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Abstract We consider a class of decomposition methods for variational inequalities, which
is related to the classical Dantzig–Wolfe decomposition of linear programs. Our approach is
rather general, in that it can be used with certain types of set-valued or nonmonotone opera-
tors, as well as with various kinds of approximations in the subproblems of the functions and
derivatives in the single-valued case. Also, subproblems can be solved approximately. Con-
vergence is established under reasonable assumptions. We also report numerical experiments
for computing variational equilibria of the game-theoretical models of electricity markets.
Our numerical results illustrate that the decomposition approach allows to solve large-scale
problem instances otherwise untractable if the widely used PATH solver is applied directly,
without decomposition.
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1 Introduction

Let F : Rn⇒Rn be a set-valued function from Rn to the subsets of Rn, and let Sh and Sg be
two closed convex sets in Rn. We consider the variational inequality problem VI(F,Sh∩Sg)
[14], which means to find

x̄ ∈ Sh∩Sg such that 〈w̄,x− x̄〉 ≥ 0 for some w̄ ∈ F(x̄) and all x ∈ Sh∩Sg. (1)

In what follows, we assume that Sh = {x : h(x) ≤ 0} with h : Rn → Rq being convex and
differentiable, and Sg is a generic closed convex set which is easier (in some sense) to han-
dle than the set Sh and the intersection Sh ∩ Sg. The set Sh is defined by inequality con-
straints only for simplicity; affine equality constraints can be introduced in our develop-
ments without any difficulties. We assume that the operator F is either single-valued and
continuous (possibly nonmonotone) or it is maximal monotone, i.e., it is monotone (it holds
that 〈u− v,x− y〉 ≥ 0 for all x,y ∈ domF = {z : F(z) 6= /0} and all u ∈ F(x), v ∈ F(y)) and
its graph is not contained in the graph of any other monotone operator. We also assume that
VI(F,Sh∩Sg) has a nonempty solution set, and that Sg ⊂ int(domF). We note that the latter
assumption could be more general; we use the stated one for simplicity, as the issue does
not seem to be of real importance in a paper devoted to a computational algorithm.

The setting just described suggests trying to deal with the constraint sets Sh and Sg
separately, i.e., by some type of decomposition of the problem VI(F,Sh ∩ Sg). Many de-
composition techniques (for monotone problems) are explicitly derived from the proximal
point method [29,32] for maximal monotone operators, e.g., [41,10,42,44]. Sometimes the
relation to the proximal iterates is less direct, e.g., the methods in [4,11,43,17,31], which
were nevertheless more recently generalized and interpreted in [37,27] within the hybrid
inexact proximal schemes of [39,30]. As some other decomposition methods, we might
mention [22] which employs projection and cutting-plane techniques for certain structured
problems, matrix splitting for complementarity problems in [6], and the applications of the
latter to stochastic complementarity problems in [35]. The methods cited above typically
assume monotonicity and, from the beginning, some rather specific structure in the mapping
F and/or in the constraints defining the feasible set. In that sense, our setting VI(F,Sh∩Sg)
and the subsequent developments are more general, as in the single-valued case F is allowed
to be nonmonotone and no specific structural assumptions are being made about F or about
the constraints. That said, if separable features are present, they can be exploited at the stage
of solving the subproblems.

The decomposition approach in this paper is of the type of the Dantzig–Wolfe technique
for linear programming [8], which we recall next. Given the affine functions f : Rn → R,
h : Rn→ Rp and g : Rn→ Rq (there is no need to define them here explicitly), consider the
linear program

min f (x) s.t. h(x)≤ 0, g(x)≤ 0. (2)

Note that this problem is equivalent to VI( f ′,Sh∩Sg), where f ′ is the gradient of f , the set
Sh is defined above, and Sg = {x : g(x)≤ 0}. Assuming that the structure of the problem data
is such that linear optimization over the set Sg can be carried out easily (as compared to min-
imizing over Sh ∩ Sg), the idea of the Dantzig–Wolfe method is to perform the Lagrangian
relaxation of the h-constraints, and to apply the cutting-plane algorithm [2, Sec. 9.3.2] for
nonsmooth optimization to the Lagrangian dual

max
µ∈Rq

+

θ(µ),
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where
θ(µ) = inf

x∈Sg
{ f (x)+ 〈h(x),µ〉}. (3)

When set in an iterative framework, Dantzig-Wolfe method means the following. Given
the current dual iterate µk

M ∈ Rq
+, the k-th subproblem consists of computing the value

of the dual function θ(µk
M), which means obtaining a minimizer xk+1

S for the linear pro-
gram in (3). By construction, xk+1

S ∈ Sg and we have a subgradient −h(xk+1
S ) ∈ ∂ (−θ)(µk

M)
(where ∂ (−θ) denotes the subdifferential of the convex function −θ ). For k ≥ 1, suppose
we have computed solutions of the previous subproblems {x0

S, . . . ,x
k
S} ⊂ Sg. Then the k-

th master problem replaces the set Sg in the original problem (2) by the approximation
conv{x0

S, . . . ,x
k
S}, where convD stands for the convex hull of the set D, and solves the fol-

lowing linear program:
min f (x)
x ∈ conv{x0

S, . . . ,x
k
S}

x ∈ Sh

⇔


min f

(
∑

k
i=0 αixi

S

)
= ∑

k
i=0 αi f (xi

S)
α ∈Ωk+1
h
(
∑

k
i=0 αixi

S

)
= ∑

k
i=0 αih(xi

S)≤ 0,
(4)

where Ωk+1 = {α ∈Rk+1
+ : ∑

k
j=0 αi = 1} is the unit simplex in Rk+1. This gives a solution xk

M

and a multiplier µk
M ∈ Rq

+ associated to the h-constraint in (4). Then the new dual function
value θ(µk

M) is computed, as well as an associated xk+1
S in (3), and the process is repeated.

From the point of view of maximizing the dual function θ , the dual problem of the master
problem (4) corresponds to an iteration of the cutting-plane method, i.e., to solving the linear
programming formulation of

max
µ∈Rq

+

θ
k(µ) := min

i=0,...,k
{ f (xi

S)+ 〈h(xi
S),µ〉}.

The Dantzig–Wolfe approach for linear programs is particularly effective when h is the
coupling constraint without which the minimization in (3) decomposes further according to
some favorable (block-separable) structure of g. For some large-scale applications of this
type, the resulting method is faster than solving the original linear program (2) directly,
e.g., [19,7]. Stabilization techniques of bundle methods [2, Ch. 10] can be used to define
stabilized master problems and improve computational performance of the cutting-plane
scheme [1,3].

Let us now go back to the variational problem (1). As is well known, it is equivalent
to the inclusion 0 ∈ F(x̄)+NSh∩Sg(x̄), where by ND(x) we denote the normal cone to the
convex set D at the point x, i.e., ND(x) = {v : 〈v,u−x〉 ≤ 0 ∀u ∈D} if x ∈D and ND(x) = /0
otherwise. Let x̄ ∈ Sh∩Sg. Under appropriate constraint qualification conditions for the sets
Sh and Sg (see, e.g., [14, Chapter 3.2] and [38]), it holds that NSh∩Sg(x̄) = NSh(x̄)+NSg(x̄)
and NSh(x̄) = {u : u = [h′(x̄)]>µ, µ ∈ Rq

+, µ ⊥ h(x̄)}, where the notation u⊥ v means that
〈u,v〉= 0. In particular, for any solution x̄ of (1), there exists a multiplier µ̄ ∈ Rq

+ such that

0 ∈ F(x̄)+ [h′(x̄)]>µ̄ +NSg(x̄), 0≤ µ̄ ⊥ h(x̄)≤ 0.

Hence, solving problem (1) is equivalent to finding (x̄, µ̄) such that{
(x̄, µ̄) ∈ Sh×Rq

+, µ̄ ⊥ h(x̄),
x̄ solves VI(F(·)+ [h′(·)]>µ̄,Sg).

(5)

A natural extension of the ideas of the Dantzig–Wolfe decomposition to this variational
setting is then the following. Using the current multiplier estimate µk

M ∈ Rq
+ (instead of
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the unknown “optimal” µ̄), the k-th subproblem solves a variational inequality with the
structure in (5), to obtain a new primal point xk+1

S . In particular, this variational problem is
over the simpler set Sg, with the h-constraint dealt with in a manner similar to the Lagrangian
relaxation approach. Using solutions of the previous subproblems {x0

S, . . . ,x
k
S} ⊂ Sg, the k-th

master problem solves a variational inequality with the structure in (1), except that the set
Sg therein is approximated by conv{x0

S, . . . ,x
k
S} (recall (4)). This gives a solution xk+1

M and a
new multiplier estimate µ

k+1
M ∈ Rq

+ for the h-constraint, and the process is repeated. Thus,
we iteratively generate two sequences of (approximate) solutions of the problems (1) and
(5), using at each iteration the solution of one problem to improve the solution of the other.
We shall postpone the details and various possible options to be discussed later.

A Dantzig–Wolfe method along these lines had been introduced for (single-valued) vari-
ational inequalities in [16,5]. In [16] some restrictive assumptions are employed. For exam-
ple, F is required to be either strictly monotone or to be a separable combination of a strictly
monotone part with a gradient of a differentiable convex function. The subproblems have
the specific form VI(F(·)+ [h′(xk

M)]>µk
M,Sg). Also, the solvability of all the subproblems is

an assumption. Some of the restrictive assumptions have been alleviated in [5], where also a
useful feature of approximating F in the subproblems is introduced. The latter can be help-
ful in applications where the subproblem VI(F(·)+ [h′(xk

M)]>µk
M,Sg) is not decomposable,

but using instead of F a suitable approximation makes it decomposable and thus easier to
solve. One possibility considered in [5] is fixing the value of F at the last master solution,
i.e., solving VI(F(xk

M)+ [h′(xk
M)]>µk

M,Sg). The other possibility uses a Jacobi-like approx-
imation, where only some components of x are fixed at their values at xk

M . In this paper,
we shall also consider other approximations, for example of the Josephy–Newton type [20],
which approximates F(·) in the smooth single-valued case by F(xk

M)+F ′(xk
M)(·− xk

M). We
shall also allow combinations of various approximations. In fact, in our numerical results
in Section 4, we found that the combination of the Newtonian and Jacobi approximations
works best for large problems of the structure considered there. In addition, and as com-
pared to [16,5], our framework also allows for approximations to the derivative h′; does not
assume solvability of the subproblems; allows for inexact solutions of subproblems; gives
an option of generating (cheap) additional cuts by projecting a selection of previous iterates
using separation ideas [24,36]; and can handle the general case of F being set-valued.

The rest of the paper is organized as follows. In Section 2 we formally state the algo-
rithm and discuss the approximation options for F and h′, inexact solution of subproblems,
and other details. Convergence analysis is given in Section 3. Numerical results for comput-
ing variational equilibria of game-theoretical models of electricity markets are presented in
Section 4. In particular, we show that some specific implementations of our approach make
it possible to solve problem instances which are too large to be handled by the widely used
PATH solver [9,15] applied directly to the full problem without decomposition. This is also
a difference with the methods in [16,5] where the considered examples were solved faster
without decomposition than with decomposition.

A few words about our notation are in order. For a closed convex set D and a point
x, by PD(x) we denote the projection of x onto D. Given the set Sh defined above and any
polyhedral set D, we say that the (generalized) Slater constraint qualification holds for the
set Sh ∩D if there exists x ∈ D such that h(x) < 0. The function F : Rn ⇒ Rn is strictly
monotone if 〈u− v,x− y〉> 0 for all x,y ∈ domF and u ∈ F(x), v ∈ F(y) with x 6= y; and it
is strongly monotone if there exists c > 0 such that 〈u−v,x−y〉 ≥ c‖x−y‖2 for any choices
above. We say that F : Rn ⇒ Rn is outer semicontinuous if for any sequences {xk},{yk}
such that {xk} → x̄ and {yk} → ȳ with yk ∈ F(xk), it holds that ȳ ∈ F(x̄). We say that a
family of set-valued functions {Fk} is equicontinuous on compact sets if for every compact
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set D and every ε > 0 there exists δ > 0 such that for any x,y ∈ D with ‖x− y‖ < δ , for
every k it holds that dH(Fk(x),Fk(y))< ε , where dH is the Hausdorff distance bewteen the
sets defined by

dH(A,B) = inf{r > 0 : A⊂ B+B(0,r) and B⊂ A+B(0,r)}.

Note that since we assume that F is either continuous or maximal monotone, it is therefore
outer semicontinuous. In addition, since Sg ⊂ int(domF), it holds that F is locally bounded
on Sg [33].

2 The algorithmic framework

In view of (5), having a current multiplier estimate µk
M for the h-constraint, perhaps the first

natural approach would be to solve the subproblem

VI(F(·)+ [h′(·)]>µ
k
M,Sg). (6)

This is a valid option indeed, but it may have drawbacks, at least for some types of problem
structures. For example, if (6) involves a general nonlinear (and possibly nonmonotone)
mapping F , it may prevent us from taking full advantage of some special structure of the
set Sg (e.g., Sg may be block-separable). The same comment applies to the nonlinearity
of the derivative of h. Another issue is that the set Sg in (6) may be unbounded (even if
Sh∩Sg were bounded), in which case (6) is not guaranteed to have solutions if F is merely
continuous/monotone. For these reasons, we shall consider various approximations to F and
h′ that include (6) itself as an option, possibly regularized by a variable-metric proximal
term to induce solvability of subproblems if needed. The algorithm is as follows.

Algorithm 1 (Dantzig-Wolfe Decomposition)

1. Choose x0
S ∈ Sg ∩Sh, such that h(x0

S) < 0 if h is not affine. Choose µ0
M ∈ Rq

+ and w0
M ∈

F(x0
M). Set x0

M = x0
S and k := 0.

2. The Subproblem: Choose an approximation Fk : Rn⇒Rn of F(·), an approximation
Hk : Rn → Rq×n of h′(·), a possible modification of µk

M given by µk : Rn → Rq
+, and

a positive (semi)definite matrix Qk ∈ Rn×n. Find xk+1
S , an approximate solution of the

problem

VI(F̂k,Sg), (7)

F̂k(x) = Fk(x)+ [Hk(x)]>µ
k(x)+Qk(x− xk

M). (8)

3. The Master Problem: Choose a finite set Xk+1 containing {x0
S, . . . ,x

k+1
S }. Find a solu-

tion xk+1
M of the problem

VI(F,Sh∩ convXk+1), (9)

with the associated wk+1
M ∈ F(xk+1

M ) and a Lagrange multiplier µ
k+1
M associated to the

h-constraint.
4. Set k := k+1 and go to Step 2.
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Some comments are in order.
In Step 1, choosing a feasible starting point is needed to guarantee that the master prob-

lems (9) are feasible for all k. When h is not affine, the role of the condition h(x0
S) < 0 is

to ensure that the Slater constraint qualification holds for the master problems (9) for all k,
so that there exist Lagrange multipliers associated to the h-constraint in (9). If h is affine,
then (9) is a linearly constrained problem and the existence of Lagrange multipliers is au-
tomatic. That said, computing a (strictly) feasible starting point may be nontrivial in some
applications. For this reason, Section 2.5 below presents a modification of the algorithm in
which the h-constraints are relaxed by introducing slack variables, and computing a starting
feasible point is required only for the set Sg (recall that this set is assumed to be simple in
our context). Master problems (9) are solved introducing simplicial parametrization of the
convex hull, similarly to (4) in the case of linear programs.

The options for approximations Fk and Hk in the subproblems, as well as an augmented-
Lagrangian type modification µk of the multiplier estimate µk

M , will be discussed in Sec-
tion 2.1 below. As for the regularization matrix Qk, it should generally be taken as zero if F
(and then also Fk, for natural choices) is known to be strongly monotone; if strong mono-
tonicity does not hold then Qk should be positive definite (e.g., a multiple of the identity;
but more sophisticated choices may be useful depending on the structure [30]). The notion
of acceptable approximate solutions of subproblems is discussed in Section 2.2.

The set Xk+1 in the master problem contains previous solutions of subproblems, but we
could also add additional points. Section 2.3 shows that, at least if the projection onto the
simpler set Sg is easy, we can compute explicitly (at negligible computational cost) points
that are improvements over the previous iterates in the sense that they are closer to the
solution set of (1).

Some remarks concerning reasonable stopping rules for Algorithm 1 will be given in
Section 2.4.

2.1 Approximating the data in the subproblems

We next discuss the options for approximating the problem data in the subproblems. Roughly
speaking, possible choices range from the simplest ones of taking the fixed values computed
at the previous master solution xk

M , pass through the Newtonian approximation centered at
xk

M , and arrive to taking the functions themselves (“exact approximation”). Furthermore,
different options can be combined. For example, in the differentiable case, we can fix some
components of the functions at xk

M and use Newtonian approximations for the other compo-
nents. In fact, we found such combinations to be the most efficient ones in our numerical
results reported in Section 4.

To be deemed admissible, approximating objects must satisfy the following four basic
conditions:

wk
M ∈ Fk(xk

M)⊂ F(xk
M), (10a)

Fk(x)+ [Hk(x)]>µ
k(x) is maximal monotone and its domain contains domF , (10b)

Hk(xk
M) = h′(xk

M), (10c)

µ
k(xk

M) = µ
k
M. (10d)
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The mapping approximations. As already commented, Fk estimates F near xk
M . Some ex-

amples are:

Fk
const(x) = {wk

M}, (11a)

Fk
exact(x) = F(x), (11b)

Fk
N(x) = F(xk

M)+F ′(xk
M)(x− xk

M) in the single-valued smooth case, (11c)

where the subscript N above stands for “Newton”. Note that all these approximations are
(maximal) monotone if F is (maximal) monotone, and that Fk

const is maximal monotone
regardless of any assumptions.

We would like to emphasize that even if F is nonmonotone, we can always choose a
maximal monotone approximation Fk. For example, taking Fk

const. Also, for specific appli-
cations there may exist other (more sophisticated options) of choosing a monotone approxi-
mation Fk for a nonmonotone F . One example will be discussed in the sequel in the context
of VI associated to generalized Nash equilibrium problems and in our numerical results in
Section 4.

Approximations of the derivative of the h-constraint. Similarly, the function Hk estimates
the derivative h′ near the point xk

M , while preserving the monotonicity property (of deriva-
tives of convex functions). Some examples are:

Hk
const(x) = h′(xk

M), (12a)

Hk
exact(x) = h′(x), (12b)

Hk
N(x) = h′(xk

M)+
q

∑
i=1

h′′i (x
k
M)(x− xk

M). (12c)

Note that for all the cases in (12), because of the convexity of h, the following monotonicity
property holds:

(Hk(y)−Hk(x))(y− x)≥ 0, for all x,y ∈ Rn. (13)

Since µk
M ≥ 0, it then follows that [Hk(x)]>µk

M is also monotone. And if Fk is maximal
monotone then (10b) holds if we take µk(x) = µk

M .

Multiplier modifications. Choices of µk(x) different from µk
M are possible if there are lin-

ear equality constraints in the definition of the set Sh (formally, in our setting this would
correspond to taking two inequalities with opposite signs). Suppose that these equality con-
straints are given by h̃(x) = Ax−a, where A and a are a matrix and a vector of appropriate
dimensions, respectively. We could then use the augmented Lagrangian choice for the cor-
responding multipliers:

µ̃
k(x) = µ̃

k
M + rkh̃(x) = µ̃

k
M + rkA(x− xk

M),

where rk > 0 is the penalty parameter, and we took into account that xk
M ∈ Sh and so h̃(xk

M) =
Axk

M−a = 0. It can be seen that this choice satisfies the conditions in (10).
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Jacobi-type approximations in the block-separable case. To conclude this section, we con-
sider the important special case where Sg is a product of convex sets. That is, Sg = ∏

m
i=1 Sgi

where Sgi ⊂Rni are closed convex, i = 1, . . . ,m, n = ∑
m
i=1 ni. Having chosen the approxima-

tions Fk and Hk, the matrix Qk, and taking µk(x) = µk
M , we can write the function F̂k for

the subproblem by blocks:

F̂k(x) = (F̂k
1 (x), . . . , F̂

k
m(x)), with F̂k

i (x) ∈ Rni ,

and for every i = 1,2, . . . ,m, define the Jacobi-like approximations F̂k
Ji

: Rni → Rni ,

F̂k
Ji
(xi) = F̂k

i (x
k
M−i

,xi),

where (xk
M−i

,xi) = (xk
M1

, . . . ,xk
Mi−1

,xi,xk
Mi+1

, . . . ,xk
Mm

) is the vector with all the blocks of vari-
ables, except for the i-th, fixed to the master solution. The corresponding estimate F̂k

J : Rn→
Rn for the subproblem is then given by

F̂k
J (x) = (F̂k

J1
(x1), . . . , F̂k

Jm
(xm)).

Accordingly, the objects in (8) take the form

Fk(x) = (Fk
1 (x), . . . ,F

k
m(x)), with Fk

i (x) ∈ Rni ,

Hk(x) = [Hk
1 (x)| · · · |Hk

m(x)], with Hk
i (x) ∈ Rq×Rni ,

Qk = [Qki j ], with Qki j ∈ Rni ×Rn j .

And, for each i = 1,2, . . . ,m, we define the Jacobi-like approximations Fk
Ji

: Rni → Rni and
Hk

Ji
: Rni → Rq×Rni by

Fk
Ji
(xi) = Fk

i (x
k
M−i

,xi), Hk
Ji
(xi) = Hk

i (x
k
M−i

,xi).

It is easy to see that

F̂k
Ji
(xi) = Fk

Ji
(xi)+ [Hk

Ji
(xi)]

>
µ

k
M +Qkii(xi− xk

Mi
),

and thus
F̂k

J (x) = Fk
J (x)+ [Hk

J (x)]
>

µ
k
M +QJ

k(x− xk
M),

where Fk
J (x)= (Fk

J1
(x1), . . . ,Fk

Jm
(xm)), Hk

J (x)= [Hk
J1
(x1)| · · · |Hk

Jm
(xm)] and QJ

k = diag(Qk11 ,Qk22 , . . . ,Qkmm).
The functions Fk

J and Hk
J (x) satisfy all the properties in (10). Moreover, since for every

i = 1,2, . . . ,m and xi,yi ∈ Rni it holds that

〈F̂k
Ji
(yi)− F̂k

Ji
(xi),yi− xi〉= 〈F̂k(xk

M−i
,yi)− F̂k(xk

M−i
,xi),(xk

M−i
,yi)− (xk

M−i
,xi)〉,

it follows that if F̂k were monotone, strictly monotone or strongly monotone, then F̂k
Ji

would
inherit the same property; and therefore so would F̂k

J . We again comment that in some ap-
plications (for example, VI associated to generalized Nash equilibrium problems, see Sec-
tion 4) the full function F(x) = (F1(x), . . . ,Fn(x)) can be nonmonotone but each component
Fi is monotone in the variable xi. So, even if the approximations Fk

N and Fk
exact could be non-

monotone, the approximations Fk
N-J (where “N-J” stands for “Newton-Jacobi”) and Fk

exact-Jobi
are monotone in that case.
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As we found Fk
N-J particularly useful in our numerical experiments, we shall next state it

formally. By the definition above, we have Fk
Ni
(x) = Fi(xk

M)+F ′i (x
k
M)(x− xk

M), and so

Fk
N-Ji

(xi) := Fk
Ni
(xk

M−i
,xi)

= Fi(xk
M)+F ′i (x

k
M)((xk

M−i
,xi)− (xk

M−i
,xk

Mi
))

= Fi(xk
M)+F ′i (x

k
M)((0,xi− xk

Mi
))

= Fi(xk
M)+∇xi Fi(xk

M)(xi− xk
Mi
).

Then if Fi(x) is monotone in the variable xi, we have that Fk
N-Ji

(xi) is monotone and so is
Fk

N-J(x).
The motivation for the Jacobi approach is that we can take advantage of the separable

structure of Sg when solving the subproblems even when F is not separable. Specifically, it
can be seen that xk+1

S solves the subproblem VI(F̂k
J ,Sg) if and only if the components (xk+1

S )i
solve VI(F̂k

Ji
,Sgi), i = 1, . . . ,m. Thus, the subproblems in Algorithm 1 decompose according

to the structure of Sg. Clearly, such decomposition is also achieved for Fk
N-J(x).

2.2 Inexact solution of subproblems

By approximate solution of subproblem (7) we mean computing some

xk+1
S ∈ Sg such that 〈vk+1

S + ek,y− xk+1
S 〉 ≥ 0

for some vk+1
S ∈ F̂k(xk+1

S ) and all y ∈ Sg,
(14)

where ek ∈ Rn is the error term accounting for inexactness. This definition of approximate
solutions of variational problems was also employed, e.g., in [28,36]. In our convergence
analysis, we shall use the following two approaches to controlling inexactness. One is the
“relative-error” type:

〈ek,xk
M− xk+1

S 〉 ≤ σ〈Qk(xk
M− xk+1

S ),xk
M− xk+1

S 〉, σ ∈ [0,1), (15)

or its stronger version

‖ek‖‖xk
M− xk+1

S ‖ ≤ σ〈Qk(xk
M− xk+1

S ),xk
M− xk+1

S 〉, σ ∈ [0,1). (16)

The second rule is the “asymptotically exact” type:

ek→ 0 as k→ ∞. (17)

The first rule is more constructive, as it essentially means that the relative error (the ratio
between the size of the error term ek and the size of the step xk

M− xk+1
S ) in solving the sub-

problems needs to be small enough but can be fixed by the value of the parameter σ (which
need not tend to zero); see [39,30] and references therein for discussions of the advantages
of this relative-error approach. That said, verifying (15) clearly requires the explicit knowl-
edge of ek in (14). Below we explain how ek can be constructed and the conditions (14) and
(15) checked explicitly in the case of continuous F̂k, if we have access to the iterates of the
method applied to solve VI(F̂k,Sg). Of course, the latter is not the case when a “black-box”
solver is used. In that sense, an advantage of the “asymptotical exactness” rule (17) is that
it can be argued that in this case the explicit knowledge of ek in (14) is not necessary. The
algorithm used to solve subproblems (7) can be truncated according to any suitable internal



10 Luna, Sagastizábal and Solodov

criteria, provided the precision is progressively tightened along the iterations of the outer
Algorithm 1. This would generate, at each step, some unknown error term ek in (14). But as
long as the inexactness in solving the subproblems (however it is measured) asymptotically
vanishes, it seems valid that the error written in any other form, for example (14), must also
tend to zero.

Suppose now that F̂k is continuous (single-valued) and strongly monotone (recall that
a monotone approximation Fk of F always exists even if F is nonmonotone, and strong
monotonicity of F̂k can be induced by adding the proximal regularization with Qk positive
definite when needed). Let an Algorithm A (any suitable algorithm for solving VI(F̂k,Sg))
generate a sequence {yk,i} which, if continued infinitely, is known to converge to the exact
solution x̄k+1

S of the subproblem VI(F̂k,Sg)) as i→ ∞. This solution is unique, because F̂k

is strongly monotone. It holds that

x̄k+1
S = PSg(x̄

k+1
S − F̂k(x̄k+1

S )).

Define the auxiliary sequences {zk,i} and {ek,i} by

zk,i = PSg(y
k,i− F̂k(yk,i)),

ek,i = (zk,i− F̂k(zk,i))− (yk,i− F̂k(yk,i)).

Since, by continuity of F̂k and of the projection operator, {zk,i} also converges to x̄k+1
S as

i→ ∞, it holds that

lim
i→∞

ek,i = 0.

Observe now that

zk,i = PSg(y
k,i− F̂k(yk,i)) = PSg(z

k,i− (F̂k(zk,i)+ ek,i)),

which means that, at each iteration of Algorithm A, zk,i solves the problem VI(F̂k +ek,i,Sg).
In other words, the condition (14) holds at every iteration i for xk+1

S = zk,i and ek = ek,i

with the known ek,i defined above. Since {ek,i} → 0 as i→ ∞, for any reasonable criterion
of measuring approximations Algorithm A would yield in a finite number of iterations an
approximate solution xk+1

S = zk,i for the subproblem VI(F̂k,Sg) with the known, and thus
controllable, error ek = ek,i.

The only computational issue with the presented construction is the projection onto
Sg to construct the auxiliary points zk,i. However, this projection can be explicit for some
problems (e.g., onto a box). Also, it may be already computed by Algorithm A in the course
of its iterative procedure anyhow. For example, one of the most natural stopping conditions
for VI(F̂k,Sg) is precisely to check whether ‖yk,i− zk,i‖ is small (this is the so-called natural
residual of VI [14, Chapter 1.5]; if the natural residual is zero then yk,i = zk,i = x̄k+1

S is
the exact solution). In particular, most (if not all) projection methods for VIs (see, e.g., [14,
Chapter 12.1], [40]) compute the right-hand side in the definition of zk,i as part of the iterates
update (perhaps scaled with a stepsize, but this can be easily accounted for) and/or compute
the natural residual (yk,i− zk,i) for the stopping test. Thus, within projection methods, zk,i

and then ek,i are immediately available.
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2.3 Managing the feasible set of the master problem

The basic choice is to take Xk+1 = {x0
S, . . . ,x

k+1
S }. As already mentioned, to ensure feasibility

of the master problems (9) it should hold that x0
M = x0

S ∈ Sh ∩ Sg, and for the existence of
Lagrange multipliers h(x0

S)< 0 if h is not affine.
However, when F is monotone and the projection onto Sg is cheap (and this is indeed

the case for many applications of interest), we can generate at negligible computational cost
some additional “improved” points that are closer to the solution set than the past iterates.
This procedure is based on separation/projection ideas, e.g., [24,36].

In this strategy we explicitly state that Xk ⊂ Xk+1 for all k, i.e., no points are ever deleted
from the feasible set of the previous master problem; points can only be added. Then since
xk

M solves VI(F,Sh∩ convXk) and x j
M ∈ Sh∩ convXk for j ≤ k (since X j ⊂ X j+1), we have

that for the associated wk
M ∈ F(xk

M) it holds that

〈wk
M,x j

M− xk
M〉 ≥ 0 for j = 1, . . . ,k. (18)

On the other hand, if x̄ is any solution of VI(F,Sh ∩ Sg), since xk
M ∈ Sh ∩ Sg it holds that

〈w̄,xk
M − x̄〉 ≥ 0 where w̄ ∈ F(x̄). Then monotonicity of F (actually, the weaker pseudo-

monotonicity property is enough here) implies that 〈wk
M,xk

M − x̄〉 ≥ 0. Hence, for every k,
the solution set of VI(F,Sh∩Sg) lies in the halfspace

{x : 〈wk
M,x− xk

M〉 ≤ 0}.

Thus, in view of (18), all the previous master problem solutions are separated from the
solution set of VI(F,Sh ∩ Sg) by the hyperplane {x : 〈wk

M,x− xk
M〉 = 0}. In fact, as there

seem to be no reasons for the inequality (18) to hold as equality, the separation should be
expected to be strict for most points. It is then clear that projecting onto the separating
hyperplane (can also be with under- or over-relaxation), would move the previous iterates
closer to the solution set, thus giving better approximations to the solution [36].

In addition, previous solutions of subproblems could be considered too, i.e., the points
with the property

〈wk
M,x j

S− xk
M〉 ≥ 0 for j = 1, . . . ,k such that x j

S ∈ Sh.

If there are such points then they can be projected/improved also. That said, since x j
S ∈

Sh need not hold in general, the existence of candidates to project of this kind is not a
given (unlike the case with the previous master problem solutions for which the separation
property always holds).

Summarizing, we can choose any subset

Zk ⊂ {z ∈ Xk ∪{x1
M, . . . ,xk

M} : 〈wk
M,z− xk

M〉> 0}

and define

Xk+1 = {x0
S, . . . ,x

k+1
S }∪

{
PSg

[
z−βz

〈wk
M,z− xk

M〉
‖wk

M‖2
wk

M

]
: z ∈ Zk

}
,

where βz ∈ (0,2) is over/under relaxation parameter (βz = 1 corresponds to the projection
onto the separating hyperplane). See [36] for formal justifications.
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2.4 Stopping conditions

One reasonable stopping criterion for Algorithm 1 is based on monitoring, after solving the
subproblem VI(F̂k,Kg), the quantity

∆k = 〈wk
M +[h′(xk

M)]>µ
k
M,xk+1

S − xk
M〉. (19)

(This quantity had also been employed in [16,5].)
The motivation for (19) comes from the stopping test of the cutting-plane algorithm

for maximizing the dual function (3) in the original Dantzig–Wolfe method for the linear
program (2) (see [16, Theorem 7]). For this problem, using the linearity of the data and the
fact that µk

M ⊥ h(xk
M) (since these solve (4)), we have that

∆k = 〈 f ′(xk
M)+h′(xk

M)>µk
M,xk+1

S − xk
M〉

= f (xk+1
S )− f (xk

M)+ 〈µk
M,h(xk+1

S )−h(xk
M)〉

= f (xk+1
S )+ 〈µk

M,h(xk+1
S )〉− f (xk

M)
= θ(µk

M)−θ k(µk
M)≤ 0,

i.e., ∆k measures how well the dual function θ is approximated by its cutting-plane model
θ k at the current dual iterate µk

M . It is standard to stop the cutting-plane method when ∆k
becomes small enough [2, Sec. 9.3.2].

Let us now go back to the variational setting. Suppose xk+1
S is an inexact solution of the

suproblem VI(F̂k,Kg) in the sense of (14). Since xk
M ∈ Sg, it then holds that

〈vk+1
S ,xk+1

S − xk
M〉 ≤ 〈ek,xk

M− xk+1
S 〉.

We can write

vk+1
S = uk+1

S +Qk(xk+1
S − xk

M), where uk+1
S ∈ Fk(xk+1

S )+ [Hk(xk+1
S )]>µ

k(xk+1
S ).

Then, for the inexactness criterion (15), we have that

〈uk+1
S ,xk+1

S − xk
M〉 ≤ 〈ek,xk

M− xk+1
S 〉−〈Qk(xk+1

S − xk
M),xk+1

S − xk
M〉

≤ −(1−σ)〈Qk(xk+1
S − xk

M),xk+1
S − xk

M〉.

Now, since Fk(x)+[Hk(x)]>µk(x) is monotone and wk
M+[h′(xk

M)]>µk
M ∈Fk(xk

M)+[Hk(xk
M)]>µk(xk

M),
it holds that

∆k = 〈wk
M +[h′(xk

M)]>µ
k
M,xk+1

S − xk
M〉

≤ 〈uk+1
S ,xk+1

S − xk
M〉

≤ −(1−σ)〈Qk(xk+1
S − xk

M),xk+1
S − xk

M〉 ≤ 0. (20)

If Qk is positive definite, then ∆k = 0 implies xk+1
S = xk

M , and the latter point is a solution of
VI(F,Sh∩Sg) (see Proposition 2 below, which also deals with case when Qk may be positive
semidefinite if F̂k is strictly monotone). A value of ∆k close to zero means that the difference
between the points xk+1

S and xk
M is small, which justifies the stopping test based on ∆k.
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2.5 Relaxing the constraints in the master problem

We now consider the option of relaxing the h-constraints by introducing slack variables.
This feature can be useful when computing a feasible starting point in Sh∩Sg is nontrivial.
A starting point in Sg is still needed, but recall that it is assumed to be a simple set in our
context. A similar technique had been mentioned in [16,5], although without theoretical
analysis.

Suppose that at an iteration k ≥ 0 we have a finite subset Xk+1 of Sg containing the
subproblems solutions {x0

S, . . . ,x
k+1
S }. We define the relaxed master feasible set

Dk = {(x,z) ∈ convXk+1×Rq : h(x)≤ z},

and the function Fk
M : Rn×Rq⇒Rn×Rq by

Fk
M(x,z) = F(x)×{ζkz},

where ζk > 0 is a scalar parameter. Then the relaxed master problem consists of solving

VI(Fk
M,Dk). (21)

Note that the set Dk is always nonempty and satisfies the Slater constraint qualification
automatically. Also, Fk

M is (strongly) monotone, if so is F .
The new algorithm is given below.

Algorithm 2 (Relaxed Dantzig-Wolfe Decomposition)

1. Choose x0
M ∈ Sg, w0

M ∈ F(x0
M) and µ0

M ∈ Rq
+. Set x0

M = x0
S and k := 0.

2. The Subproblem: Choose the function F̂k as in Algorithm 1 and find xk+1
S , a solution

of the problem VI(F̂k,Sg).
3. The Master Problem: Choose the set Xk+1 as in Algorithm 1 and the parameter ζk > 0.

Find a solution (xk+1
M ,zk+1) of the problem (21), with the associated wk+1

M ∈ F(xk+1
M ) and

a Lagrange multiplier µ
k+1
M associated to the h-constraint.

4. Set k := k+1 and go to Step 2.

Note that solutions of the subproblems and of the master problems belong to the set Sg, but
not necessarily to Sh. In Proposition 3 below, we shall see that the z-component of the master
solution is actually uniquely defined and is of the form zk+1 = µ

k+1
M /ζk.

3 Convergence analysis

We first formalize the arguments that show that the algorithm is well-defined, i.e., that all
the subproblems and all the master problems have solutions.

As discussed above, we can always choose Fk to be maximal monotone (even if F is
not), so that F̂k would be maximal monotone with its domain containing the domain of F .
Moreover, F̂k can always be made strongly monotone by taking the matrix Qk positive def-
inite when needed. Then maximal monotonicity and strong monotonicity of F̂k ensure the
existence of the unique solution to subproblem VI(F̂k,Sg) (by [34, Theorem 5]). In addi-
tion, as already discussed above, our choice of the starting points in both Algorithm 1 and
Algorithm 2 ensures that all the master problems are always feasible and satisfy constraint
qualifications [38], so that there exist Lagrange multipliers associated to the solutions (if
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any). Now, the master problems are variational inequalities either with a continuous map-
ping or with a maximal monotone one over nonempty compact feasible sets. Solutions to
this type of problems exist, by [14, Corollary 2.2.5] and [34, Theorem 5], respectively.

We start our convergence analysis by establishing some key properties of the master
problems solutions in Algorithm 1, extending [16, Thm. 4.5] as well as some results in the
online appendix of [5].

Proposition 1 For a solution xk+1
M of the master problem V I(F,Sh ∩ convXk+1) in Algo-

rithm 1, the following assertions hold:

1. If h is affine or if there exists x̂ ∈ convXk+1 such that h(x̂) < 0, then there exists a
Lagrange multiplier µ

k+1
M ∈ Rq

+ associated to the h-constraint.
2. For any such multiplier µ

k+1
M it holds that xk+1

M solves VI(F(·)+[h′(·)]>µ
k+1
M ,convXk+1).

3. If for any x ∈ Sg and any v ∈ [F(xk+1
M )+ [h′(xk+1

M )]>µ
k+1
M ]∩ [−NconvXk+1(xk+1

M )] it holds
that 〈v,x− xk+1

M 〉< 0 then x 6∈ convXk+1.
4. If xk+1

M is a solution of VI(F(·)+ [h′(·)]>µ
k+1
M ,Sg) then xk+1

M solves VI(F,Sg∩Sh).
5. On the next iteration (k := k+1), if xk

M is a solution of the subproblem VI(F̂k,Sg) then
xk

M solves VI(F,Sg∩Sh).

Proof Since convXk+1 is a polyhedral set, the linearity of h in the first case or the Slater
constraint qualification in the second case guarantee that

NSh∩convXk+1(xk+1
M ) = NSh(x

k+1
M )+NconvXk+1(xk+1

M )

and
NSh(x

k+1
M ) = {[h′(xk+1

M )]>µ : µ ∈ Rq
+,µ ⊥ h(xk+1

M )}.

Then, since xk+1
M solves VI(F,Sh∩ convXk+1), we have that

0 ∈ F(xk+1
M )+NSh∩convXk+1(xk+1

M )

= F(xk+1
M )+{[h′(xk+1

M )]>µ : µ ∈ Rq
+,µ ⊥ h(xk+1

M )}+NconvXk+1(xk+1
M ),

which means the existence of the multiplier µ
k+1
M in question.

In particular, it then holds that

0 ∈ F(xk+1
M )+ [h′(xk+1

M )]>µ
k+1
M +NconvXk+1(xk+1

M ),

which means that xk+1
M solves VI(F(·)+ [h′(·)]>µ

k+1
M ,convXk+1), as claimed.

Concerning the third assertion, note that any v in question can serve as an element associ-
ated to xk+1

M which verifies that the latter is a solution of VI(F(·)+[h′(·)]>µ
k+1
M ,convXk+1).

In other words, 〈v,x− xk+1
M 〉 ≥ 0 for all x ∈ convXk+1. Thus, if this inequality does not hold

for some x ∈ Sg, it must be the case that x 6∈ convXk+1.
Suppose now that xk+1

M solves VI(F +[h′(·)]>µ
k+1
M ,Sg), i.e.,

0 ∈ F(xk+1
M )+ [h′(xk+1

M )]>µ
k+1
M +NSg(x

k+1
M ).

Since µ
k+1
M is a Lagrange multiplier associated to the h-constraint, we have

[h′(xk+1
M )]>µ

k+1
M ∈NSh(x

k+1
M ),

and hence,

0 ∈ F(xk+1
M )+NSh(x

k+1
M )+NSg(x

k+1
M )⊂ F(xk+1

M )+NSh∩Sg(x
k+1
M ),



Dantzig–Wolfe decomposition of variational inequalities 15

which establishes the fourth assertion.
Finally, since by (10) it holds that

F̂k(xk
M)⊂ F(xk

M)+ [h′(xk
M)]>µ

k
M,

if xk
M solves the subproblem VI(F̂k,Sg), then the previous item implies that it solves our

problem VI(F,Sg∩Sh). ut

Note that, by the third item of Proposition 1, it follows that for the gap defined in (19)
whenever ∆k < 0 we have that xk+1

S 6∈ convXk. Thus, as long as ∆k < 0, the feasible set
of the master problem keeps growing, improving the approximation of the set Sg. If the
subproblems are solved exactly then xk+1

S ∈ convXk for some k implies that ∆k ≥ 0 (actually
∆k = 0). Then, if F̂k is at least strictly monotone (which can always be ensured by taking
the matrix Qk positive definite if needed) it holds that xk

M = xk+1
S is a solution of the problem

VI(F,Sg∩Sh) (see also [16, Thm. 6] and[5] for some related statements).

Proposition 2 Let F̂k be strictly monotone (e.g., Qk is positive definite). Suppose that in
Algorithm 1 it holds that ∆k ≥ 〈ek,xk

M− xk+1
S 〉 for some iteration index k. Then ∆k = 0 and

xk
M = xk+1

S solves VI(F,Sg∩Sh).

Proof Since xk+1
S is an approximate solution, with error ek, of the subproblem VI(F̂k,Sg) in

the sense of (14), and since xk
M ∈ Sg, for the associated vk+1

S ∈ F̂k(xk+1
S ) it holds that

〈ek,xk
M− xk+1

S 〉 ≥ 〈vk+1
S ,xk+1

S − xk
M〉. (22)

Then, by the definition of ∆k in (19), by the monotonicity of F̂k, and by the fact that
wk

M +[h′(xk
M)]>µk

M ∈ F̂k(xk
M), it holds that

∆k = 〈wk
M +[h′(xk

M)]>µ
k
M,xk+1

S − xk
M〉

≤ 〈vk+1
S ,xk+1

S − xk
M〉

≤ 〈ek,xk
M− xk+1

S 〉, (23)

where (22) was also used. But then the assumption that ∆k ≥ 〈ek,xk
M− xk+1

S 〉 implies that

∆k = 〈ek,xk
M− xk+1

S 〉.

Then by substituting the expression for ∆k into the left-hand side of (22) we obtain that

〈wk
M +[h′2(x

k
M)]>µ

k
M− vk+1

S ,xk+1
S − xk

M〉 ≥ 0.

Strict monotonicity of F̂k then implies that xk+1
S = xk

M . Obviously, it then holds that ∆k = 0.
Also, since xk+1

S = xk
M solves the subproblem VI(F̂k,Sg), Proposition 1 implies that this

point is a solution of VI(F,Sg∩Sh). ut

We next establish the properties of solutions of the relaxed master problems.

Proposition 3 For a solution (xk+1
M ,zk+1) of the relaxed master problem VI(Fk

M,Dk) in Al-
gorithm 2, the following assertions hold:

1. There exists the unique Lagrange multiplier µ
k+1
M associated to the h-constraint. More-

over, it holds that
zk+1 = µ

k+1
M /ζk,

0≤ µ
k+1
M ⊥ h(xk+1

M )−µ
k+1
M /ζk ≤ 0.

(24)
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2. The point xk+1
M solves VI(F(·)+ [h′(·)]ᵀµk+1

M ,convXk+1).
3. If for any x ∈ Sg and any v ∈ [F(xk+1

M )+ [h′(xk+1
M )]>µ

k+1
M ]∩ [−NconvXk+1(xk+1

M )] it holds
that 〈v,x− xk+1

M 〉< 0, then x 6∈ convXk+1.

Proof We have that

0 ∈ F(xk+1
M )×{ζkzk+1}+NDk(x

k+1
M ,zk+1).

Since convXk+1 is a polyhedral set, it is easy to see that the constraints of Dk satisfy the
Slater constraint qualification. Therefore,

NDk(x
k+1
M ,zk+1) =

{[
[h′(xk+1

M )]>

−I

]
µ :

µ ∈ Rq
+

0≤ µ ⊥ h(xk+1
M )− zk+1 ≤ 0

}
+

{(
d
0

)
: d ∈NconvXk+1(xk+1

M )

}
.

In particular,
ζkzk+1−µ = 0,

for any multiplier µ associated to the h-constraints. Hence, µ
k+1
M is uniquely defined and

satisfies (24).
Also, it holds that

0 ∈ F(xk+1
M )+ [h′(xk+1

M )]>µ
k+1
M +NconvXk+1(xk+1

M ),

which establishes the second assertion.
The last assertion follows from the same considerations as those used in Proposition 1

for Algorithm 1. ut

We note that for Algorithm 2 the condition xk+1
S = xk

M no longer implies that xk
M solves

VI(F,Sh∩Sg) (although ∆k = 0 still implies that xk+1
S = xk

M when F̂k is strictly monotone).
This is the price to pay for the convenience of relaxing the h-constraint, as the master prob-
lem solutions xk

M may no longer belong to Sh. Rather, they approach this set asymptotically.
We are now in position to state the main convergence results for the Dantzig–Wolfe

schemes described above, which extend [16, Thm. 8] and [5,16, Thm. 10a].

Theorem 1 Let the mapping F be (possibly set-valued) maximal monotone or single-valued
continuous, and let the function h be convex and continuously differentiable. Suppose the se-
quence {(xk

M,µk
M,xk+1

S )} generated by Algorithm 1 or Algorithm 2, with the subproblems (7)
solved approximately in the sense of (14) with the associated error sequence {ek} satisfying
(15) or (17), is bounded. In the case of Algorithm 2, let {ζk}→+∞ as k→ ∞.

Then it holds that

1. The sequence {∆k} converges to zero.
2. If F̂k are strongly monotone uniformly with respect to k and the approximation rule (17)

is used, or if the matrices Qk are uniformly positive definite and either (15) or (17) is
used, then limk→∞ ‖xk+1

S − xk
M‖= 0.

3. If limk→∞ ‖xk+1
S − xk

M‖ = 0, the sequence {Qk} is bounded, the families of functions
{Fk}, {Hk} and {µk} are equicontinuous on compact sets, and in the case of the
relative-error inexactness rule condition (15) is strengthened to (16), then for every ac-
cumulation point (x̄, µ̄) of the sequence {(xk

M,µk
M)} the point x̄ is a solution of VI(F,Sh∩

Sg) while µ̄ is a multiplier associated to the h-constraint.
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Proof Using (20) in the case when subproblems are solved inexactly according to the rule
(15), and (23) if the rule (17) is employed, we see that

∆̄ = liminf
k→∞

∆k ≤ limsup
k→∞

∆k ≤ 0. (25)

Let {k j} be any subsequence of indices such that lim j→∞ ∆k j = ∆̄ . Passing onto a further

subsequence, if necessary, we can assume that {(xk j
M ,µ

k j
M ,x

k j+1
S )} → (x̄, µ̄, x̂). Also, since

under the stated assumptions F is locally bounded on Sg, the sequence {wk j
M} is bounded

and we can assume that {wk j
M}→ w̄.

By definition (19), we have that

lim
j→∞

∆k j = ∆̄ = 〈w̄+[h′(x̄)]>µ̄, x̂− x̄〉.

Fix any index j. Then for every i > j we have that x
k j+1
S ∈ Xki . As a result, by the second

item of Proposition 1 in case of Algorithm 1 or of Proposition 3 in case of Algorithm 2, it
holds that

〈wki
M +[h′(xki

M)]>µ
ki
M,x

k j+1
S − xki

M〉 ≥ 0.

Passing onto the limit as i→ ∞ in the relation above, we conclude that

〈w̄+[h′(x̄)]>µ̄,x
k j+1
S − x̄〉 ≥ 0.

Now passing onto the limit as j→ ∞ in the latter relation, we obtain that

〈w̄+[h′(x̄)]>µ̄, x̂− x̄〉 ≥ 0.

Hence, ∆̄ ≥ 0. Together with (25) this proves the first assertion.
Since xk+1

S solves approximately VI(F̂k,Sg) in the sense of (14), there exists vk+1
S ∈

F̂k(xk+1
S )∩ [−NSg ](x

k+1
S ) such that 〈vk+1

S + ek,xk
M − xk+1

S 〉 ≥ 0. Then denoting vk
M = wk

M +

[h′2(x
k
M)]>µk

M ∈ F̂k(xk
M) we have that

−∆k = 〈vk+1
S − vk

M,xk+1
S − xk

M〉−〈v
k+1
S ,xk+1

S − xk
M〉

≥ 〈vk+1
S − vk

M,xk+1
S − xk

M〉+ 〈ek,xk+1
S − xk

M〉
≥ c‖xk+1

S − xk
M‖2 + 〈ek,xk+1

S − xk
M〉,

where c > 0 is the modulus of strong monotonicity of F̂k, independent of k. For the ap-
proximation rule (17) (that is {ek} → 0), since ∆k → 0 as established above, it follows that
‖xk+1

S −xk
M‖→ 0 as k→∞. The same conclusion holds for the choice of uniformly positive

definite Qk, as in that case the approximations F̂k are uniformly strongly monotone. When
the inexactness rule (15) is used, the assertion follows from (20) and the fact that ∆k→ 0.

Let (x̄, µ̄) be an accumulation point of {(xk
M,µk

M)} and let {(xk j
M ,µ

k j
M )} → (x̄, µ̄) be any

associated convergent subsequence. By construction of the algorithm, the basic continuity
argument implies that x̄ ∈ Sg and µ̄ ∈ Rq

+. Since x
k j+1
S solves approximately VI(F̂k j ,Sg) in

the sense of (14), there exists v
k j+1
S ∈ F̂k j (x

k j+1
S )∩ [−NSg(x

k j+1
S )] such that

〈vk j+1
S + ek j ,x− x

k j+1
S 〉 ≥ 0 for all x ∈ Sg. (26)

Since the families {Fk}, {Hk} and {µk} are equicontinuous and the matrices Qk are bounded,
the family {F̂k} remains equicontinuous on compact sets. Then, on an open ball contain-
ing the sequences {xk j+1

S }, {xk j
M} and the point x̄, for every ε > 0 there is δ > 0 such that
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‖x− y‖< δ implies dH(F̂k(x), F̂k(y))< ε , for every k. Since ‖xk j+1
S − x

k j
M‖→ 0, there is an

index J such that for every j > J the relation ‖xk j+1
S − x

k j
M‖< δ holds, and thus there exists

u
k j
M ∈ F(x

k j
M) such that ‖uk j

M +[h′(x
k j
M)]>µ

k j
M − v

k j+1
S ‖< ε . On the other hand, since under the

stated assumptions F is locally bounded on Sg and outer semicontinuous, we can assume

that the sequence {uk j
M} converges to a point ū ∈ F(x̄). Then

lim
k→∞

v
k j+1
S = ū+[h′2(x̄)]

>
µ̄. (27)

Next, note that {ek} → 0. In the case of the inexactness rule (17) this is explicit. In the
case of rule (16) it is an obvious consequence since {Qk} is bounded, ‖xk

M−xk+1
S ‖→ 0, and

the right-hand side of (16) is quadratic in the latter quantity while the left-hand side is linear.
Now passing onto the limit in (26) as j→ ∞ and using (27), we obtain that

〈ū,x− x̄〉+ 〈[h′(x̄)]>µ̄,x− x̄〉 ≥ 0 for all x ∈ Sg. (28)

Since µ̄ ≥ 0, the convexity of h implies that

〈µ̄,h(x)−h(x̄)〉 ≥ 〈µ̄,h′(x̄),x− x̄〉
= 〈[h′(x̄)]>µ̄,x− x̄〉.

Then, by (28), we obtain that

〈ū,x− x̄〉+ 〈µ̄,h(x)−h(x̄)〉 ≥ 0 for all x ∈ Sg.

It then holds that
〈ū,x− x̄〉 ≥ 〈µ̄,h(x̄)〉 for all x ∈ Sh∩Sg. (29)

For a sequence generated by Algorithm 1, {xk
M} ⊂ Sh ∩ Sg and 〈µk

M,h(xk
M)〉 = 0 for all k.

Hence, by continuity, x̄ ∈ Sh ∩ Sg and 〈µ̄,h(x̄)〉 = 0. For a sequence generated by Algo-
rithm 2, taking the limit in (24) as k→ ∞ and recalling the parameter choice {ζk}→+∞, it
again follows that x̄ ∈ Sh∩Sg and 〈µ̄,h(x̄)〉= 0.

In either case, we have x̄ ∈ Sh∩Sg and ū ∈ F(x̄), with (29) yielding

〈ū,x− x̄〉 ≥ 0 for all x ∈ Sh∩Sg,

i.e., x̄ is a solution of VI(F,Sh ∩ Sg), as stated. The fact that µ̄ is a Lagrange multiplier
associated to the h-constraint follows from (28). ut

It is clear that the families of functions {Fk
const}, {Hk

const} and {Hkexact} defined above
are equicontinuous on compact sets. For a bounded sequence {xk

M}, both {Fk
N} and {Hk

N} are
equicontinuous. When F is single-valued continuous, the family {Fk

exact} is equicontinuous.
Finally, µk(x)= µk

M is always equicontinuous while the augmented Lagrangian option µ̃k(x)
for linear constraints is equicontinuous if the sequence of penalization parameters {rk} is
bounded.

4 Numerical Results

In this section, we describe a simplified game-theoretical model for electricity markets, and
present our numerical results for computing the associated variational equilibria. For more
sophisticated but related models we refer to [21–23]. For our purposes of validating the de-
composition approach to variational inequalities (rather than solving the electricity models
as such) the version considered here is sufficient.
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4.1 Energy markets as generalized Nash games

Let Na agents generate electric energy for sale. The i-th agent owns ni plants whose total
generation is represented by a vector qi ∈Rni

+. The energy owned by this agent is the sum of
the generation of all of the agent plants:

e(qi) =
ni

∑
k=1

qi
k .

The unitary energy price in the market depends on the total amount of energy produced
by all agents. We model it by a quadratic concave function of one variable, that is the to-
tal energy, so p : R→ R. The exogenous coefficients defining this quadratic function are
market-dependent and are given below.

The vector of all the agents’ generation is denoted by q−0 = (q1,q2, . . . ,qNa) ∈ Rn (this
peculiar notation will be clear soon). The total amount of energy available in the market,
denoted below by e(q−0), is the sum of the generation of all of the plants in the market:

e(q−0) =
Na

∑
i=1

e(qi) =
Na

∑
i=1

ni

∑
k=1

qi
k .

Since the price depends on the total energy, the the i-th agent will be paid

p
(
e(q−0)

)
e(qi).

If, to generate the amount qi, the agent incurs an operating (convex) cost ci(qi), the agent’s
profit is given by

p
(
e(q−0)

)
e(qi)− ci(qi).

The profit of each agent depends on the generation level of all the agents in the market. In
turn, each generation level is constrained by technological limitations of the power plants:
for certain sets Qi ⊂ Rni , the relation qi ∈ Qi must hold. In our simplified modelling, Qi =
[0,U i] for some U i ∈ Rni

+, noting that in a realistic model the set Qi is given by complex
relations expressing how different technologies (thermal, nuclear, hydraulic, eolic) generate
power.

Remark 1 The core difficulty for solution methods that do not use decomposition resides
precisely in the fact that they handle the set ∏

Na
i=1 Qi as a whole. From a numerical point

of view, this usually means dealing simultaneously with mixed-integer variables and non-
convex relations. By contrast, a suitable decomposition method handles the difficulties by
considering separately each technology (only thermal, only nuclear, etc), dealing with each
set Qi individually. As a result, an individual subproblem becomes “more computationally
tractable”; for example, involving only affine functions and mixed-integer variables, or only
nonlinear functions with continuous variables. Such separation of difficulties considerably
simplifies the numerical solution of large problems. In a somewhat different context, this is
also confirmed by our results below.

An additional constraint for the generation levels qi refers to the fact that agents are
encouraged to satisfy the market demand d > 0. We let q0 ≥ 0 denote a scalar slack variable,
measuring the deficit of energy in the market, sometimes called load shedding. Then, if for
each agent i, the vector

q−i = (q0,q1, . . . ,qi−1,qi+1, . . . ,qNa)
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denotes the generation level of all the other agents, including load shedding, the relation

qi ∈ D(q−i) = Qi∩

{
wi ∈ Rni : q0 +

Na

∑
i6= j=1

n j

∑
k=1

q j
k +

ni

∑
k=1

wi
k = d

}
must hold.

Summing up, the i-th agent tries to maximize profit by solving the (concave) problem

max p
(
e(q−0)

)
e(qi)− ci(qi) s.t. qi ∈ D(q−i).

The coordination, or regulation, of the market is done by the Independent System Operator
(ISO), whose actions in the market are considered as those of an additional player (this is
a so-called bounded rationality model). Accordingly, letting the ISO be player number 0,
if the energy deficit is penalized with a price P > 0, the ISO tries to maximize the social
welfare by solving

max p
(
e(q−0)

)
e(q−0)−

Na

∑
i=1

ci(qi)−Pq0 s.t. q0 ∈ D(q−0),

where, having a maximal allowed level of load shedding U0,

D(q−0) =

{
w0 ∈ R : 0≤ w0 ≤U0, w0 +e(q−0) = w0 +

Na

∑
i=1

ni

∑
k=1

qi
k = d

}
.

As a result, for i = 0, . . . ,Na, the convex functions θi : R1+n→ R given by

θ0(q) = Pq0−
Na

∑
i=1

ci(qi)− p
(
e(q−0)

)
e(q−0)

θi(q) = ci(qi)− p
(
e(q−0)

)
e(qi), i = 1, . . . ,Na ,

define a generalized Nash game with Na + 1 players (the ISO and the Na agents). In this
game, each player tries to maximize profit by solving

min θi(q−i,qi) s.t. qi ∈ D(q−i).

It is known that finding a generalized Nash equilibrium (GNE) of this game is equivalent
to solving a quasi-variational inequality problem, see [12]. Quasi-variational problems are
very hard to solve. Fortunately, in our case, it is possible to compute some GNE points (not
all) by solving a variational inequality instead. These points are called variational equilibria
and have some good/important properties from the economic point of view, see [13,25]. For
our problem, it is shown in [26] that variational equilibria are solutions to VI(F,Sg ∩ Sh)
where

F(q) =
(

∇q0 θ0(q),∇q1 θ1(q), . . . ,∇qNa θNa(q)
)
,

Sg = [0,U0]×
Na

∏
i=1

Qi and Sh = {q ∈ R1+n : q0 +e(q−0) = d} .

In our model each function θi(q) is convex and differentiable in the variable qi. So the
function ∇qi θi(q) is monotone in the i-th component of the variable q, but in general it is
not monotone on the full variable q. Therefore, the singled-valued function F defining the
variational problem (1) is nonmonotone. Observe that it also couples all the variables.
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Our Dantzig-Wolfe strategy can be applied to nonmonotone single-valued functions F ,
simply by taking monotone approximations to F in the subproblems. In particular, any fam-
ily Fk

const, Fk
N-J, or Fk

exact-J can be used.
Another specificity of our game is that the demand constraint, that is the set Sh, couples

all variables qi. Without this constraint, the feasible set would be separable. This makes the
considered game particularly suitable for application of our decomposition schemes.

Remark 2 As discussed above, the model considered here is simplistic in some features; it
is mostly meant to exhibit the interest of using decomposition schemes for problems with
feasible sets having certain types of structure. In particular, the shared constraint in our
model refers to satisfaction of the (exogenous) demand, but alternative joint constraints, like
the ones in [18], could also be considered.

4.2 Battery of problems

We implemented Algorithm 1 in Matlab version 7.11(R2010b). The runs were done on a
PC operating under Ubuntu 11.04 with a Core(TM)2 Duo 2.00GHz processor and 4GB of
memory.

We created six market configurations of the generalized Nash game, by taking Na = 5
agents and considering a mix with n power plants, for

n ∈ {100,250,1000,2500,5000,10000} .

As n increases, the configurations become harder and harder to solve directly, without de-
composition. Also the subproblems become harder, as we assume that each agent owns the
same number of plants ni = n/5, for i = 1, . . . ,Na = 5.

Other values of the model parameters are as follows.

1. The entries of the maximum generation capacity vector U i are random numbers in [0,10]
while the maximum allowed deficit is fixed to U0 = 5.

2. The demand is taken equal to d = 0.8∑
Na
i=1 U i, corresponding to 80% of the market

generation capacity.
3. The deficit price is set at P = 120.
4. The unitary price p is a quadratic concave function such that p(0) = P, p′(0) = 0 and

p(1.5d) = 0.
5. The operating cost is of the form

ci(qi) = bi>qi +
1
2

qi>Miqi

where bi ∈Rni and Mi ∈Rni×ni is a diagonal positive definite matrix. The corresponding
values are generated randomly between [30,60] and [0.4,0.8], respectively.

With this data, the simplified model is set up in a manner ensuring that at a variational
equilibrium of the game will have no deficit (q0 = 0) and the price will be equal to p(d) =
P(1− 1

1.52 ). As a way of ensuring correctness of the implementation, we checked that these
values were obtained in all of our numerical results below.
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4.3 Results

For each of the six market configurations, we randomly generated 10 problem instances. For
each instance, we apply Algorithm 1 using five approximations for F :

Fconst , FN , Fexact = F , FN-J , FJ .

Since the h-constraint is linear, we used the exact family Hexact and likewise for the multi-
pliers.

We also tried to solve the problem directly, without decomposition, using PATH [9,15].
For the two largest configurations (n = 5000,1000) PATH could no longer be used, stopping
by lack of memory. With our computer and for the considered instances, when n = 5000
the solver stalled after about 4 hours. Also, since the larger configurations become time
consuming, for these we only run the faster decomposition alternatives, in our case Fconst, FJ
and FN-J.

Regarding specifics of the implementation of Algorithm 1, all the subproblems and mas-
ter problems are themselves solved using PATH. Our focus here is on comparing various
approximation options; for this reason we do not report on the variants with inexact solution
of subproblems, with generating additional points via projections, or relaxing the master
problems.

For the cases n = 100,250,500,1000, and the options Fconst, FN-J, and Fexact-J, sub-
problems in variables qi followed the decomposition pattern induced by the product Sg =

∏
5
i=0 Sgi , where Sg0 = [0,U0]⊂ R and Sgi = Qi ⊂ Rn/5, i≥ 1. With this decomposition, de-

cision variables are precisely those of each player. For the larger configurations we used in-
stead the product Sg =∏

n/250
i=0 Sgi = [0,U0]×∏

5
i=1 Qi, with Sg0 = [0,U0]⊂R and Sgi ⊂R250.

We use as stopping rules the following criteria. In PATH the stopping test employs the
residual of the full problem based on the Fischer-Burmeister merit function [14, Chapter
1.5] with a default 10−6. For the decomposition approaches the stopping criterion is

|∆k|
1+ |∆1|

< 10−5,

where ∆k is defined in (19). As discussed in Section 2.4, this is a natural stopping condition
in the decomposition framework, as the access to the full problem, and thus to its residual,
is not presumed.

All results are reported in Table 2, and interpreted in the two comparative Figures 1
and 2 below. For each configuration, we averaged over the 10 instances the results for each
method. The table reports the average and maximal CPU times in seconds; the percentage of
the total running time spent in the master and subproblem solution; the mean residual (the
infinite-norm of the natural merit function [14, Chapter 1.5] for VI(F(·)+ [h′(·)]>µk

M,Sg)
at the master solution xk

M); and the mean infinite-norm of the difference between xk
M and

xk+1
S at termination. In particular, the latter distance and the residual are not a part of the

decomposition stopping test (as they are not available within the decomposition scheme
anyway); these values were computed a posteriori, to confirm that an approximate solution
of the problem was indeed obtained.

Regarding the running times, the main point we would like to stress is that for the con-
figurations with n ≥ 5000, applying PATH directly appears no longer possible even after
relaxing the stopping tolerance from the default 10−6 to 10−2. Of course, the exact thresh-
old depends on the specific computer and implementation, yet there is always a threshold.
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Size and CPUMEAN CPUMAX Master SubPbm Residual ‖xS−xM‖∞

Model (s) (s) (% time) (% time)
n = 100
PATH 0.162 0.235 - - - -
Fconst 5.199 8.081 92 8 0.001 3.006

FN 1.170 1.331 72 27 0.016 0.048
F 1.973 2.276 46 53 0.015 0.051

FN-J 2.010 4.923 89 10 0.083 0.069
FJ 8.785 10.027 17 83 0.080 0.068

n = 250
PATH 0.303 0.326 - - - -
Fconst 9.002 12.617 94 6 0.007 6.114

FN 4.397 4.819 23 77 0.016 0.043
F 2.530 2.691 41 59 0.015 0.045

FN-J 1.915 2.274 80 20 0.070 0.125
FJ 9.561 11.107 16 84 0.075 0.123

n = 500
PATH 1.413 1.713 - - - -
Fconst 19.413 30.356 95 5 0.008 8.071

FN 29.079 31.620 6 93 0.017 0.035
F 7.229 8.359 25 75 0.017 0.036

FN-J 3.313 4.067 64 36 0.087 0.099
FJ 14.285 20.401 15 85 0.086 0.100

n = 1000
PATH 13.807 13.962 - - - -
Fconst 54.202 66.884 97 3 0.009 7.641

FN 236.751 250.975 2 98 0.015 0.029
F 47.541 49.154 9 91 0.015 0.030

FN-J 11.263 13.878 40 60 0.067 0.074
FJ 40.398 48.539 11 89 0.066 0.073

n = 2500
PATH 693.439 695.626 - - - -
Fconst 255.843 275.134 98 2 0.025 8.918

FN 4590.224 4919.049 0 100 0.022 0.037
F 923.633 1069.350 2 98 0.022 0.038

FN-J 37.028 42.773 53 47 0.058 0.101
FJ 335.984 383.007 6 94 0.057 0.085

PATH - - - - - -
Fconst 1043.489 1257.464 99 1 0.038 9.535
FN-J 114.774 123.597 83 17 0.032 0.056
FJ 2239.637 2408.383 4 96 0.031 0.055

PATH - - - - - -
Fconst 4204.447 4450.205 99 1 0.066 9.857
FN-J 483.478 575.581 72 28 0.029 0.046
FJ 13891.376 14891.010 2 98 0.029 0.045

Table 2 Detailed list of all results

On the other hand, some of the approximation options in the decomposition technique still
succeed in solving the larger configurations in reasonable computational times.

The column reporting maximal CPU times in Table 2 gives an estimation on how the data
dispersion affected each method. For n = 2500, for example, the percentual difference with
respect to the mean CPU time was of 0.3, 7.5, 7.2, 15.8, 15.5, and 14.0%, respectively for
PATH and the constant, Newton, Newton-Jacobi, and Jacobi approximations. As expected,
the impact of varying data on the constant approximation is much smaller than for the other
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approximations, which incorporate more information. The situation is similar for n= 10000,
where the percentages are 5.8, 19.1, and 7.2 for the only three approaches that could solve
such large instances, respectively Fconst, FN-J , and FJ.

In order to see the benefit of decomposing, we took as reference the CPU time taken
by a direct application of PATH and computed the ratio between the CPU times of each
decomposition method and the reference one. Figure 1 shows the corresponding ratios. We
should remark though that Figure 1 is intended merely to illustrate the dynamics of the
comparison as the size grows and should not be taken literally. The reason is that, being a
Newton-type method, when PATH works (i.e., for problems not too large), it provides highly
accurate solutions. Generally, a comparable level of accuracy cannot be expected from the
decomposition approach.

Fig. 1 Time ratios (decomposition divided by PATH), configurations with n≤ 2500

The ordinate in Figure 1 uses a logarithmic scale, for convenience. In the figure, when
for a given method the value represented by a color bar lies above the 0-ordinate (corre-
sponding to 100 in the logarithmic scale), the decomposition method took longer than the
direct approach with PATH. By contrast, when the bar is below the ordinate 100, the decom-
position method was faster than PATH. The plot in Figure 1 shows a natural behaviour. A
direct application of PATH is very efficient for the smaller to medium sized problems. But
as the size grows, decomposition becomes more and more competitive. For n = 1000, the
FN-J decomposition already outperforms the direct approach. And for n = 2500, three of the
decomposition approaches become faster than PATH, with the FN-J approximation being the
best one.

When the percentual distribution of time between master and subproblem solution in
Table 2 does not add up to 100%, this is due to some time spent in intermediate tasks, such
as communicating with PATH mex-interface. We observe that for the larger configurations
in general the best approach (Newton-Jacobi) spends less time in solving subproblems than
in dealing with the master problems. In view of our comments in Remark 1, we conjecture
that if we were to consider difficult sets Qi, the percentual distribution of time would result
in higher figures for the subproblems. Since the Jacobi-like approximations are amenable to
parallelization (thus making the subproblem solution quicker), for such decompositions the
more CPU time is spent in solving subproblems in our current serial implementation, the
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faster would be the overall procedure in parallel implementation. Moreover, it is also likely
that more intrincate sets Qi would make decomposition preferable over a direct solution
with PATH even for the smaller instances (always keeping in mind that this is a problem
dependent issue).

Regarding solution quality, the two last columns in Table 2 report, respectively, the
value of the a posteriori computed residual and of the gap between xS and xM . We ob-
serve that while the constant approximation gives systematically the most distant xS and
xM’s, for smaller instances this approximation also has the lowest residual. This tendency
starts changing at n = 2500 and for n ≥ 5000 the Newton-Jacobi and Jacobi approxima-
tions become more accurate, and practically equally so. Since the approximation FN−J is the
fastest one, it appears as the best option for large configurations, both in terms of speed and
accuracy.

We finish this section with an analysis of scalability. Recall once again that PATH ap-
plied to the full problem stalls for n ≥ 5000, while some decomposition approaches still
work in reasonable time. Figure 2 compares the performance of Fconst, FN-J, FJ, which are
the options able to handle the larger configurations. The plot shows the corresponding mean
CPU times in minutes for each configuration, ranging from n = 100 to n = 10000. We ob-
serve that FN-J shows the best scalability with respect to the problem size, suggesting once
more this is the best option for larger models.

Fig. 2 Scalability of the best decomposition options

Concluding remarks

We have presented a family of decomposition methods for variational inequalities, that can
be applied with maximal monotone operators (possibly set-valued) or single-valued contin-
uous operators (possibly nonmonotone). The approach allows for various kinds of approxi-
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mations of the problem data and its derivatives in the single-valued case, as well as inexact
solution of subproblems. The resulting algorithmic patterns are shown to be convergent un-
der reasonable assumptions on the variational problem.

The decomposition scheme is highly versatile and makes it possible to exploit struc-
tural properties of the variational problem, even if the operator therein is not separable. The
benefit of having such a flexible setting is assessed by our numerical experiments, comput-
ing a variational equilibrium for generalized Nash games arising when modeling strategic
interactions in electricity markets.

Our numerical results show that, even with an extremely simplified modelling of the
power system, large instances become untractable with a direct solution method, and can
only be solved by decomposition. In terms of accuracy, speed, and scalability, among all the
considered variants and for our battery of tests, the decomposition method using a combina-
tion of Newton and Jacobi approximations appears to be the best one.

Acknowledgements We thank the two referees for their constructive comments which helped us to improve
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