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Abstract We address the problem of solving a continuously differentiable
nonlinear system of equations under the condition of calmness. This property,
also called upper Lipschitz-continuity in the literature, can be described by a
local error bound and is being widely used as a regularity condition in opti-
mization. Indeed, it is known to be significantly weaker than classic regularity
assumptions that imply that solutions are isolated. We prove that under this
condition, the rank of the Jacobian of the function that defines the system
of equations must be locally constant on the solution set. As a consequence,
we prove that locally, the solution set must be a differentiable manifold. Our
results are illustrated by examples and discussed in terms of their theoretical
relevance and algorithmic implications.
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1 Introduction

Let us consider the following system of nonlinear equations

H(x) = 0, (1)
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where H : Rn → Rm is a continuously differentiable function. We denote by
X∗ the set of solutions of (1) and suppose it is nonempty.

We will deal with the notion of calmness of a system like (1), which we
define next.

The results we are going to present do not require a specific norm. Nev-
ertheless, throughout the paper, let ‖ · ‖ denote the Euclidean norm or the
associated matrix norm and B(x, δ), the closed ball centered in x with radius
δ.

We now formally present the definition of a calm problem.

Definition 1 We say that Problem (1) is calm at x∗ ∈ X∗ if there exist ω > 0
and δ > 0 so that

ω dist[x,X∗] ≤ ‖H(x)‖,

for all x ∈ B(x∗, δ), where dist[a,A] denotes the Euclidean distance from a
point a to a set A ⊂ Rn.

The notion of calmness (see [15], Chapter 8, Section F) should be under-
stood as a regularity condition which extends the classical concept of a regular
problem at a solution point x∗ in the smooth and square case, i.e. with m = n,
meaning that the Jacobian matrix of H at x∗ is nonsingular. When the prob-
lem is regular at x∗ in this sense, x∗ is necessarily an isolated solution. Besides
its applicability for nonsmooth and rectangular systems, the notion of calm-
ness encompasses situations with non-isolated solutions. It is easy to check
that in the particular case of smooth systems with m = 1, calmness implies
that directional derivatives in directions normal to the solution set are non-
null. At the same time, the notion of calmness is powerful enough as to allow
the extension of a large array of results which were previously known to hold
only for regular systems, in the classical sense, and hence it became quite pop-
ular. This condition, that is also called upper-Lipschitz continuity (e.g. [14]),
is described by a local error bound. If H is affine, Hoffman’s Lemma (see [8])
guarantees that this error bound always holds and is global.

One area where this notion turned out to be quite useful is the study of the
convergence properties of iterative methods for solving systems of nonlinear
equations, e.g. Levenberg-Marquardt type methods (see [11],[12], and Section
4). Among the papers which use the notion of calmness with this purpose we
mention [1], [3], [4], [6], [7], [10], [17] and [18]. Calmness also has implications
in connection with constraint qualifications, Karush-Kuhn-Tucker systems and
second order optimality conditions (see [9]).

For equivalent definitions of calm problems see [15]. Thanks to the Implicit
Function Theorem we know that full rank systems are calm. We will see in
this paper that in some sense, calm problems do not go that much beyond
systems of equations with full rank Jacobians.

In this paper we will establish that the local error bound described by
calmness, together with the continuous differentiability of H, imply that the
rank of the Jacobian is locally constant on the solution set of system (1).



The effect of calmness on the solution set of systems of nonlinear equations 3

The paper is organized as follows. In Section 2 we prove our main result.
In Section 3 we present some corollaries and examples. We end up with some
remarks on the algorithmical relevance of our theorem in Section 4.

2 Our main result

We assume from now on that H is continuously differentiable. JH(x) ∈ Rm×n
will denote the Jacobian matrix of H evaluated at a point x, which has as
columns the gradients of the component functions of H. Before proving our
theorem, we present a result by Fischer ([5], Corollary 2), that will play a
crucial role in our proof.

Lemma 1 Assume that Problem (1) is calm at x∗. Then, there exist δ̄ > 0
and w̄ > 0 so that

ω̄ dist[x,X∗] ≤ ‖JH(x)H(x)‖,

for all x ∈ B(x∗, δ̄).

This lemma says that the problem JH(x)H(x) = 0 inherits the calmness of
H(x) = 0, and also that these systems must be equivalent in a neighborhood
of x∗.

We now arrive at the main result of this paper.

Theorem 1 Assume that Problem (1) is calm at x∗. Then, there exists δ� > 0
so that rank(JH(x)) = rank(JH(x∗)) for all x ∈ B(x∗, δ�) ∩X∗.

Proof Suppose that there exists a sequence {xk} ⊂ X∗ with xk → x∗ so that

rank
(
JH(xk)

)
6= rank (JH(x∗)) ,

for all k. From the continuity of the Jacobian we can assume, without loss of
generality, that

rank
(
JH(xk)

)
> rank (JH(x∗)) .

Let us consider now the singular value decomposition (see, e.g., [2], p. 109) of
JH(x),

JH(x)> = UxΣxV
>
x ,

where Ux ∈ Rm×m and Vx ∈ Rn×n are orthogonal and Σx is the m by n diag-
onal matrix diag(σ1(x), σ2(x), ..., σrx(x), 0, ..., 0) with positive singular values
σ1(x) ≥ σ2(x) ≥ ... ≥ σrx(x) > 0. We recall that these singular values are the
square roots of the nonzero eigenvalues of the matrix JH(x)JH(x)>. Note that
rx ≥ 0 indicates the rank of JH(x). According to these definitions we have that
rx∗ < rxk . In order to facilitate the notation we omit x in some manipulations
and set r := rx∗ and rk := rxk . Now define vk := Vker+1, where

er+1 := [0...0 1︸︷︷︸
r+1

0...0]> ∈ Rn.
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Then, for all k we have that ‖vk‖ = 1 and

vk ⊥ Kernel
(
JH(xk)>

)
= Span{Vkerk+1, ..., Vken}. (2)

We introduce now an auxiliary operator. Let Σ∗ := Σx∗ and define T : Rn →
Rn×m as

T (x) := VxΣ
>
∗ U
>
x .

Using the notation Uk := Uxk , Vk := Vxk , we get, for all k,

T (xk)JH(xk)>vk = VkΣ
>
∗ U
>
k UkΣkV

>
k v

k = VkΣ
>
∗ Σker+1 = VkΣ

>
k Σ∗er+1 = 0.

(3)
Using Lemma 1 we conclude that for all x ∈ B(x∗, δ̄) it holds that

dist[x,X∗] ≤ ω̄‖JH(x)H(x)‖
≤ ω̄‖

(
JH(x)− T (xk)

)
H(x)‖+ ω̄‖T (xk)H(x)‖

≤ ω̄‖JH(x)− T (xk)‖‖H(x)‖+ ω̄‖T (xk)H(x)‖. (4)

From the differentiability of H we know that there exist δ̌ > 0 and a Lipschitz
constant L > 0 so that

‖H(x)−H(y)‖ ≤ L‖x− y‖,

for all x, y ∈ B(x∗, δ̌). Let x̄ ∈ X∗ denote a solution that satisfies ‖x − x̄‖ =
dist[x,X∗] for an arbitrary point x. Then, there exists a positive constant
δ′ ≤ δ̌ so that for all x ∈ B(x∗, δ′) we have x̄ ∈ B(x∗, δ′) and

‖H(x)‖ = ‖H(x)−H(x̄)‖ ≤ L‖x− x̄‖ = Ldist[x,X∗]. (5)

The continuity of JH implies that for some positive δ̃ ≤ δ′ we have that

‖JH(x)− T (xk)‖ ≤ 1

2ω̄L
, (6)

whenever x, xk ∈ B(x∗, δ̃). Thus, in this ball, (4), (5) and (6) lead to

dist[x,X∗] ≤ 2ω̄‖T (xk)H(x)‖. (7)

Using Taylor’s formula,

‖H(xk + tvk)−H(xk)− tJH(xk)>vk‖ = o(t),

with limt→0 o(t)/t = 0. Then, in view of (3) and (7), there exist k̄ > 0 and
t̄ > 0, so that for all k > k̄ and 0 < t < t̄ we have that

1

2ω̄
dist[xk + tvk, X∗] ≤ ‖T (xk)H(xk + tvk)‖

= ‖T (xk)
(
H(xk + tvk)−H(xk)− tJH(xk)>vk

)
‖

≤ ‖T (xk)‖‖H(xk + tvk)−H(xk)− tJH(xk)>vk‖
= σ1(x∗)o(t).
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On the other hand, taking (5) into account and using the previous inequality,
we conclude that

‖JH(xk)>vk‖ ≤ o(t)

t
+
‖H(xk + tvk)−H(xk)‖

t

≤ o(t)

t
+
L

t
dist[xk + tvk, X∗]

≤ (1 + 2ω̄σ1(x∗)L)
o(t)

t
.

Taking the limit when t→ 0+ we get

JH(xk)>vk = 0,

which contradicts (2).

3 Some related results

In this section we present some results related to Theorem 1 and discuss ex-
amples that illustrate the relevance of the assumption of calmness, and the
sharpness of the conclusions that we obtain. Our first example shows that un-
der calmness, the rank of the Jacobian must be locally constant only on the
solution set, but not at other points.

Example 1 Consider the function H : R2 → R2 defined by

H(x1, x2) =

[
x2

x2
2 exp(x2

1)

]
.

Thus, the Jacobian is given by

JH(x1, x2)> =

[
0 1

2x1x
2
2 exp(x2

1) 2x2 exp(x2
1)

]
.

Define the sequence {xk} 6⊂ X∗ so that xk := (1, 1/k) with k > 0 and consider
the solution x∗ := (1, 0). Obviously, xk → x∗ as k →∞ and rank

(
JH(xk)

)
=

2 6= 1 = rank (JH(x∗)) for all k > 0. Nevertheless, one can easily check that
H(x) = 0 is calm at x∗.

One may also ask if the converse of Theorem 1 is true, i.e., if constant rank
on the solution set implies calmness. The simple example next shows that the
answer to this question is negative.

Example 2 Let H : R3 → R2 be defined by

H(x1, x2, x3) =

[
x1 + x2

x2
3

]
.

The rank of the Jacobian on the solution set is always 1, but it is clear that
the second component violates the error bound in Definition 1 around any
solution.
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In the convergence analysis of the Levenberg-Marquardt methods in [4]
and [18] it was assumed, without loss of generality, that the Jacobian of H
at x∗ had at least one positive singular value. This assumption is rigorously
supported by the following result.

Proposition 1 Assume that Problem (1) is calm at x∗ ∈ X∗ and that JH(x∗) =
0. Then, there exists δ1 > 0 so that H(x) = 0 for all x ∈ B(x∗, δ1).

Proof Lemma 1 together with the assumption on JH(x∗) imply that there
exists δ̄ such that

ω̄ dist[x,X∗] ≤ ‖JH(x)H(x)‖
= ‖(JH(x)− JH(x∗))H(x)‖
≤ ‖JH(x)− JH(x∗)‖‖H(x)‖ (8)

for all x ∈ B(x∗, δ̄). For a given x in this ball, take now x′ ∈ X∗ such that
‖x − x′‖ = dist[x,X∗], and let L be the Lipschitz constant of H. It follows
from (8) and the fact that x′ belongs to X∗ that

ω̄ dist[x,X∗] ≤ ‖JH(x)−JH(x∗)‖‖H(x)‖ = ‖JH(x)−JH(x∗)‖‖H(x)−H(x′)‖ ≤

L‖JH(x)− JH(x∗)‖‖x− x′‖ = L‖JH(x)− JH(x∗)‖dist[x,X∗] (9)

for all x ∈ B(x∗, δ�), where δ� ≤ δ̄ is sufficiently small. By continuity of JH ,
there exists δ1 ≤ δ� such that

‖JH(x)− JH(x∗)‖ ≤ ω̄

2L
, (10)

for all x ∈ B(x∗, δ1). Combining (9) and (10) we get (ω̄/2)dist[x,X∗] ≤ 0 for
all x ∈ B(x∗, δ1), and hence the whole ball is contained in X∗.

The next example suggests that complementarity type equations tend not
to be calm at points that do not satisfy strict complementarity.

Example 3 Consider H : R2 → R so that

H(x1, x2) := x1x2.

The solution set correspondent to Problem (1) isX∗ = {x ∈ R2|x1 = 0 or x2 =
0} and the Jacobian is given by

JH(x1, x2)> =
[
x2 x1

]
.

Note that the rank of the Jacobian is 0 at x∗ := (0, 0) but it is equal to 1 at any
other solution. Since the function is not identically zero in any neighborhood of
x∗, Corollary 1 implies that Problem (1) cannot be calm at x∗. Nevertheless,
note that in this example the systems JH(x)H(x) = 0 and H(x) = 0 are
equivalent around x∗. This means that the equivalence between these two
systems of equations does not imply calmness.
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We now show that calm problems are not that far away from full rank
problems. This is formally described by the next lemma, where we will rewrite
Problem (1) as an equivalent full rank system of equations, also calm.

Theorem 2 Assume that Problem (1) is calm at x∗. Then, there exists a
continuously differentiable mapping H̄ : Rn → Rr, with r := rank (JH(x∗)),
so that the problem

H̄(x) = 0

is calm at x∗ and locally equivalent to H(x) = 0. Moreover, there exists δ2 > 0
so that rank (JH̄(x)) = r, for all x ∈ B(x∗, δ2).

Proof Lemma 1 implies that for all x ∈ B(x∗, δ̄) we have that

dist[x,X∗] ≤ ω̄‖JH(x)H(x)‖
≤ ω̄‖ (JH(x)− JH(x∗))H(x)‖+ ω̄‖JH(x∗)H(x)‖
≤ ω̄‖JH(x)− JH(x∗)‖‖H(x)‖+ ω̄‖JH(x∗)H(x)‖. (11)

Then, using the local Lipschitz continuity of H and the continuity of JH , we
have

‖JH(x)− JH(x∗)‖‖H(x)‖ ≤ 2

ω̄
dist[x,X∗],

in B(x∗, δ̂), for δ̂ > 0 sufficiently small. This inequality combined with (11)
implies that

dist[x,X∗] ≤ 2ω̄‖JH(x∗)H(x)‖,

for all x ∈ B(x∗, δ̂). On the other hand, defining

H̄(x) :=
(
σ1(x∗)

(
U>∗ H(x)

)
1
, ..., σr(x

∗)
(
U>∗ H(x)

)
r

)
,

with σ1(x∗), ..., σr(x
∗) and U∗ as in Theorem 1, we get

‖JH(x∗)H(x)‖ = ‖V∗Σ>∗ U>∗ H(x)‖ = ‖H̄(x)‖.

Obviously, H̄ : Rn → Rr is continuously differentiable and rank
(
JH̄(x)

)
≤

r for all x. Furthermore, H̄(x) = 0 is calm at x∗ and equivalent to H(x) = 0
in a neighborhood of x∗.

In order to complete the proof we just need to show that rank(JH̄(x∗)) = r,
since the rank cannot diminish locally. It can be easily checked that it suffices
to prove that

Kernel
(
JH̄(x∗)>

)
⊂ Kernel

(
JH(x∗)>

)
. (12)

So, let us prove this inclusion. We know that there exist δ3 > 0 and ω̂ so that

dist[x,X∗] ≤ ω̂‖H̄(x)‖,
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for all x ∈ B(x∗, δ3). Take u ∈ Kernel (JH̄(x∗)) with ‖u‖ = 1. Then, for every
t > 0 sufficiently small we have that

o(t) = ‖H̄(x∗ + tu)− H̄(x∗)− tJH̄(x∗)>u‖
= ‖H̄(x∗ + tu)‖

≥ 1

ω̂
dist[x∗ + tu,X∗]

≥ 1

Lω̂
‖H(x∗ + tu)‖, (13)

where the last inequality follows from the local Lipschitz continuity of H, with
L > 0 as in Theorem 1. On the other hand, from Taylor’s formula we know
that

lim
t→0

1

t
‖H(x∗ + tu)−H(x∗)− tJH(x∗)>u‖ = 0.

This, together with (13), leads to

JH(x∗)>u = 0,

which implies the inclusion (12). Therefore, there exists δ2 > 0 so that

rank (JH̄(x)) = r,

for all x ∈ B(x∗, δ2).

The next corollary characterizes the geometry of the solution set of a calm
problem.

Corollary 1 Assume that Problem (1) is calm at x∗. Then X∗ is locally, a
differentiable manifold of codimension r := rank (JH(x∗)).

Proof Given a continuously differentiable system H(x) = 0, such that the rank
of JH(x) is constant on a neighborhood of a zero x̃ of H, it is well known that
the set of solutions {x ∈ Rn : H(x) = 0} is locally a differentiable manifold
(see, e.g., Proposition 12 in [16], p. 65). In view of Lemma 2 we conclude that
this result applies to the set of zeroes of H̄. The statement follows then from
the local equivalence of H(x) = 0 and H̄(x) = 0 at x∗, also proved in Theorem
2.

Due to this corollary one can easily see that sets like X∗ := {x ∈ R3|x2 =
0 or x2

1 + (x2 − 1)2 + x2
3 = 1} (the union of a sphere and a hyperplane with

nonempty interception) cannot represent the solution set of a calm problem,
though X∗ is the solution set of the differentiable system H(x) = 0 with

H(x1, x2, x3) = x2

(
x2

1 + (x2 − 1)2 + x2
3 − 1

)
.

Another direct but interesting consequence of Corollary 1 is given next.

Corollary 2 Assume that Problem (1) is calm at x∗. Then, there cannot exist
a sequence of isolated solutions converging to x∗.
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Proof Such a solution set cannot be a differentiable manifold.

The example we will present now shows how delicate Corollary 2 is.

Example 4 Let H : R2 → R2 be given by

H(x1, x2) :=

{(
x2, x2 − x2

1 sin( 1
x1

)
)
, if x1 6= 0;

(x2, x2) , if x1 = 0.

In this example we have exactly one non-isolated solution, namely x∗ := (0, 0),
and x∗ is the limit of the isolated solutions

xk :=

(
1

2kπ
, 0

)
,

with k integer and |k| → ∞. One can also observe that Problem (1) is calm
at x∗ and that

JH(xk) =

[
0 1
1 1

]
,

for all k > 0. Nevertheless, the Jacobian of H at x∗ is given by

JH(x∗) =

[
0 0
1 1

]
.

This change of rank does not contradict Corollary 2, since the Jacobian of
H is not continuous at x∗. In this case, modifying a little bit the example in
order to have continuity of the Jacobian and calmness is an impossible task. In
fact, these two properties conflict with each other in the following sense. If one
replaces x2

1 by something smoother, like xβ1 , with β > 2, one gets continuity
of the Jacobian but loses calmness.

Before closing the section we discuss one last example.

Example 5 Consider H : R3 → R2 so that

H(x1, x2, x3) :=

[
x2

1 + x2
2 − 1

x2
1 + x2

3 − 1

]
,

The solution set X∗ associated to (1) is the intersection of two perpendicular
cylinders. The Jacobian of H is given by

JH(x1, x2, x3)> =

[
2x1 2x2 0
2x1 0 2x3

]
.

The rank of the Jacobian is 2 at any solution except at x := (1, 0, 0) and
x := (−1, 0, 0), where it is 1. Therefore, Problem (1) is not calm at these two
solutions. But what makes this example illustrative is the fact that the equiv-
alence of JH(x)H(x) = 0 and H(x) = 0 is destroyed at (1, 0, 0) and (−1, 0, 0).
Indeed, the solution set of JH(x)H(x) = 0 is a surface while the solution set of
H(x) = 0 is the union of two perpendicular ellipses that intercept each other
at (1, 0, 0) and (−1, 0, 0).
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4 Our theorem and iterative algorithms for solving systems of
nonlinear equations

Although Theorem 1 seems to be just a result of Analysis, and refers specifi-
cally to the geometry of solution sets of calm problems, it echoes in practical
algorithms for solving Problem (1). Apparently, our results suggest that one
should not be that preoccupied with the magnitude of the regularization pa-
rameter in unconstrained Levenberg-Marquardt methods. In order to explain
this better let us describe a Levenberg-Marquardt iteration.

Interpret s ∈ Rn as the current iterate. Then, the Levenberg-Marquardt
method demands solution of the following subproblem:

min
d∈Rn

‖H(s) +∇JH(s)>d‖2 + α(s)‖d‖2, (14)

where α(s) > 0 is a regularization parameter. If we set this parameter equal
to 0 and consider the minimum norm solution of (14), we recover the classical
Gauss-Newton method. It is known that for calm problems, the local conver-
gence rate of Gauss-Newton methods is superlinear (or quadratic) if the rank of
the Jacobian is constant in a whole neighborhood of a solution. In other words,
under constant rank, the Levenberg-Marquardt regularization is needless. Of
course one can easily construct functions where the Levenberg-Marquardt pa-
rameter has to be precisely chosen in order to maintain fast local convergence.
In Example 1, for instance, quadratic convergence of the Levenberg-Marquardt
method is only achieved if α(s) is chosen so that it remains proportional to
‖H(s)‖β , with β ∈ [1, 3]. Nevertheless, in view of Lemma 2, such problems
are kind of artificial. In fact, the numerical results in [7] have shown that
the Levenberg-Marquardt parameter could be chosen with significant freedom
without changing the accuracy of the method. The constant rank on the so-
lution set of calm problems might also be the reason for the efficiency of the
conjugate gradient method in solving the Levenberg-Marquardt subproblems,
stated in the same reference.

Acknowledgements The authors would like to thank the two anonymous referees for their
valuable comments, Prof. Alexey Izmailov for coming up with the function in Example 4
and CNPq (Conselho Nacional de Desenvolvimento Cient́ıfico e Tecnológico) for the financial
support.

References

1. Dan, H., Yamashita, N., Fukushima, M.: Convergence properties of the inexact
Levenberg-Marquardt method under local error bound conditions. Optim. Methods
Softw. 17, 605–626 (2002).

2. Demmel, J.W.: Applied Numerical Linear Algebra. SIAM, Philadelphia (1997).
3. Fan, J., Pan, J.: Inexact Levenberg-Marquardt method for nonlinear equations. Discret.

Contin. Dyn. Systems – Ser. B 4, 1223–1232 (2004).
4. Fan, J., Yuan, Y.: On the quadratic convergence of the Levenberg-Marquardt method

without nonsingularity assumption. Comput. 74, 23–39 (2005).



The effect of calmness on the solution set of systems of nonlinear equations 11

5. Fischer, A.: Local behavior of an iterative framework for generalized equations with
nonisolated solutions. Math. Program. 94, 91–124 (2002).

6. Fischer, A., Shukla, P.K.: A Levenberg-Marquardt algorithm for unconstrained multi-
criteria optimization. Oper. Res. Lett. 36, 643–646 (2008).

7. Fischer, A., Shukla, P.K., Wang, M.: On the inexactness level of robust Levenberg-
Marquardt methods. Optim. 59, 273–287 (2010).

8. Hoffman, A.J.: On approximate solutions of systems of linear inequalities. J. Research
of the National Bureau of Standards 49, 263–265 (1952).

9. Izmailov A.F., Solodov M.V.: Karush-Kuhn-Tucker systems: regularity conditions, error
bounds and a class of Newton-type methods. Math. Program. 95, 631-650 (2003).

10. Kanzow, C., Yamashita, N., Fukushima, M.: Levenberg-Marquardt methods with strong
local convergence properties for solving nonlinear equations with convex constraints. J.
Comput. Appl. Math. 172, 375–397 (2004).

11. Levenberg, K.: A method for the solution of certain non-linear problems in least squares.
Q. Appl. Math. 2, 164–168 (1944).

12. Marquardt, D.W.: An algorithm for least-squares estimation of nonlinear parameters.
J. Soc. Ind. Appl. Math. 11, 431–441 (1963).

13. Pang J.S.: Error bounds in mathematical programming. Math. Program. 79, 299–332
(1997).

14. Robinson, S.M.: Generalized equations and their solutions, Part II: Applications to
nonlinear programming. Math. Program. 19, 200–221 (1982).

15. Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Springer, Berlin, (1998).
16. Spivak M.: A Comprehensive Introduction to Differential Geometry, Volume 1. Publish

or Perish, Berkeley (1979).
17. Yamashita, N., Fukushima, M.: On the rate of convergence of the Levenberg-Marquardt

method. Comput. 15 (Suppl.), 239–249 (2001).
18. Zhang, J.-L.: On the convergence properties of the Levenberg-Marquardt method. Op-

tim. 52, 739–756 (2003).


