pseudogroups of diffeomorphisms) which have not coordinate systems of N-type.

We are grateful to M. Brunella for his conceptual proof concerning periods of holomorphic differential 1-forms taking values in line bundles over a curve.

1 Linearizing Coordinates

We consider the situation described in the Introduction: a compact, smooth, holomorphic curve C is embedded in some holomorphic surface S carrying a holomorphic fibration \mathcal{G} transverse to C (we are in fact interested in small neighborhoods of C in S). Along C we use a coordinate $z \in \widetilde{C}$, where $\widetilde{C} \subset \mathbb{C}$ is the universal covering space of C; this coordinate can be extended to S making it constant along fibers of \mathcal{G}.

Given $N \geq 2$, a system of coordinates for S of type N is the following data:
(i) a covering $\left\{U_{i}^{\prime}\right\}$ of a neighborhood of C by open sets,
(ii) for each U_{i}^{\prime} there is a coordinate w_{i}^{\prime} such that $U_{i}=C \cap U_{i}^{\prime}$ is defined as $w_{i}^{\prime}=0$ and whenever $U_{i} \cap U_{k} \neq \emptyset$ one has

$$
\begin{equation*}
w_{k}^{\prime}=\lambda_{k i} w_{i}^{\prime}+h_{i k}(z)\left(w_{i}^{\prime}\right)^{N+1}+\ldots \tag{1}
\end{equation*}
$$

This Definition appears in [3]; the coordinates $\left(w_{i}^{\prime}\right)$, together with the coordinate z, provide a linearization of S up to order N. Remark that the 1-cocycle $\left\{\lambda_{k i}\right\}$ defines the normal bundle N_{C} of C in S, which is a flat line bundle (see [1], pg. 134)

We will assume that the open sets U_{i} are small discs, hence distinguished neighborhoods for the covering map $\widetilde{C} \rightarrow C$.

For any different system of coordinates $\left\{w_{i}\right\}$ in $\left\{U_{i}^{\prime}\right\}$

$$
\begin{equation*}
w_{i}^{\prime}=w_{i}+P_{i}\left(z, w_{i}\right) \tag{2}
\end{equation*}
$$

$\left(P_{i}\left(z, w_{i}\right)=\sum_{j=2}^{\infty} f_{i}^{(j)}(z) w_{i}^{j}\right.$ is a holomorphic function for each $\left.i\right)$ we have of course a commutative diagram

$$
\begin{array}{ccc}
w_{i} & \rightarrow w_{k} \\
\downarrow & & \downarrow \\
w_{i}^{\prime} & \rightarrow & w_{k}^{\prime}
\end{array}
$$

whenever $U_{i} \cap U_{k} \neq \emptyset$.
In the presence of a foliation \mathcal{F} which has C as a leaf, we may choose $\left\{w_{i}\right\}$ in (2) in order to have U_{i} given by $w_{i}=0$ and $\left.\mathcal{F}\right|_{U_{i}^{\prime}}$ defined by $d w_{i}=0$. It follows that whenever $U_{i} \cap U_{k} \neq \emptyset$, the change of coordinates from w_{i} to w_{k} is given by

$$
\begin{equation*}
w_{k}=\lambda_{k i} w_{i}+P_{k i}\left(w_{i}\right) \tag{3}
\end{equation*}
$$

where $P_{k i}\left(w_{i}\right)=\sum_{j=2}^{\infty} f_{k i}^{(j)} w_{i}^{j}$ is a holomorphic function $\left(f_{k i}^{(j)} \in \mathbb{C}\right)$.
Simultaneous existence of these two coordinate systems $\left\{w_{i}\right\}$ and $\left\{w_{i}^{\prime}\right\}$ originates relations between the generators of the holonomy group of the foliation.

We may assume, without loss of generality, that $P_{0}\left(0, w_{0}\right) \equiv 0$ (we fix U_{0} as the open set which contains $z=0$).

We proceed now to make a modification in these coordinate systems aiming to prove our Theorem. Consider a simply connected open set $U \subset C$, with $U_{0} \subset U$. The coordinate w_{0} can be extended as W_{0} to a neighborhood U^{\prime} of U; we start with $\left.W_{0}\right|_{U^{\prime}}=w_{0}$ ands extend it constant way along each leaf of $\left.\mathcal{F}\right|_{U^{\prime}}$. We seek to extend also w_{0}^{\prime} to U, but in fact only up to order N. Let $U_{1} \subset U, U_{0} \cap U_{1} \neq \emptyset$. In the intersection $U_{0}^{\prime} \cap U_{1}^{\prime}$ (after (1), (2) and (3) above):

$$
\begin{cases}w_{0}^{\prime}=w_{0}+\Sigma f_{0}^{(j)}(z) w_{0}^{j}, & z \in U_{0} \\ w_{1}^{\prime}=w_{1}+\Sigma f_{1}^{(j)}(z) w_{1}^{j}, & z \in U_{1} \\ w_{1}=\lambda_{10} w_{0}+\Sigma f_{10}^{(j)} w_{0}^{j} \\ w_{1}^{\prime}=\lambda_{10} w_{0}^{\prime}+h_{10}(z)\left(w_{0}^{\prime}\right)^{N+1}+\ldots\end{cases}
$$

This implies

$$
w_{1}+\Sigma f_{1}^{(j)}(z) w_{1}^{j}=\lambda_{10}\left(w_{0}+\Sigma f_{0}^{(j)}(z) w_{0}^{j}\right) \quad \bmod w_{0}^{N+1}
$$

or

$$
\sum_{j \geq 2} f_{10}^{(j)}+\sum_{j \geq 2} f_{1}^{(j)}(z)\left(\lambda_{10} w_{0}+\sum_{\ell \geq 2} f_{10}^{(\ell)} w_{0}^{\ell}\right)^{j}=\lambda_{10} \sum_{j \geq 2} f_{0}^{(j)}(z) w_{0}^{j} \bmod w_{0}^{N+1}
$$

We fix $2 \leq \nu \leq N$ and compare the coefficients of w_{0}^{j} in both sides, what leads to $\left(z \in U_{0} \cap U_{1}\right)$

$$
\lambda_{10} f_{0}^{(\nu)}(z)=\lambda_{10}^{\nu} f_{1}^{(\nu)}(z)+A_{\nu-1}^{(\nu)} f_{1}^{(\nu-1)}(z)+\cdots+A_{2}^{(\nu)} f_{1}^{(\nu)}(z)+f_{10}^{(\nu)}
$$

where $A_{\nu-1}^{(\nu)}, \ldots, A_{2}^{(\nu)}$ are algebraic functions of $f_{10}^{(2)}, \ldots, f_{10}^{(\nu-1)}$ (the precise expressions are not needed here).

Therefore $f_{0}^{(\nu)}(z)$ can be extended to U_{1} as

$$
\lambda_{10}^{\nu-1} f_{1}^{(\nu)}(z)+\lambda_{10}^{-1}\left[A_{\nu-1}^{(\nu)} f_{1}^{(\nu-1)}(z)+\cdots+A_{2}^{(\nu)} f_{1}^{(2)}(z)\right]+\lambda_{10}^{-1} f_{10}^{(\nu)}
$$

so we may define $W_{0}^{\prime}=W_{0}+\sum_{j=2}^{N} f_{0}^{(j)}(z) W_{0}^{j}, z \in U_{0} \cap U_{1}$
Claim: The diagram

$$
\begin{array}{ccc}
W_{0} & \rightarrow w_{1} \\
\downarrow & & \downarrow \\
W_{0}^{\prime} & \rightarrow & w_{1}^{\prime}
\end{array}
$$

commutes over U_{1} up to order N.
This is quite obvious, because the diagram is commutative over $U_{0} \cap U_{1} \subset$ U_{1}.

We repeat the reasoning for $U_{2} \cap U_{1} \neq \emptyset, U_{2} \subset U$. From the commutativity of the above diagram and also of the diagram

$$
\begin{array}{ccc}
w_{1} & \rightarrow & w_{2} \\
\downarrow & & \downarrow \\
w_{1}^{\prime} & \rightarrow & w_{2}^{\prime}
\end{array}
$$

in $U_{1} \cap U_{2}$ (up to order N), we see that

$$
\begin{array}{ccc}
W_{0} & \rightarrow w_{2} \\
\downarrow & & \downarrow \\
W_{0}^{\prime} & \rightarrow & w_{2}^{\prime}
\end{array}
$$

is commutative over $U_{1} \cap U_{2}$ (up to order N).
We go on until U is covered. We have proved then
Lemma 1. Suppose $U_{k} \cap U \neq \emptyset$. Then

$$
\begin{array}{ccc}
W_{0} & \rightarrow w_{k} \\
\downarrow & & \downarrow \\
W_{0}^{\prime} & \rightarrow & w_{k}^{\prime}
\end{array}
$$

is commutative (up to order N).
We remark that we have also proved:
Proposition 1. The functions $f_{0}^{(2)}, \ldots, f_{0}^{(N)}$ have holomorphic extensions $F^{(2)}, \ldots, F^{(N)}$ to \widetilde{C}, the universal covering space of C.

We can be more precise:
Proposition 2. Let $\operatorname{Hol}(\mathcal{F}, C)$ be computed in the section of coordinates $\left(0, W_{0}\right)$ as

$$
h_{\tau}\left(W_{0}\right)=\lambda_{\tau} W_{0}+\sum_{j \geq 2} C_{\tau}^{(j)} W_{0}^{j}, \quad \tau \in \pi_{1}(C, p) .
$$

Therefore
(4) $F^{(\nu)}(\tau(z))=\lambda_{\tau}^{\nu-1} F^{(\nu)}(z)+D_{\tau, \nu-1}^{(\nu)} F^{(\nu-1)}(z)+\cdots+D_{\tau, 2}^{(\nu)} F^{(2)}(z)+\lambda_{\tau}^{-1} C_{\tau}^{(\nu)}$
for $z \in \widetilde{C}$; the coefficients $D_{\tau, \nu-1}^{(\nu)}, \ldots, D_{\tau, 2}^{(\nu)}$ are algebraic expressions in λ_{τ}, $C_{\tau}^{(2)}, \ldots, C_{\tau}^{(\nu-1)}$.

Proof: Let us fix for example $\tau=\tau_{a_{1}}$ and apply Lemma 1 taking \mathcal{P} or $\tau_{a_{1}}(\mathcal{P})$ as $U ; \mathcal{P}$ is a fundamental polygon of sides $a_{1}, b_{1}, a_{1}^{-}, b_{1}^{-}, \ldots, a_{g}, b_{g}, a_{g}^{-}, b_{g}^{-}$.

We link \mathcal{P} and $\tau_{a_{1}}(\mathcal{P})$ by a small neighborhood U_{k} of some point of a_{1}^{-}. The coordinate W_{0} of Lemma 1 can be used for neighborhoods $\left(\mathcal{P} \cup U_{k}\right)^{\prime}$ of $\mathcal{P} \cup U_{k}$ and $\tau_{a_{1}}(\mathcal{P})^{\prime}$ of $\tau_{a_{1}}(\mathcal{P})$; a leaf which is $\left\{W_{0}=a\right\}$ in $\mathcal{P} \cup U_{k}$ arrives at $\left(\tau_{a_{1}}(\mathcal{P})\right)^{\prime}$ as $W_{0}=h_{a_{1}}(a)$. Let us use, for the sake of clarity, the notations \bar{W}_{0} and \bar{W}_{0}^{1} for coordinates of points in $\tau(\mathcal{P})^{\prime}$.

The Proposition follows after applying the same computations we did in the proof of Lemma 1: we pass from U_{k}^{\prime} to $\tau_{a_{1}}(\mathcal{P})^{\prime}\left(\bar{W}_{0}\right.$ and \bar{W}_{0}^{\prime} play the role of w_{1} and w_{1}^{\prime}) and the change of coordinates from w_{k} to \bar{W}_{0} is given by $h_{a_{1}}$.

2 Two Particular Cases

We assume that N_{c} is the trivial line bundle. The cases $\nu=2$ and $\nu=3$ are easy to deal with directly. Start with $\nu=2$. Proposition 1 gives

$$
F^{(2)}(\tau(z))=F^{(2)}(z)+C_{\tau}^{(2)}
$$

Each $C_{\tau}^{(2)}$ is the τ-period of the holomorphic 1-form of C

$$
\left[\frac{d}{d z} F^{(2)}(z)\right] d z
$$

Since a-periods determine b-periods, the numbers $C_{a_{1}}^{(2)}, \ldots, C_{a_{g}}^{(2)}$ deter$\operatorname{mine} C_{b_{1}}^{(2)}, \ldots, C_{b_{g}}^{(2)}$.

Let us go to the next case $\nu=3$. Then:

$$
F^{(3)}(\tau(z))=F^{(3)}(z)+D_{\tau, 2}^{(3)} F^{(2)}(z)+C_{\tau}^{(3)} .
$$

It can easily be seen that $D_{\tau, 2}^{(3)}=2 C_{\tau}^{(3)}$, which implies:

$$
\frac{d}{d z} F^{(3)}(\tau(z)) \tau^{\prime}(z)=\frac{d}{d z} F^{(3)}(z)+D_{\tau, 2}^{(3)} \frac{d}{d z} F^{(2)}(z)
$$

and

$$
\frac{\frac{d}{d z} F^{(3)}(\tau(z))}{\frac{d}{d z} F^{(2)}(\tau(z))}=\frac{\frac{d}{d z} F^{(3)}(z)}{\frac{d}{d z} F^{(2)}(z)}+2 C_{\tau}^{(2)}=\frac{\frac{d}{d z} F^{(3)}(z)}{\frac{d}{d z} F^{(2)}(z)}+2\left(F^{(2)}(\tau(z))-F^{(2)}(z)\right) .
$$

Finally:

$$
\frac{\frac{d}{d x} F^{(3)}(\tau(z))}{\frac{d}{d z} F^{(2)}(\tau(z))}=2 F^{(2)}(\tau(z))=\frac{\frac{d}{d z} F^{(3)}(z)}{\frac{d}{d x} F^{(2)}(z)}-2 F^{(2)}(z)
$$

We see that

$$
\left[\frac{\frac{d}{d z} F^{(3)}(z)}{\frac{d}{d z} F^{(2)}(z)}-2 F^{(2)}(z)\right]\left[\frac{d}{d z} F^{(2)}(z)\right] d z
$$

is a holomorphic 1-form of C^{\prime}, so the same is true for

$$
\left[\frac{d}{d z} F^{(3)}(z)-2 F^{(2)}(z) \frac{d}{d z} F^{(2)}(z)\right] d z
$$

or

$$
\frac{d}{d z}\left[F^{(2)}(z)-\left(F^{(2)}(z)\right)^{2}\right] d z
$$

The τ-period is $F^{(3)}(\tau(0))-\left[F^{(2)}(\tau(0))\right]^{2}=C_{\tau}^{(3)}-\left(C_{\tau}^{(2)}\right)^{2}$. Once more we conclude that $C_{a_{1}}^{(3)}, \ldots, C_{a_{g}}^{(3)}$ determine $C_{b_{1}}^{(3)}, \ldots, C_{b_{g}}^{(3)}$.

We are not able to exhibit appropriate holomorphic 1-forms for $\nu \geq 4$ allowing comparision between periods. We prove our Theorem by a less explicit method.

3 Proof of the Theorem

Let us take regular foliations \mathcal{F}_{1} and \mathcal{F}_{2} in the surface S which have a smooth, holomorphic curve $C \subset S$ as a leaf. We assume that S is equivalent to N_{C}
up to order $N, N \geq 2$. We wish to prove that $\operatorname{Hol}\left(\mathcal{F}_{1}, C\right)$ and $\operatorname{Hol}\left(\mathcal{F}_{2}, C\right)$ are the same up to order N, under the hypothesis that the a-generators of both groups are the same op to order N (as before, the holonomy groups are computed for the transversal in U_{0} with coordinates $\left(0, w_{0}\right)$).

By Proposition 2 we have functions $F_{1}^{(2)}, \ldots, F_{1}^{(N)}$ and $F_{2}^{(2)}, \ldots, F_{2}^{(N)}$ in \widetilde{C} associated to \mathcal{F}_{1} and \mathcal{F}_{2} satisfying relations as in (4); we may assume $F_{1}^{(\nu)}(0)=F_{2}^{(\nu)}(0) \forall 2 \leq \nu \leq N$. We will prove that $F_{1}^{(\nu)}=F_{2}^{(\nu)} \forall 2 \leq \nu \leq N$ by induction. If $\nu=2$, we observe that

$$
\frac{d}{d z}\left[F_{1}^{(2)}(z)-F_{2}^{(2)}(z)\right] d z \in H^{0}\left(C, \Omega_{C}^{1} \otimes N_{C}\right)
$$

We have to show that this 1 -form is zero. Next, if assumed that $F_{1}^{(\nu)} \equiv$ $F_{2}^{(\nu)}$ for $2 \leq \nu \leq N-1$:

$$
\frac{d}{d z}\left[F_{1}^{(N)}(z)-F_{2}^{(N)}(z)\right] d z \in H^{0}\left(C, \Omega_{C}^{1} \otimes N_{C}^{\otimes(n-1)}\right)
$$

and this will be proven to be zero.
The hypothesis in the statement of the Theorem implies that the a-periods of these 1 -forms vanish.

What we need then is
Lemma 2. Let $\omega \in H^{0}\left(C, \Omega_{C}^{1} \otimes L\right)$, where L is some flat line bundle over C. If ω has vanishing a-periods, then $\omega \equiv 0$.

The case of a trivial line bundle is well-known (see [2],pg.142); we will adapt the proof. In that situation, periods appear as obstructions to exactness of holomorphic 1-forms.

In general, let L be defined by a cocycle $\left\{\lambda_{i j}\right\}$ associated to a covering by open sets $\left\{V_{i}\right\}$ of a compact curve C^{\prime}, which may have boundary components. A differential $\omega \in H^{0}\left(C^{\prime}, \Omega_{C^{\prime}}^{1} \otimes L\right)$ has local expressions $\left\{\omega_{i}\right\}$ related as $\omega_{i}=\lambda_{i j} \omega_{j}$; we try to find $\left\{f_{i}\right\} \in H^{0}\left(C^{\prime}, L\right)$ in order to have $\omega_{i}=d f_{i}$. Fix $p \in V_{0}$ and $f_{0} \in \mathcal{O}_{V_{0}}$ such that $\omega_{0}=d f_{0}$; we will take the analytic "continuation" of f_{0} to C^{\prime}. Given $q \in C^{\prime}$ and a path joining p to q, we cover it by $V_{0} \cup \cdots \cup V_{\ell}$ and select f_{1}, \ldots, f_{ℓ} satisfying $\omega_{i}=d f_{i}$ and $f_{i+1}=\lambda_{i+1, i} f_{i}$. The problem arises when we try to do this for a different path from p to q. Or, equivalently, if we take a closed path γ passing through p and apply the same construction, we may arrive to a relation (became $V_{\ell} \cap V_{0} \neq \emptyset$) of the
kind

$$
f_{0}=\lambda_{0 \ell} f_{\ell}+a
$$

for some $a \in \mathbb{C}$ (this is the γ-period of ω; it is independent of the choice of γ in its homotopy class). Therefore, if all periods vanish, we may find $f \in H^{0}\left(C^{\prime}, L\right)$ such that $\omega=d f$ (that is, $\omega_{i}=d f_{i}$ and $f_{i}=\lambda_{i j} f_{i}$).

Proof of Lemma 2:

1) Since L is flat, we may assume $\left|\lambda_{i j}\right|=1 \forall i, j$ (see [3], pg. 584). We take as C^{\prime} the curve obtained after cutting C^{\prime} along the a-curves a_{1}, \ldots, a_{g}; C^{\prime} is a compact Riemann surface with boundary $a_{1}^{+} \cup a_{1}^{-} \cup \cdots \cup a_{g}^{+} \cup a_{g}^{-}$; its fundamental group $\pi_{1}\left(C^{\prime}, p\right)$ is generated by these curves (more precisely, we have to join the base point p to them). It follows that $\left.\omega\right|_{C^{\prime}}=d f$, where $f \in H^{0}\left(C^{\prime}, L^{\prime}\right)$ and $L^{\prime}=\left.L\right|_{C^{\prime}}$; we are using here that the a-periods of ω vanish.
2) The 2-form $\omega \wedge \bar{\omega}$ is well defined in C^{\prime} (remember that $\left|\lambda_{i j}\right|=1$); we wish to prove that

$$
\iint_{C^{\prime}} \omega \wedge \bar{\omega}=\iint_{C^{\prime}} d f \wedge d f \bar{f}=0
$$

Since $d f \wedge d \bar{f}=d(f \wedge d \bar{f})$ (again: $\left|\lambda_{i j}\right|=1 \forall i, j$ implies that $\beta=f \wedge d \bar{f}$ is a well defined 1 -form in C^{\prime}). By Stokes’ Theorem,

$$
\iint_{C^{\prime}} \omega \wedge \bar{\omega}=\int_{\delta C^{\prime}} \beta .
$$

Let us compare this 1-form β along the components of each pair $\left(a_{J}^{+}, a_{J}^{-}\right)$. Cover a_{J} by open sets V_{1}, \ldots, V_{k} with $V_{1} \cap V_{2} \neq \emptyset, V_{k-1} \cap V_{k} \neq \emptyset$, $V_{k} \cap V_{1} \neq \emptyset$ (any other intersection between those set are supposed to be empty). In C the curve a_{J} has two sides; we decompose V_{1}, \ldots, V_{k} according to each side. In this way a_{J}^{+}is covered by $V_{1}^{+} \cup \cdots \cup V_{k}^{+}$and a_{J}^{-}by $V_{1}^{-} \cup \cdots \cup V_{k}^{-}$. We denote by f_{i}^{+}and f_{i}^{-}the values of f in V_{i}^{+} and V_{i}^{-}, respectively. They are obtained from the continuation of f_{0}; we start joining p to V_{1}^{+}and V_{1}^{-}we get

$$
f_{1}^{+}=\lambda f_{1}^{-}+c
$$

for some $|\lambda|=1$ and some $c \in \mathbb{C}$

We proceed along a_{J}^{+}and a_{J}^{-}. Let us use the transition cocycle of L along a_{J} (in fact along a_{J}^{+}and a_{J}^{-}); then

$$
\begin{aligned}
& f_{2}^{+}=\lambda_{21} f_{1}^{+}, \ldots, f_{k}^{+}=\lambda_{k, k-1} f_{k-1}^{+}, \quad f_{1}^{+}=\lambda_{1 k} f_{k}^{+} \\
& f_{2}^{-}=\lambda_{21} f_{1}^{-}, \ldots, f_{k}^{-}=\lambda_{k, k-1} f_{k-1}^{-}, \quad f_{1}^{-}=\lambda_{1 k} f_{k}^{-} \\
& f_{i}^{+}=\lambda f_{i}^{-}+\lambda^{(i)} c, \quad \text { where } \quad \lambda^{(i)}=\lambda_{i, i-1} \ldots \lambda_{21} .
\end{aligned}
$$

We see that the 2-form $f \wedge d \bar{f}$ along a_{J} is given by the collection $\left\{f_{i}^{+} \wedge d \bar{f}_{i}^{+}\right\}=$ $\left\{f_{i}^{-} \wedge d \bar{f}_{i}^{-}+c \lambda^{(i)} d \bar{f}_{i}^{-}\right\}$.

When we compute $\int_{a_{J}^{+} \cup a_{J}^{-}} \beta$, because of the opposite orientations induced by C^{\prime} in a_{J}^{+}and $a_{J}^{-}, \int_{a_{J}^{+}} f_{i}^{+} \wedge d \bar{f}_{i}^{+}$and $\int_{a_{J}^{-}} f_{i}^{-} \wedge d \bar{f}_{i}^{-}$cancel each other. We are left with $\left\{\lambda^{(i)} d \bar{f}_{i}^{-}\right\}$, which in fact is the differential of a well defined function along a_{J}^{-}:

$$
\begin{gathered}
\lambda^{(2)} \bar{f}_{2}^{-}=\lambda_{21} \bar{f}_{2}^{-}=\lambda_{21} \bar{\lambda}_{21} \bar{f}_{1}^{-}=\bar{f}_{1}^{-} \quad \text { in } V_{1}^{-} \cap V_{2}^{-} \\
\vdots \\
\lambda^{(i+1)} \bar{f}_{i+1}^{-}=\lambda_{i_{1}, i} \ldots \lambda_{2} \bar{f}_{i+1}^{-}=\lambda^{(i)} \lambda_{i+1, i} \bar{\lambda}_{i+1, i} \bar{f}_{i}^{-}=\lambda^{(i)} \bar{f}_{i}^{-} \text {in } V_{i+1}^{-} \cap V_{i}^{-}
\end{gathered}
$$

It follows that $\int_{a_{J}^{-}} c \lambda^{(i)} d \bar{f}_{i}^{-}=0$ and $\int_{a_{J}^{+} \cup a_{J}^{-}} \beta=0$

4 Final Remarks

Let us start by observing that the Theorem of Riemann-Roch allows us to compute $\operatorname{dim}_{\mathbb{C}} H^{0}\left(C, \Omega_{C}^{1} \otimes L\right), L$ a line bundle. When L is trivial, this dimension is g, the genus of C. Otherwise, the dimension is $g-1$.

Another observation is that the total space $[L]$ of a flat L carries a natural foliation \mathcal{L} which has C as a leaf and whose holonomy group along C is
linear. To see this, we notice that L is defined by coordinates $\left\{w_{i}\right\}$ related as $w_{i}=\lambda_{i j} w_{j}$ for $\lambda_{i j} \in \mathbb{C}$. The foliation \mathcal{L} is given as $d w_{i}=0$. We may wonder whether $[L]$ carries a different foliation having C as a leaf.

When $g=1$ and L is no torsion (that is, $L^{\otimes n}$ is not trivial for all $n \in \mathbb{N}$) the answer is negative. In fact, $\frac{d}{d z} F^{(2)} \in H^{0}\left(C, \Omega_{C}^{1}\right)$ implies $\frac{d}{d z} F^{(2)}=0$, so that $F^{(2)}=0$. Assuming $F^{(i)}=0$ for $2 \leq i \leq m$, we see from Proposition 2 that $\frac{d}{d z} F^{(m+1)} \in H^{0}\left(C, \Omega_{C}^{1} \otimes L^{\otimes m}\right)$, so again $F^{(m+1)}=0$.

Finally, let us explain how to use the Theorem to construct surfaces containing a curve C such that $C \cdot C=0$ which are not linearizable. We consider the horizontal foliation in $C \times \mathbb{C}$; the holonomy group relatively to $C \times\{0\}$ is the Identity.. We consider then a nonlinear pseudogroup of diffeomorphisms which is the image of a representation of the fundamental group of C : we keep the a-generators and the b-generators as the Identity maps except for one of the b-generators which has a nonlinear 2-jet. It follows that the surface obtained by the suspension along C of this pseudogroup is not linearizable in order 2 , so a fortiori not linearizable.

References

[1] R. Gunning Lectures on Riemann Surfaces, Princeton University Press (1966).
[2] E. Reyssat Quelques Aspects des Surfaces de Riemann, Birkhauser (1989).
[3] T. Ueda On the neighborhood of a compact complex curve with topologically trivial normal bundle, J. Math. Kyoto Univ. Volume 22, Number 4 (1982), 583-607.

Paulo Sad
Instituto de Matemática Pura e Aplicada, IMPA.
Estrada Dona Castorina, 110, 22460-010
Rio de Janeiro, RJ, Brazil.
E-mail: sad@impa.br

